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Summary

De novo design produces novel molecular structures with desired properties by
taking chemical space as a source. Open source software has had a significant
impact on several areas of computer-aided molecular design, such as chemin-
formatics, docking studies and bioinformatics but has been slow to impact de
novo design field in a similar way. This triggered our development of the open
source software GeneGear. GeneGear is a Java-platform that is built with the
chemistry development kit (CDK) and several other Java packages, such as
Jmol, WEKA, JavaStat and JFreeChart. Though our development is still at
a primary stage, it supports assembly of new molecules through either a sys-
tematic combinatorial library routine or a stochastic evolutionary algorithm
routine. Various in silico methods, such as docking, molecular similarity and
QSAR are allowed to be adopted to direct the molecular design process in a
structure-based way or a ligand-based way. The individual quality evaluations
can be parallely implemented, thereby enabling large-scale optimizations. In
addition to the main implementations, some complementary approaches, such
as design of a fragment library, graphical visualization of a building block or
a product set, and selection of an optimal structure subset are optionally pro-
vided. In contrast to many known de novo tools which are highlighted with
their particular way of use, GeneGear intends to assist chemists in de novo
design with multiple methods. In Chapter 3, an overview of the software and
its functionality are illustrated.

Among the available in silico methods discussed with GeneGear, evolutionary
algorithms (EAs) are a class of powerful optimization methods, which have
high advantage in the achievement of de novo creation of novel chemical struc-
tures. However, without explicit constraints, an EA is hampered by sampling
structures which are chemically undesired for different reasons. By applying
data analytical methods from the fields of machine learning, chemometrics and
multivariate statistics, a knowledge-based approach is proposed in Chapter 4,
which allows a user to define his own filter (called the bias filter (BF)) using
a set of available positive/negative molecules to constrain the EA output of
molecules towards the desired positive structure space. The BF approach re-
quires no explicit formulation of structure constraining rules and allows the
possibility of building a filter where the user does not know the underlying
rules for what constitute an “acceptable” structure, which makes itself much
intuitive and user friendly.

Despite the wide spread of de novo design methods in medicinal chemistry,
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automation and computer-aided synthesis have been comparably little appre-
ciated in organometallic and coordination chemistry. Many of the available
methods for drug design are not adapted to the structural variations of such
type of compounds due to their poor construction rules in addressing the knowl-
edge about the coordination center and the neighboring ligands. Chapter 5
describes a fragment-based EA method, which is developed with GeneGear
specifically for de novo optimization of coordination compounds. The algo-
rithm represents a 2D coordination structure as a graph with a “core-trial-
free” part concept where three kinds of pattern-sensitive operations (growing,
crossover, mutation) are used to sample candidate structures. Also, it permits
a high flexibility in the fitness definition and allows parallel implementation of
the individual fitness-generating calculations, potentially making it possible for
large-scale optimizations. The capabilities of the EA method are illustrated
by a series of representative searches for optimal ruthenium-based catalysts
for olefin metathesis, where the fitness of the generated structures is assessed
by a QSAR obtained at the semi-empirical PM6 level. The results show that
our EA approach is likely to prove a powerful tool in searching for transition
metal catalysts and other functional coordination compounds with optimal
properties.
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Chapter 1

Introduction

1.1 Background

The design of new and improved molecules with desired physical, chemical,
and biological properties is an important but challenging task in the world of
chemistry, biology and pharmaceutics; the designer has to identify a small num-
ber of suitable candidates from an essentially huge chemical space. The past
two decades have witnessed the wide adoption of high-throughput screening
(HTS) in the field of drug discovery, which enables large libraries of avail-
able compounds to be biologically screened at rapid rates for their ability to
bind or modulate targets of interest [1-3]. With the use of highly automated,
robotic techniques, although HT'S in principle allows every available compound
against every biological assay to be tested, it is still associated with a number
of practical problems, for instance, the overall expense caused by acquisition
of the sheer number of synthesized samples and the difficulty in assuring of the
quality of screening libraries and HTS assays. In contrast to the expensive in
vitro process of HTS, virtual screening (VS, also known as vHTS) performs a
more cost-effective in silico task. By using a computational scoring scheme,
the latter searches large compound databases to discover a limited number
of candidate molecules that most likely possess activity against the biologi-
cal targets of interest [4]. Basically, the VS methods can be divided into the
two categories: structure-based screening (namely docking) and ligand-based
screening. The former takes advantage of the three dimensional structure of
the target macromolecule and models its key interactions involved in ligand
binding to detect small molecules which have good steric and energetic fit with
it [5-9]. The latter uses two- or three- dimensional similarity-based methods
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[10-13] or pharmacophore models [14] to identify molecules that share common
structural features with some known active ligand(s). VS based on database
searching has great attraction in discovery of new lead compounds as the hits
can be tested immediately and the molecules are usually synthetically feasible.
Nevertheless, what the screening techniques provide are chemically or struc-
turally available molecules which only represents a small fraction of the total
possible drug-like molecules. The latter was estimated to be at least 1090 in
the chemical space [15, 16].

Clearly, it may require to find new structures which possess activities but are
different from the available molecules. The process of designing new molecules
is called de novo design. In rational drug design, de novo design is regarded
as one of the most important approaches, as well as virtual screening. While
the latter ‘finds’ ligands fitting the binding pocket of the receptor from a large
number of available compounds, the former ‘builds’ ligands by modification of
available structures or assembly of pre-defined atomic or fragmental building
blocks. To achieve structure manipulation, a computer-based molecular rep-
resentation is needed. De novo design programs use various ways to virtually
represent a 2D molecular structure, such as SMILES [17-19], connectivity ma-
trix [20], linear [21,22] or topological 23] tree, or graph [24-27]. Despite the
advantages of other types of molecular encoding approaches, the graph-based
representation methods are highlighted by their efficient chemical resemblance
and flexible operability. The structure manipulation can then be guided by
the two types of design strategies: structure- (or receptor-) based design and
ligand-based design.

A classical structure-based computational design is to construct molecules di-
rectly within the binding site of the target protein. The quality of the designed
molecules is typically evaluated with a force-field based, an empirical or a
knowledge-based scoring function [8]. The molecular building process is usually
concerned with ‘linking’ [28—-37] functional groups pre-placed at favorable inter-
action sites in a molecule or incrementally ‘growing’ [28-30,35-45| a structure
from a ‘seed’ fragment under the shape constraint of the binding site, though it
may also be driven by other concepts, such as lattice sampling [46-48|, Monte
Carlo simulation [43, 44, 49-54], and combinatorial scheme [45,55-58]. A draw-
back of these building strategies is that the resulting conformations of molecules
will almost always be at high energies which is not common under natural cir-
cumstances [59]. Furthermore, the orientations of the building blocks locally
determined by the building procedure does not necessarily yield the optimal
fit for the whole molecule. To overcome these problems, some relatively new
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structure-based methods, such as SYNOPSIS [59], ADAPT [27|, LEA3D [22]
and AutoGrow [60], use a separate structure generator to build new molecules
and feed the molecules into an docking software — e.g., FlexX [61], DOCK [62]
or AutoDock [63] — for fitness determination. A weakness of these methods is
that they have a higher tendency to produce false-positive ligands with reli-
able models of bound ligands. While on the other hand, they have an added
benefit that the programs are easily adapted to different kinds of evaluation
functions, so some two- or three-dimensional similarity-based methods and
pharmacophore models can be combined with docking to reduce the number
of false-positive candidates for fairly complex scoring calculations.

In contrast to a structure-based design, a ligand-based design does not rely
on a three-dimensional structure of a particular biological target, instead, it
starts from the structure(s) and knowledge of one or more known ligands and
encodes them into a pharmacophore model [64], a similarity measure [24, 25, 65]
or a QSAR model [19,23,66], to determine the fitness of the new generated
molecules. Both a QSAR model and molecular similarity can not only be
based on three-dimensional structures but also on topological structures of
molecules depending on the applied descriptors. Moreover, properties other
than biological activity, such as diversity, synthetic feasibility, and absorption,
distribution, metabolic, excretion and toxicity (i.e., the so-called ADMET)
properties, can be taken into account as well.

The second type of structure-based design represented by SYNOPSIS etc.
shares similar building strategies with ligand-based design, where separate
structure generators are used to achieve structure assembly; in fact, many
of the generators are driven by an evolutionary algorithm [19,23-25,65-69].
Evolutionary algorithms, including genetic algorithms (GA) [70-72], genetic
programming (GP) [73,74], evolution strategy (ES) [75,76], and evolutionary
programming(EP) [77, 78|, represent a powerful and general class of global op-
timization methods. Applied to molecular structure optimization, these meth-
ods use tailored genetic operators for new structure generation and perform
population-based stochastic searches for optimal solutions to a given prob-
lem, providing a practical tool for investigating the potentially huge chemi-
cal space; for key reviews, see refs [79-82]. It is thus not surprising that a
number of powerful methods for evolutionary de novo design have been devel-
oped [22-25,27,31,59,60,65,67,83,84]. EA does not make any assumptions
about the underlying fitness landscape, this generality makes it suited for both
structure-based design (e.g., LigBuilder [31], ADAPT [27], SYNOPSIS [59],
LEA3D [22] and AutoGrow [60]) and ligand-based design (e.g., Chemical Gen-
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esis [67], TOPAS [65], JavaGenes 24|, the developments of Nachbar [23] and
Brown et al. [25]).

Of course, both structure- and ligand-based design complement each other
depending on the situation of the application cases. It would also be desirable
to be able to easily switch between different “construction” and “evaluation”
strategies, since the de novo molecular design is a dynamic activity where the
perspectives and purposes of the investigators vary according to application
cases, so the design strategies may change frequently. For instance, from a
structure-based design to a ligand-based design, or from a stochastic search to
a systematic construction. Unfortunately, most de novo softwares available for
computer-aided molecular design (CAMD) do not support such a flexibility and
they are usually concerned with one particular way of use rather than multiple
approaches to a wide range of problems. Once the user changes his design
strategy, it becomes difficult to rely on only one software tool. Of course, some
tools are designed in a modularized manner and in theory do support a low-
cost code modification, however, most of them are proprietary softwares which
do not freely provide source code that can be modified by the user, though
there do exist a few exceptions such as AutoGrow [60] and JavaGenes [24].

Another fact which we must pay attention to is that so far much computer-
aided efforts has been spent designing new active compounds for the pharma-
ceutical industry. In contrast, computer-aided synthesis is much less widespread
in non-medicinal chemistry. In particular, in organometallic and coordination
chemistry field, contemporary catalyst development researchers still to a large
extent rely on their general chemical knowledge and intuition to provide ad hoc
qualified guesses for lead structures. The fact that automation and computer-
aided synthesis have been comparably little appreciated in coordination and
transition metal chemistry is, no doubt, the result of the many obstacles that
this particular chemistry poses. Many of the traditional methods for drug
design are not adapted to the structural variations due to the central atom
in such compounds, in particular in the case that this atom is a transition
element. For example, the coordination number and geometry may vary de-
pending on the metal and its oxidation state as well as on the ligands, thereby
complicating both the construction of rules for automatic structure generation
and the optimization of parameters (e.g., parametrization in force field and
semi-empirical methods) for calculation of molecular descriptors and proper-
ties. Moreover, the reactivity of coordination compounds may be influenced,
or even to a large extent governed, by solvent and entropy, the effects of which
may be hard and costly to describe computationally. So far, to the best of our
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knowledge, no automatic molecular builders capable of handling coordination
compounds are available.

To improve on the situation and make a contribution to the community, we
have developed “GeneGear” - an open source software that integrates mul-
tiple strategies and supports further extension for de novo design of various
compounds. GeneGear is a Java-developed platform which was built with the
popular chemistry development kit (CDK) [85], and several other Java pack-
ages, such as Jmol [86], WEKA [87], JavaStat [88] and JFreeChart [89]. Virtual
combinatorial library design and evolutionary de nowvo design represent its two
main application implementations, which provide users respectively a system-
atic and a stochastic strategy for finding novel chemical structures. Whereas
the former biases to a family-based design, the latter suits a more diverse
chemical space exploration. In the present thesis, we have investigated both of
these approaches though more focus will be put on the latter. Structures gen-
erated from both approaches are allowed to be quality (fitness) evaluated based
on various systems, such as, a receptor-ligand binding energy predicted using
a docking software, e.g., AutoDock [63] and AutoDock Vina [90], a molecular
similarity by the scale of a set of molecular descriptors, or a QSAR/QSPR. The
individual fitness evaluations can be distributed in parallel over multiple nodes
on a cluster-type architecture, thereby enabling large-scale optimizations. In
addition to the main application implementations, some complementary util-
ity methods, such as design of a fragment library, graphical visualization of a
building block or product set, and selection of an optimal structure subset are
also provided.

1.2 Scientific objective

It is thus helpful to present scientists the convenient tool that is of multiple
use to assist their in silico processes of molecular design. Further exploration
of the usefulness of GeneGear in the designs of drug-like or catalyst molecules
with various strategies is valuable.

As “molecular evolution” has been an important and popular approach in recent
decades of de novo design, there is an interest to investigate its capability with
different application cases.

Despite its advantage in creation of novel structures, EA is also apt to produce
chemically undesirable structures. Penalty by fitness function or restriction
of construction by explicit rules to eliminate the undesirable structures can
sometimes be unfavorable when take into account the time and programming
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cost. It is of interest to investigate the possibility of using some knowledge-
based approach to constrain the search space of a random EA within some
chemically meaningful space.

The development of de novo optimization methods so far has mainly been fo-
cused on designing new active compounds for the pharmaceutical industry. In
contrast, computer-aided synthesis is much less widespread in non-medicinal
chemistry at large and in organometallic and coordination chemistry in partic-
ular. A development toward more automation and less ad hoc guess-work in
this field thus has a great potential and is likely to trigger important technical
developments.

1.3 Outline of the thesis
The rest of this thesis is organized as follows:

Chapter two gives the reader a basic introduction about the main concepts of
de novo design and how de novo design techniques are artistically applied in
exploring chemical space for novel molecules of domain interest.

Chapter three introduces the general architecture and main functions of our
new developed de novo design software GeneGear, the usefulness and capabili-
ties of which in de novo design of functional drugs and catalysts are investigated
through several well-studied application examples.

Chapter four focuses on investigation of a knowledge-based approach, which
is built with the data analytical methods from the fields of machine learning,
chemometrics and multivariate statistics and is used to constrain the structure
space generated by an random EA within a chemically meaningful area.

Chapter five concentrates on a fragment-based evolutionary algorithm, which
is facilitated with pattern-sensitive structural operations, quantum chemistry
knowledge, QSAR analysis, and parallel scheme, and used to optimize func-
tional coordination compounds; each compound in our concept is characterized
as a molecular graph with “core”, “trial” and “free” parts.

Final concluding remarks and further perspectives are given in Chapter five.



Chapter 2

The Art of De novo Design in
Exploring Chemical Space

2.1 Chemical Space

“Space”, as Douglas Adams famously described, “is big. You just won’t believe
how vastly, hugely, mind-bogglingly big it is”. His remark gets similar reso-
nance when applies to chemical space, which in the general sense involves the
ensemble of all possible molecules like universe populated with stars. Despite
its vastness, much of chemical space contains blank, lightless galaxies, which
are no of interest. In a narrow sense, ‘chemical space’ can be related to a region
defined by a particular choice of chemical descriptors and the limits placed on
them [16]. In this case, it can be examined in a manner similar to the Mercator
convention in geography, where rules are equivalent to dimensions (e.g., lon-
gitude and latitude), and structures are equivalent to objects (e.g., cities and
countries) [91]. Anyway, ‘chemical space’ is a term for practical uses, infinite
and limited only by chemists’ imagination. In the context of this study, we
refer ‘chemical space’ to a total descriptor space that encompasses all small
carbon-based molecules that could possibly be created. Even with such a lim-
ited scope, the space is still vast; the total number of drug-like molecules has
estimated to exceed 10%°, which only represents a small fraction of the total
possible number of small carbon-based compounds with molecular masses in
the same range in the space.
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2.2 Screening Techniques vs. de novo Design

Given the enormous size of chemical space, the challenge for scientists is to
identify small molecules that are of primary interest. So far, many efforts
have been paid to the drug discovery field. The standard process of drug
discovery is considered to be linear (see Figure 2.1 [92]). Study of a particular
disease derives human knowledge about it. After that, a biological target
associated with it is identified. High-throughput screens are then designed
and subsequently compounds from drug-like chemical libraries are tested in the
screens for their ability to modulate the target. Selected ‘hits’ (compounds that
shows levels of activity beyond a certain threshold level) are further optimized
through the testing of other screens (often lower throughput) to give leads that
have required pharmacokinetic properties. In the following, in vivo tests start,
where leads with required efficacy are further optimized and developed into
candidate drugs, which are subjected to test by human clinical trials.

Identify Select Design Screen Final Entry
Disease Target Primary Identify Selection Into
Screen “HIT” of best leads evelopment,

1,00,000 M p 5 Compunds
Compunds \M

Figure 2.1: A drug discovery funnel [92].

The drug discovery field contains the most number of strategies and methods
for exploring chemical space. Some of them are seen having counterparts in
other fields, some are not. The investigation of this study thus by default
directs to the issue of exploring the drug-like and biological relevant chemical
space. And the motivation is to give the reader basic knowledge how strate-
gies/methods from different categories and from de novo design in particular
are being used to exploring the chemical space of interest.

Medicinal chemistry suggests that compounds that are considered to be func-
tional with regard to specific categories of targets are clustered in discrete
regions of chemical space [93]. Given this, what are the best strategies to nav-
igate through the chemical space and direct our exploratory efforts towards
the regions that are most likely to consist of molecules with useful activi-
ties/properties?

The current primary strategy used by pharmaceutical industry for identifying
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small active molecules that might be starting points for potential drugs is the
use of high-throughput screening (HTS). This is owing to its compatibility with
the production of orally administered drugs. Through HTS, large collections
of tens to hundreds of thousands of compounds are experimentally assayed for
their ability to bind or modulate a biological target. However, the project itself
is very costly — the compounds screened nowadays are often purely synthetic
products from combinatorial chemistry as opposed to natural products used
in the early era of pharmacology. Despite great advances in parallel synthe-
sis and high-throughput screening technology, the number of compounds that
can be created and tested in a reliable manner is only a tiny fraction of all
the molecules of potential pharmaceutical interest. Moreover, the process is
fundamentally based on “trial-and-error”, which is prohibited by the vastness
of chemical space.

An alternative approach, known as virtual screening (VS) is to computation-
ally screen large libraries of molecules for compounds that complement binding
sites of known targets [5,6]. In this case, VS is a docking-based method. VS
faces several fundamental challenges, including sampling various conformations
of flexible molecules and calculating absolute binding energies with solvent ef-
fects. As a result, it is plagued by false-positive and false-negative predictions.
Even with limitations, the field has experienced important successes, where
new ligands are predicted along with their receptor-bound structures with hit
rates significantly greater than with high-throughput screening [94]. Also, by
the strategy of using libraries of accessible, often purchasable compounds, it
saves synthetic effort required by HTS, and thus in principle allows even larger
numbers of compounds to be processed against receptors for which structures
are available at little cost. Thus, for those who can tolerate its false-positive
and false-negative predictions, virtual screening offers a practical route to find-
ing some interesting ligands from the known chemical space. However, by re-
stricting itself to available compounds, VS avoids broad searches of chemical
space, and thus cannot produce structurally novel molecules from the unex-
plored chemical space.

Molecular de novo design ' produces novel molecular structures with desired
properties from scratch [82,96]. In this approach, what a medicinal chemist —
and equally a de movo molecule-design software — faces is a virtually infinite
search space, including at least 1050 drug-like molecules, from which the most

! De novo design is the design of bioactive compounds by incremental construction of a
ligand model within a model of the receptor or enzyme active site, the structure of which is
known from X-ray or nuclear magnetic resonance (NMR) data [95].
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promising candidate structures have to be discovered. Such a large space
prohibits an exhaustive search by any program because of the combinatorial
problem. Instead of systematic searching chemical space, the de novo design
process relies on the principle of local optimization: a de novo search program
may randomly start from one or more discrete points in chemical space to
navigate through their neighborhoods with the pressure of human knowledge,
and finally converge on some local or practical optima. It may also employ
some human-instructed systematic heuristics to determine what are the local
best solutions.

2.3 Focuses of de novo Design

Applying computer programs to design of molecules seems an obvious choice
since the computer can create virtual molecules much faster than human can.
However, prior to any exploring step, a de novo design program must address
precisely the following three issues: how to assemble the candidate structures;
how to estimate their potential quality; and how to sample the search space
effectively and efficiently [82]. The chemical space is full of molecules, each of
which is a non-linear structure implicitly following rules of chemistry, e.g. every
oxygen atom has two bonds, and every carbon atom four. Of course, there can
be further constitutional constraints imposed by chemists for different aims.
How to represent the structures in an appropriate way and generate chemically
desirable rather than problematic structures is the main concern of the first
question. Second, the outcome of a de novo design program based on any
sampling algorithm should be computationally assessed of their quality. The
quality evaluation function (often referred to as objective function) directs the
sampling program towards more competitive structures. Although, most of
the time, the definition of quality evaluation function is really depending on
the investigators, it is important to use methods that predict the molecular
properties reliably and time-efficiently. However, it is impossible to search
systematically the set of all possible molecules. One reason is that the number
of possible structural variations rises very fast with the size of the molecule. If
one considers a possible variation a search step in chemical space, the number
of dimensions orthogonal to the step axis increases with the number of atoms
in the molecule. So a ‘normal’ drug molecule, which may contain e.g. 20 non-
hydrogen atoms, and each atom of which has 10 possible variations, will lead
to a search space of 20 dimensions with 10?° sampling points. This makes a
systematic examination of all possible molecules be quite difficult. Thus it is
crucial to make some meaningful reduction of the search space.
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2.4 Principal Constraints

Chemical space is vast but most of it is not relevant to the problem being
studied. The limits of bioactive chemical space are concerned with specific in-
teractions between small molecules and the three dimensional molecular recog-
nition patterns on particular biological targets [93], which form ‘primary target
constraints’ for de novo searched candidate structures. Such constraints can
be derived either from a three-dimensional target structure or some known
ligands of the particular target. When the former is consulted, it is receptor-
based design, otherwise, the design strategy is ligand-based. Receptor-based
design starts with the binding site, the potential complementarity of which in
molecular shape and physicochemical properties are substantially important
for specific binding. Thus the binding site is used to derive shape constraints
for ligands, as well as specific non-covalent ligand-receptor interactions. The
latter in the form of interaction sites 2 (see Figure 2.2 [82] for an example)
define strong and explicit requirements for successful receptor-ligand binding
and have a major role in the effort to reduce the vast number of possible struc-
tures. They can be further subdivided into hydrogen bonds, electrostatic and
hydrophobic interactions. hydrogen-bonding interactions are of special inter-
est owing to the stable chemical match between hydrogen-bond acceptors and
donors, and often form key interaction sites.

Define binding pocket Determine interaction sites

Figure 2.2: On the basis of an X-ray model of the binding pocket (PDB-
identifier: 1FKF) of FK506-binding protein (FKBP-12 [97]) interaction sites
were identified. Selected interaction centres are indicated by blue dots
(lipophilic), green (acceptor) and red (donor) lines [82].

There are different ways to derive interaction sites from the three-dimensional

2An interaction site is a position in space that is not occupied by the receptor and in
which a ligand atom favorably interacts with the receptor [82].
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structure of the binding pocket. HSITE [98] is the first rule-based method,
which considers hydrogen-bond acceptors and donors and outputs the map of
hydrogen-bonding regions of the receptor. The regions are centred at ideal
hydrogen-bond geometry which is empirically determined from crystal struc-
tures of available small molecules. Some later developed rule-based meth-
ods [28-30, 57, 58] made extension to this by the addition of such as the lipophilic
interaction sites [28-30,57|, and interaction sites of covalent bonds and bonds
to metal ions [58]. Grid-based approaches tackle this problem in another way.
Typically the approaches generate a grid of points in the binding site and place
different probe atoms or fragments with respect to, such as hydrogen-bonding
capabilities or lipophilic properties, at each grid point for the determination of
favorable interaction site and computation of interaction energies. Several de
novo design programs [28, 29, 41| perform the software GRID [99] to achieve the
above process, while others, such as LigBuilder [31], have their own implemen-
tation of this algorithm. The resolution of the grid decides the performance
of grid-based methods. Although higher resolution leads to more grid points
and more accurately calculated regions of the interaction sites, it also requires
greater computational cost, so a compromise is necessary. In addition to in-
dicating favorable positions of specific functional groups in the binding site
as what rule- and grid- based methods have done, the Multiple Copy Simul-
taneous Search (MCSS) [100] method yields a set of pre-docked fragments in
energetically favorable orientations at these positions. The basic scheme is as
follow: first, multiple copies of fragments are randomly placed inside the bind-
ing pocket; all groups are then minimized in energy using a force field and the
forces among them are neglected; next, groups that have interaction energy
with protein above a certain threshold are discarded. An MCSS run leads
to multiple outcomes that can be further inspected for the most promising
ones [32,50]. Similar effect can be achieved by the use of a docking software,
which constructs a component of some de novo design programs [22,27, 60].

In addition to optimizing properties associated with binding affinity /biological
activity, properties such as absorption, distribution, metabolism, excretion,
(the so-called ADME) that are important for the efficacy of a drug also need
to be carefully considered. The concept of ‘drug-likeness’ is related to the
characteristics (such as oral absorption, aqueous solubility and permeability)
of compounds that are more likely to yield safe, orally bioavailable medicines.
It was introduced by Lipinski’s seminal analysis of the Derwent World Drug
Index. The analysis shows that orally administered drugs are more likely
to reside in areas of chemical space defined by a limited range of molecular
properties [93]. These properties are described in Lipinski’s ‘rule of five’ [101]
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which says that, in general, an orally drug-like molecule meets the following
criteria: 1) no more than five hydrogen-bond donors, 2) no more than ten
hydrogen-bond acceptors, 3) a molecular mass no greater than 500 daltons,
and 4) a log P value (a measure of lipophilicity) of no greater than five 3.
Since ‘rule of five’, more methods to predict drug-likeness have been proposed.
They can be used as simple rules of thumb for restricting de nowvo search space
to regions possibly enriched in ‘drug-like’ and ‘lead-like’ molecules.

Another factor which is of major importance is the ease of synthesis. So far,
most de movo designs guarantee the validity of their searched structures by
strictly complying with the basic chemical valence rules. However, this does
not ensure the generation of chemically reasonable and stable structures. The
issue of unstable chemical groups still can be addressed with a set of construc-
tion 20,26, 84] or filter [31] rules. But what are more difficult to handle is the
synthetic feasibility. There is no guarantee that a stable molecule retrieved
from domain relevant are synthetically feasible to produce. Even though this
problem was not newly recognized in the history of de novo design, it got in-
tended address only recently. The common idea of solutions toward this prob-
lem by a small number of de novo design programs is to assemble the building
blocks in agreement with some virtual organic reaction schemes. For example,
the building blocks used for assembly of candidate structures by TOPAS [65]
are resulted from retrosynthetic combinatorial analysis [102] of a set of common
organic reactions. LigBuilder [31] uses basic chemical fragments, all of which
can be classified into chemical groups and rings. PRO_SELECT [57] adopts
idea from both structure-based drug design and combinatorial chemistry and
selects potential substituents for a synthetically accessible template positioned
in the active site of target of interest. In the approach of SYNOPSIS [59],
building blocks are molecules that are selected from a starting database, and a
set of chemical reactions is used as templates for synthesis of candidate struc-
tures. The reactivity of a reaction associated with a particular building block
is estimated on the basis of a series of additional rules for acceptance of such
a reaction, e.g.: an NH2 moiety can be oxidized to an NO2 moiety, but not
when it is part of an N-NH2 moiety; an H-N-C=0 moiety can be reduced to
an H-N-C moiety only in absence of C=S moiety; an aliphatic halogen atom is
preferred more than an NH2 moiety to an aromatic one. Alternatively, some
external softwares, such as CAESA [58] and SEEDS [103], can be applied for
assessing the synthetic accessibility of candidate compounds.

Nevertheless, the process of designing pharmaceutically effective molecules re-

3 All numbers are multiples of five, which is the origin of the rule’s name.
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quires the generation of complex structures with many constraints. Constraints
other than the binding affinity are usually referred to as secondary target con-
straints. The final score of a de nowvo proposed structure is sometimes calculated
as a weighted sum of estimated binding affinity and other objective terms. The
latter directly or indirectly contribute to the secondary constraints.

2.5 Scoring Function

The application of a de novo design program leads to a number of newly
generated structures which are supposed to be scored with their quality, so
the most promising ones can be suggested. The scoring function gives fitness
value to the sampled space and guides the design process efficiently through
the search space. Basically, there are receptor-based and ligand-based scoring
functions as described below.

2.5.1 Receptor-based Scoring

Receptor-based scoring functions are concerned with evaluation of the poten-
tial complementarity of a candidate structure to the binding site of a target
and the receptor-ligand binding affinity. The very early de novo design pro-
grams [33, 38,39, 46-48, 104| only applied steric limits to guide the search, but
more approaches to estimating binding free energy [105] emerged in the fol-
lowing years. The latter can be roughly divided into three families [8, 106]:
force-field based, empirical, and knowledge-based scoring functions 4. Force-
field based methods are most computationally costly because of slow molecular
dynamics (MD) or Monte Carlo (MC) simulations. The force field-based en-
ergy functions usually consists of receptor-ligand (inter) and internal ligand
(intra) interaction energy, which basically includes van der Waals and electro-
static terms. The van der Waals potential energy is for general estimation of
non-bonded interactions, and often modelled by a Lennard-Jones 12-6 func-
tion, as described in Equation 2.1:

Evaw(r) = ﬁizxe [("—j)u - (ﬂ)ﬁl 2.1)

where ¢ is the well depth of the potential and ¢ is the collision diameter of the
respective atoms 7 and j.

*Empirical functions and knowledge-based potentials can be understood as very general
3D-QSARs. They differ from the usual QSAR in two points: First, the training set contains
many different ligand types that bind at different receptors. Second, the structure of the
receptor itself is also used in the derivation of the model [106].
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The electrostatic potential energy is depicted as a pair-wise summation of
Coulombic interactions, as shown in Equation 2.2:

N4 Np

quj
E E 2.2
Ecou(r 47r50r” (2:2)

where N is the number of atoms in molecules A and B, respectively, and ¢ the
charge on each atom.

Additional terms such as bond, angle and torsion may be included as well.
Standard force-field scoring functions have limitations in capturing solvation
and entropic effects. They are further complicated by the requirement of cut-
off distances for the treatment of non-bonded interactions, which more or less
affects the accurate treatment of long-range effects involved in binding. LEG-
END [45] was the first program that implemented a force-field based scoring
function. And quite a few others [40,41,45,52,84,107,108] follows over the
years.

Empirical scoring functions are a weighted sum of individual ligand-receptor
interaction terms, such as hydrogen bonds, electrostatic and hydrophobic in-
teractions, commonly supplemented by penalty terms, such as the number of
rotatable ligand bonds. The weights correspond to free-energy contribution
of interaction of each type. They are obtained from a regression analysis of
experimentally determined binding energies and, potentially, X-ray structural
information of a list of receptor-ligand complexes. The first de novo program
that implements empirical scoring function was LUDI [28,29]|. Several other
de novo programs [28-31,42,49,57,109] followed the same concept. Empirical
functions contain many individual contributing terms which have counterparts
in force-field molecular mechanics terms, however, here they are more efficient
to evaluate, which makes the methods attractive. A disadvantage of these
methods is their dependence on available datasets that are limited in size and
feature similar ligands and receptors. This can cause their bias towards specific
structural motifs, and prevent them from more general use.

Knowledge-based scoring functions are designed to reproduce structural infor-
mation rather than binding energies, for which a number of atom-type inter-
actions are defined depending on their molecular environment. Protein-ligand
complexes are modelled using pair-wise atom potentials, so the binding effects
can be implicitly captured. Implementations of such functions can be found
in Potential of Mean Force (PMF) [110,111] and DrugScore [112]. The latter
also includes solvent-accessibility corrections to pair-wise potentials. The de
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novo design program SMoG [43, 44] has its own implementation of this type of
scoring function. It performs a statistical analysis on a set of ligand-receptor
complex structures to determine the frequencies of each possible pair of atoms
in contact with each other. Interactions found to occur more frequently than
would be randomly expected are considered favorable, otherwise they are con-
sidered unfavorable. Binding free energy is represented as a sum of free energies
(or, equivalently, potentials of mean force) of interatomic contacts that are cal-
culated from their frequencies. Only structural information is needed to derive
these frequencies, so a greater number of structures, not limited to those with
known binding affinities, can be included in the analysis. The major advantage
of knowledge-based functions also lies in their computational simplicity. The
disadvantage is that their derivation is based on the implicit information that
are extracted from limited sets of protein-ligand complex structures.

2.5.2 Ligand-based Scoring

The three-dimensional structure of a biological target can be facilitated to
examine the steric and energetic fit of new candidate structures to the binding
site. However, if such a three-dimensional structure is not available while one
or more binding molecules are known, ligand-based design can be used. In
contrast to receptor-based strategy which is inevitably confronted with the
problem of conformational complexity, a ligand-based strategy can focus on
either the three-dimensional or the topological structure of one or more known
ligands.

A way to use information inherent to known active compounds is derivation of
a three-dimensional pharmacophore model ®>. Once established, it can either
be used to obtain a pseudo-receptor model or act as a direct 3D similarity tem-
plate [64]. Whereas the former guides the design of structures towards those
that are complementary to the constraint, the latter directs to structures that
are similar to the constraint. To build a three-dimensional pharmacophore
model, all applied ligands should be aligned in advance in a common binding
mode. The generality of the model improves with an increase of structural
diversity in the applied set of known ligands. Alternatively, a set of known lig-
ands can be applied for development of a quantitative structure—activity rela-
tionship (QSAR) 6 model style scoring function [19,54, 66]. Another approach

5A pharmacophore is the ensemble of steric and electronic features that is necessary to
ensure the optimal supramolecular interactions with a specific biological target structure and
to trigger (or to block) its biological response [95].

5A quantitative structure-activity relationships is a mathematical relationship linking
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is the computation of molecular similarity between a known active compound
and the candidate compounds [24,25,65]. This is based on the calibration of
a set of molecular descriptors. Both a QSAR model and similarity measure
can be based on either three-dimensional structures or topological structures,
depending on the choice of the descriptors.

2.5.3 Multiobjective Scoring

Asnoted already, a truly effectual drug molecule is more than a bioactive struc-
ture. Physicochemical properties of molecules that determine effects such as
ADME, are also important, as well as other factors such as cost and synthetic
feasibility. Consequently, the focus in de novo design can be shifted toward
the generation of more complex structures within the constraint of multiple
objectives. Even though these objective may be suboptimal in the single ob-
jective sense, they might be competitive and conflicting with each other when
they meet together. For example, a molecular population designed on diversity
alone has a tendency to contain molecules existing in non-druglike regions of
chemical space, e.g., molecules with high molecular weights. Thus, there is a
need for the search for solutions that offer acceptable performance in all ob-
jectives. Typically, optimization techniques formulate multiobjective problems
as a weighted-sum scoring function, such as follow: f(p) = wip; + waps + ...
+ WpPn, where p, is the nth property and w,, the nth weighting coefficient.
Combining multiple objectives via a weighted-sum fitness function produces
a single compromise. However, such an approach is often not desirable as it
is not always easy to decide the appropriate weights. Furthermore, the fit-
ness function determines the regions of the search space that are explored, and
combining objectives via weights can result in that some regions not being ex-
plored. In the absence of additional information, a multiobjective optimization
takes all applied objectives as equivalent. In such a case, there is a hypersur-
face existing in the search space that represents a continuum of alternative
solutions, each of which corresponds to a compromise or tradeoff between the
various objectives. Such a hypersurface is termed a Pareto frontier or a trade-
off surface and the solutions that are part of it are termed non-dominated or
Pareto solutions. Multiobjective optimization seeks a set of non-dominated so-
lutions rather than a single solution. A solution is non-dominated when there
is no another one which is either equivalent or better in all the objectives and,
better in at least one objective than it. In other words, one solution dominates

chemical structure and pharmacological activity in a quantitative manner for a series of
compounds. Methods which can be used in QSAR include various regression and pattern
recognition techniques [95].
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another if it is either equivalent or, better, in all the objectives and, strictly, it
is better in at least one objective [68].
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Figure 2.3: Potential solutions in a two-objective (f1 and f2) problem. The
circles represent pairs of values reflecting the two objectives. The solid circles
are non-dominated solutions and fall on the Pareto frontier. Unfilled circles
are dominated solutions. Individuals are ranked by the number of times they
are dominated; thus the non-dominated solutions are ranked zero and the
dominated solutions are ranked as denoted [68].

The Multiobjective Genetic Algorithm (MOGA) [113] attempts to map out
the hypersurface in the search space where all the solutions are treated as
equivalent without the need for normalization. In MOGA, the ranking of the
population is based on the number of times each solution is dominated (also
known as Pareto ranking), as illustrated in Figure 2.3 [68] Pareto ranking
allows the Pareto frontier to be mapped out by the population by evolving
multiple non-dominated solutions simultaneously. The MOGA algorithm has
been successfully applied to a number of problems in virtual combinatorial
library design [68,114,115] and de novo design [25,69]. Optimal solutions
are the ones that are on the final Pareto frontier, which represent the most
appropriate compromises of the individual objectives for the task.

2.6 Structure Assembly
2.6.1 Molecular Representation

To sample chemical space, what must be first considered is how to represent the
chemical structures appropriately. A molecular structure can be represented
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in one (e.g. a SMILES [116,117| string), two (e.g. a topological tree [23]
or undirected graph [24-26] or three dimensions (e.g. a file of atom coordi-
nates and bond connectivities). Line notations like SMILES, are very compact
for storing, retrieving, and communicating information, but the manipulation
thereof by possible structure operations may gives rise to chemically invalid
structures violating basic valence rules. Topological representations, such as a
tree or graph, have good resemblance of constitutional digram of a chemical
structure, however, it is well known that the properties of a chemical structure
are highly dependent on the three-dimensional structure, so at some stage a
realistic 3D structure is often needed to be generated. Conformational repre-
sentations do the best in description of the detailed information of chemical
structures, while this may also mean that they are more complicated to modify.
In a word, each class of representation has its own advantage and disadvantage,
which one to use is according to the actual condition of the application.

2.6.2 Building Blocks

Both atoms and fragments can used as basic building blocks for the assembly
of candidate structures. Atom-based approaches are superior to fragment-
based methods in generation of a diverse structure space. But at the same
time, they are confronted with a much larger search space which contains more
structures with chemically unacceptable constitutions. This hinder the speed
of atom-based methods in finding suitable candidate compounds. Fragment-
based strategies, on the other hand, reduces the combinatorial problem largely.
This reduction is usually preferred, especially fragments are used that have
common occurrence in drug molecules. Moreover, the definition of fragment is
not that rigid: it can vary from an atom to a polycyclic ring system. As the
problem coupled with pure atoms as building blocks became more and more
distinct, today, it is more general that fragments with more than one atom are
used as building blocks which of course can be padded with a few single-atom
fragments.

2.6.3 Structural Operation

There are a list of concepts of structural operations with respect to assem-
bly of an ensemble of new structures, such as linking, growing, random sam-
pling, lattice-based sampling, sampling driven by molecular dynamics (MD),
crossover and mutation.

The growing program [28-30, 35-45] starts with a seed fragment that is pre-
positioned at one of the key interaction sites of the receptor (Figure 2.4) [82].
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Figure 2.4: Ilustration of the ‘growing’ concept based on the example of
FK506-binding protein (FKBP-12, Figure 2.2) [82].

The seed structure gets incrementally grown within the binding site, with each
suggestion being evaluated with its steric and/or energetic fit with the site.
The growing strategy can run into difficulties if the active site contains more
than one distinct (sub)pockets and/or if the seed is too small compared to the
binding pocket. Due to the combinatorial nature of the search space, which
is also associated with a variety of conformations for each single topological
solution, it is not easy to suggest a molecule that fits to each part of the binding
pocket. The strategy is more suitable for lead optimization. In this case,
one can take the framework of a known lead compound as the seed structure
and let the program build the remaining residues. Since the framework has
occupied the principal part of the binding pocket, the problem of insufficient
sampling will become less severe. A good example is PRO_SELECT [57] which
introduced the idea of combinatorial chemistry to the growing method for the
consideration of synthetic feasibility.
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Figure 2.5: Illustration of the ‘linking’ concept based on the example of FK506-
binding protein (FKBP-12, Figure 2.2) [82].
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The linking procedure [28-37| commences with several fragments that are pre-
placed independently and favorably at some key interaction sites of the receptor
(Figure 2.5 [82]). The pre-placed building blocks are joined by automatically
constructed or searched linkers to derive a complete molecule satisfying all key
interaction sites. The linking strategy allows maximum ligand—protein interac-
tions at the very beginning with the placement of suitable chemical fragments
at optimal positions. However, linking different fragments together is not easy
— any slight misplacement of fragments or fragments with no desirable spatial
orientation can lead to ambiguous structures.

The lattice-based strategy concerns placement of an atomic lattice in the bind-
ing site. The lattice can be constituted by randomly and evenly distributed
atoms [48, 51], regularly assigned sp® carbon atoms (diamond lattice) [46, 50],
or pre-docked fragments [47]. Atoms in the vicinity of different interaction sites
are joined by the shortest path among them and connected by newly formed
bonds to yield new molecules [46-48]. Alternatively, atoms are joined to each
other and to functional groups [50] by Monte Carlo simulation [50, 51] to form
new molecules with the guidance of stereochemistry and potential energy min-
imization.

In molecular dynamics (MD) simulation, a user-specified set of molecular frag-
ments (or atoms) are allowed to move independently about a fixed target ac-
tive site. This allows the fragments to sample various low-energy orientations.
When the geometries between pairs of fragments are appropriate, bonds can
be formed between them to result in larger molecules. The formed bonds
can in subsequence be broken in order to form energetically more favorable
connections to different fragments. The connectivity of fragments gets itera-
tively improved over the course of the simulation, leading to a number of en-
ergetically favorable molecules. CONCEPTS [49] was the first such program,
CONCERTS [52] and DycoBlock [107,108, 118] followed.

Different from the above structure-based design strategies which construct lig-
ands directly in the binding site of a target, ligand-based de novo design is
not directly provided with the constraints of interaction sites. The major-
ity of ligand-based approaches feature an evolutionary algorithm to optimize
the topological molecular graphs. EAs have several optimal properties which
make them attractive in de novo design, the most important perhaps being
the ability to perform well in a search space which is large and incompletely
understood. The choice of EA for chemical space sampling implicitly makes
genetic operators (e.g., crossover and mutation) be responsible for the rendi-
tion of molecular diagrams. A crossover operator does an ‘inter-breeding’ (see
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Figure 2.6 [26]), wherein ‘genetic materials’ (substructures) of two ‘parent’ in-
dividuals are exchanged and combined to generate new ‘child’ individuals. A
mutation operator while on the other hand tends to introduce in an external
variation (see Figure 2.7 [26]), wherein some small and local changes, such as
changing an atom element type or bond order, adding or removing a fragment,
are made to a present individual to create a new individual.
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Figure 2.6: Crossover operation on a pair of structures with molecular formula

CioHis [26].
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Figure 2.7: Mutation operation [119] on a structure with molecular formula
Ci0Hig, with the parent structure (left) and the offspring structure (right) [26].

Among the existing EA methods, JavaGenes [24] implements a multiple-point
crossover operator which allows operations on edges of rings. TOPAS [65] uses
a mutation operator that substitutes whole fragments, obeying the rules of vir-
tual chemical reaction schemes. Nachbar [23] and Brown et al. [25] developed
both crossover and mutation operators in their implementations. Chemical
Genesis [67] applies crossover and mutation operators to the three-dimensional
molecular structures and adds novel mutations, e.g., translation and rotation
of molecule, and rotation about a bond. Ligand-based methods generally do
not make use the three-dimensional structure of a target to evaluate the overall
quality of generated ligands. But it is possible to use an EA structure gener-
ator like TOPAS [65] in combination with a heuristic 3D conformer builders
like CORINA [120,121], CONCORD [122,123| and feed the designs into fast
docking programs — e.g., FlexX [61], DOCK [62], or AutoDock [63] — for a
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structure-based quality (fitness) evaluation. The program SYNOPSIS [59],
ADAPT [27], LEA3D [22] and AutoGrow [60] are representative versions fol-
lowing this approach.
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Figure 2.8: Illustration of the steps carried out by BREED to generate new
ligands. The bonds that are distinctly colored in black are matching bonds.

BREED [124], a novel de novo design program, utilizes a special ‘crossover’
(recombination) idea. In this approach, a set of known ligands for a partic-
ular target in their three-dimensional active conformation is superimposed in
a common reference frame by the overlay (alignment) of their target crys-
tal structures. The overlapping bonds in all pairs of ligands are found, and
the fragments on sides of each matching bond are swapped to generate novel
molecules, as depicted in Figure 2.8. The method can be carried out in a re-
cursive manner, so that the resulting offspring ligands are added into the pool
of known actives and join in subsequent cycles of recombination. BREED [124]
can only be applied in cases where several ligands are already known and struc-
turally characterized. As the known ligands are pre-superimposed in their ac-
tive conformation, functional groups that are known to bind the target will be
present in the novel ligands in precise position and orientation.

2.7 Space Search

The vastness of chemical space is essentially caused by the combinatorial prob-
lem. Now, consider the chemical space of a normal hexane (n-hexane), each
hydrogen atom of which could be substituted for another element type or chem-
ical group. The use of a list of only 150 substituents in consideration of mono-
to 14-substituted hexanes will lead to more than 102 possible derivatives of
n-hexane [125]. It is thus not difficult to imagine the infiniteness of the entire
chemical space. To sample the search space effectively, de novo design has to
tackle the problem of combinatorial explosion.

2.7.1 Combinatorial Search Strategies

The ideal algorithm for combinatorial search is expected to be able to solve
the problem with provably few search steps and with provably optimal solution
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quality. However, this is usually not realistic due to a potentially huge search
space. Combinatorial search strategies offer a practical solution by lowering
their expectations on one or both of the two aims. They solves instances of com-
binatorial problems by reduction of search space and possible use of efficient
heuristics. The strategies are basically divided into breadth-first search (BFS)
and depth-first search (DFS), though there can be some alternatives such as
breadth-bounded search [126]. While a breadth-first search systematically goes
through every solution along with every level of a search tree (or graph) (see
Figure 2.9(a)), a depth-first search explores the search tree (or graph) as far
as possible along each branch before backtracking (see Figure 2.9(b)).
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Figure 2.9: Order in which the nodes are visited in (a) breadth-first search and
(b) depth-first search, respectively.

A few of de nowvo design programs implement either a breadth-first strat-
egy [33,35-37,40,47,48] or a depth-first strategy [30,35-39,41,46,47]. A
breadth-first strategy conserves all possible partial solutions at each level of
the search tree and explores, sequentially, other levels until the end. Since
breadth-first search performs a systematic examination, it ensures identifica-
tion of the optimal solution given enough search steps, but it typically has
large memory requirements. A depth-first strategy however retains only one
of the possible partial solutions at each level of the search tree. Depth-first
search does not guarantee to find the overall best solution, even if the best
partial solution is selected each time, but it is able to reduce the search space
significantly.

To make a combinatorial search feasible in a de mnovo design, the level of
compromise between the requirements of ‘optimality guarantee’ and ‘space
economy’ should be determined. Most of the programs that implement the
breadth-first strategy use a linking method for structure assembly. Given that
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the key interaction sites are already occupied with favorable fragments, only a
smaller problem space (e.g., small set of fragments) is expected to be explored,
which makes it possible to run an exhaustive search. RASSE [40], however im-
plements a breadth-first search with an atom-based growing approach, whose
search space is limited with the only 100 best partial solutions being selected
at each growing step. SPROUT [35-37] and its predecessor [38] use depth-
first search in combination with the A* search algorithm — a particular type
of best-first search which estimates the cost of reaching a specific partial so-
lution and suggests where to end up. Another possible change of depth-first
search can be random selection of a partial solution at each tree level among
all partial solutions [109] or among highest-scoring partial solutions [39,41].
An incorporation of a breadth-first and a depth-first search is observed in the
refined version of SPROUT [58].

2.7.2 Monte Carlo and the Metropolis criterion
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Figure 2.10: Flowchart of the main steps of Monte Carlo simulation in de novo
design.

failed

Many computer algorithms are said to use a ‘Monte Carlo’ simulation, mean-
ing that some kind of random sampling is employed. Monte Carlo simula-
tion generates configurations of a new molecule by making random changes
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to the structure (e.g., topology, conformation, charge, hybridization) of a cur-
rent molecule. Monte Carlo search alone is implemented with the program
LEGEND [45]. In most instances of de novo design, a Monte Carlo search
is combined with a Metropolis criterion, as is the simplified flowchart shown
in Figure 2.10. A new molecule is generated after structure-modification of a
precursor molecule. The new molecule is then scored and decided whether it
is accepted or rejected. If it scores better than the precursor, it is immediately
accepted. If it scores worse, it can still be accepted if it passes a test form such
as the one below [54]:

exp(—=BA) > p (2.3)

Where (3 is a user-defined constant (> 0) whose value determines the strictness
of the Monte Carlo procedure, A is the difference between the score of the new
molecule and the precursor and p is a random number between 0 and 1. Once
the new molecule get accepted, it becomes the new precursor.

The first de novo design program that made use of a Monte Carlo search
together with the Metropolis criterion is CONCEPTS [49]; several others fol-
lowed [42-44,50-54,127].

2.7.3 Evolutionary algorithms

Mining desirable structures from chemical space concerns a ‘navigation’ prob-
lem — one has to take a route through areas where less desirable compounds re-
side. The chemical space is very large, making it complex to navigate through.
Thus, there is much interest in the development of effective, heuristic algo-
rithms for search and optimization. Evolutionary algorithms (EAs), which can
be further subdivided into genetic algorithm (GA) [70-72], genetic program-
ming (GP) |73, 74], evolution strategy (ES) [75, 76|, and evolutionary program-
ming(EP) [77,78], are a class of stochastic search algorithms which are proving
able to provide optimal, or near-optimal, solutions to a wide range of challeng-
ing problems in a variety of disciplines. They are based on the concepts of
Darwinian evolution [128|. Natural evolution produces organisms, whereas
EAs seek to mimic natural evolution’s ability to produce functional objects
(e.g., structures, parameters and programs) by the use of analogous mecha-
nisms: reproduction, mutation, recombination (crossover), and selection.

A typical EA starts with an initial population of proposed solutions. Each
solution is evaluated by a fitness function (scoring system) and assigned with
a score value indicating how well it solves a given problem. In de novo design
case, the population is a set of small molecules (also in abstract referred to
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Figure 2.11: General flowchart for an EA [22].

as chromosomes or genotypes in GA) and the problem is often desired activ-
ities or properties defined by a fitness function. The population evolves over
generations by the application of reconstruction operators like crossover and
mutation, on selected solutions. The selection of solutions for reconstruction
can be based on various mechanisms such as ranking, roulette wheel and tour-
nament [129]. The selection of solutions, which are allowed to survive from
one generation to the next, is inclined to those of better fitness. The algorithm
terminates when predefined conditions are met, e.g.: sufficiently good solu-
tions have been found or solutions are no more improved. A general flowchart
of EA is shown in Figure 2.11. EAs have been widely used for investigat-
ing the potentially huge chemical space in de novo design area; for key re-
views, see refs [79-82]. By default, an EA makes no assumptions about the fit-
ness landscape, this generality makes it suited for both structure-based design
(e.g., LigBuilder [31], ADAPT [27], SYNOPSIS [59], LEA3D [22] and Auto-
Grow [60]) and ligand-based design (e.g., Chemical Genesis [67], TOPAS [65],
JavaGenes [24], the developments of Nachbar [23] and Brown et al. [25]). Most
of these applications involve the chemical structure search in a constitutional
space except few examples in which EAs are adopted to explore the conforma-
tional space [60, 67].
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2.8 Application Examples
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Figure 2.12: Key interaction sites of thrombin (PDB entry IDWD): (a) NA-
PAP and the known interaction sites, and (b) the analysis on the key inter-
action sites by the POCKET program of LigBuilder (hydrogen bond donor
grids in blue, hydrogen bond acceptor grids in red, and hydrophobic grids in
green) [31].

Thrombin. Thrombin is a serine protease that has a central role in the
cascade of blood clot formation. It constitutes a good target for the devel-
opment of antithrombotic drugs. A Schematic diagram showing the binding
pocket of thrombin in complex with the ligand molecule, NAPAP, is given in
Figure 2.12(a) [31]. The binding pocket of thrombin contains three major in-
teraction sites, which are denoted as S1, P, and D, respectively. NAPAP is an
archetypal active site-directed inhibitor of thrombin [130]. It binds reversibly
to the thrombin active site by filling the D pocket with its naphthyl group and
the P pocket with the piperidine ring and by placing its basic benzamidine
moiety into S1 to form a salt bridge with Asp189. In the complex of PDB
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structure 1IDWD, the ligand molecule, NAPAP, fits these interaction sites well
and exhibits a high binding affinity to thrombin (K;=1078M). The crystal
structure of this complex was thus used in testing the ability of LigBuilder [31]
in reproducing known ligand molecules with the use of a library of organic
fragments.

To design ligands for thrombin, the POCKET program of LigBuilder was first
used to analyze the binding pocket. The thrombin complex structure was
used as the input for POCKET and the key interaction sites was reproduced
faithfully, as it is shown in Figure 2.12(b) [31]: the S1 site (the blue aggregation
on the left) overlaps the amidine group of NAPAP, and the D and P site (the
green aggregations in the middle) overlap the hydrophobic rings of NAPAP.

Figure 2.13: (a) The most similar molecule with NAPAP given by the GROW
program of LigBuilder, and (b) superimposition between the molecule (in yel-
low) and NAPAP (in blue) [31].

As the next step, GROW was run which used a central part (framework)
of NAPAP with three growing sites as the seed structure. Since NAPAP
is a good inhibitor for thrombin, the program was expected to yield some
molecules similar to NAPAP. A molecule very similar to NAPAP was indeed
found (see Figure 2.13(a) [31]), which has exactly the same functional group
of NAPAP for the S1 site, a more hydrophobic cyclohexane ring instead of the
piperidinium ring of NAPAP for the P site, and a more hydrophobic group
than the sulfonamide counterpart of NAPAP for the D site. As a whole, this
molecule simulates NAPAP well both in structure and conformation (see Fig-
ure 2.13(b) [31]). The K; value of this molecule is predicted to be 1077M,
which is slightly better than the one of NAPAP.

The LINK program on thrombin was also tested. In this case, the seed struc-
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(a) (b)

Figure 2.14: (a) The most similar molecule with NAPAP given by the LINK
program of LigBuilder, and (b) superimposition between the molecule (in yel-
low) and NAPAP (in blue) [31].

ture was extracted from the end parts of NAPAP, including three separated
pieces. The purpose of this work is to test whether LINK can link the three
pieces in a reasonable way within the constraints of the binding pocket. Also
here a molecule very similar to NAPAP was found (see Figure 2.14(a) [31]).
Although the framework of this molecule is a bit different from NAPAP, they
are very close in style (see Figure 2.14(b) [31]).

TMPKmt. TMPK belongs to the NMPK family. It is a promising target
for developing new antituberculosis drugs [131,132]. Using ATP as its pre-
ferred phosphoryl donor, TMPK reversibly phosphorylates deoxythymidine-
5-monophosphate (dTMP) to deoxythymidine-5-diphosphate (dTDP). The
dTMP binding target TMPKmt (PDB structure 1G3U, see Figure 2.15(a) [22])
was used in a ligand design by LEA3D [22] for novel thymine analogues.
LEA3D used a fragment-based genetic algorithm to assemble candidate molecules,
each of which was subjected to the evaluation of protein-ligand binding inter-
action by FlexX docking program. Prior to the de novo design process, FlexX
had been tested to be able to reproduce the binding mode observed in the
crystallographic complex with a root-mean-square of 0.8 A.

The search of thymine analogues focused on the replacement of the sugar-
phosphate moiety of substrate dTMP (Figure 2.16(a) [22]), while the thymine
base moiety of it was ordered to be contained in each molecule created by
LEA3D to conserve key interactions with the target. Also, the thymine build-
ing block was the main base fragment to be taken care by FlexX. It was iden-
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Figure 2.15: The substrate dTMP (a) and the active molecule given by
LEA3D/FlexX (b) in their respective key interactions with TMPKmt [22].
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Figure 2.16: (a) Structure of the substrate dTMP, (b) structure of the active
molecule given by LEA3D, and (c) superposition between the substrate dTMP
(in orange) and the given molecule (in blue) [22].

tified among the results that the sugar part of the dTMP could be replaced by
a substituted benzyl group. A molecule (Figure 2.16(b) [22]) with a K; of 16.5
uM, better than the one of dTMP (27 pM), manages good interactions with
the TMPK target in Figure 2.15(b) [22]. Compared to the substrate dTMP,
the given molecule forms five rather than four hydrogen-bonds with the target.
It possesses a significant m-stack with Phe70 benzene ring and a good balance
with Arg 95 positive charge as well as the substrate dTMP does. But only
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one of the two hydrogen-bond interactions between the thymine base of d-TMP
and Arg74 is seen with it [22]. A superposition between the substrate dTMP
and the given molecule is shown in Figure 2.16(c) [22].

HIV-1 Protease. HIV-1 protease is a retroviral aspartyl protease that per-
forms an essential step in the life cycle of HIV, the retrovirus that causes
AIDS [133]. It cleaves polyproteins newly synthesized by HIV at appropriate
places and at critical time to create mature protein components of an infectious
HIV virion. Without the sensitive and essential function of HIV-1 protease,
HIV virions remain uninfectious. Due to this reason, inhibition of HIV-1’s
activity to disrupt HIV’s ability in replicating and infecting additional cells
remains an active subject in pharmaceutical research.

Figure 2.17: A compound generated by BREED and a close analogue of it (in
yellow) which has its crystal structure available. Superimposition of them by
overlaying the protein structures, yielding the RMS deviation among shared
ligand atoms which is only 0.8 A [124].

HIV-1 protease has large number and wide variety of potent inhibitors, and nu-
merous publicly available crystal structures. It was chosen to demonstrate the
capacity of BREED [124] in making use of experimentally determined struc-
tures of known ligands to produce new ligands. A brief description of BREED
routine is given in Section 2.6.3. In the study, ligands with regard to the HIV-1
protease system came from the PDB crystal structures of IHPV, 1HSG, 1HPX,
1HXB, 1B6J, 1B6K, 1HII, 111Q, 10HR and 4PHV. Each compound chosen by
the set was ensured to share at least one matching bond with another molecule
in the set.

A first pass of the first four HIV-1 protease inhibitors of the given set through
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BREED led to 20 novel compounds, and a second round of such processing
involving the total 10 inhibitors added an extra 81 compounds. Deletion of
structures with undesirable characteristics (no key hydrogen bonding hydroxyl
group or chemically unstable functionality) from the total set of 101 compounds
resulted in a list of 62 novel, chemically viable compounds. Because these
compounds were designed by combining known target-bound inhibitors that
are superimposed in their respective active conformation, the new structures
implicitly inherited the appropriate conformation and orientation for binding
to their targets. Figure 2.17 [124] shows a compound generated by BREED
and a close analogue of it (in yellow) for which a crystal structure is available.
Superimposition of them by overlaying the protein structures, yielding the
RMS deviation among shared ligand atoms which is only 0.8 A.






Chapter 3

GeneGear: An Open Source
Software for Computer-Based
de novo Design

Yunhan Chu and Bjgrn K. Alsberg

Department of Chemistry
Norwegian University of Science and Technology
N-7491 Trondheim, Norway

This chapter is about to be submitted.



36 Chapter 3. GeneGear: a Software for de novo Design

Abstract

An open source Java-developed software, called GeneGear, is introduced for de
novo molecular design with multiple methods. It is built upon the chemistry
development kit (CDK) together with the Java package Jmol, WEKA, JavaStat
and JFreeChart, and interfaced with the 3D structure builder Balloon, Open
Babel and ChemAxon tools together with the docking software AutoDock and
Vina. Typically, a de novo application can be driven by either a systematic
virtual combinatorial library or a stochastic evolutionary algorithm, while the
former is biased to a design of compounds of same family, the latter is suited
for a more diverse chemical space exploration. The quality (fitness) of the
sampled structures can be estimated with either a structure-based docking
prediction (usually for drug design), or a ligand-based property calculation,
e.g., a similarity measure with a template structure or a QSAR regressed from
a set of known compounds. Some complementary utility implementations such
as designing a fragment library design, graphical visualization of a building
block or a product set, and selecting an optimal structure subset are optionally
supported. We tested the usefulness of our software with several different case
studies, and the obtained results show high promise of using our software as a
complementary computer-aided tool in design of drug and catalyst compounds.

3.1 Introduction

In chemistry, the term de novo design has traditionally been referred to as a
structure-based design [134, 135] process which incrementally constructs bioac-
tive compounds (drugs) within the constraint of the binding site of a target
protein or enzyme [95]. Decades of theory and algorithm development has made
much extension to the content of this concept, in which the design objects are
not only related to druglike compounds [82,96], but also to molecules such as
catalysts [136-138|, enzymes [139, 140], and proteins [141-144|. In addition to
optimizing properties traditionally associated with binding affinity /biological
activity, properties with respect to absorption, distribution, metabolism, excre-
tion, toxicity (the so-called ADMET), synthetic accessibility, and chemically
stability, etc. are also increasingly being used. Moreover, when the three-
dimensional structure of a biological target for a structure-based design is not
available, structures of known ligands of the particular targets can be used as
complementary measures in an alternative ligand-based design.

In order to generate novel molecular structures, various approaches can be
used. Stochastic strategies [20,23-26] find novel structures from random sam-
pling of the chemical space, while deterministic strategies (typically a combi-
natorial library design [45,55-58]) assemble frameworks and determined side
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chains at decided substitution positions to generate candidate structures. Some
fragment-based design approaches fall somewhere between the two, which
take prepared fragment-based building blocks but manipulate them through
stochastic operations like growing 28, 31, 59, 60], linking [29, 31, 84], crossover [22,
27,60] and mutation [22,27, 31, 60].

The strategies that are for evaluation of the quality (fitness) of the gener-
ated structures can also be diverse. Receptor-based approaches starts with the
three-dimensional structure of the target (known from X-ray crystallographic
or NMR data) and examine the steric or energetic fit of the ligand binding to
the receptor, where the energy can be calculated based on a force field [27, 59,
60], an empirical [22,29,31,52,57,107|, or a knowledge-based [43] approach.
In contrast, ligand-based approaches make use of a three-dimensional phar-
macophore model [64], a quantitative structure—activity/property relationship
(QSAR/QSPR) [19, 54, 66], or a descriptor-based similarity measure to a known
active compound [24, 25, 65| to estimate the fitness of the candidate structures.
Also there can be a combination of the above [67,84] or the application of mul-
tiobjective constraints [68,69, 114, 115] that have multiple factor evaluations.

Despite the diverse existing de novo tools, many of them are dominated by a
particular design routine which do not allows much freedom in how the system
is used, modified and extended. Customers may expect inexpensive modular
softwares that do one or several tasks well and can be integrated in a flexible
way by in-house staff to meet their own specific needs. An open source strategy
provides maximum flexibility in this respect which allows programmers to share
and advance ideas and produce new softwares without having to start from
scratch. Unfortunately, most of the available de nowvo softwares are proprietary
softwares, though there do exist a few exceptions such as AutoGrow [60] and
JavaGenes [24].

To improve on the situation and make a contribution to the community, we
have developed GeneGear, an open-source Java software for de movo design
with multiple methods. GeneGear is built on the chemistry development kit
(CDK) [85] and several other chemical, statistical and graphic Java pack-
ages [86-89]. Virtual combinatorial library design and evolutionary de novo
design represent its two main application functions, which respectively provide
users a systematic and a stochastic way to sample novel candidate structures.
The structures generated from both routines can be flexibly measured by var-
ious scoring systems, e.g., a receptor-ligand binding energy predicted by a
docking software, a molecular similarity calculated with a set of molecular de-
scriptors, or a self-defined QSAR/QSPR. The fitness calculation process can be
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executed in parallel over multiple computational nodes in large-scale problems.
In addition to the main applications, some complementary utility implementa-
tions such as design of a fragment library, graphical visualization of a building
block or product set, and selection of an optimal subset are optionally sup-
ported. In the following sections, the architecture of GeneGear and its major
functional modules will be explained in detail. Also, a demonstration of its
functionality will be given through several well-studied application examples.

3.2 General Map of GeneGear

A general map of GeneGear is shown in Figure 3.1. Virtual combinatorial
library design and evolutionary de novo design are two main application pro-
grams which respectively provide users with a systematic and a stochastic way
to sample novel candidate structures. The central data processed by GeneGear
are chemical structures and their relevant property attributes. The latter in-
clude data types of numeric, logical and string, and can be easily retrieved
with vectors and matrices. The former consists of more complicated struc-
tural objects which require an appropriate representation for effective process-
ing. There are quite a number of ways to represent a 2D molecular structure,
e.g., SMILES [17-19], connectivity matrices [20], linear [21,22] or topological
trees [23], and graphs [24-27]. After a careful comparison, we decided on a
graph-based representation [20,24-26|, which has more advantages than other
representations. The chemistry development kit (CDK) [85] provides a proper
approach to parse 2D molecular structures as graphs in a computer, where the
molecular diagram is coded as a set of atom and bond objects with connectivity
information stored in a data structure called an AtomContainer [26,85|. Us-
ing the graph-based representation, chemical structures can be implemented
in a flexible way. We have developed a suite of graph- and fragment-based
operations - Crossover, Mutation, Grow, and Link - for identification of novel
molecular structures. While the first three operations are manipulated by an
evolutionary algorithm (EA) where relatively random variations occur on the
basis of an existing set of structures or fragments, the last operation (Link)
is used in the construction of a virtual combinatorial library where different
groups of side chain fragments are connected at corresponding variation sites of
a main framework (scaffold) according to some fixed virtual synthesis routine.

Of course, both an EA or a library design need a scoring system to help se-
lect high-quality structures. GeneGear has been coded to interface with the
renowned and permissive docking softwares - AutoDock [63] and AutoDock
Vina [90] (henceforth referred to as Vina), through which the candidate lig-
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Figure 3.1: General development structure of GeneGear.

ands can be docked into the target protein for a structure-based prediction
of binding affinity. While AutoDock 4 combines an semiempirical free energy
force field [145] scoring function with a Lamarckian genetic algorithm (LGA)
search method [63], Vina uses a gradient optimization method directed by a
scoring function combining advantages of knowledge-based potentials and em-
pirical functions [90]. Both of the softwares can take into account full ligand
flexibility and limited receptor (residue) flexibility, and return bound confor-
mations with predicted free energies of binding. AutoDock allows to deter-
mine the binding energy of a given ligand by referring it to the conformer
that has lowest energy either among the population of all searched conformers
or among the most-populated cluster decided by root-mean-square-deviation
(rmsd) of atomic coordinates, whereas Vina only supports the first type of de-
termination. Alternatively, a set of molecular descriptors imported from CDK
QSAR package [146] or some user-defined descriptors can be applied to de-
fine a ligand-based similarity measure related to a template structure or build
a PLS [147,148]-based quantitative structure-activity /property relationship
(QSAR/QSPR). These various fitness pressures can be used in combination to
form an appropriate multiobjective fitness function.

Prior to any possible fitness pressure computation, an acceptable initial 3D
structure for a molecule is usually required. GeneGear by default maintains in-
terfaces to the programs of Balloon [149], Open Babel/Obconformer [150, 151],
and ChemAxon [152] MolConverter/Cxcalc [153] for different ways of 3D con-
formational search. Balloon [149] uses distance geometry to generate an initial
conformer, which is then subjected to geometric modifications by a genetic al-
gorithm which employs a MMFF94-like molecular force field for estimation of
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the energies of each new candidate conformer. Open Babel [150,151] is often
used to translate molecules between different formats. From version 2.2.3, it
also provides a rule-based from-scratch 3D structure building method based on
the energy minimization of a MMFF94 force field [154]. Obconformer [151] us-
ing the same force field with Monte Carlo search can be used to locate a better
conformer. MolConverter [153] generates coordinates from a Minkowski-like
space [155] followed by geometry optimization to a local energy minimum in
3D using the Dreiding force field [156]. A deep conformational search using the
same force field level by the Cxcalc [153] program follows. It must be noted
that here GeneGear only provides interfaces to these external softwares where
some of them are proprietary, and it is the responsibility of the user to have
valid license for these programs.

For the reason of efficiency, GeneGear supports parallel implementation of
conformational search and fitness calculation of both an EA and a library
design on a cluster-type architecture through the Message Passing Interface
(MPI) [157] standard. The basic scheme is as follows: the user allocates n
nodes for the overall job, each of which contributes m processor cores. Core
one on the master node generates (n x m — 1) structures and transfers them
simultaneously to the (n x m — 1) slave cores. While the slave cores are busy
computing the fitness of the current batch of molecules, core one prepares the
next batch of new (n x m — 1) molecules and then accepts the previous batch
of calculated molecules to refresh the current population.

Complementary utility implementations, such as building a fragment library
and selecting optimal subset of structures, are optionally supported by Ge-
neGear. Furthermore, it provides graphic user interface (GUI) for visualizing
and browsing a set of chemical structures; a set of molecular descriptors im-
ported from CDK QSAR package [146] covering electronic, geometrical, topo-
logical and hybrid categories is available for capturing the chemical features
of involved structures. Principle component analysis (PCA) is included in Ge-
neGear to be used for investigating the chemical space specified by chosen
structure descriptors. Several useful Java libraries are integrated for various
practical needs, such as, Jmol [86] for 3D molecular visualization and ren-
dition, JavaStat [88] for PCA analysis, WEKA [87] for PLS modelling, and
JFreeChart [89] for data plotting.

3.3 Fragment Library Design

Fragments from existing drugs and compounds with known activities and prop-
erties make it likely to produce new compounds with reasonable molecular
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structures. In addition, they are also more likely to be “druglike” in a general
sense (such as, satisfying the “rule of five” [101] and not containing reactive
functional groups) than random structures. This makes the fragment-based
drug design a popular concept. However, the number of available drugs is
vast, so usually only a small fraction of them is accessible. GeneGear pro-
vides a procedure to build a fragment library from fragmentation of available
molecular structures. In general, the procedure consists of two steps: splitting
available molecules into fragments and screening obtained fragments with a set
of rules.

Splitting. Structures are hydrogen depleted and split into fragments at ro-
tatable and non-terminal bonds (i.e., single bonds which are not a part of a
ring and do not include atoms connected to only one other atom), or at varia-
tion sites of a common skeleton among a series of compounds of same family.
Prior to that, some user-specified rules, such as “rule of five” [101], can be im-
plemented to prevent undesirable structures from being processed. When the
splitting operator starts on a structure, the bonds that connect to rings have
higher priority to be handled than the ones that connect to general atoms. The
resulting fragments are saved in MDL sdf file format with the positions where
the substitution points (R-groups) and the sources from where they originate
are indicated, as the example shown below:

153.sdf

3 2 0 0 0 0 0 0 0 0999 V2000

-0.0178 1.4608 0.0101 C o 0 o0 o o o o o o o o o
0.0021 -0.0041 0.0020 N 0 o0 o0 o o o o o o o o o
1.3566 1.9679 -0.0003 N 0 o0 o0 o o o o o o o o o

1 2 1 0 0O 0 o
1 3 1 0 0O 0 O
M END
> <R-groups@>
123

> <From>
357650.m01;362868.m01;375086.mo0l;612799.mol

$$$%

Screening. All derived fragments are subjected to certain filter rules, so dupli-
cate and unfavored entries are removed. The “unfavored” structures are some-
what up to the specific definition of the user. Since GeneGear is distributed
as open source, a user can easily adopt his own code to exclude structures and
fragments which are not suitable. A library is then established which contains
preferable building blocks (scaffolds and side chains). A link file is then cre-
ated which contains the file paths and occurrences in known molecules of the
fragments, and may act as an input to the main de novo design programs.
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Figure 3.2: Graphical view of a fragment library built by GeneGear.

Visualization. To further study a fragment library, it is useful to present all
the structures in a united graphic interface so the user can check them easily.
A graphical view of the 1151 fragments built by GeneGear on the basis of 1990
compounds of the National Cancer Institute (NCI) diversity dataset [158] is
shown in Figure 3.2. To build this fragment set, only the structures that
possess atoms within C, N, O, S, P, F, CI, Br and I got processed. Fragments
that are charged, or possess more than 16 atoms, more than three fused rings
or at least one ring with more than 7 atoms got excluded according to self-
defined rules. Also, for our later case study, we exclude the fragments that
possess atoms other than C, N, O, S. Finally, we get a set of 1151 fragments
including 599 side chains with one R-group, and 552 scaffolds where 462 have
two R-groups, 75 have three R-groups, 14 have four R-groups and 1 has five
R-groups. Further investigation of this fragment set is seen in Case Study I in
Section 3.6.

3.4 Optimal Subset Selection

Statistical selection of a subset of molecules that spans an important struc-
tural or physiochemical space of an original pool of structures is a technique
frequently needed in various areas of chemistry, such as combinatorial synthe-
sis [159, 160], selection of molecules for screening [161,162], and QSAR/QSPR
analysis [163-165], where diversity, coverage, and descriptive ability are usu-
ally the main goals to achieve. The process starts from mapping the molecules
into a multi-dimensional structural or property space. Descriptors imported
from the CDK QSAR package [146] or some self-defined descriptors can be



3.4 Optimal Subset Selection 43

applied for constructing such a space, where the relative positions of the
mapped molecules and the inter-distances between them can be measured.
Various selection strategies, such as D-optimal design [166], space-filling (SF)
design [167-170], cell-based design [171], cluster-based design [172,173] and
onion design [164, 165,174 depending on the applications, can be applied to
operate on the descriptor-based or a transformed (e.g., PCA score) space to
select an appropriate molecular set. In GeneGear, the following selection al-
gorithms are provided besides a simple random selection:

Dissimilarity Selection. A type of commonly used strategy for diversity-
based selection [168,169]. In our algorithm, the compound which is closest to
all the other compounds in the same pool is selected first. In the following,
the selection is processed in a loop such that the next compound to be selected
is always as distant as possible from the already selected compounds. As the
algorithm attempts to generate the most diverse set, compounds at the edge
of the property space can be taken.

Sphere Exclusion (SE). Based on the work of Hudson et al. [170] and Woot-
ton et al. [175], it starts with the compound that has the largest sum distance
from all the other compounds, and the compounds that are closer to the se-
lected one within the sphere of defined radius are deleted. A new compounds
is then selected which is most distant from the one previously selected. The
whole process is repeated until no more compounds remain. By default the
distance averaged between all molecules is taken as the initial radius. As the
number of selected compounds depends on the exclusion radius, it may have a
number of iterations of adjusting exclusion radius steps to satisfy a predefined
number of points.

D-Optimal Design (DOD). A set of compounds supporting a regression
model is selected such that its model matrix X maximizes the determinant
of the covariance matrix X7 X [166]. Four different models: linear, pure
quadratic, full quadratic and pure cubic are by default provided by GeneGear
(see Table 3.1). Which model to use is dependent on the design (sample) size.
A genetic algorithm (GA) is used to search the optimal compound set with
maximum X7 X volume. The D-optimality criterion ensures the outer periph-
eral parts of a compound space be adequately sampled, while for the inner part
it is not necessarily the same. It is thus not well suited for large design sizes
(many compounds) relative to the number of factors, otherwise there may be
oversampling of the outer peripheral parts of the molecular space.
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Table 3.1: The term and smallest sample size for each D-optimal model in
GeneGear, where K denotes the number of significant factors.

Model Term Sample size
K

Linear 14> 14+ K +2
i[:(l X

Pure quadratic 1+ Z i + me 1+2K+2
i}:(l i}:(l X

Full quadratic 1+Zx¢+2mf+ Z TiTjsti 142K+ K(K—-1)/242
=1 =1 i,j=1
K K K K

Pure cubic T4 > wi+ Y @i+ > majpi+ » a7 1+3K+ K(K —1)/2+42
=1 =1 i,j=1 =1

D-Optimal Onion Design (DOOD). To overcome some of the shortcom-
ings of D-optimal and space-filling designs, D-optimal onion design (DOOD)
was developed [165,174] and used [164]. In our code, samples are sorted ac-
cording to their Euclidean distances to the centre point (the one closest to the
calculated centroid of the experimental domain) and are subject to be divided
into several layers (shells). The number of significant factors and sample sizes
of the available models (see Table 3.1) help to decide which models to use and
how they divide the applied sample space. The final selection are the collec-
tion of the compounds selected from different layers by D-optimal design with
respective model.

Most Descriptive Compound (MDC). This is a method first proposed
by Hudson et al. [170] It selects a subset of compounds which most effec-
tively represents the compounds in the original population. The information
of a compound is quantitatively described by a vector of reciprocal values of
distance ranks of all compounds to it, (e.g., 1 for itself, 1/2 for the closest
neighbor, 1/3 for the second closest, etc.) and the information of the whole
data set is a vector V summed by all the compounds’ information vectors. The
procedure then proceeds as follow: 1) the compound that has the largest sum
value namely smallest overall distance to all the other compounds is selected
as the most descriptive compound (MDC), and 2) a new vector V containing
the information for the remaining compounds is decided by the multiplication
of the values of the current V with the values of 1 that are subtracted in ad-
vance by the corresponding values of the MDC vector. The whole procedure is
repeated until all values in V are less than 1 (no more information to extract)
or until the required number of compounds have been selected.
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3.5 Virtual Combinatorial Library Design

In combinatorial chemistry, a combinatorial library is a collection of different
but structurally related chemical compounds that are subjected to synthesis
and screening to identify potential novel molecules with desired properties.
To construct such a library, a process of in silico “virtual library” generation
constructs an essential part: molecules are represented by Markush structure
- a common scaffold with several variation sites labeled as R-group, each of
which is associated with a list of alternative reagents [176,177]. This can
quickly lead to a large number of structures. For example, a scaffold with
three R-groups, each corresponding to 20 reagents, can generate 8000 possi-
ble structures. However, the number of compounds that are synthesizable is
alway lower than theoretical yield. Selecting subsets from the full virtual li-
brary for actual synthesis using various criteria is often used to decrease the
cost. A virtual combinatorial library can be designed following one of the two
directions [177]: (1) a directed library which is biased against a specific tar-
get, or a known pharmacophore model, and (2) an exploratory library which
is target-independent and is supposed to span a wide range of structural and
physiochemical characteristics.

GeneGear supports construction of both types of libraries. A virtual combina-
torial library of compounds provides a common skeleton with several variation
sites (R-groups) and the same number of reagent groups. A virtual com-
pound library is constructed by enumerating and linking the different groups
of reagents at the corresponding substitution sites of the common skeleton.
Once the full library is established, a directed or diverse subset of compounds
can be selected from it for different purposes. The directed selection strategy
collects a set of product molecules that have high binding affinity to a given
biological target, for which molecular docking softwares such as AutoDock [63]
and Vina [90] can be used to predict the binding free energy. In contrast, the
exploratory selection strategy tends to result in an informative, representative
and diverse structure set. The exploratory selection can be based on either
the reagent space [178-180] or the product space [162], where various selection
strategies as discussed in Section 3.4 can be used for the task.

Case Study. A set of 88 serine protease inhibitors provided with experi-
mentally determined biological activities (pKi) towards trypsin was extracted
from the work of Bohm et al. [181] As shown in Figure 3.3, there is a com-
mon skeleton with two variation sites shared among the given inhibitors. We
split the compounds at the variation sites of the common skeleton using the
fragment library tools above, resulting in 15 R1-group related reagents and 54
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Figure 3.3: A common skeleton with two variation sites shared among struc-
tures compiled by Bohm et al. [181] Structural variations are allowed at the
positions R; and Ro.

Table 3.2: Descriptors for scaling the structural space spanned by the 810
product compounds derived from the Béhm set.

category molecular descriptor

3D Charged partial surface area (CPSA) [182]
Gravitational index [183,184]
Molecular length to breadth ratio [185, 186]
Molecular distance edge (MDE) [187]
Moment of inertia [188]
Geometrical shape coefficients of radius-diameter diagram [189,190]
Weighted holistic invariant molecular (WHIM) descriptors [191]

2D Topological polar surface area (TPSA) [192]
Topological shape coefficients of radius-diameter diagram [189|
XLogP [193,194]
Polarizability differences between all bonded atoms [195]
numbers of hydrogen bond acceptors
numbers of hydrogen bond donors
numbers of atoms
numbers of bonds

R2-group related reagents. A full product library of 810 compounds was con-
structed through the enumeration of the two groups of reagents at the exclusive
substitution points of the common skeleton by GeneGear, where the Balloon
program was called with a setting of 50 conformers and 100 generations for its
GA-based search for finding a low-energy 3D conformer for each structure.

A set of 82 descriptors covering seven 3D categories and eight 2D categories,
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Figure 3.4: A PCA investigation of the structural space of the full set of
810 compounds built from the Bohm set, 82 descriptors covering seven 3D
categories and eight 2D categories are used to scale the objects. The scores
of the first two principal components (PC1 - PC2) that describe 67% of the
variance in the descriptor space are shown, where the black circles represent
the individuals that are covered by the Béhm set and the filled ones mark the
first 30 highest active inhibitors against trypsin, while the gray circles represent
the individuals that are out of the Béhm set.

as is listed in Table 3.2, was used to scale the structural space spanned by the
810 product compounds. A PCA score plot of the structural space using the
first two principal components that explain 67% of the variance, is shown in
Figure 3.4, where the black circles represent the individuals from the Bohm
set and the filled ones mark the first 30 highest active inhibitors for trypsin,
while the gray circles represent the compounds that are out of the Béhm set.

A number of virtual library designs were performed, each of which involves a
selection of 50 compounds from the library of 810 compounds, see Table 3.3.
The selection strategies were either directed by the binding free energy pre-
dicted by the docking software AutoDock or Vina against the crystal structure
of trypsin (PDB structure 1PPH [196-198|), or based on the exploratory sta-
tistical selection algorithms described in Section 3.4. Whereas the former was
only applied to the product compounds, the latter was applied to both product-
and reagent-based structure space. Since the results of the docking softwares
and some of the statistical selection procedures such as the D-optimal and
the onion design rely on random number generators, we repeat the two types
of experiments 6 and 100 times respectively using different random numbers.
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The derived compound libraries were investigated with their coverage of the
88 compounds and the 30 trypsin active compounds within the Bohm set.
The ones which covers the trypsin active compounds from the Bohm set more
were locally referred to be better than the ones which cover less, providing a
practical standard to compare performances of the different design procedures.

Table 3.3: The various virtual combinatorial library designs with their re-
spective library coverage of 8 known compounds and 30 trypsin active com-
pounds from the Bohm set?.

Coverage® (via.Reagent? Coverage® (via.Product?)

. b Desi Desi
Library(50°)  Design  —rr T 88)e Try.Act. (307 Deen Bohm(88)°  Try.Act.(30)7
RDML T 6 2 RDMLT 5 1
MD(C? 13 4 MDC? 5 2
Explorator SE? 2 0 SE? 5 0
p y Dissim? 4 0 Dissim* 2 0
DOD5:1 5 1 DODS5-T 5 1
DOODSf 5 1 DOODS: T 5 1
. - - - AutoDock ¥ 12 3
Directed ) ) ) Vinas:t 19 6

@The type of the designed library. ®The sample size. “The number of overlapped compounds.
dThe category of the design with respect to the studied objects, product-based or reagent-
based. °The dataset compiled by Béhm et al., which includes 88 serine protease inhibitors.
fThe first 30 highest active inhibitors for trypsin within the Béhm set?. 'Random selection.
2Most descriptive compound. 3Sphere exclusion. *Dissimilarity selection. 5D-optimal design.
6D-optimal onion design. 7AutoDock 4.2 was used. 8AutoDock Vina. TAverage over 100 sep-
arate experiments. ¥Average over 6 separate experiments.

The results of the different categories of selections in average are listed in Ta-
ble 3.3. Under the reagent-based design category, it is observed that MDC
shows better performance than the other exploratory selection algorithms,
where 13 out of 50 selected compounds are covered by Béhm set and 4 of
them are among the 30 trypsin active inhibitors. When it comes to the cat-
egory of product-based design, the screening directed designs outperform the
exploratory statistical designs, and the docking software Vina shows better pre-
diction than AutoDock which is in agreement with previous studies [90, 199].
The reason for why the exploratory selections show low performance on prod-
uct space could be that the structure descriptors do not properly represent the
structural variation. In fact, exploratory designs are more ready for a diversity-
based selection than an activity-based selection, which can be another impor-
tant reason. Further investigation is outside the scope of the present paper.
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3.6 Evolutionary de novo Design

Virtual combinatorial library design provides a systematic routine to sample
a large array of novel compounds from sets of reagent building blocks, which
makes it more suited for a design of compounds of same family where the
researcher has precise knowledge about how specific building blocks (skeleton
and reagents) are combined into specific structures. By using common skele-
ton with fixed substitution points for specific reagents, the search is restricted
to a fraction of compounds from a dense part of a potentially huge chemical
space. However, there can also be the case that one has no clear idea about
the constitution of the framework of the designed structures or that a more di-
verse chemical space is expected to be explored. In such cases the investigator
is confronted with is a much larger combinatorial problem for which exhaus-
tive search is impractical. Evolutionary algorithms (EAs), including genetic
algorithm (GA) [70-72|, genetic programming (GP) [73,74], evolution strat-
egy (ES) [75,76] and evolutionary programming (EP) [77, 78|, take stochastic
routines for global optimizations, providing a practical tool for investigation of
such problems.

With the application of tailored genetic operators and a well-defined fitness
function, an EA tends to find optimal solutions to a given problem through
a population-based optimization. In the field of drug design, EAs have been
widely used in de novo suggestion of novel structures [15, 81, 82]. The available
de novo EA implementations, such as Chemical Genesis [67], JavaGenes [24],
LEA [19], TOPAS [65] and CoG [25] perform ligand-based designs where a
descriptor-based similarity measure, [24,25, 65| a combined constraint of prop-
erties [67] or a QSAR/QSPR model [19, 54, 66] is used as a scoring system. On
the other hand, LigBuilder [31], ADAPT [27]|, LEA3D [22], SYNOPSIS [59],
GANDI [84] and AutoGrow|[60] perform structure- (or receptor-) based de-
signs where the three-dimensional structure of a given protein is facilitated to
examine the steric or energetic fit of the designed molecules. GeneGear sup-
ports both ligand-based and structure-based designs in this respect. In the
former case, a molecular similarity measure, a single property constraint, or a
QSAR/QSPR (driven by such as a PLSR model) utilized with a set of available
or self-developed molecular descriptors may be used as a fitness function. In the
latter case, molecular docking softwares such as AutoDock [63] and Vina [90]
can be prompted for a virtual screening of the candidate ligands according to
their predicted binding free energies with respect to the target. Sampling new
molecular structures on the basis of a pool of available structures [200] or a
set of fragment libraries are both supported with some genetic operators, e.g.,
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crossover and mutation. The operators can be informed to keep some common
part of the implemented structures intact and only let the remaining parts be
varied. In fragment-library based design cases, a number of lead frameworks
can be included in a run for competition of a restricted portion of designed
structure which may also have other remaining parts that are allowed to be
varied more freely.

The basic scheme of our EA is configured as follow: a seed population sourced
from an available pool of structures or grown from a set of fragment libraries
is constructed. All the structures are by default saturated with hydrogens and
subject to a conformational search performed by programs like Balloon [149],
Babel [151], or MolConverter & Cxcalc [152,153]. The one of lowest energy
within a predefined number of searched conformers for each structure is saved
and scored by a structure-based or ligand-based fitness function. Next, an
optimization cycle consisting of five main steps starts: 1) selection of competi-
tive parent structures (only for genetic crossover and mutation operations), 2)
breeding new offspring structures by structural operations, 3) conformational
search of offspring structures 4) fitness calculation of offspring structures, and
5) updating current population. Here, more competitive parent structures are
found by a tournament procedure which compares pair of randomly individ-
uals picked from the population and takes the best. New offspring structures
are generated from genetic crossover or mutation, or from fragment growing.
Whereas the crossover and mutation operators swap or mutate fragments ei-
ther based on building blocks from a fragment library or based on some ran-
dom species of the operated structures (see ref.[200] for the latter case), the
growing operator is only applied to the fragment-library based case. The gen-
erated structures go through conformational search and fitness evaluation, and
are used to replace, gradually, the least competitive structures in the current
population. The optimization cycle continues until a predefined number of
offspring structures have been produced. The offspring, together with the sur-
vivors of the current population, establish a new generation. The population
evolves over generations until a predefined termination criterion is satisfied
(e.g., maximum of generations or a minimum number of satisfying solutions)
or exhaustion sets in (e.g., no fit solution is found within a limited number of
continuous searches).

Case Study 1. The following application example originates from the 1990
compound containing National Cancer Institute (NCI) diversity dataset [158].
Selected from around 140,000 compounds, the dataset consists of a broad
range of chemotypes [158]. It has been widely used in docking-based virtual
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Figure 3.5: (a) Active site of HIV-1 protease in complex with its inhibitor
indinavir (PDB structure 1HSG). Specific interactions between the enzyme
and the inhibitor include the hydroxyl group (O2 in (b)) hydrogen bonding
to the carboxyl groups of the essential Asp 25/25” enzymic residues (hydrogen
bonding distances are shown in angstroms), and the amide oxygens (O1 and
O3 in (b)) of the inhibitor hydrogen bonding to the backbone amide nitrogen
of Ile 50/50’ via a potential intervening water molecule. (b) Structure of the
indinavir with its numbering scheme of its oxygen atoms.

screening studies [201-203], and specifically, it has also been used as a bench-
mark dataset for comparing AutoDock and Vina in the application [199] of
screening for inhibitors that are actively against human immunodeficiency virus
(HIV-1) protease [133], an enzyme vital to the replication of the AIDS virus.
A stereoview of HIV-1 protease active site in complex with indinavir [204, 205]
— one of its potent and orally bioavailable inhibitors — at the resolution of
2.0A (PDB structure 1HSG [196,197,206]), is shown in Figure 3.5 (a). One
important interaction between the enzyme and the inhibitor is a critical hy-
droxyl group (referred to as O2 in Figure 3.5 (b)) that hydrogen bonds to the
carboxyl groups of the catalytically active aspartic acids (Asp 25/25’). Incor-
poration of structural isosteres as replacements of the hydroxyl group may lead
to compounds that are potent and selective to HIV-1 protease.

An application of our fragment library tools of GeneGear on the NCI diversity
set has led to a library of 1151 fragments including 552 scaffolds and 599 side
chains, as it has been described in Section 3.3. We repeated the same frag-
mentation routine to the indinavir structure, from which 8 fragments (fr.1-fr.8)
were generated including 4 scaffolds and 4 side chains as they are respectively
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Figure 3.6: Fragments split from the structure of indinavir using the fragment
library tools of GeneGear, which resulted in 4 side chains (fr.1, fr.3, fr.7 and
fr.8) that are all one R-group containing, and 4 scaffolds among which fr.2
and fr.4 are both two R-group containing while fr.5 and fr.6 are three R-group
containing.

shown in Figure 3.6. It was detected that the NCI diversity set covers the
fragments from indinavir with 284 times for fr.1, 89 times for fr.2, 42 times for
fr.3, 22 times for fr.4, and 7 times for fr.5.
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Figure 3.7: Histogram plotting on the possible occurrences of the fragments
in the NCI diversity set plus the indinavir (x) vs. the associated numbers of
fragments (y).

The fragments derived from the two sources were merged, which produced
a fragment library with 1154 unique entries. Figure 3.7 reflects a numerical
counting of fragments (y) corresponding to possible occurrences of the frag-
ments in the NCI diversity set plus the indinavir. A selection of fragments
occurring no less than 8 times in the library plus the three singly occurring
indinavir fragments resulted in 98 fragments including 60 side chains with one
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R-group, and 38 scaffolds where 34 have two R-groups and 4 have three R-
groups. The selected set of 98 fragments was applied in both a receptor- and
a ligand- based evolutionary de novo design of novel active inhibitors for the
HIV-1 protease. In the receptor-based design, the 1THSG HIV-1 protease struc-
ture obtained from the Protein Data Bank (PDB) [196,197| was used as the
receptor which had the complexed ligand and all water removed, the binding
free energy predicted by docking based on AutoDock 4.2 was used to estimated
the fitness of the candidate structures. In the ligand-based design, similarity to
the indinavir structure based on the description of the same seven 3D and eight
2D classes of molecular descriptors used in the virtual combinatorial library
case study was applied to define a fitness function. Both the receptor- and
ligand- based designs used a population size of 100 individuals and maximum
30 generations, and each was repeated 6 times with different random numbers.
The occurrences of each indinavir related fragment got averaged among the
respective 6 experiments along with the generations, see the plots for the two
types of designs in Figure 3.8 (a) and Figure 3.9 respectively.
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Figure 3.8: (a) Occurrences of the 8 indinavir related fragments averaged by
the 6 receptor-based EA experiments along with the generations, as well as the
fragments that are selected over 50 times by at least one averaged generation,
where the legends correspond to the fragments with the same marks in Fig-
ure 3.6 and (b) respectively. (b) Fragments that were selected over 50 times
by at least one average generation, including two scaffolds associated with two
R-groups and one scaffold associated with three R-groups.
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In the receptor-based design, see Figure 3.8 (a), all of the 8 indinavir related
fragments (see Figure 3.6) got chosen by the EA initial generation, but none
of them comes out on top in the end despite the relatively high persistence of
fr.6. In contrast, significant selection goes to the three fragments derived from
the NCI diversity set (see Figure 3.8 (b)) which have over 50 times in average
been used by the final generations of the evolution runs.

100
90
80
70
60
50
40
30
20
10

0

Occurrence

0 5 10 15 20 25 30
Generation

Figure 3.9: Occurrences of the 8 indinavir related fragments averaged by the 6
ligand-based EA experiments along with the generations (no other fragments
selected over 50 times by the averaged generations), where the legend corre-
spond to the fragments with the same marks in Figure 3.6.

GeneGear Viewer

T T T
GenerationNo: |30 IndividualNo: |20 II 2D
1 | I—

| > new | | >rwest | > |

Figure 3.10: Graphical view of outcome of an EA run of GeneGear.

In the ligand-based design, see Figure 3.9, all of the 8 indinavir related frag-
ments (see Figure 3.6) got chosen by the EA initial generation, and the ones
which were in average most used by the final generations of the EA experiments



3.6 Evolutionary de novo Design 55

were all from the indinavir fragments (fr.3 and fr.6) which is to be expected
due to the nature of the similarity pressure. Besides the evident increase of fr.3
and fr.6 in occurrence, other fragments also got a moderate or slight increase
in growth except fr.5 and fr.8. The slight or even negative growth of the 6
fragments could potentially mean that the descriptors used by the similarity
measure are not sufficient to capture the variation of the structures, or there
are some good substitutes coming from the NCI diversity set for the fragments.

Figure 3.11: Superposition of the indinavir structure (in cyan) cut from the
1HSG complex with the AutoDock 4.2 predicted binding mode of molecule
n0.80 (in orange, marked with red frame in Figure 3.10).
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Figure 3.12: Some interesting ligands for HIV-1 protease given by GeneGear
from the EA runs with the multiobjective function combining half-to-half the
receptor- and ligand-based scoring strategy.
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In the third type of design, we combined the receptor-based and ligand-based
scoring strategy together to defined a half-to-half weighted multiobjective func-
tion. A graphical view of the outcome of one of the evolution experiments is
shown in Figure 3.10, where individual n0.80 of the population appeared in
the last generation shows the highest fitness of both binding affinity to HIV-1
protease and similarity to indinavir. A superposition between the indinavir
inhibitor cut from the 1HSG complex and the AutoDock 4.2 predicted bind-
ing mode of n0.80 molecule (also referred to molecule no.4 in Figure 3.12) is
given in Figure 3.11. As a whole, this molecule simulates indinavir well both in
structure and conformation, and a carbonyl oxygen is attempting to perform
similar function of the hydroxyl oxygen of indinavir though they are still quite
distant in conformation. More interesting ligands for HIV-1 protease given by
GeneGear output from the relevant experiments are shown in Figure 3.12.

Case Study II. In the past decades, de novo design has been mainly used
in the design of biologically active molecules (usually drugs). However, one
fact one cannot neglect is that novel compounds and materials with desired
function and propertied are needed in many areas. One particularly inter-
esting domain is transition metal catalysts. The following is a summary of
using our fragment-based EA in the optimization of ruthenium catalyst for
olefin metathesis [207-213]. More detailed information will be discussed else-
where [214]. The available ruthenium olefin metathesis catalysts can be dis-
tinguished in two main classes: the first [207,208] and the second [209] gen-
eration Grubbs catalysts. The difference between these two classes lies in the
kind of dative ligand L remaining in the active catalyst complex. Whereas the
first generation Grubbs catalyst contains a phosphine-based ligand, the second
generation contains an N-heterocyclic carbene (NHC)-based ligand (generally
based on either imidazol-2-ylidene or dihydroimidazol-2-ylidene ring), and the
second generation is observed to be more catalytic active than the first gen-
eration. The nature of this dative ligand significantly influences the catalytic
activity. Most of the efforts at improving the performance of the ruthenium-
based catalysts are, in fact, aimed at this dative ligand, by either modifying the
substituents (branches) of existing phosphine or NHC structures, or changing
the chemical nature of the ligand by more radical modification [211,212].

In our study, we allowed both a phosphine and an imidazol-2-ylidene based
ruthenium catalyst frameworks (see Figure 3.13) to be involved in same evo-
lution experiments, where their substitution sites are allowed to be randomly
varied with structures constructed from a predefined fragment library of 1083
scaffolds and 1155 side chains. A PLSR-based QSAR model in which electronic
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Figure 3.13: Two lead frameworks that are associated with a same ruthenium-
based coordination center and different ligand skeletons (a phosphine (a) vs. a
imidazol-2-ylidene based NHC (b), which respectively dominate the chemical
nature of the first and the second generation Grubbs catalysts) are used in
same evolution experiments for competition.

and geometric descriptors, obtained at the semi-empirical PM6 level of theory,
are correlated with catalytic activity (Q?=0.85, RMSECV=1.46) was used as
a fitness function to estimate the fitness of the newly generated structures.
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Figure 3.14: Occurrences of particular lead frameworks in conjunction with
generation numbers. Phosphine- (a) and NHC- (b) based lead frameworks
seen in Figure 3.13 are involved in the same evolution experiment.

Figure 3.15: NHC-based LCly-Ru=CHjy selected from the last generation of an
EA, predicted to be highly active as a 14-electron complex.
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In general, the EA optimizations are seen to favor catalysts known to be more
active over less active ones: it successfully retraced the transition from the so-
called phosphine-based first generation to the NHC-based second generation
Grubbs catalysts. A trend plot of the occurrences of particular lead frame-
works in conjunction with the generation numbers is shown in Figure 3.14.
Finally, the optimizations also resulted in a number of new structures with
high predicted activities, one of the example is shown in Figure 3.15. This
work illustrated the potential of GeneGear for in silico development of transi-
tion metal catalysts and other functional coordination compounds.

3.7 Conclusion

We have described an open source software called GeneGear, which assists
chemists in de novo design with multiple in silico methods. Depending on the
application cases, the candidate structures can be sampled either by a system-
atic combinatorial library routine or by a stochastic evolutionary algorithm,
while the former is biased to a design of compounds of same family, the lat-
ter is suited for a more diverse chemical space exploration. The fitness of the
sampled structures can be estimated with either a structure-based docking pre-
diction (usually for drug design), or a ligand-based property calculation, e.g.,
a similarity measure with a template structure or a QSAR regressed from a set
of known compounds. Some complementary utility implementations such as
designing a fragment library design, graphical visualization of a building block
or a product set, and selecting an optimal subset are optionally supported in
our software. The functionality and flexibility of GeneGear has been illustrated
by several case studies related to the designs of functional drugs or catalysts.
It shows that our software is quite effective in handling relevant problems and
hopefully this open source tool will be used and further developed by scientists
in the field.
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Chapter 6

Conclusions and Outlook

De novo design plays an important role in exploring chemical space, which
allows a variety of computational knowledge, methods and tools to be imple-
mented for producing novel chemical structures with desired properties. It
constitutes a good complement to screening techniques.

An open source de novo software called GeneGear has been presented. In
contrast to many known de novo tools which are highlighted with their a par-
ticular way of use, GeneGear assists chemists in multiple ways of designs. At
current stage, both a systematic combinatorial and a stochastic evolutionary
sampling routine can be implemented by GeneGear to generate novel molecu-
lar structures. Whereas the former biases to a family-based design, the latter
suits a more diverse chemical space exploration. Structures generated from
both are allowed to be scored of their quality (fitness) based on either sepa-
rate structure-based and ligand-based evaluations or a combined function of
them. The individual quality evaluations can be spread over multiple nodes in
parallel on a cluster-type architecture, thereby enabling large-scale optimiza-
tions. In addition, some complementary methods, such as, design of a fragment
library, graphical visualization of a building block or product set, and selec-
tion of an optimal structure subset are also supported. We demonstrated the
functionality of GeneGear through several well-studied application examples
where functional drugs and catalysts were required. The results shows that
our software is quite effective at handling relevant problems.

Of course, the development of the software is still at the primary stage, there
can be many cases which are outside the current processing ability of GeneGear.
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Moreover, the performances of some important functional modules, such as
3D building and docking, are really depending on the explicit third-party soft-
wares. Also, the software is a derivative from personal thesis work, most of the
programs are written in script for Linux, while the user-friendliness has not
been sufficiently addressed in the current work. These limitations should be
addressed more carefully in the future development of GeneGear.

In GeneGear, evolutionary algorithm has an important role in the achieve-
ment of de novo creation of novel chemical structures. However, without ex-
plicit constraints, an EA tends sample chemically undesirable structures, which
makes it necessary to constrain the structure space generated from de nowvo
evolution. By applying data analytical methods from the fields of machine
learning, chemometrics and multivariate statistics, we developed a knowledge-
based approach which allows a user to use a set of predefined positive/negative
molecules to create a bias filter to constrain all EA generated structures within
the defined positive space. The BF approach requires no explicit formulation of
structure constraining rules and allows the possibility of building a filter where
the user does not know the underlying rules for what constitute an “acceptable”
structure, which makes itself much intuitive and user friendly.

However, whether the approach is usable or not is really depending on whether
the user can construct a sufficient predictive multivariate classification model.
Moreover, there is always a risk that structures generated in the evolutionary
process are outside the validity of the bias filter model. When this happen,
the BF model must get updated or replaced. Some future work can be done
to help the user refresh his BF model. For instance, to allow the EA to pause
at specified steps for inclusion of new objects which are better sampled in the
current region of the structure space and repetition of the model building.

In contrast to drug design in medicinal chemistry, automation and computer-
aided synthesis have been comparably little appreciated in organometallic and
coordination chemistry. Many of the available methods for drug design are not
adapted to the structural variations of such type of compounds due to their
ordinary construction rules in which knowledge about the coordination cen-
ter and the neighboring ligands are not well addressed. We have constructed
an EA method for de novo optimization of coordination compounds. By rep-
resenting a 2D coordination structure in a graph with three kinds of frag-
ment parts that have different construction requirements, i.e., a “core” part
of coordination center environment, one or several “trial” parts consisting of
meaningful ligand skeletons, and one or more “free” parts grown in diversity,
we properly relate the structure variation with human knowledge. We use
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three kinds of pattern-sensitive operations (growing, crossover, mutation) to
sample candidate structures. High flexibility is permitted in definition of the
fitness function. Except for special and well-parameterized cases, these are
tasks requiring quantum chemical methods. The individual, fitness-generating
calculations may be run in parallel, thereby enabling the EA method for large-
scale optimizations. The capabilities of the EA method are illustrated by
a series of representative searches for optimal ruthenium-based catalysts for
olefin metathesis, where the fitness of the generated structures is assessed by
a QSAR obtained at the semi-empirical PM6 level. The results demonstrate
the high potential of our method in in silico development of transition metal
catalysts and other functional coordination compounds.

As we have mentioned in the thesis, a fair fraction of the structures generated
by the method are currently synthetically unobtainable. This can be due to
a number of underlying causes, such as, single-property defined fitness, arbi-
trary building blocks, and /or insensible assembly schemes. However, “synthetic
accessibility” is an important parameter in evaluating the quality of de novo
generated molecules, which subsumes the availability of starting materials and
the synthetic feasibility of the final product. Further efforts should be made
in consideration how to address this issue well.
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