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Abstract— In this paper, we present a solution and exper-
imental results for real-time control of manipulation tasks
considering the alignment of a robots end effector relative
to some reference. The developed controller is applicable to
industrial manipulators and is based on the pseudoinverse
redundancy resolution method. The application considered is
the employment of two industrial robots in an offshore remote
inspection and maintenance system. A leader robot is controlled
freely from onshore, and a follower robot uses an attached
camera to provide the onshore operator with live video feed of
the ongoing operation. Robot manipulators constitute flexible
camera platforms, compared to e.g. simple pan/tilt units, for
monitoring offshore operations. We develop a controller for the
follower robot such that automatic camera tracking is achieved
using pseudoinverse redundancy resolution control. A minimal
task space parametrization relying on stereographic projection
is constructed which achieves relative end effector alignment
tracking without introducing representational or algorithmic
singularities. It is shown that singular configurations will only
in special cases affect the closed loop behavior. The controller is
applicable to tasks such as spray painting or polishing on curved
surfaces. The control approach is experimentally validated on
two Kuka KR-16 industrial robot manipulators.

I. INTRODUCTION

Offshore oil and gas platforms constitute harsh working
conditions and are extremely costly to build, maintain and
operate. Environment, Health and Safety (EHS) issues can be
improved and costs can be significantly reduced by remote
control of offshore operations from onshore. One of the key
issues to performing such operations is to provide onshore
operators with a sufficient overview of the processes they
will control offshore. To this end, robot manipulators can
be used for automatic live-video monitoring of operations
performed by onshore operators. The control of this task,
and the development and analysis of a task description fitting
this application is the topic of this paper.

The view direction of a camera is controlled using two
degrees of freedom (DOF) where pan/tilt is a common choice
of variables. A standard 6 DOF industrial manipulator is
employed in this paper and is thus redundant with respect
to the camera task. Hence, the robot is considered to be
“task redundant” with respect to camera control using the
definition given in [1]. The control of redundant robots
has been studied thoroughly in the literature. Redundancy
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Fig. 1: An illustration of the robot monitoring system. The
leader robot is performing a task while the follower robot is
monitoring the operation.

is attractive since the extra degrees of freedom, which do
not affect the task performance, may be efficiently used to
increase performance with respect to additional criteria such
as joint range limits [2], singularity avoidance [3], obstacle
avoidance [4] and compliance [5].

The most common strategy to resolve redundancy in real-
time applications includes the use of pseudoinverse con-
trol and was introduced in [6]. The pseudoinverse is used
to resolve redundancy through local optimization of some
objective function either at the acceleration level [7] or at
the velocity level [8]. A review of velocity level redundancy
resolution can be found in [9].

Most previous works consider 3 DOF planar robots or 7
DOF robots as examples of redundant control problems. It is
then natural to assume that the reference is given as a full or
partial end-effector position and/or orientation trajectory. The
controllers are thus developed under the assumption that the
control objective is given explicitly as a linear relationship in
the task space. For a general output feedback task however,
no such reference trajectory is available. Care has to be taken
in constructing the task parametrization for tasks which are
nontrivial functions of the end effector coordinates as this
choice directly impacts the closed loop dynamics.

The camera tracking problem may be solved using vi-
sual servoing techniques, [10], where image information is
used directly in the feedback loop. Joint velocity control is
achieved using a camera dependent image to joint velocity
mapping. We stress that our approach, while being similar
to, does not use visual servoing. The video feed is presented
to the operator, and is not used explicitly in the feedback
loop. Our approach is feasible given that a robot is under



surveillance, and it allows for greater design freedom since
the task velocity mapping is a choice rather than being
camera dependent.

The main contributions of this paper is the introduction of
a a task parametrization based on stereographic projection,
which allows for task tracking using pseudoninverse redun-
dancy resolution. We will in this paper refer to this task as the
camera task given the intuition of the application considered.
This representation has clear advantages over previously pro-
posed methods such as pan-tilt [11], isometric projection [12]
or the visual servoing technique [10] especially with respect
global stability and singularities. A thorough investigation
of the singularities and the kinematics of the stereographic
projection is carried out.

The differences between a task redundant and a fully
redundant control problem is highlighted, especially consid-
ering the time dependency of the task representation. The
proposed control law is applicable to real-time control of
redundant or non-redundant industrial robot manipulators,
either using direct torque control, or through direct joint
velocity/increment input. Furthermore, experiments which
validate the proposed control system, are carried out using
two KUKA-KR16 industrial robots.

The paper is organized as follows. Section II presents the
kinematics of an industrial manipulator and an overview of
the pseudoinverse redundancy resolution scheme. Section III
contains a review of different task parameterizations pre-
viously proposed as well as some qualitative analysis on
the closed loop behaviour. The possibility of singularities is
investigated in Section VI. Experimental results are provided
in Section VIII, and conclusions and suggestions to further
work are given in Section IX.

II. BACKGROUND

In this section we review the kinematics of a robot ma-
nipulator and present a short overview of the pseudoinverse
control strategy for redundancy resolution.

A. Kinematics of a serial manipulator

In this section we present the kinematics of a robot
manipulator. Consider an n-link serial robot manipulator with
joint angles q ∈ Rn. The forward kinematics is the mapping
from the joint angles to the position and orientation of the
end effector [13]

T(q) =

[
R(q) x(q)
01×3 1

]
, (1)

where R(q) = [e1, e2, e3] ∈ SO(3) is a rotation matrix
composed of unit vectors ei describing the orientation of
the end-effector, and x ∈ R3 denotes its position. We will
without loss of generality assume that the forward kinematics
is constructed such that x is the camera lens position and e3
points in the view direction of the camera. The manipulator
Jacobian J ∈ R6×n maps the joint velocities q̇ to the linear
velocity ẋ, and angular velocity ω, of the end-effector:[

ẋ
ω

]
= J(q)q̇ (2)

B. The pseudoinverse redundancy resolution method

We present in this section a short overview of the pseu-
doinverse redundancy resolution method. A more thorough
overview may be found in [9]. Consider a task implicitly
represented by the function

Ψ(q, t) ∈ Rm (3)

with m < n. The objective is to stabilize the zero set of Ψ.
If it is possible to derive a differential relationship

Ψ̇ = Jt(q, t)q̇ + P (q, t) (4)

then the zero set of Ψ may be stabilized using either velocity
level redundancy resolution control or at the acceleration
level. The time dependent term P is often omitted either
since it is unknown or assumed small. We will only consider
the velocity level control problem since we are dealing with
industrial manipulators.

C. Velocity level redundancy resolution

Velocity level control is the most common strategy in the
control of industrial manipulators since direct torque input is
typically unavailable. An interface where angle increments
or joint velocity commands is passed to an opaque low level
servo controller is however available. The control task is then
simplified to generating desired joint position increments
and/or velocities. The velocity level redundancy resolution
scheme is derived by considering the least squares solution
to (4) for q̇ which is given by

q̇ = J+(Ψ̇− P (q, t)), (5)

which minimizes q̇T q̇. The n×n identity matrix is denoted
In×n and J+ ∈ Rn×m is the Moore-Penrose pseudoinverse
of Jt given by

J+ = JT
t (JtJ

T
t )−1, (6)

which satisfies JtJ
+ = Im×m provided that Jt has full rank.

A more general solution to (4) is to given by the addition of
an arbitrary vector F ∈ Rn onto the nullspace of the task
Jacobian

q̇ = J+(Ψ̇− P (q, t)) + (In×n − J+JT
t )F . (7)

Closing the loop by setting Ψ̇ = −KpΨ for some Kp > 0
in (7) results in the joint velocity control law

q̇ = J+(−KpΨ− P (q, t)) + (In×n − J+JT
t )F . (8)

This is called the pseudoinverse redundancy resolution
method since Ψ = 0 is stabilized using the joint velocity (8).
We observe this either by premultiplying (8) by Jt or via the
Lyapunov method using V = 1

2ΨTΨ. The system (8) has
Ψ = 0 as a globally exponentially stable equilibrium point
for all positive definite Kp assuming that rank{Jt} = m.

The vector field F may be used to optimize solutions of
(8) with respect to sub-tasks without affecting the stability
of Ψ = 0. Let a scalar function U(t, q) denote how
“good”, e.g. with respect to the sub-task, a solution to (8)
is, and denote F ∈ Rn as the steepest descent direction
F (q) = −(∇U(t, q))T , then solutions to (8) will minimize



U in the task nullspace. This technique is called the Gradient
projection method [9]. Motions induced by F are called self
motion or nullspace motion, as they span the nullspace of
Jt.

III. THE CAMERA TASK PARAMETRIZATION

We will in this section consider different ways to represent
the camera tracking task, and provide a comparison. Some
subtle differences between constructing the camera tracking
task in different coordinate systems are discussed in section
V.

The minimal requirement we have to impose for camera
tracking is that the robot points its camera at a point de-
scribed by the trajectory p(t) ∈ R3. We consider additional
requirements such as a desired viewing angle or viewing
distance as less critical, and will not include these directly
in the task space. A sufficient and necessary condition for
assigning the correct view direction is that the following
vector function is zero

Ψ0(q) = e3 −
p− x
‖p− x‖ . (9)

Writing (9) in the end effector coordinates gives

Ψ0(q) =

0
0
1

−RT p− x
‖p− x‖ =

0
0
1

− y. (10)

However, directing a camera towards a point requires
only two degrees of freedom, pan-tilt being a possible
parametrization, . The task space parametrization (9) is hence
over-parametrized. One can check that the Jacobian of (9)
loses rank when Ψ0 = 0, resulting in a degenerate task space
when the camera is close to alignment. We need to express
our task space by a minimal set of equations in order to
overcome this problem. In the following sections some com-
mon strategies for constructing this minimal representation
are considered.

A. Perspective projection

The perspective projection is often used in visual servoing
since it maps a pinhole camera view onto a plane which
represents an image on a screen, [10]. If we express the
point p in the end effector coordinates, then the perspective
transformation which maps the point p to a screen is given
by

Ψv =
[y1

y3

y2

y3

]T
. (11)

This is not a suitable choice for global camera control,
however, as points lying in the camera plane are mapped
to infinity. This means that if the point p at any time is
behind the camera, then we cannot continuously control the
camera to point at p without passing through an undefined
point. This represents the inability of controlling the velocity
of points which are not on the screen using visual servoing.

B. Euler angles

Euler angles or spherical coordinates may be used as an
explicit pan/tilt parametrization. Expressing Ψ in the inertial
coordinate system results in a parametrization in the form

ΨEuler =

[
atan2(e3x, e3y)− atan2(p1 − x1, p2 − x2)

e3z − (p3 − x3)

]
.

(12)
It can be shown that ΨEuler is zero if and only if the
camera is pointing at p. However, the Jacobian of (12)
is not defined when e = [0, 0, 1]T , so the camera cannot
look straight up. This can be relieved by expressing the
Euler angles in the end effector coordinate system, as is
done in [14]. We cannot fully rid us of this representation
singularity however. Another issue with the Euler angles is
their non-uniqueness, as one vector may be rotated to another
it two ways. Therefore care must be taken in implementation
to pick the shortest rotation, to avoid unnecessarily large
transients.

C. Orthographic projection

The Orthographic projection is used in [12] as a
task/constraint parametrization in a polishing ball hybrid
force motion problem. Our camera tracking problem is
analogous to the problem of polishing a moving ball with
arbitrary radius. The projection is given in end effector
coordinates by

Ψe =

[
eT1 (x− p)
eT2 (x− p)

]
=

[
y1
y2

]
. (13)

We observe that when the camera is pointed in the correct
direction, then (x − p) is parallel to e3, and perpendicular
to e1 and e2. The Jacobian of Ψe is everywhere rank 2. The
null set of Ψe includes the point directly behind the camera,
and this will appear as a locally stable equilibrium in (8).
A polishing robot using a controller based on (13) will not
know whether it is polishing the inside of a sphere or the
outside. Therefor we can, using the orthographic projection,
have cases where the camera settles 180◦ in the wrong
direction.

D. Stereographic projection

The last camera task parametrization which we will con-
sider, is the stereographic projection which is a general
version of the perspective projection. There is a choice
of defining the projection point and the projection plane
when the projection is constructs. This allows for some
design freedom. The stereographic projection has also been
considered for motion planing in [15]. We may construct
the projection in the end effector coordinate system by
identifying a point on the sphere ‖y‖ = 1 with a point on
the y1y2-plane tangential to the sphere at y = [0, 0, 1]T by
a line through y = [0, 0,−1], see Fig 2. The projection is
with this choice given by

Ψ =
[

2y1

y3+1
2y2

y3+1 .
]T

(14)
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Fig. 2: The Stereographic projection.

The desired camera orientation y = [0, 0, 1]T is mapped
to the projected point Ψ = [0, 0]T and the antipodal point
y = [0, 0,−1] is mapped to infinity. The zero set of Ψ is with
this projection point the same as (9) such that global camera
alignment is assured using the system (8). The stereographic
projection is a diffeomorphism excluding the projection point
y = [0, 0,−1] where it is not defined, and hence the Jacobian
∂Ψ
∂y has rank 2 for all other points. The Jacobian of the
projection is derived in Appendix I, and is given by

Jt =
∂Ψ

∂q
=
∂Ψ

∂y

∂y

∂q
, (15)

where

∂Ψ

∂y
= 2

[
1/(y3 + 1) 0 −y1/(y3 + 1)2

0 1/(y3 + 1) −y2/(y3 + 1)2

]
(16)

Jt =
∂Ψ

∂y

[
1

‖p−x‖S(y)2RT S(y)RT
]

J (17)

where S : R3 7→ R3×3 is the skew-symmetric operator
given by

S(y) =

 0 −y3 y2
y3 0 −y1
−y2 y1 0

 , (18)

and the time dependent term P is given by

P (q,p) = −∂Ψ

∂y
S(y)2RT ṗ

‖p− x‖ . (19)

These matrices together with Ψ is what we need in order
to construct the pseudoinverse redundancy resolution control
scheme. Some intuition may be gained by noting that the
linear velocity part of the manipulator Jacobian is scaled by
the inverse of the view distance ‖p − x‖. This reflects the
fact that if a point is far away, then translating the camera
will result in a small view angle error reduction. This is a
familiar fact to anyone who has looked at a distant point
while moving. If p is infinitely far away, then no finite
translation will change the view direction error.

IV. PROPERTIES OF THE TASK JACOBIAN

In this section we will shortly state a useful property of
the task Jacobian Jt. If we define the matrix E as

E =
∂Ψ

∂y

[
S(y)2 1

‖p−x‖ S(y)
]
, (20)

then E has the form

E =
2

y3 + 1

[
vT1

1
‖p−x‖ vT2

vT2
1

‖p−x‖ −vT1

]
(21)

where vi ∈ R3 and {v1,v2,y} form an orthonormal basis
of R3 for all points except y3 = −1. It is apparent from (21)
that E has rank 2 for all points except for the projection
point. This result is easily verifiable by substituting (41) into
(21).

V. THE CHOICE OF COORDINATES

In this section we consider the subtleties which arise
when the stereographic projection is constructed in different
coordinate systems. The two coordinate systems which are
natural to consider are the inertial coordinate system with the
standard orthonormal basis, and the end effector coordinate
system with the basis [e1, e2, e3] = R relative to the inertial
system. The view direction y may be expressed in the
inertial coordinate system using the rotation yn = Ry. The
stereographic projection of the view direction error may be
constructed in the inertial coordinate system by projecting the
two vectors of (9) individually and taking their difference

Ψn = 2
[ e31
e33+1

e32
e33+1

]T − 2
[

yn
1

yn
3 +‖yn‖

yn
2

yn
3 +‖yn‖

]T
.

(22)
The function Ψn is not defined when the end effector is
pointing straight down, and when the view point p is directly
below the end effector. Expressing the projection in the end
effector coordinates, (14), leads to only one prohibited point
located 180◦ away from the reference. Using (14) it is hence
possible to command any view direction. The projection Ψn

is hence inferior to (14) with respect to singular points.
A case may be made for the choice of Ψn, however, as

it possesses a useful property not shared by (14). Consider
an n-link robot where the last joint revolves the end effector
around its link axis, e.g. a spherical wrist configuration. The
controllers (8) based on these two representations exhibit
different behaviors apart from the undefined points. The
robot with a controller based on (22) behaves as expected,
assuming that no singularities occur. The robot directs its
camera towards the desired point and follows it. The camera
of the robot using (14) will also direct its camera towards
the desired point, but will in addition roll the camera around
its axis, i.e. qn(t) 6= 0. The question is why this controller
generates motions which do not affect the stability of the
view direction error? We can verify that the norm of the
error does not decrease by changing qn,

∂‖Ψn‖2
∂qn

= 0,
∂‖Ψ‖2
∂qn

= 0. (23)



This is expected as rotating a camera around its view axis
does not change the view axis, and hence not the view error.
This does not imply, however, that the error does not depend
upon qn, and we can check that

∂Ψn

∂qn
= 0,

∂Ψ

∂qn
6= 0, (24)

since y depends on qn through R(q) while yn does not.
This is a problem since we would like to avoid singularities
and keep the camera image steady. There are ways to fix
this problem. The simplest may be to remove qn from our
kinematics entirely, such that no control inputs for qn are
generated. Other solutions are to use the weighted pseudoin-
verse, [16], to force q̇n to zero, or to disregard nonzero qn.
It may be however, considering this phenomenon, that other
unnecessary motions q(t) = qa(t) + qb(t) are generated
using (8) such that d

dt‖Ψ‖(qb) = 0 with qb 6= 0.

A. Stereographic projection for other tasks

We will shortly present some applications for which the
stereographic projection is useful. The closed loop system (8)
stabilizes a time and configuration dependent direction for
the end effector, which is useful for several application. For
a spray painting or polishing operation on a curved surface,
one may construct the task parametrization as

Ψspray(q) = Ψ(yspray(q)) (25)

where yspray(q) is the negative normal vector to the shape
in question. The robot will under (8) align the end effector
normal to this surface, and nullspace control may be used to
control the distance from the object and motions parallel to
the surface.

VI. SINGULARITIES OF THE TASK JACOBIAN

In this section we will study the nature of the singularities
of the task Jacobian. Insight into the character of these
singular points is valuable as they represent a breakdown
of the closed loop dynamics. We will prove that there may
exist a singular configuration and a unique view point p given
a singular configuration such that the task Jacobian is rank
deficient.

A. Existence and uniqueness of singularities

We will in this section study the conditions under which
the task Jacobian is rank deficient. If J has full rank, then
Jt has full rank since Jt = ENJ and EN has rank 2. No
representational singularities are hence introduced. However
if J does not have full rank, there may exist a case where Jt

has rank 1. A specific combination of a view point p and a
robot configuration q is needed in order for the pseudoinverse
to be singular as the task Jacobian Jt depends upon both
q and p. The result in this section is summarized in the
following.

Proposition 1:
Assume that n ≥ 5. If rank{J(qs)} = 5 and

rank{Jt(qs,ps)} = 1, then the view point ps is uniquely
given by qs as

ps = x(qs) +
ν1(qs)× ν2(qs)

‖ν1(qs)‖2
and ν1 ⊥ ν2 (26)

where νT = [νT
1 ,ν

T
2 ] is the basis vector of Null{JT } with

ν1,ν2 6= 0.
The proof of proposition 1 is found in Appendix II.
The result on uniqueness of singularities is a attractive

in that singular configurations are rare in the task space.
The implication in proposition 1 does not go both ways,
i.e. if J is singular with its left nullspace on the required
form, and p is given by (26), then it is not given that
Jt is singular. It follows trivially from proposition 1 that
singularities are isolated with respect to p if Jt is rank
deficient and rank{J} = 5. That is, there exists no p+dr in
a neighborhood of p such that Jt(p+ dr) is rank deficient.
It is also apparent by considering the contrapositive of
Proposition 1 that if the left nullspace of J does not have
the required form, or if the view point is not equal to (26),
then Jt cannot be singular.

VII. DYNAMICS NEAR THE PROJECTION POINT

We will in this section analyze the joint angle dynamics
give by (8) when the view error is close to 180◦. Consider
the joint velocity controller with F = 0 given by

q̇ = J+
t (−KpΨ) = JT

RET
k (EkJRJT

RET
k )−1(−KpΨ).

(27)
Our objective is to determine how q̇ behaves when y3 tends
to −1. We know from (17) that Ek is not defined at y3 = −1,
and we also note that the limit of Ψ when y3 → −1 is not
defined. One could in light of this guess that the dynamics
close to this point is badly behaved. This is, however, not
the case, as we shall see by some algebraic manipulation.
Consider the following change of variables

Ek =
1

y3 + 1
Ẽk, Ψ =

1

y3 + 1
Ψ̃, (28)

which factors out (y3 + 1)−1. The system (27) with these
matrices is given by

q̇ =
1

(y3 + 1)2
JT
RẼT

k

[
1

(y3 + 1)2
ẼkJRJT

RẼT
k

]−1
(−KpΨ̃).

(29)
Observe that the terms (y3 + 1)−2 cancel out such that (27)
has the identical form in these new variables

q̇ = JT
RẼT

k (ẼkJRJT
RẼT

k )−1(−KpΨ̃). (30)

Using Ψ̃ and Ẽk in place of Ψ and Ek is appealing since
we gain calculation speed and numerical stability, especially
close to the projection point. The vector Ψ̃ = [y1, y2]T tends
to zero as y3 → −1 since ‖y‖ = 1. The matrix Ẽk, however,
does not have a limit in the classical sense as may be seen
by taking the limit of Ẽk with y expressed in spherical
coordinates (φ, θ). The vector Ẽk1

is given by

ẼT
k1

=
[

y2
1

y3+1 − 1 y1y2

y3+1 y1
y1y2

y3+1
y2
2

y3+1 − 1 y2

]
.

(31)



And its limiting value limy3→−1 Ẽk = Ẽlim is shown to be
dependent upon θ

Ẽlim =

[
cos(2θ) sin(2θ) 0 sin(2θ) − cos(2θ) 0
sin(2θ) − cos(2θ) 0 − cos(2θ) − sin(2θ) 0

]
.

(32)
The velocity q̇ will, however, tend to zero as Ψ̃ tends to
zero even though Ẽk depends upon our angle of approach
towards or away from the projection point. It is apparent
that the joint velocities close to the point y3 = −1 are not
degenerate, and joint velocities will not become unbounded
assuming that JtJ

T
t is nonsingular. The situation is rather the

opposite as joint velocities tend to zero close to the projection
point.

VIII. EXPERIMENTAL RESULTS

Fig. 3: The lab setup where the floor mounter robot is
equipped with a stereoscopic camera.

In this section the experimental setup is described and data
from the experiments carried out is presented.

A. Experimental setup

The experimental setup consists of a floor mounted robot
(FR) and a gantry mounted robot (GR) shown in Fig. 3. An
operator can perform various joystick-controlled operations
with the GR such as using a gripper. The FR holds a
stereo vision camera and is given joint angle increments
in real time by numerically integrating (8). Only position
measurements are available, and it is assumed that P is
negligible. The desired view point p is set to the end effector
of the GR. This provides the operator with a clear view of the
operation performed with the GR. Further details regarding
the experiment, laboratory setup and the computer system
used is found in [17].

Two separate experiments were performed and these are
presented and analyzed in order to highlight different aspects
of the closed loop robot controller performance. The numer-
ical integration of (8) was implemented in Matlab (R2009b),
and was ported to C using the embedded Matlab subset in
order to minimize its runtime and overhead.
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(a) The absolute angle error acos(eT3 (x−p)/‖x−p‖) during three
separate transient approaches

Fig. 4: Data from three transient approach experiments where
the focus point is fixed and the initial error is large.
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(a) The absolute angle error acos(eT3 (x − p)/‖x − p‖) during
tracking. A scaled norm of p is shown dotted to indicate the movement
of the focus point.
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(b) The leader end effector position p(t) initialized at zero during
tracking.

Fig. 5: Data from a camera tracking experiment where the
initial error is zero.

B. Approach transient

The first experiment shows the transient of the FR fol-
lowing an initial condition with a large error. Three sepa-
rate experiments were conducted. The leader robot is static
throughout the run. The camera angle error is shown in
Fig. 4. A graceful transient is achieved even when the FR is
initially facing the wrong direction.

C. Camera tracking

This experiment shows the tracking performance as the
leader robot is moving around. The focus point p is set to
be the end effector position of the leader. The initial error
is small. The leader robot is freely controlled on-line with
inputs given by an Xbox gamepad such that only delayed
position measurements of the leader can be used. Plots of
the experiment data is shown in Fig. 5. The camera angle
error is within ±1◦. The error is due to the unknown velocity
of the leader which appears as the disturbance term P in the
closed loop system (4).



IX. CONCLUSIONS AND FUTURE WORK

A. Conclusions

In this paper we have shown how the stereographic pro-
jection may be used in combination with the pseudoinverse
redundancy resolution method to achieve global control of a
partial end effector orientation. In order to demonstrate the
approach, a robot equipped with a stereo vision camera is
controlled to follow and point its camera toward a leader
robot controlled freely by a human operator. Experimental
results validated the proposed control methodology. The
control law is applicable to similar tasks where the direction
of the end effector is important, such as spray painting curved
surfaces.

The stereographic projection does not introduce any new
singularities to the system. It was shown that if the robot is
in a singular configuration, then there exists at most one
reference such that the pseudoinverse is undefined. This
reference, if it exists, is given in closed form as a function
of the robots joint angles.

The coordination control problem where a follower robot
is given the task to monitor a leader robot with a camera was
efficiently solved using pseudoinverse redundancy resolution.
Joint angle increments were generated for the follower in
real-time using only joint position measurements. The pro-
posed control strategy is verified through experiments on two
6-DOF industrial manipulators.

In order to develop smaller offshore oil and gas fields,
more cost effective solutions are required. Robots may con-
stitute part of such a solution and the results presented in
this paper form steps toward such technology progress.

B. Future work

The control law proposed in this paper and the experi-
mental system used is further elaborated on in [17]. Pseu-
doinverse weighting and nullspace control is used to achieve
obstacle avoidance while respecting the inherent joint range
limitations

With the current approach, the follower’s knowledge of the
leader’s state is limited to position measurements. Velocity
and acceleration estimates of the leader robot may improve
the tracking error, especially for high speed camera tracking.
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APPENDIX I
DERIVATION OF THE TASK JACOBIAN

The derivation of the task Jacobian is notationally shortest
using the differentiation of vectors in rotating coordinate
systems, see [18] p.242. Define (p − x)/‖p − x‖ = Ry

as yi = Ryb where the superscripts denote the inertial and
body fixed coordinate systems. The vector of interest is the
time derivative of yb, and in coordinate fixed form we have

ẏi = R
[
ẏb + ωb × yb

]
. (33)

Isolating ẏb and using ω = Rωb and yb = y yelds

ẏb = RT d

dt

p− x
‖p− x‖ + y ×RTω. (34)

Defining z = p − x shortens the first term in (34), and we
calculate it using the chain rule

d

dt

z

‖z‖ =
ż

‖z‖ −
zzT

‖z‖3 ż. (35)

One can verify elementwise that

I3×3 −
z

‖z‖
zT

‖z‖ = −S2

(
z

‖z‖

)
, (36)

such that, using RTS(z) = S(RTz)RT , and substituting
(36) into (34) gives the result

dy

dt
= − 1

‖z‖S(y)2RT ż + S(y)RTω (37)

The final result stated in III-D follows by using ż = ṗ −
ẋ,ẋ = Jvq̇,ω̇ = Jvq̇ and factoring out JT = [JT

v ,J
T
w]T .

APPENDIX II
PROOF OF PROPOSITION 1

If we assume that there exists a singular configuration qs
and a view point ps such that the task Jacobian is singular,
then we have

rank{Jt(qs,ps)} = rank {ENJ(qs)} = 1. (38)

Where E is given by (20) and N = blockdiag{RT ,RT }. It
is convenient for the analysis to factor out 2(y3 + 1)−1 and
to separate the view distance as

Ek =

[
kvT1 vT2
kvT2 −vT1

]
, k =

1

‖ps − x‖
, (39)

and let
JR =

[
RT (qs) I3×3

I3×3 RT (qs)

]
J (40)

such that rank{Jt} =rank{EsJR}. The only loss of general-
ity is in the assumption that (y3 + 1) 6= 0 since rank{cA} =
rank{A} for any nonzero constant c. We note that the two
vectors vi ∈ R3,

v1 =

−y3+1−y2
1

y3+1
y1y2

y3+1

y1

 ,v2 =


y1y2

y3+1

−y3+1−y2
2

y3+1

y2

 (41)

together with y form an orthonormal basis of R3 for all
y3 6= −1 such that

v1(y) ⊥ v2(y), ‖v1(y)‖ = ‖v2(y)‖ = 1, v1×v2 = y.
(42)



The two rows of Jt are linearly dependent since Jt has
rank 1, such that there exist constants a,b that are not both
zero which satisfy

aET
k1

JR + bET
k2

JR = 0 (43)

where we denote ET
k = [Ek1Ek2 ], Eki ∈ R6. Let η span

the left nullspace of JR such that ηTJR = 0, then Eq. (43)
is true if and only if

aEk2
+ bEk2

= η, (44)

for some possibly new constants a,b. Equation (44) written
in terms of vi, k is given by

a

[
kv1
v2

]
+ b

[
kv2
−v1

]
=

[
η1

η2

]
(45)

We may now state the condition on the vector η under which
(44) is true. First we note that if ηT = [ηT

1 ,η
T
2 ], then η1 ⊥

η2 which may be seen by taking the inner product

ηT
1 η2 = (akvT1 + bkvT2 )(av2 − bv2), (46)

which is zero since v1 and v2 are orthonormal

ηT
1 η2 = −kab‖v1‖2 + kab‖v2‖2 = 0. (47)

We may also observe that η1 and η2 are never zero, since
they are the expressed as a sum of orthonormal vectors. It is
also apparent, by taking the inner product yTηi that η1 ⊥ y
and η2 ⊥ y. The last four linearly independent equations
which need to be satisfied are given by the following inner
products

ak = vT1 η1, bk = vT2 η1, −b = vT1 η2, a = vT2 η2. (48)

Since either a or b are nonzero, we may find that the view
distance k−1 required is

k−1 = ‖ps − x(qs)‖ =

{
vT2 η2

vT1 η1

,−v
T
1 η2

vT2 η1

}
. (49)

One can verify that these two possible solutions are identical,
but the sign depends upon whether or not {η1,η2} forms a
right handed coordinate system in the tangent plane to y. If
{η1,η2} forms a right handed coordinate system, we have
for some angle θ

vT1 η1 = ‖η1‖ cos(θ), vT2 η2 = ‖η2‖ cos(θ), (50)

and for a left handed coordinate system we have

vT1 η1 = ‖η1‖ cos(θ), vT2 η2 = −‖η2‖ cos(θ). (51)

For the left handed coordinate system we get
k = − ‖η1‖/‖η2‖, but since k > 0 this cannot
be a solution. The valid solution for k is given by
k = ‖η1‖/‖η2‖, and since ηi ⊥ y, we have

yTηi =

(
RT ps − x
‖ps − x‖

)T

ηi ⇒ (ps − x)Tνi = 0. (52)

The vector νT = [νT
1 ,ν

T
2 ] with νi = Rηi is the basis

vector of the left nullspace of the manipulator Jacobian.
Since (ps − x)Tνi = 0 and we need a right handed
coordinate system, we have the following unique solution
to the equations (48).

(ps − x(qs)) =
ν1 × ν2

‖ν1‖‖ν2‖
k. (53)

The final result which completes the proof is given by
substituting for k in (53) and isolating ps.

ps = x(qs) +
ν1 × ν2

‖ν1‖2
. (54)
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