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Abstract In this paper stochastic partitioned Runge–Kutta (SPRK) methods are
considered. A general order theory for SPRK methods based on stochastic B-series
and multicolored, multishaped rooted trees is developed. The theory is applied to
prove the order of some known methods, and it is shown how the number of order
conditions can be reduced in some special cases, especially that the conditions for
preserving quadratic invariants can be used as simplifying assumptions.
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1 Introduction

Whenever the right hand side of an ordinary differential equation (ODE) can be
split into different parts with different features, it might be worth trying to solve the
different parts by different methods. Distinguished examples are stiff/nonstiff parts
solved by implicit/explicit methods, fast/slow parts solved by multirate methods, or
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partitioned symplectic methods for separable Hamiltonian systems. The latter seems
to have been the aim when partitioned methods for stochastic differential equations
(SDEs) are constructed, e.g. [6, 13, 14, 18, 19, 22, 29]. Although higher order methods
have been constructed, to our knowledge there is still no complete order theory for
stochastic partitioned Runge–Kutta (SPRK) methods. Such an order theory based
on multicolored, multishaped rooted trees is the main contribution in this paper. The
theory is valid for both Itô and Stratonovich SDEs.

Constructing high order methods for SDEs is a notoriously nontrivial task. One
problem is the required high order stochastic increments. Another is the huge number
of order conditions that have to be fulfilled. For this reason, most methods are con-
structed for problems with some special structure, like linear SDEs, SDEs with additive
noise, or separable SDEs. We will demonstrate how the order theory can be simplified
in some of these cases. In particular, Sanz-Serna and Abia [1, 27] have proven that for
Runge–Kutta and partitioned Runge–Kutta methods preserving quadratic invariants
only order conditions related to rootless trees have to be satisfied. A similar result
has been proved for stochastic Runge–Kutta methods in [3]. This theory depends on
the product rule valid for Stratonovich integrals and is therefore only applicable for
Stratonovich SDEs. It will be extended to Stratonovich SPRK methods here.

In this paper we consider a system of stochastic partitioned differential equations
with Q partitions and M diffusion terms,

X (q)(t) = x(q)0 +
M

∑
m=0

∫ t

0
g(q)m (X (1)(s),X (2)(s), . . . ,X (Q)(s))?dWm(s), q = 1, . . . ,Q,

(1.1)
for which we will also use the abbreviated form

dX (q)(t) =
M

∑
m=0

g(q)m (X (1)(t),X (2)(t), . . . ,X (Q)(t))?dWm(t), X (q)(0) = x(q)0 . (1.2)

To simplify the notation the deterministic terms are represented by m = 0, such that
dW0(s) = ds, while Wm, m = 1, . . . ,M, denote one-dimensional and pairwise indepen-
dent Wiener processes. The integrals w.r.t. the Wiener processes are interpreted as
either Itô integrals, ?dWm(s) = dWm(s), or Stratonovich integrals, ?dWm(s) = ◦dWm(s).
We also define the vector of initial values, x0 = [x(1)0 ,x(2)0 , . . . ,x(Q)

0 ]. Furthermore, we

assume that the coefficients g(q)m : Rd1 × . . .×RdQ → Rdq are sufficiently smooth, and
that the conditions of the existence and uniqueness theorem [24] are satisfied. The
systems are considered to be autonomous. Nonautonomous systems can be included by
extending one of the variables X (q), q = 1, . . . ,Q, by t, or by considering the equation
t ′ = 1 as a separate partitioning.

Denote the numerical approximation of X (q) at time tn by Y (q)
n . For the solution of

(1.1) we consider general, s-stage SPRK methods given by

H(q)
i = Y (q)

n +
M

∑
m=0

s

∑
j=1

Z(q,m)
i, j g(q)m (H(1)

j , . . . ,H(Q)
j ), i = 1, . . . ,s, (1.3a)

Y (q)
n+1 = Y (q)

n +
M

∑
m=0

s

∑
i=1

γ
(q,m)
i g(q)m (H(1)

i , . . . ,H(Q)
i ), (1.3b)
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for partitions q = 1,2, . . . ,Q. The coefficients γ
(q,m)
i and Z(q,m)

i, j , i, j = 1, . . . ,s, include
random variables that depend on the stepsize h. The random variables used in each
step are assumed to be i.i.d., and also h might change from step to step. To simplify
the notation, here and in the following we omit to indicate this by an additional
index n on h, the random variables used, the coefficients γ(q,m) = (γ

(q,m)
i )s

i=1 and
Z(q,m) = (Z(q,m)

i, j )s
i, j=1, and the stage values H(q)

i . This will in particular also hold for

the Wiener increments ∆Wm =
∫ tn+h

tn dWm(s).
The coefficients of an SPRK method can be gathered in a generalized Butcher

tableau. In the frequently encountered case that there exist matrix functions Z(q) and
vector functions γ(q) such that with some vectors of random variables ξm it holds that
Z(q,m) = Z(q)(ξm) and γ(q,m) = γ(q)(ξm) for m = 1, . . . ,M and q = 1, . . . ,Q, we will
write the Butcher tableau as follows:

Z(1,0) Z(1,m)

...
...

Z(Q,0) Z(Q,m)

(γ(1,0))> (γ(1,m))>

...
...

(γ(Q,0))> (γ(Q,m))>

, m = 1, . . . ,M.

Remark 1.1 The splitting (1.1) is sometimes called a horizontal splitting. The results
are equally valid for a vertical splitting, that is SDEs split by

X̂(t) = x̂0 +
Q

∑
q=1

M

∑
m=0

∫ t

0
ĝ(q)m

(
X̂(s)

)
?dWm(s), q = 1, . . . ,Q, (1.4)

as (1.1) can, assuming d1 = · · ·= dQ (extending the X (q) by zero components were
necessary), be transformed to (1.4) by

X̂(t) =
Q

∑
q=1

X (q)(t), g(q)m (X (1)(t),X (2)(t), . . . ,X (Q)(t)) = ĝ(q)m

(
Q

∑
q=1

X (q)(t)

)
.

By summing up the expressions of (1.3) the corresponding SPRK method becomes

Ĥi = Ŷn +
Q

∑
q=1

M

∑
m=0

s

∑
j=1

Z(q,m)
i, j ĝ(q)m (Ĥ j), i = 1, . . . ,s, (1.5a)

Ŷn+1 = Ŷn +
Q

∑
q=1

M

∑
m=0

s

∑
i=1

γ
(q,m)
i ĝ(q)m (Ĥi), (1.5b)

where Ŷn is the numerical approximation of X̂(tn).
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Example 1.1 Consider the Langevin equation of motion

ṙ = v, (1.6a)
v̇ = f (r, t)−αv+β (t), (1.6b)

which describes the evolution of a particle with unit mass, coordinate r(t) and velocity
v(t). The particle is affected by three forces: f (r, t), a friction force αv for a friction
coefficient α ≥ 0 and thermal white noise β (t). Representing the noise term as βW (t)
with some constant β , this can be written as a proper SDE, split vertically(

dR(t)
dV (t)

)
=

(
V (t)
−αV (t)

)
︸ ︷︷ ︸

ĝ(1)0

dt +
(

0
f (R(t), t)

)
︸ ︷︷ ︸

ĝ(2)0

dt +
(

0
β

)
︸ ︷︷ ︸

ĝ(2)1

dW, (1.7)

or horizontally by (
dR(t)
dU1(t)

)
=

(
U1(t)+U2(t)

−α(U1(t)+U2(t))

)
︸ ︷︷ ︸

g(1)0

dt,

dU2(t) = f (R(t), t)︸ ︷︷ ︸
g(2)0

dt + β︸︷︷︸
g(2)1

dW (t)

with V (t) =U1(t)+U2(t).
Grønbech-Jensen and Farago [11] proposed the following scheme to solve the

Langevin equation,

Rn+1 = Rn +bhVn +
bh2

2
f (Rn, tn)+

bh
2

β∆W, (1.8a)

Vn+1 = aVn +
h
2
(a f (Rn, tn)+ f (Rn+1, tn+1))+bβ∆W, (1.8b)

with

a =
1− αh

2

1+ αh
2

, b =
1

1+ αh
2

.

This can be reformulated equivalently as an SPRK method with Ĥ1 =

(
Rn
Vn

)
and

(
Ĥ2,1
Ĥ2,2

)
=

(
Rn
Vn

)
+

h
2

(
Ĥ1,2 + Ĥ2,2

−α(Ĥ1,2 + Ĥ2,2)

)
+h
(

0
f (Ĥ1,1, tn)

)
+∆W

(
0
β

)
,(

Rn+1
Vn+1

)
=

(
Rn
Vn

)
+

h
2

(
Ĥ1,2 + Ĥ2,2

−α(Ĥ1,2 + Ĥ2,2)

)
+

h
2

(
0

f (Ĥ1,1, tn)+ f (Ĥ2,1, tn+1)

)
+∆W

(
0
β

)
,
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where Ĥi, j denotes component j of Ĥi. Due to the special structure of the problem,
the scheme (1.8) can be interpreted as an application of several SPRK methods (with
M = 1), of which we mention the following two:

0 0 0 0
h
2

h
2 0 0

0 0 0 0

h 0 ∆Wm 0

h
2

h
2 0 0

h
2

h
2 ∆Wm 0

,

0 0 0 0
h
2

h
2

∆Wm
2

∆Wm
2

0 0 0 0

h 0 ∆Wm 0

h
2

h
2

∆Wm
2

∆Wm
2

h
2

h
2

∆Wm
2

∆Wm
2

, m = 1, . . . ,M. (1.9)

While the method to the left might be the obvious choice, it is only convergent
for partitioned problems for which there is no noise in the first partitioning. In this
particular case it coincides with the method to the right. In Section 3.1 we will prove
this method to be of strong order 1 and weak order 2 when applied to more general
partitioned SDEs with additive noise.

In Section 2, a general order theory for SPRKs is developed. The theory is based
on stochastic B-series and multicolored, multishaped rooted trees. In Section 3 two
particular cases are studied: SDEs with additive noise and separable problems. We will
here present examples of how the B-series theory can be used to find the order of some
given methods. In Section 4, it is shown how the number of order conditions can be
further reduced in the case of methods preserving quadratic invariants of Stratonovich
SDEs.

2 Order theory

B-series for deterministic ODEs were introduced by J. C. Butcher [8] in 1963. B-series
for SDEs were developed by Burrage and Burrage [4, 5, 7] for strong convergence of
Stratonovich SDEs, by Komori, Mitsui and Sugiura [17] and Komori [16] for weak
convergence of Stratonovich SDEs, and by Rößler [25, 26] for weak convergence in
both the Itô and Stratonovich case. A unified theory for B-series encompassing both
weak and strong convergence for both Itô and Stratonovich SDEs was given in [9]. In
the following we will generalize this to SPRKs.

Our first goal is to find B-series representations of (1.3), and we begin by assuming
X (q)(h) can be written as a B-series B(q)(φ ,x0;h),

B(q)(φ ,x0;h) = ∑
τ∈Tq

α(τ) ·φ(τ)(h) ·F(τ)(x0),

where Tq is the set of shaped, colored, rooted trees as defined below. The terms α(τ) are
combinatoric terms. The elementary weight functions φ(τ)(h) are stochastic integrals
or random variables, and F(τ)(x0) are the elementary differentials. To simplify the
presentation, we assume that all elementary differentials exist and all considered
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τ

2

3,2

1,2

2,1

11

[[•1,0,•1,0]2,1], [•1,2]3,2]2,0

α(τ) =
1
2

F(τ) = (D2,3g(2)0 )((D11g(2)1 )(g(1)0 ,g(1)0 ),(D1g(3)2 )g(1)2 )

φ(τ) =
∫ h

0

(∫ s

0
s2

1dW1(s1)

)(∫ s

0
W2(s2)dW2(s2)

)
ds

Φ(τ) =
s

∑
i, j,k,l,m,n=1

γ
(2,0)
i Z(2,1)

i, j Z(1,0)
j,k Z(1,0)

j,l Z(3,2)
i,m Z(1,2)

m,n

ρ(τ) =
9
2

Fig. 2.1 An example of a shaped, colored, rooted tree and its corresponding functions.

B-series converge. Otherwise, one has to consider truncated B-series and discuss the
remainder term [25].

Definition 2.1 (Trees and combinatorial coefficients) The set of shaped, rooted
trees

T = T1∪T2∪·· ·∪TQ

where

Tq = { /0q}∪Tq,0∪Tq,1∪·· ·∪Tq,M

for q = 1, . . . ,Q is recursively defined as follows:

(i) The graph •q,m with only one vertex of shape q and color m belongs to
Tq,m.

(ii) If τ1,τ2, . . . ,τκ ∈ T \{ /01, . . . , /0Q}, then [τ1,τ2, . . . ,τκ ]q,m ∈ Tq,m, where
[τ1,τ2, . . . ,τκ ]q,m denotes the tree formed by joining the subtrees τ1,τ2, . . . ,τκ each by
a single branch to a common root of shape q and color m.

Further, we define α(τ) as

α( /0q) = 1, α(•q,m) = 1, α(τ = [τ1, . . . ,τκ ]q,m) =
1

r1!r2! . . .rR!

κ

∏
k=1

α(τk),

where r1,r2, . . . ,rR count equal trees among τ1,τ2, . . . ,τκ .

Remark 2.1 Rooted trees can be represented in the bracket notation, as used in the
definition, or illustrated as graphs (see Fig. 2.1). To ease the reading, deterministic
nodes are in the latter represented as black nodes, with the m = 0 omitted, while
stochastic nodes are white. Figure 2.1 also gives the corresponding examples for the
functions of trees that will be defined in the following.

Definition 2.2 (Elementary differentials) For a tree τ ∈ T the elementary differen-
tial is a mapping F(τ): Rd1 × . . .×RdQ → Rd defined recursively by

(i) F( /0q)(x0) = x(q)0 , /0q ∈ Tq,
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(ii) F(•q,m)(x0) = g(q)m (x0),
(iii) If τ = [τ1,τ2, . . . ,τκ ]q,m ∈ Tq,m, then

F(τ)(x0) = (Dq1...qκ
g(q)m )(x0)(F(τ1)(x0),F(τ2)(x0), . . . ,F(τκ)(x0))

where qk is the shape of τk, k= 1, . . . ,κ , and Dq1...qκ
= ∂ κ

∂xq1 ...∂xqκ
denotes the derivative

operator of order κ .

Fundamental for this work is the following lemma which says that if Y (q)(h) can be
written as a B-series, then f (Y (1)(h), . . . ,Y (Q)(h)) can also be written as a B-series.
This is a trivial extension of the lemma found in [9].

Lemma 2.1 If Y (q)(h) = B(q)(φ ,x0;h), q = 1, . . . ,Q, are some B-series and f ∈
C∞(Rd1 × . . .×RdQ ,Rd), then f (Y (1)(h), . . . ,Y (Q)(h)) can be written as a formal
series of the form

f (Y (1)(h), . . . ,Y (Q)(h)) = ∑
u∈U f

β (u) ·ψφ (u)(h) ·G(u)(x0), (2.1)

where

(i) U f is a set of trees derived from T, by • f ∈U f , and if τ1,τ2, . . . ,τκ ∈
T \{ /01, . . . , /0Q}, then [τ1,τ2, . . . ,τκ ] f ∈U f .

(ii) G(• f )(x0) = f (x0) and

G([τ1,τ2, . . . ,τκ ] f )(x0) = (Dq1,...,qκ
f )(x0)(F(τ1)(x0), . . . ,F(τκ)(x0)).

(iii) β (• f ) = 1 and

β ([τ1,τ2, . . . ,τκ ] f ) =
1

r1!r2! · · ·rq!

κ

∏
k=1

α(τk),

where r1,r2, . . . ,rq count equal trees among τ1,τ2, . . . ,τκ .
(iv) ψφ (• f )(h)=1 and ψφ ([τ1,τ2, . . . ,τκ ] f )(h) = ∏

κ
k=1 φ(τk)(h).

If we apply Lemma 2.1 to the functions g(q)m in (1.1) we get

g(q)m (X (1)(h), . . . ,X (Q)(h)) = ∑
u∈U

g(q)m

β (u) ·ψφ (u)(h) ·G(u)(x0).

By the definitions of trees, Tq,m, and elementary differentials, F(τ)(x0), we can write
this as

g(q)m (X (1)(h), . . . ,X (Q)(h)) = ∑
τ∈Tq,m

α(τ) ·φ ′q,m(τ)(h) ·F(τ)(x0), (2.2)

where

φ
′
q,m(τ)(h) =

{
1, if τ = •q,m,

∏
κ
k=1 φ(τk)(h), if τ = [τ1, . . . ,τκ ]q,m ∈ Tq,m.
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We now write the exact solutions of (1.1) as B-series and use (2.2) to obtain

∑
τ∈Tq

α(τ) ·φ(τ)(h) ·F(τ)(x0) =

x(q)0 +
M

∑
m=0

∑
τ∈Tq,m

α(τ) ·
∫ h

0
φ
′
q,m(τ)(s)?dWm(s)F(τ)(x0).

Comparing term by term we see that

φ( /0q)(h)=1, and φ(τ)(h) =
∫ h

0
φ
′
q,m(τ)(s)?dWm(s)

for all τ ∈ Tq,m, m = 0,1, . . . ,M,q = 1, . . . ,Q.

With induction on the height of τ we have proven the following theorem.

Theorem 2.1 The exact solutions X (q)(h) of (1.1), q = 1, . . . ,Q, can be written as
B-series B(q)(φ ,x0;h) with

φ( /0q)(h)=1, φ(•q,m)(h) = ∆Wm(h),

φ([τ1,τ2, . . . ,τκ ]q,m)(h) =
∫ h

0

κ

∏
j=1

φ(τ j(s))?dWm(s),

for all [τ1,τ2, . . . ,τκ ]q,m ∈ Tq,m, q = 1, . . . ,Q, m = 0,1, . . . ,M.

A similar result can be found for the numerical solution of (1.1) by the s-stage
SPRK method (1.3).

Theorem 2.2 The numerical solutions Y (q)
1 as well as the stage values can be written

in terms of B-series

H(q)
i = B(q)(Ψi,x0;h), Y (q)

1 = B(q)(Φ ,x0;h)

for all i = 1, . . . ,s, q = 1, . . . ,Q, with

Ψi( /0q)(h) = 1, Ψi(•q,m)(h) =
s

∑
j=1

Z(q,m)
i, j , (2.3a)

Ψi([τ1, . . . ,τκ ]q,m)(h) =
s

∑
j=1

Z(q,m)
i, j

κ

∏
k=1

Ψj(τk)(h) (2.3b)

and

Φ( /0q)(h) = 1, Φ(•q,m)(h) =
s

∑
i=1

γ
(q,m)
i , (2.4a)

Φ(τ = [τ1, . . . ,τκ ]q,m)(h) =
s

∑
i=1

γ
(q,m)
i

κ

∏
k=1

Ψi(τk)(h). (2.4b)
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Proof Write H(q)
i as B-series,

H(q)
i = ∑

τ∈Tq

α(τ)Ψi(τ)(h)F(τ)(x0),

for i = 1, . . . ,s, q = 1, . . . ,Q, where as usual the product of vectors is understood
componentwise. Inserted into (1.3a) and using (2.2) this gives

H(q)
i = x(q)0 +

M

∑
m=0

s

∑
j=1

∑
τ∈Tq,m

α(τ)
(

Z(q,m)
i, j ·Ψ ′j,q,m(τ)(h)

)
F(τ)(x0).

A term by term comparison yields (2.3). The proof of (2.4) is similar.

The local order of accuracy of the SPRK method can now be decided by comparing
the B-series of the exact and the numerical solution. Applying a time transformation,
it is hereby sufficient to consider B-series expansions around t = 0, as done in Theo-
rems 2.1 and 2.2. First, we need to define the tree order.

Definition 2.3 The order of a tree τ ∈ T is defined by

ρ( /0q) = 0, ρ(τ = [τ1, . . . ,τκ ]q,m) =
κ

∑
k=1

ρ(τk)+

{
1 for m = 0,
1
2 otherwise.

The following theorem relates the global order of accuracy to the local order.
Here, we assume that method (1.3) is constructed such that Φ(τ)(h) = O(hρ(τ)) for
all τ ∈ T for mean square convergence, respectively E ∏

κ
k=1 Φ(τk) = O(h∑

κ
k=1 ρ(τk))

for all τ1, . . . ,τκ ∈ T , κ ∈ N, for weak convergence.

Theorem 2.3 The method has mean square global order p if

Φ(τ)(h) = φ(τ)(h)+O(hp+ 1
2 ), ∀τ ∈ T with ρ(τ)≤ p, (2.5a)

EΦ(τ)(h) = Eφ(τ)(h)+O(hp+1), ∀τ ∈ T with ρ(τ)≤ p+
1
2
, (2.5b)

and weak consistency of order p if and only if

E
κ

∏
k=1

Φ(τk) = E
κ

∏
k=1

φ(τk)+O(hp+1) whenever
κ

∑
k=1

ρ(τk)≤ p+
1
2
. (2.6)

Here, the O(·)-notation refers to h→ 0 and, especially in (2.5a), to the L2-norm. The
result (2.5) was first proved in [5], while (2.6) is a consequence of a result of Milstein
[20], see [9] for details. A list of all trees with ρ(τ) ≤ 2 and their corresponding
functions are given in Appendix A.
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Table 3.1 Relevant trees up to order two and corresponding functions for two-partitioned SDEs with
additive noise (3.1). Here, q1,q2,q3 ∈ {1,2}, while q̃1 ∈ {1,2,3}. The weights Φ(τ) correspond to method
(1.9) extended by Z(3,0) = Z(2,0) and γ(3,0) = γ(2,0).

No τ ρ(τ) φ(τ) Φ(τ)

1 q1 ,m1
1
2 ∆Wm1 ∆Wm1

2 q̃1 1 h h

6 q1 ,m1

3

3
2

h∫
0

sdWm1 (s)
1
2 h∆Wm1

7 q1

q2 ,m2

3
2

h∫
0

Wm2 (s)ds 1
2 h∆Wm2

8 q1

q̃1

2 1
2 h2 1

2 h2

9 q1

q3 ,m3q2 ,m2

2
h∫
0

Wm2 (s)Wm3 (s)ds 1
2 h∆Wm2 ∆Wm3

3 Two special cases

The amount of order conditions to be satisfied for higher order methods is quite
overwhelming. E. g. for a method of strong order 1.5 with Q = 2 and scalar noise,
order conditions for 122 different trees need to be satisfied (some of them being
trivially fulfilled, though).

The virtue of partitioned methods becomes clear when applied to problems for
which some underlying structure can be exploited, in the sense that many elementary
differentials will be zero, and the corresponding trees can thus be ignored in the
B-series. The main task is to identify those trees. In this subsection, the idea will be
demonstrated with two distinguished examples from Milstein et. al [21–23], SDEs
with additive noise and separable systems, both with two partitionings.

3.1 SDEs with additive noise

We consider partitioned problems with Q = 2 with additive noise, thus

dX (1) = g(1)0 (X (1),X (2), t)dt +
M

∑
m=1

g(1)m (t)dWm(t), (3.1a)

dX (2) = g(2)0 (X (1),X (2), t)dt +
M

∑
m=1

g(2)m (t)dWm(t). (3.1b)

To deal with the nonautonomous case, let us include a third partition:

dX (3) = 1dt.
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The problem structure induces that many elementary differentials will be zero, and the
corresponding trees can thus be ignored in the B-series. Restricting to nonvanishing
elementary differentials, we only need to consider trees characterized by the following
properties:

– There are no nodes •3,m for m 6= 0, since the corresponding g(3)m = 0.
– Nodes •3,0 have no branches, since g(3)0 is constant.
– The stochastic nodes •q,m with q = 1,2 and m 6= 0 can only be followed by one or

more nodes •3,0, since g(q)m is only time-dependent.

Of the trees listed in the appendix, this leaves us with the trees no. 1, 2, 6, 7, 8 and
9 and even those can be simplified since q1 6= 3 for the trees no. 6, 7, 8 and 9, and
q2 = 3 for tree no. 6. The trees together with their corresponding functions are listed
in Table 3.1.

Let the SDE (3.1) be solved by method (1.9). For the third partition, we use Z(3,0) =
Z(2,0) and γ(3,0) = γ(2,0). The corresponding weights Φ(τ) are given in Table 3.1.
From Theorem 2.3 we can conclude that the method is of strong order 1, as the order
conditions for the trees no. 6 and 7 are only fulfilled in expectation, and that it is of
weak order 2.

The Langevin equation (1.6) of Example 1.1 is an example of an SDE (3.1), thus
we can conclude that the method proposed in [11] is of strong order 1 and weak order
2. A further example of an SDE (3.1) is the following:

Example 3.1 (Stochastic version of the Jansen and Rit Neural Mass Model) Let X0,
X1 and X2 describe the mean postsynaptic potentials of the main neural population,
the excitatory and inhibitory interneurons, respectively. The following model has been
proposed in [2]:

dXi(t) = Xi+3(t), i ∈ {0,1,2},
dX3(t) =

[
Aa [µ3(t)+Sigm(X1(t)−X2(t))]−2aX3(t)−a2X0(t)

]
+σ3(t)dW3(t),

dX4(t) =
[
Aa [µ4(t)+C2 Sigm(C1X0(t))]−2aX4(t)−a2X1(t)

]
+σ4(t)dW4(t),

dX5(t) =
[
Bb [µ5(t)+C4 Sigm(C3X0(t))]−2bX5(t)−b2X2(t)

]
+σ5(t)dW5(t),

where Sigm(x) = νmax
1+er(ν0−x) , µi and σi, i ∈ {3,4,5}, describe external input and the

scaling of the stochastic components, respectively, and A, B, a, b, Ci, i ∈ {1,2,3,4}, r
and ν0, νmax are parameters.

3.2 Separable systems

Consider the following system, which typically can arise from separable Hamiltonian
systems, discussed e.g. in [23, 4.2.2]:

dX (1)(t) = g(1)0 (X (2)(t))dt +
M

∑
m=1

g(1)m (X (2)(t))?dWm(t), (3.2a)

dX (2)(t) = g(2)0 (X (1)(t))dt. (3.2b)
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The elementary differentials corresponding to the following trees vanish:

– All trees for which a node of shape q (q ∈ {1,2}) is followed by a node of the

same shape, as ∂g(q)m
∂x(q)

= 0 for m = 0, . . . ,M.
– All trees with nodes •2,m with m 6= 0: There is no noise in the second partition, so

g(2)m = 0 for m = 1, . . . ,M.

The remaining trees τ with ρ(τ)≤ 2 are then (for q1,q2 ∈ {1,2} with q1 6= q2)

i 1 2 6 7 8 9 12

τi 1,m1 q1 1,m1

2

2

1,m2

q1

q2

2

1,m31,m2

1,m1

2

1,m3 (3.3)

Consider the following method, proposed in [22]:

h
4 0

3J(m,0)
2h − ∆Wm

2 0
h
4

3h
4

3J(m,0)
2h − ∆Wm

2 − 3J(m,0)
2h + 3∆Wm

2

0 0
2h
3 0

h
4

3h
4

3J(m,0)
2h − ∆Wm

2 − 3J(m,0)
2h + 3∆Wm

2
2h
3

h
3

(3.4)

where J(m,0) =
∫ tn+h

tn (Wm(s)−Wm(tn))ds. It is straightforward to show that φ(τ) =
Φ(τ) for trees τ1,τ2,τ7,τ8 in (3.3). Using the fact (see e. g. [10, 15]) that J(m,0) +

J(0,m) = h∆Wm, where J(0,m) =
∫ tn+h

tn (s−tn)?dWm(s), we obtain for τ6 that (remember
that for the consistency analysis it is enough to consider the first step of the method,
so tn = t0 = 0)

Φ(τ6) =
2

∑
i=1

γ
(1,m1)
i

2

∑
j=1

Z(2,0)
i, j = γ

(1,m1)
2

2

∑
j=1

Z(2,0)
2, j

=

(
−

3J(m1,0)

2h
+

3∆Wm1

2

)
2h
3

=−J(m1,0)+∆Wm1h

= J(0,m1) = φ(τ6).

For the remaining two trees we get:

Φ(τ9) =
1
2

(
3
h

J(m2,0)J(m3,0)−∆Wm2J(m3,0)−∆Wm3J(m2,0)+h∆Wm2∆Wm3

)
,

Φ(τ12) =
1
2

(
−3

h
J(m1,0)J(m3,0)+3∆Wm1J(m3,0)+∆Wm3J(m1,0)−h∆Wm1∆Wm3

)
.
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From Theorem 2.3 we can conclude that the method is (remarkably both for Stratono-
vich and Itô SDEs) of strong order 1.5, since

EΦ(τ9) = Eφ(τ9) =

{
h2

2 if m2 = m3

0 otherwise
, EΦ(τ12) = Eφ(τ12) = 0,

which follows from the following relations:

E∆W 2
m = h, E∆WmJ(m,0) =

h2

2
, EJ2

(m,0) =
h3

3
.

This is of course in accordance with the order result given (for the Stratonovich
case) in [21, Theorem 4.3].

4 Quadratic invariants as simplifying assumptions, rootless trees

In the previous section, we demonstrated how the special structure of the SDEs
can be exploited, in the sense that the elementary differentials corresponding to
certain trees are zero, and the corresponding conditions for these trees do not need
to be fulfilled. In this section, we will see how for separable Stratonovich SDEs the
algebraic relation between the method coefficients that implies the method to preserve
quadratic invariants creates certain equivalence classes of trees in the sense that only
one condition for each class has to be fulfilled. This is a generalization of a result
obtained for deterministic partitioned ODEs by Abia and Sanz-Serna [1]. It is similar
to the nonpartitioned case, which for ODEs is discussed by Sanz-Serna and Abia [27]
and generalized to SDEs in Anmarkrud and Kværnø [3]. The conditions for preserving
quadratic invariants for non-separable equations with two partitionings have been
developed by Hong, Xu and Wang [19], see also Ma and Ding [19], both in the context
of symplectic methods. Using similar ideas, it is possible to find conditions for a more
general partitioning. However, the extra freedom gained by more partitionings is to
some extent lost by the huge number of extra conditions that have to be satisfied.
In this paper, the discussion is restricted to separable equations with the number of
partitions of (1.1) to be two, i.e.

dX (1)(t) =
M

∑
m=0

g(1)m (X (2)(t))◦dWm(t), (4.1a)

dX (2)(t) =
M

∑
m=0

g(2)m (X (1)(t))◦dWm(t), (4.1b)

which is also the stochastic counterpart to the system discussed in [1].
We assume that the system has a quadratic invariant I(X (1),X (2))=X (1)>DX (2) for

a matrix D of the appropriate dimension and arbitrary initial values X (1)(0),X (2)(0).

Example 4.1 (Synchrotron oscillations) Consider a stochastically perturbed Hamilto-
nian system of a pendulum ( [28], where we set λA = 0) with Hamiltonians

H0(p,x, t) =
p2

2
, H1(p,x, t) = ω

2 sin(x)λPh. (4.2)
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u v u◦ v v◦u

Fig. 4.1 Demonstration of the Butcher product (with real colors and shapes instead of indices).

The resulting SDE system

d p =−ω
2 sin(x)dt−λPhω

2 cos(x)◦dW (t), dx = pdt (4.3)

preserves symplecticity, i. e. a quadratic invariant [23, Section 4.1].

As in [12, chapter IV.2.2] one can prove the following theorem:

Theorem 4.1 If the coefficients of the SPRK method (1.3) satisfy

γ
(1,m1)
i γ

(2,m2)
j = γ

(2,m2)
j Z(1,m1)

j,i + γ
(1,m1)
i Z(2,m2)

i, j

∀i, j = 1, . . . ,s and ∀m1,m2 = 0,1, . . . ,M

(4.4)

then it preserves quadratic invariants of (4.1) of the form I(X (1),X (2)) = X (1)>DX (2).

When the conditions (4.4) are fulfilled, the number of order conditions stated in
Theorem 2.3 can be reduced. The key ingredient in the analysis is the Butcher product
of two trees u,v ∈ τ1,τ2, . . . ,τκ ∈ T \{ /01, . . . , /0Q}. If

u = [u1, . . . ,uκ1 ]q1,m1
, v = [v1, . . . ,vκ2 ]q2,m2

, (4.5)

the Butcher product is defined by

u◦ v = [u1, . . . ,uκ1 ,v]q1,m1 ,

see Fig. 4.1. We can now state the following lemma:

Lemma 4.1 For Stratonovich SDEs of the form (4.1) we have for all u ∈ Tq1,m1 and
v ∈ Tq2,m2

φ(u)(h) ·φ(v)(h) = φ(u◦ v)(h)+φ(v◦u)(h)

for all q1,q2 = 1,2 and m1,m2 = 0,1, . . . ,M.

Proof As for u and v given by (4.5) it holds

φ(u)(t) =
∫ t

0

κ1

∏
k1=1

φ(uk1)(s)◦dWm1(s), φ(v)(t) =
∫ t

0

κ2

∏
k2=1

φ(vk2)(s)◦dWm2(s),

the product rule for Stratonovich integrals gives

φ(u)(t) ·φ(v)(t) =
∫ t

0
φ(v)(s)

κ1

∏
k1=1

φ(uk1)(s)◦dWm1(s)

+
∫ t

0
φ(u)(s)

κ2

∏
k2=1

φ(vk2)(s)◦dWm2(s)

= φ(u◦ v)(t)+φ(v◦u)(t).
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Fig. 4.2 An unrooted tree τ̂ to the left, and some of the trees in T̂ S(τ̂). The figure also illustrates the process
described in the proof of Theorem 4.2.

For q1 6= q2 this rule also holds for the weight functions of the numerical solution as
stated in the following lemma:

Lemma 4.2 If an SPRK method of the form (1.3) satisfies the conditions in Theo-
rem 4.1, then for all u ∈ T1,m1 and v ∈ T2,m2

Φ(u)(h) ·Φ(v)(h) = Φ(u◦ v)(h)+Φ(v◦u)(h)

for all m1,m2 = 0,1, . . . ,m.

Proof Multiply both sides of (4.4) in Theorem 4.1 by

κ1

∏
k1=1

Ψi(uk1)(h)
κ2

∏
k2=1

Ψj(vk2)(h)

and sum over all i, j = 1, . . . ,s,(
∑

i
γ
(1,m1)
i

κ1

∏
k1=1

Ψi(uk1)(h)

)(
∑

j
γ
(2,m2)
j

κ2

∏
k2=1

Ψj(vk2)(h)

)
=

∑
i, j

(
γ
(2,m2)
j Z(1,m1)

j,i + γ
(1,m1)
i Z(2,m2)

i, j

) κ1

∏
k1=1

Ψi(uk1)(h)
κ2

∏
k2=1

Ψj(vk2)(h).

Using (2.3) and (2.4) completes the proof.

Let T S be the set of trees for which a node of one shape will never be directly followed
by a node of the same shape. For separable SDEs, all elementary differentials of trees
in T \T S vanish. Given a τ ∈ T S, let τ̂ be the corresponding unrooted tree, and let
T̂ S(τ̂)⊂ T S be the set of trees obtained from τ̂ by assigning one of the nodes as the
root, see Fig. 4.2 for an illustration.

Theorem 4.2 Assume that (4.4) is satisfied. Let τ̂ ∈ T̂ S be an unrooted tree of order
q≤ p. If φ(τ)(h) = Φ(τ)(h)+O(hp+ 1

2 ) for one rooted tree τ ∈ T̂ S(τ̂) and all rooted
trees of order less than q, then it holds that φ(τ)(h) = Φ(τ)(h)+O(hp+ 1

2 ) for all τ ∈
T̂ S(τ̂). Similarly, if Eφ(τ)(h) = EΦ(τ)(h)+O(hp+ 1

2 ) for one rooted tree τ ∈ T̂ S(τ̂)
and φ(τ)(h) = Φ(τ)(h)+O(hp+ 1

2 ) for all rooted trees of order less than q, then it
holds that Eφ(τ)(h) = EΦ(τ)(h)+O(hp+ 1

2 ) for all τ ∈ T̂ S(τ̂).
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Proof The argument is the same as for the non-partitioned case proven in [3]. For
trees with one node the theorem is trivially true. Let τ̂ be an unrooted tree of order q
and two or more nodes, and let τ be a corresponding rooted tree τ ∈ T̂ S(τ̂). Pick one
branch v from the root of τ and let the remaining part of τ be u, so that τ = u◦v. Then
u and v have roots of different shapes, and Lemma 4.2 applies. Clearly, the orders of
u and v are less than the order of τ , and by Lemma 4.1 and the assumptions of the
theorem we then have

φ(v◦u)(h) = Φ(v◦u)(h)+O(hp+ 1
2 )

respectively

Eφ(v◦u)(h)= EΦ(v◦u)(h)+O(hp+ 1
2 ).

Because the choice of branch v was arbitrary, this means that this condition is
satisfied for all trees with the same graph as τ , but with a root shifted to one of its
neighboring nodes. A repeated use of this argument proves the result. The process is
illustrated in Fig. 4.2.

Example 4.2 A simple example for an SPRK method fulfilling (4.4) is the stochastic
Störmer-Verlet method [14], given by the following tableau:

0 0 0 0
h
2

h
2

∆Wm
2

∆Wm
2

h
2 0 ∆Wm

2 0
h
2 0 ∆Wm

2 0

h
2

h
2

∆Wm
2

∆Wm
2

h
2

h
2

∆Wm
2

∆Wm
2

.

To analyze its order, note that due to (4.1) being separable, the elementary differentials
corresponding to trees for which a node of shape q (q ∈ {1,2}) is followed by a node
of the same shape vanish. Taking into account Theorem 4.2, the remaining trees τ

with ρ(τ)≤ 3
2 to be considered are then (for q1,q2 ∈ {1,2} with q1 6= q2)

i 1 2 3 5 7

τi q1,m1 q1 1,m1

2,m2

q1,m1

q2,m2

q1,m3

q1

q2,m2

(4.6)

It is straightforward to show that φ(τ) = Φ(τ) for trees τ1,τ2 in (4.6), and that this is
true for τ3 only if m1 = m2, while it holds also for m1 6= m2 that Eφ(τ3) = EΦ(τ3).
Thus, for SDEs (4.1) with multidimensional noise, the above method is only of
order 1

2 . For scalar noise, it holds also φ(τ7) = Φ(τ7) and Eφ(τ5) = EΦ(τ5), but not
φ(τ5) = Φ(τ5), so in this case the method is of order 1. Similarly, it follows that the
method is of weak order one for multidimensional noise.
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Table 4.1 Total number of trees up to order 2 for SDEs with scalar noise and two partitionings. Here,
column (all) gives the number when assuming no restrictions, column (s.p.) the number counting only trees
with nonzero elementary differentials for separable problems, and column (q.i.) the number of independent
conditions if additionally the quadratic invariant condition is satisfied.

ρ all s.p. q.i.

0.5 2 2 2
1 6 4 3

1.5 22 8 4
2 92 20 9

Sum 122 34 18

The content of this section demonstrates the potential of the B-series formulation,
in the sense that theory developed and well understood for ODEs here directly can
be applied for SDEs. It also demonstrates how to use the particular structure of the
problem at hand to reduce the set of order conditions that have to be satisfied. This
is demonstrated in Table 4.1. But even if the number of conditions is reduced in this
case, the conditions in Theorem 4.1 are still so restrictive that it is far from a trivial
task to construct higher order methods.

5 Conclusion

In this paper we have developed a general B-series theory for SPRK methods. Such
methods are rarely applied to general SDEs, they are more likely to be constructed for
SDEs with certain structure. We have therefore emphasized how the general theory,
summarized in Theorem 2.3, can be modified to cover a few common examples of
such cases. We hope other researchers can find the theory useful for constructing new
methods, or to prove order results for applying existing methods to broader classes
than originally constructed for.
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