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We study Andreev re�ection and Andreev levels" in Zeeman-split superconductor/Rashba wire/Zeeman-split
superconductor junctions by solving the Bogoliubov de-Gennes equation. We theoretically demonstrate that the
Andreev levels" can be controlled by tuning either the strength of Rashba spin-orbit interaction or the relative
direction of the Rashba spin-orbit interaction and the Zeeman �eld. In particular, it is found that the magnitude
of the band splitting is tunable by the strength of the Rashbaspin-orbit interaction and the rength of the wire,
which can be interpreted by a spin precession in the Rashba wire. We also �nd that if the Zeeman �eld in the
superconductor has the component parallel to the directionof the junction, the" -� curve becomes asymmetric
with respect to the superconducting phase difference� . Whereas the Andreev re�ection processes associated
with each pseudospin band are sensitive to the relative orientation of the spin-orbit �eld and the exchange �eld,
the total electric conductance interestingly remains invariant.

I. INTRODUCTION

The Josephson effect is the fundamental phenomenon in su-
perconductor junctions [1]. Since the discovery of this effect,
various types of structure have been studied. In particular, the
superconductor/ferromagnet/superconductor (S/F/S) junction
has attracted much research interest because of its high tun-
ability of the supercurrent [2–4]. In S/F/S junctions, the so
called � phase, where the direction of the critical current is
reversed compared with 0 phase, is realized by changing the
strength of the exchange �eld or thickness of the ferromag-
netic region [5, 6].

In recent years, superconductors with spin-split energy
bands, so called Zeeman-split superconductors (ZSs), have
also been studied widely owing to their potential application
to the superconducting spintronics [7, 8]. The homogeneous
spin splitting in the superconductor can be realized in the sys-
tems such as thin F/S junctions [9, 10] or thin superconductor
�lms under the application of an in-plane magnetic �eld [11].
It has been shown that N/ZS junctions, where N stands for a
normal metal, can generate highly spin-polarized current [12–
15]. Josephson junctions with spin-split superconductorshave
been also studied in various types of structures. In ZS/N/ZS
junctions, the spin degeneracy of the Andreev level is lifted
and the magnitude of the spin splitting can be controlled by
changing either the magnitude or relative direction of the Zee-
man �eld in the superconducting leads [16–19]. ZS/N/ZS
junctions with unconventional superconducting pairing such
asp- or d-wave pairing, have also been studied and the tun-
ability of the Andreev level by changing the relative direction
of the Zeeman �eld and superconductingd-vector have been
demonstrated [20–23].

The magnetic tunability of the Andreev levels and the re-
sulting supercurrent has been shown in the previous studies
as mentioned above. However, the electric tunability of these
levels has not been discovered yet in the ZS junctions, even
though the electric tunability tends to have advantages for
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FIG. 1: (a) Schematic illustration of the Zeeman-split supercon-
ductor/Rashba wire/Zeeman-split superconductor junction. n̂ � =
(cos� � cos� � ; cos� � sin � � ; sin � � ) is an unit vector representing the
direction of Zeeman �eld in the left (� = L ) and right (� = R) su-
perconductor. (b) Schematic band structure of a Rashba wire. (c)
Schematic band structure of a Zeeman-split superconductor. Black
solid (blue dotted) lines show the spin-up (spin-down) band.

nano-device applications. To realize the electric tunability,
the most promising way is introducing the Rashba spin-orbit
interaction (RSOI) in a system, which is tunable by the gate
voltage [24, 25]. Recently, there has been a growing interest
in a one-dimensional Rashba wire, especially after the pro-
posal to use it as a platform for Majorana fermions [26–28].
The Rashba wire has a characteristic band structure, where the
spin degeneracy is lifted and the direction of spin and momen-
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tum is locked (spin-momentum locking). More importantly,
because of the pseudomagnetic effect of the RSOI, the spin
precession takes place while an electron or hole is traveling in
the Rashba wire.

Another motivation for this work is that although the effect
of the exchange �eld in the nanowire is often taken into ac-
count in recent literature considering the prospect of Majorana
fermions in spin-orbit coupled Josephson junctions with exter-
nally applied magnetic �eld, the fact that even a very small ex-
change �eldh induced in the superconducting region (in the
case where these are thin enough to permit this) may affect
the physical properties of the system remains virtually unex-
plored in this context. Despite the fact that a nanowire made
of a material such as InAs is likely to have a higherg-factor
than the materials used for the superconducting regions, even
a small exchange �eldh � � induced in the superconductors
is suf�cient to induce qualitatively new physics such as consid-
erable thermoelectric effects [29–31]. Our study is therefore
also of relevance with regard to Majorana experiments utiliz-
ing suf�ciently thin superconducting regions that an in-plane
�eld may induce a small exchange splitting in them.

In this paper, we theoretically study Andreev re�ection and
the formation of Andreev levels in Zeeman-split superconduc-
tor/Rashba wire/ Zeeman-split superconductor (ZS/RW/ZS)
junction to reveal how the electric tunable RSOI in the wire
and the Zeeman �eld in the superconductors affects the An-
dreev level. We �rst study Andreev and normal re�ections at
the boundary of the RW/ZS bilayer, since these processes are
of fundamental relevance to the formation of bound states in
a Josephson geometry. We then calculate the Andreev level
energies in the ZS/RW/ZS Josephson junction. We �nd that
the Andreev levels can be controlled by the strength of the
RSOI � , the length of the Rashba wirel and the direction of
the Zeeman �eld though the tunneling conductance is not so
affected by the RSOI. It is found that the magnitude of the
band splitting of the Andreev level oscillates as a functionof
the strength of the RSOI� and the length of the Rashba metal
l with a certain period. We also �nd that the Andreev level
can be dramatically altered by changing the direction of the
Zeeman �eld relative to the vector characterizing the RSOI.
In particular, if the Zeeman �eld has a component along the
junction (x component in this paper), the Andreev level be-
comes asymmetric in the superconducting phase difference
� and provides a �nite supercurrent even at zero phase-bias
� = 0 .

This paper is organized as follows. In Sec.II, we �rst intro-
duce a model Hamiltonian for a junction consisting of the ZS
and Rashba wire. In Sec.III, calculation results of the Andreev
re�ection and the tunneling conductance are discussed. In
Sec.IV, we review the Andreev level in the absence of RSOI.
Then we move to the main results: Andreev level in the pres-
ence of RSOI in Sec.V. Finally, we summarize our results in
Sec.VI.

II. FORMULATION

Figure 1(a) shows the schematic picture of the ZS/RW/ZS
junction. In this paper, we consider a short ballistic junction
that satis�esl � � , wherel is the length of the Rashba wire
and� is the ballistic superconducting coherence length. The
Bogoliubov-de Gennes (BdG) Hamiltonian for this system is
described by,

�
Ĥ0(r ) �̂( x)

� �̂ � (x) � Ĥ �
0 (r )

�
 ̂ i (r ) = "  ̂ i (r ); (1)

with

Ĥ0(r ) =
�
�

~2

2m
r 2 � � + Z (x)

�
�̂ 0 � �̂ (x) � ĥ(x); (2)

Z (x) = Z [� (x) + � (x � l )]; (3)

�̂ (x) = f kx ; � �( x)�( l � x)g �̂ y (4)

ĥ(x) = hL �( � x)n̂ L � �̂ + hR �( x � l )n̂ R � �̂ ; (5)

�̂( x) = �[ ei� L �( � x) + ei� R �( x � l )]( i �̂ y ); (6)

where the basis is set as (c" ; c#; cy
" ; cy

#) and�̂ is the Pauli ma-
trix for the spin space. Here,Z (x) denotes the barrier poten-
tial at the boundaries,̂� (x) is the Rashba spin-orbit interac-
tion in the normal region,̂h(x) is the exchange �eld in the
superconducting region and̂�( x) is the superconducting pair
potential, where� (x) and �( x) are the� function and step
function, respectively. To satisfy the Hermiticity of the Hamil-
tonian at the boundaries, we adoptf kx ; � �( x)�( l � x)g �̂ y

as a Rashba spin-orbit interaction term instead of�k x �̂ y . In
addition, n̂ � = (cos � � cos� � ; cos� � sin � � ; sin � � ) is a unit
vector representing the direction of the Zeeman �eld in the
left (� = L; ) and right (� = R) superconductors. In this pa-
per, we focus on the conventionals-wave superconductivity,
hence we assume that the magnitude of the superconducting
gap� is constant and positive value. The band structure of
the Rashba wire and Zeeman-split superconductor are shown
in Figs.1 (b) and (c), where the systems are considered as in�-
nite.

By diagonalizing the model Hamiltonian, one can obtain
the wave function in the superconducting region under the
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plane-wave assumption as

 ̂ L (x) = aL e� iq +
" x [u1 cos

� L

2
ei� L =2; u1 sin

� L

2
ei ( � L + � L =2) ;

� v1 sin
� L

2
ei ( � L � � L =2) ; v1 cos

� L

2
e� i� L =2]T

+ bL e� iq +
# x [u2 sin

� L

2
e� i ( � L � � L =2) ; � u2 cos

� L

2
ei� L =2;

v2 cos
� L

2
e� i� L =2; v2 sin

� L

2
e� i ( � L + � L =2) ]T

+ cL eiq �
" x [v1 cos

� L

2
ei� L =2; v1 sin

� L

2
ei ( � L + � L =2) ;

� u1 sin
� L

2
ei ( � L � � L =2) ; u1 cos

� L

2
e� i� L =2]T

+ dL eiq �
# x [v2 sin

� L

2
e� i ( � L � � L =2) ; � v2 cos

� L

2
ei� L =2;

u2 cos
� L

2
e� i� L =2; u2 sin

� L

2
e� i ( � L + � L =2) ]T ;

(7)

 ̂ R (x) = aR eiq +
" x [u1 cos

� R

2
ei� R =2; u1 sin

� R

2
ei ( � R + � R =2) ;

� v1 sin
� R

2
ei ( � R � � R =2) ; v1 cos

� R

2
e� i� R =2]T

+ bR eiq +
# x [u2 sin

� R

2
e� i ( � R � � R =2) ; � u2 cos

� R

2
ei� R =2;

v2 cos
� R

2
e� i� R =2; v2 sin

� R

2
e� i ( � R + � R =2) ]T

+ cR e� iq �
" x [v1 cos

� R

2
ei� R =2; v1 sin

� R

2
ei ( � R + � R =2) ;

� u1 sin
� R

2
ei ( � R � � R =2) ; u1 cos

� R

2
e� i� R =2]T

+ dR e� iq �
# x [v2 sin

� R

2
e� i ( � R � � R =2) ; � v2 cos

� R

2
ei� R =2;

u2 cos
� R

2
e� i� R =2; u2 sin

� R

2
e� i ( � R + � R =2) ]T ;

(8)

whereaj , bj , cj anddj with j = L; R are the coef�cients of
electron-like quasiparticles with spin-" , hole-like quasiparti-
cles with spin-" , electron-like quasiparticles with spin-#, and
hole like quasiparticles with spin-#, respectively. Moreover,
we de�ne

u1(2) =

vu
u
t 1

2

 

1 +

p
[" + ( � )h]2 � � 2

" + ( � )h

!

(9)

v1(2) =

vu
u
t 1

2

 

1 �

p
[" + ( � )h]2 � � 2

" + ( � )h

!

: (10)

The wave vectorsq�
" ;# are represented as

q�
" ;# =

q
(2m=~2)( "S

F � 
 " ;#); (11)


 " (#) =
p

[" + ( � )h]2 � � 2: (12)

We assume"S
F � j 
 j so that the wave-vectors can be treated

asq+
" = q+

# = q�
" = q�

# � qF . In a similar manner, the total
wave-function in the normal region is described by

 ̂ N (x) =
1

p
2

[a1eik 1 x (i; 1; 0; 0)T + a2eik 2 x (� i; 1; 0; 0)T

+ b1e� ik 1 x (� i; 1; 0; 0)T + b2e� ik 2 x (i; 1; 0; 0)T

+ c1e� ik 1 x (0; 0; � i; 1)T + c2e� ik 2 x (0; 0; i; 1)T

+ d1eik 1 x (0; 0; i; 1)T + d2eik 2 x (0; 0; � i; 1)T ]; (13)

with

k1 = � � +
q

� 2 + k2
F ; (14)

k2 = � +
q

� 2 + k2
F ; (15)

whereaj , bj , cj anddj are coef�cients of a right-moving elec-
tron, a left-moving electron, a right-moving hole, and a left-
moving hole with wave numberkj (j = 1 ; 2). Here, we set
~ = m = 1 for brevity. The boundary conditions for the wave
functions are given by

 ̂ L (0) �  ̂ N (0) = 0 ; (16)

 ̂ N (l ) �  ̂ R (l ) = 0 ; (17)

@̂ L (x)
@x

�
�
�
�
�
x =0

�
@̂ N (x)

@x

�
�
�
�
�
x =0

= ( Z Î + � �̂ ) ̂ N (0); (18)

@̂ N (x)
@x

�
�
�
�
�
x = l

�
@̂ R (x)

@x

�
�
�
�
�
x = l

= ( Z Î � � �̂ ) ̂ N (l ); (19)

whereÎ is the4 � 4 identity matrix and

�̂ =

0

B
@

0 1 0 0
� 1 0 0 0
0 0 0 1
0 0 � 1 0

1

C
A : (20)

By matching the wave-functions in the different regions by us-
ing the boundary conditions, we obtain a system of equations
described aŝA x̂ = 0 whereÂ is a16 � 16 matrix andx̂ =
(a1; a2; b1; b2; c1; c2; d1; d2; aR ; bR ; cR ; dR ; aL ; bL ; cL ; dL )T .
Then, the Andreev level is determined by the condition
det(A) = 0 .

Hereafter, we assume thatkF = qF � k and jhL j =
jhR j � h, and �x the direction of the Zeeman �eld in the left
superconductor� L = 0 for simplicity. In the numerical calcu-
lations, we seth = 0 :2� . Such a magnitude of the exchange
splitting is experimentally well within reach using sub-Tesla
magnetic �elds [11].

III. ANDREEV REFLECTION AND TUNNELING
CONDUCTANCE

We begin with the Andreev re�ection process at the inter-
face, since this process is of fundamental importance with re-
gard to the formation of the Andreev levels we will later con-
sider in a Josephson setup. Here, we consider only the right



4

FIG. 2: NormalB ( i )
j and AndreevD ( i )

j re�ection probability of the
Rashba wire/Zeeman-split superconductor junction as a function of
energyE at � R = �= 2 for � R = 0 (black solid line),� R = �= 4
(blue dashed line) and� R = �= 2 (green dotted line). The left (right)
panels show the re�ection probability for the electron withk1 (k2)
injected case. Here, the parameters are set asZ = 0 :5 and�=k = 1 .

interface and setl = 0 . Then we obtain the re�ection coef�-
cientsb1, b2, d1 andd2.

In the presence of RSOI, the spin and momentum are locked
and the right moving electron with wave numberk1 (k2) is a
spin-up (-down) eigenstate for they quantization axis in our
model, which is shown in Fig.1 (b). Note that the left moving
electron has the opposite spin compared with the right moving
one. The re�ection probability of a particle withkj (j = 1 ; 2)
for an electron withki (i = 1 ; 2) injected case is de�ned as
B ( i )

j = jb( i )
j j2 andD ( i )

j = jd( i )
j j2. HereB ( i )

j andC( i )
j are

nomal and Andreev re�ection probabilities, respectively.(See
Appendix for more information regardingb( i )

j andd( i )
j )

In Fig.2, we show numerical results of the normal and An-

dreev re�ection probability at the interface for various orienta-
tions of the Zeeman �eld. The left (right) panels show the
re�ection probability for an electron with wave numberk1
(k2) injected case. Let us start with the case where the ori-
entation of the Zeeman �eld̂n R is parallel to thez direction.
In this case, the spin-dependent re�ection has taken place at
the interface, and thus all re�ection probabilities for both k1
andk2 electron injected case are �nite. Since the energy band
in the superconducting region is lifted as shown in Fig.1 (c),
there are double kink points atE = � � j hj. As can be seen
in Fig.2 (black line), the re�ection probability for the elec-
tron with ak1 injected case is fully consistent with that for
the electron withk2 injected case (though the spin is oppo-
site), namely,B (1)

1 = B (2)
2 , B (1)

2 = B (2)
1 , D (1)

1 = D (2)
2 , and

D (2)
1 = D (1)

2 . With increasing� R for � R = �= 2, B (1)
1 , D (1)

2 ,
B (1)

2 , andD (2)
1 are suppressed, and whenn̂ R k y (� R = �= 2),

B (1)
1 , D (1)

2 , B (2)
2 andD (2)

1 become zero, since left- and right-
moving particles with the same wave number have the oppo-
site spin and there is no spin dependent scattering at the inter-
face. The re�ection probabilityB (1)

2 , D (1)
1 , B (2)

1 , andD (2)
2 are

also changed by tuning� R as shown in Fig.2. At� R = �= 2,
there is single kink point atE = �+ h for B (1)

2 andD (1)
1 , and

atE = � � h for B (2)
1 andD (2)

2 , since the spin-up and -down
processes occurs separately. Note that here we vary the direc-
tion of the Zeeman �eld in thez-y plane, but the same results
can be obtained if we change the direction of the Zeeman �eld
in thex-y plane. For more information, the analytical formu-
las for the re�ection coef�cients for̂n R k z (or x) andy are
shown in Appendix A.

Next, we calculate the tunneling conductance� s at zero
temperature given by [32–34]

� s =
X

i =1 ;2

(1 � B ( i )
1 � B ( i )

2 + D ( i )
1 + D ( i )

2 ): (21)

Figure 3 (a) [(b)] shows the numerical results of the tunnel-
ing conductance in the case ofn̂ R k z (n̂ R k y). In these
�gures, the back solid lines show the observable tunneling
conductance. Blue dashed and green dotted lines are the con-
tribution from electrons with thek1 andk2 injected case, re-
spectively. Although the contribution from thek1 or k2 in-
jected case depends on the orientation of the Zeeman �eld
when the �elds are in thez-y plane, the total observable tun-
neling conductance does not depend on the direction. This
is because the contributions from thek1 injected case andk2

case completely compensate each other. Figure 4 (a) shows
the tunneling conductance as a function of the bias voltage
for various� , and Fig.4(b) shows it as a function of� at zero
bias voltage for various strengths of the barrier potentialZ .
As can be seen in the �gures, the tunneling conductance is
weakly affected by the RSOI, similarly to the results for two-
dimensional electron gas with RSOI/superconductor junctions
obtained by Yokoyamaet. al [33]. Nevertheless, the Andreev
levels in the ZS/RW/ZS trilayer are dramatically affected by
the RSOI as shown below.
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FIG. 3: Tunneling conductance of a Rashba wire/Zeeman-split super-
conductor junction as a function of bias voltage for (a)n̂ R k z and
(b) n̂ R k y. Black solid lines show the observable tunneling conduc-
tance. Blue dashed and green dotted lines are the contribution from
the electron withk1 andk2 injected case, respectively. The total ob-
servable tunneling conductance does not depend on the orientation
of the Zeeman �eld.

0 1
0

1

2

0 1
0

1

2
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FIG. 4: (a) Tunneling conductance of Rashba wire/Zeeman split su-
perconductor junction as a function of bias voltage atZ = 0 :5 for
�=k = 0 (black solid line), �=k = 0 :5 (blue dashed line) and
�=k = 1 :0 (green dotted line). (b) Tunneling conductance as a func-
tion of the strength of the RSOI� at zero voltage forZ = 0 (black
solid line),Z = 0 :5 (blue dashed line), andZ = 1 :0 (green dotted
line).

IV. ANDREEV LEVELS IN THE ABSENCE OF RASHBA
SPIN-ORBIT INTERACTION

Before we move to the main results of the Andreev level
in the presence of RSOI, we brie�y review the case without
RSOI [16]. In the absence of the RSOI, the Andreev bound
state changes depending on the relative direction of the Zee-
man �eld in two superconductors. When the Zeeman �elds in
two superconductors are parallel, the spin degeneracy of the
Andreev level is lifted and the Andreev level is described by

" = � � cos
�
2

� h; (22)

where� = � R � � L andZ = 0 . The �rst term of the right
hand of Eq. (22) is the Andreev level in the absence of the Zee-

0 1 2

 1

0

1

0 1 2

 1

0

1

0 1 2

 1

0

1

(a) (b) (c)

1 1 1

00 0

-1 -1-1

0 0 011 1 222

FIG. 5: Andreev level" as a function of the phase difference� in the
absence of the RSOI for (a)� R = 0 , (b) � R = �= 2, and (c)� R = � ,
where the direction of the Zeeman �eld in the left superconductor is
�xed to � L = 0 . When� L 6= 0 , the Andreev levels" for E � � <
j" j < E + � are absent, the regions of which are shown with blue
shading.

man �eld [35]. Namely, the effect of the Zeeman �eld is sim-
ply the energy shift of� h as shown in Fig.5 (a). In this case,
the Andreev level exists for� � � h < E < �+ h. By chang-
ing the relative direction of the Zeeman �eld from the parallel
con�guration (vary� R ), the magnitude of the band splitting
decreases. When the Zeeman �eld in the right superconduc-
tor has a �nite angle, the spin dependent Andreev re�ection
occurs at the right boundary, and a right-moving electron with
up-spin is re�ected as a left moving hole that has both spin up
and down component. However, if the energy of the Andreev-
re�ected hole is less than� �+ h (or the energy of the injected
electron is more than� � h), the spin-up component of the
hole is not Andreev re�ected at the left boundary because of
the spin-splitting energy gap of the left superconductor. This
means that the amplitude of the wave decays for every sin-
gle scattering process and the Andreev bound state can not be
formed for the energy region. Therefore, there are no lines for
� � h < jE j < � + h in Fig.5 (b). When Zeeman �elds in
the two superconductors are antiparallel the energy band isde-
generate, as shown Fig. 5 (c). In this case, the Andreev level
is described by the following expression:

" = � cot
�
2

p
� 2(1 � cos� ) � 2h2: (23)

It follows from Eq.(23) that the Andreev level exists for� c <
� < 2� � � c with � c = cos� 1(1 � 2h=�) .

V. ANDREEV LEVELS IN THE PRESENCE OF RASHBA
SPIN-ORBIT INTERACTION

We now turn to the case with �nite RSOI, which has not
been studied previously in the literature. In the presence of
RSOI, a degenerate energy band of the normal region splits
into two branches and the wave vectors have a different value
from that in the superconducting region. This wave vector
mismatch causes a natural barrier at the interface and leadsto
the energy gap at� = � . This gap opening effect at� = �
can be seen in the absence of the Zeeman �eld and does not
depend on the relative direction of the Zeeman �eld and the
RSOI. The analytical expression of the Andreev level in the
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absence of the Zeeman �eld is given by

" = � �

vu
u
t 1

2

 

1 +
4k2(k2 + � 2) cos� + � 4 sin2(

p
k2 + � 2l )

4k2(k2 + � 2) � � 4 sin2(
p

k2 + � 2 l )

!

;

(24)

and the energy gap at� = � is

"0 = �

s
� 4 sin2(

p
k2 + � 2 l )

4k2(k2 + � 2) + � 4 sin2(
p

k2 + � 2l )
; (25)

where we setZ = 0 for simplicity. As seen from the above
equation, the magnitude of the energy gap depends on� , k,
andl . The energy gap is closed when the parameters satisfyp

k2 + � 2l = n� wheren is an integer number. Figure 6 (a)
shows the magnitude of the energy gap at� = � as a function
of � for variousl . The magnitude of the energy gap increases
with increasing� with oscillation and the energy gap is closed
at

�=k =
p

(n�=kl )2 � 1: (26)

Figure 6 (b) shows the magnitude of the energy gap as a func-
tion of l for various� . The magnitude of the energy gap oscil-
lates by changingl , but the maximum value of each interval
does not change. The energy gap is closed at

kl = n�=
p

1 + � 2=k2; (27)

and the period of the oscillation slightly decreases with in-
creasing� . Note that, in the presence of the Zeeman �eld,
the energy bands in the superconducting region also split so
that the wave vectors for up spin and down spin are different.
However, the difference between the wave vectors for up spin
and down spin caused by the Zeeman �eld are much smaller
than that caused by the RSOI since here we restrict the Zee-
man energyh < � . Therefore, we ignore the effect of the
wave-vector mismatch originating in the superconducting re-
gion.

Next, we discuss the phenomena that can be seen only in
the simultaneous presence of the Zeeman �eld and RSOI. We
begin with the case where the Zeeman �eld in both supercon-
ductors are oriented in the+ z direction. In Fig.7 (�rst row),
we show the numerical results of the Andreev level" as a func-
tion of � for various� . Here, black solid (blue dotted) lines
show the Andreev level forZ = 0 (Z = 0 :5). As shown in
the �gure, the magnitude of the energy splitting changes de-
pending on� and l , with a period2�=�l . Note that in the
numerical calculation, we have set� � k, which gives rise to
a quite small gap at� = � in the �gure. At � = n�=l , the
magnitude of the band splitting has a maximum value for any
� . On the other hand, if� = ( n + 1 =2)�=l , the magnitude of
the band splitting is minimum;�" = 0 for any � . The black
solid line in Fig. 8 shows the magnitude of the band splitting
at � = � as a function of the�l= 2� . This oscillation of the
band splitting�" can be described by

�" = h cos(�l ): (28)

0 5 10
0

0.02

0.04

0 0.5 1
0

0.2

0.4
(a) (b)

FIG. 6: (a) The magnitude of the energy gap" 0 at � = � as a func-
tion of � atlk = 10 (black solid),lk = 20 (blue dashed) andlk = 30
(green dotted). (b) The magnitude of the energy gap at� = � as a
function of l at �=k = 0 :1 (black solid),�=k = 0 :2 (blue dashed),
and�=k = 0 :3 (green dotted).

Note that if the Zeeman �eld in the two superconductors is
an antiparallel con�guration, the Andreev level is degenerated
in the absence of the RSOI. Then with increasing� or l , the
magnitude of the band splitting oscillates, as shown by the
blue dotted line in Fig. 8. In the presence of the barrier po-
tential, the gap� = � is enhanced as shown in Fig. 7. On
the other hand, the oscillation period of the magnitude of the
band splitting is not affected by the barrier potential.

This oscillatory behavior can be understood physically by
the spin precession that takes place in the Rashba wire. If an
electron or hole traveling in the Rashba wire has a spin com-
ponent perpendicular to they direction, the spin precession
occurs [24, 25]. The precession angle is given by

� P = ( k2 � k1)l = 2 �l: (29)

When � P = � , a spin-up particle is converted to that with
down-spin by traveling through the Rashba wire and vice
versa. In this case, even if the Zeeman �eld in both super-
conductors is parallel (+ z direction), the particles behave as
if the Zeeman �eld in the superconductors is antiparallel (+ z
and� z direction). As a result, the magnitude of the Andreev
level is the same as that in the case of an antiparallel Zeeman
�eld without RSOI, which can be seen by comparing the third
panel of the �rst row of Fig.7 and Fig.5(c). Not only for the
parallel or antiparallel Zeeman case but also for the arbitrary
� R with �xed � R = �= 2, the magnitude of the energy split-
ting of the Andreev level is the same as that with� R = � P for
the non-RSOI case. Note that although the magnitudes of the
band splitting are identical to each other, the shapes of theAn-
dreev levels are not the same. This is because an energy gap
appears at� = � in the presence of RSOI. In addition, the
spin precession is not affected by the barrier potential. There-
fore the oscillation period of the band splitting is not changed
even in the presence of the barrier potential.

We also �nd that the oscillatory behavior of the band split-
ting by the RSOI changes depending on the relative direction
of the Zeeman �eld in the two superconductors. First, we
change the direction of the Zeeman �eld in the right super-
conductor in they-z plane, i.e., vary� R for � R = �= 2. With
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FIG. 7: Andreev levels" as a function of the phase difference� for various � values in the direction of the Zeeman �elds in the right
superconductor̂nR k z (upper low),n̂R k y (middle low) andn̂R k x (bottom low). Here, the direction of the Zeeman �eld in the left
superconductor is �xed tônL k z. From left to right,�=k varies from 0 to�=kl by �= 4kl . The black solid (blue dotted) lines show the
Andreev levels in the case ofZ = 0 (Z = 0 :5).

0 0.5 1
0

1

FIG. 8: Normalized magnitude of the energy shift�"=h as a func-
tion of �l= 2� for the parallel (black solid line) and antiparallel (blue
dotted) Zeeman case.

increasing� R for �xed � R = �= 2, the amplitude of the band
splitting becomes smaller. Then if the Zeeman �eld in the
right superconductor is parallel to they direction, the magni-
tude of the band splitting does not depend on� andl , as shown
in the middle row of Fig. 7. Note that as long as the Zeeman

�eld in either left or right superconductor is parallel to the y
direction, the magnitude of the band splitting does not depend
on� andl . This is because, the spin of a particle coming from
the superconductor with ay-oriented Zeeman �eld does not
precess.

Next, we change the direction of the Zeeman �eld in the
right superconductor in thez-x plane. If the Zeeman �eld of
the right superconductor has thex component, the" -� curve
becomes asymmetric for� , " (� ) 6= " (2� � � ), as shown in
the third row of Fig.7. In addition, the same as the parallel
Zeeman case, the magnitude of the band splitting oscillates
as a function of� and l with a period2�=�l . The asym-
metric Andreev level and resulting anomalous Josephson ef-
fect are predicted to be realized in S/F/S junctions with spin
active interfaces [36–38], S/F/S junctions with the RSOI in
the normal region [39–42], S/N/S junctions with unconven-
tional superconductors [43, 44] and many other systems, e.g.,
Refs.[45–47]. In most systems considered so far, to achieve
the anomalous Josephson effect, it is necessary to manipulate
the magnetic �eld, which is experimentally dif�cult. On the
other hand, in our system, the anomalous Josephson effect can
be realized by changing the strength of the RSOI, which is ex-
perimentally feasible.

There is another feature originating from the RSOI: the dis-
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appearance of the Andreev level for� � h < jE j < � + h.
Even if one introduces a small magnitude of the RSOI and the
Zeeman �eld is parallel, the Andreev level of the energy re-
gion suddenly disappears. This is because in the presence of
RSOI, there is the spin-dependent scattering at the interface.
This spin-dependent scattering prohibits the formation ofthe
bound state, as is discussed for the case of without RSOI in
Sec.IV.

The main effects of the RSOI on the shape of the Andreev
levels are (i) band shift, which is represented by Eq. (28),
and (ii) gap opening effect at� = � , which is captured by
Eq. (24). In the presence of both RSOI and Zeeman �eld, the
analytical formula of the Andreev level is quite complicated.
However, by combining the above effects represented by Eqs.
(24) and (28), we derive the following approximate solution
for the parallel Zeeman case (z direction):

" = � �

vu
u
t 1

2

 

1 +
4k2(k2 + � 2) cos� + � 4 sin2(

p
k2 + � 2 l )

4k2(k2 + � 2) � � 4 sin2(
p

k2 + � 2 l )

!

� h cos�l: (30)

This solution reproduces the numerical results quite well espe-
cially near� = � .

Finally, we brie�y comment on the difference between the
Andreev levels in the present system and those in the S/F/S
junctions. The periodic change of the Andreev level is also
known for the S/F/S junction [48–50]. In the S/F/S junction,
the Andreev level is given by

" = � � cos
� � lk�

2
; (31)

where� is the magnitude of the exchange �eld normalized by
the Fermi energy and is considered as� � 1. In this case,
with increasing the strength of the exchange �eld, the degen-
erate branches shift to the� � direction (horizontal direction
in " -� plot), which causes the� transition. On the other hand,
in the present system, the energy band shifts to a vertical di-
rection by changing the strength of the RSOI, which does not
cause a� transition.

VI. SUMMARY

In summary, we have theoretically studied how the Rashba
spin-orbit interaction in the normal region and the Zeeman
�eld in the superconducting region affect the formation of
Andreev levels in a Josephson junction. We have found that
the total tunneling conductance remains invariant, whereas the
Andreev re�ection processes and the resulting Andreev levels
are sensitive to the relative orientation of the spin-orbit�eld
and the Zeeman �eld.

We have shown that the Andreev level is systematically
changed by tuning the strength of the Rashba spin-orbit inter-
action� or length of the Rashba wirel . In particular, the mag-
nitude of the band splitting�" oscillates as a function of� and
l , and we have clari�ed that this behavior is interpreted phys-
ically by the spin precession in the Rashba wire. It has been

also found that the" -� curve changes depending on the rela-
tive angle of the three independent vectors, i.e., the orientation
of Zeeman �elds in the left superconductor, that in the right
superconductor, and the vector characterizing the spin-orbit
interaction. In particular, the" -� curve becomes asymmetric
with respect to the phase difference� when either the left or
right Zeeman �eld has a component parallel to the junction (x
component). An interesting future direction is the possibility
to control the Josephson current in the considered system by
the change of the Andreev levels, which will be a subject of
future study. Moreover, it would be also interesting to study
the �nite frequency response of this system as discussed in
other systems [51, 52].
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Appendix A: Andreev re�ection coef�cients

In this Appendix, we show the analytical formulas for the
normal and Andreev re�ection coef�cients of the RM/ZS junc-
tion. The re�ection coef�cients in the case of̂n R k z are
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given by

b(1)
1 = [2 kk� � 2(u2v1 � u1v2)(u2v1 + u1v2)]=� ; (A1)

b(1)
2 = � 2[(k2 + k2

� )(u2
1 � v2

1)(u2
2 � v2

2)

+ 2 kk� (u2
1u2

2 � v2
1v2

2 )]=� ; (A2)

d(1)
1 = 2 ikk � (u2v1 + u1v2)[(k2 + k2

� )(u1u2 � v1v2)

+ 2 kk� (u1u2 + v1v2)]=� ; (A3)

d(1)
2 = 2 ikk � (u2v1 � u1v2)[(k2 + k2

� )(u1u2 + v1v2)

+ 2 kk� (u1u2 � v1v2)]=� ; (A4)

b(2)
1 = b(1)

2 ; b(2)
2 = b(1)

1 ; d(2)
1 = d(1)

2 ; d(2)
2 = d(1)

1 ; (A5)

with

k� =
p

k2 + � 2; (A6)

� = [( k2 + k2
� )(u2

1 � v2
1) + 2 kk� (u2

1 + v2
1)]

� [(k2 + k2
� )(u2

2 � v2
2) + 2 kk� (u2

2 + v2
2)]: (A7)

Here,bi
1, bi

2, di
1, anddi

2 with i = 1( i = 2) are the re�ection co-
ef�cients b1, b2, d1, andd2 in Eq.(13) when an electron with

k1 (k2) is injected. On the other hand, the re�ection coef�-
cients in the case of̂n R k y are given by

b(1)
1 = 0 ; (A8)

b(1)
2 =

� 2(u2
1 � v2

1)
(k2 + k2

� )(u2
1 � v2

1 ) + 2 kk� (u2
1 + v2

1 )
; (A9)

d(1)
1 =

4ikk � u1v1

(k2 + k2
� )(u2

1 � v2
1 ) + 2 kk� (u2

1 + v2
1 )

; (A10)

d(1)
2 = 0 ; (A11)

b(2)
1 =

� 2(u2
2 � v2

2)
(k2 + k2

� )(u2
2 � v2

2 ) + 2 kk� (u2
2 + v2

2 )
; (A12)

b(2)
2 = 0 ; (A13)

d(2)
1 = 0 ; (A14)

d(2)
2 =

4ikk � u2v2

(k2 + k2
� )(u2

2 � v2
2 ) + 2 kk� (u2

2 + v2
2 )

: (A15)
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