
ar
X

iv
:1

70
7.

03
72

3v
2 

 [
co

nd
-m

at
.s

up
r-

co
n]

  1
0 

O
ct

 2
01

7

Tunability of Andreev levels via spin-orbit coupling in Zeeman-split Josephson junctions

Tatsuki Hashimoto1,2, Alexander A. Golubov1,3, Yukio Tanaka2, and Jacob Linder4,5
1Faculty of Science and Technology and MESA+ Institute of Nanotechnology,

University of Twente, 7500 AE, Enschede, The Netherlands
2Department of Applied Physics, Nagoya University, Nagoya 464-8603, Japan

3Moscow Institute of Physics and Technology, Dolgoprudny, Moscow 141700, Russia
4Department of Physics, NTNU, Norwegian University of Science and Technology, N-7491 Trondheim, Norway and

5Center of Excellence QuSpin, NTNU, Norwegian University of Science and Technology, N-7491 Trondheim, Norway

(Dated: October 11, 2017)

We study Andreev reflection and Andreev levels ε in Zeeman-split superconductor/Rashba wire/Zeeman-split

superconductor junctions by solving the Bogoliubov de-Gennes equation. We theoretically demonstrate that the

Andreev levels ε can be controlled by tuning either the strength of Rashba spin-orbit interaction or the relative

direction of the Rashba spin-orbit interaction and the Zeeman field. In particular, it is found that the magnitude

of the band splitting is tunable by the strength of the Rashba spin-orbit interaction and the rength of the wire,

which can be interpreted by a spin precession in the Rashba wire. We also find that if the Zeeman field in the

superconductor has the component parallel to the direction of the junction, the ε-φ curve becomes asymmetric

with respect to the superconducting phase difference φ. Whereas the Andreev reflection processes associated

with each pseudospin band are sensitive to the relative orientation of the spin-orbit field and the exchange field,

the total electric conductance interestingly remains invariant.

I. INTRODUCTION

The Josephson effect is the fundamental phenomenon in su-

perconductor junctions [1]. Since the discovery of this effect,

various types of structure have been studied. In particular, the

superconductor/ferromagnet/superconductor (S/F/S) junction

has attracted much research interest because of its high tun-

ability of the supercurrent [2–4]. In S/F/S junctions, the so

called π phase, where the direction of the critical current is

reversed compared with 0 phase, is realized by changing the

strength of the exchange field or thickness of the ferromag-

netic region [5, 6].

In recent years, superconductors with spin-split energy

bands, so called Zeeman-split superconductors (ZSs), have

also been studied widely owing to their potential application

to the superconducting spintronics [7, 8]. The homogeneous

spin splitting in the superconductor can be realized in the sys-

tems such as thin F/S junctions [9, 10] or thin superconductor

films under the application of an in-plane magnetic field [11].

It has been shown that N/ZS junctions, where N stands for a

normal metal, can generate highly spin-polarized current [12–

15]. Josephson junctions with spin-split superconductors have

been also studied in various types of structures. In ZS/N/ZS

junctions, the spin degeneracy of the Andreev level is lifted

and the magnitude of the spin splitting can be controlled by

changing either the magnitude or relative direction of the Zee-

man field in the superconducting leads [16–19]. ZS/N/ZS

junctions with unconventional superconducting pairing such

as p- or d-wave pairing, have also been studied and the tun-

ability of the Andreev level by changing the relative direction

of the Zeeman field and superconducting d-vector have been

demonstrated [20–23].

The magnetic tunability of the Andreev levels and the re-

sulting supercurrent has been shown in the previous studies

as mentioned above. However, the electric tunability of these

levels has not been discovered yet in the ZS junctions, even

though the electric tunability tends to have advantages for
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FIG. 1: (a) Schematic illustration of the Zeeman-split supercon-

ductor/Rashba wire/Zeeman-split superconductor junction. n̂η =
(cos θη cos ζη, cos θη sin ζη, sin θη) is an unit vector representing the

direction of Zeeman field in the left (η = L) and right (η = R) su-

perconductor. (b) Schematic band structure of a Rashba wire. (c)

Schematic band structure of a Zeeman-split superconductor. Black

solid (blue dotted) lines show the spin-up (spin-down) band.

nano-device applications. To realize the electric tunability,

the most promising way is introducing the Rashba spin-orbit

interaction (RSOI) in a system, which is tunable by the gate

voltage [24, 25]. Recently, there has been a growing interest

in a one-dimensional Rashba wire, especially after the pro-

posal to use it as a platform for Majorana fermions [26–28].

The Rashba wire has a characteristic band structure, where the

spin degeneracy is lifted and the direction of spin and momen-
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tum is locked (spin-momentum locking). More importantly,

because of the pseudomagnetic effect of the RSOI, the spin

precession takes place while an electron or hole is traveling in

the Rashba wire.

Another motivation for this work is that although the effect

of the exchange field in the nanowire is often taken into ac-

count in recent literature considering the prospect of Majorana

fermions in spin-orbit coupled Josephson junctions with exter-

nally applied magnetic field, the fact that even a very small ex-

change field h induced in the superconducting region (in the

case where these are thin enough to permit this) may affect

the physical properties of the system remains virtually unex-

plored in this context. Despite the fact that a nanowire made

of a material such as InAs is likely to have a higher g-factor

than the materials used for the superconducting regions, even

a small exchange field h≪ ∆ induced in the superconductors

is sufficient to induce qualitatively new physics such as consid-

erable thermoelectric effects [29–31]. Our study is therefore

also of relevance with regard to Majorana experiments utiliz-

ing sufficiently thin superconducting regions that an in-plane

field may induce a small exchange splitting in them.

In this paper, we theoretically study Andreev reflection and

the formation of Andreev levels in Zeeman-split superconduc-

tor/Rashba wire/ Zeeman-split superconductor (ZS/RW/ZS)

junction to reveal how the electric tunable RSOI in the wire

and the Zeeman field in the superconductors affects the An-

dreev level. We first study Andreev and normal reflections at

the boundary of the RW/ZS bilayer, since these processes are

of fundamental relevance to the formation of bound states in

a Josephson geometry. We then calculate the Andreev level

energies in the ZS/RW/ZS Josephson junction. We find that

the Andreev levels can be controlled by the strength of the

RSOI λ, the length of the Rashba wire l and the direction of

the Zeeman field though the tunneling conductance is not so

affected by the RSOI. It is found that the magnitude of the

band splitting of the Andreev level oscillates as a function of

the strength of the RSOI λ and the length of the Rashba metal

l with a certain period. We also find that the Andreev level

can be dramatically altered by changing the direction of the

Zeeman field relative to the vector characterizing the RSOI.

In particular, if the Zeeman field has a component along the

junction (x component in this paper), the Andreev level be-

comes asymmetric in the superconducting phase difference

φ and provides a finite supercurrent even at zero phase-bias

φ = 0.

This paper is organized as follows. In Sec.II, we first intro-

duce a model Hamiltonian for a junction consisting of the ZS

and Rashba wire. In Sec.III, calculation results of the Andreev

reflection and the tunneling conductance are discussed. In

Sec.IV, we review the Andreev level in the absence of RSOI.

Then we move to the main results: Andreev level in the pres-

ence of RSOI in Sec.V. Finally, we summarize our results in

Sec.VI.

II. FORMULATION

Figure 1(a) shows the schematic picture of the ZS/RW/ZS

junction. In this paper, we consider a short ballistic junction

that satisfies l ≪ ξ, where l is the length of the Rashba wire

and ξ is the ballistic superconducting coherence length. The

Bogoliubov-de Gennes (BdG) Hamiltonian for this system is

described by,

(

Ĥ0(r) ∆̂(x)

−∆̂∗(x) −Ĥ∗
0 (r)

)

ψ̂i(r) = εψ̂i(r), (1)

with

Ĥ0(r) =

[

− ~
2

2m
∇2 − µ+ Z(x)

]

σ̂0 − λ̂(x) − ĥ(x), (2)

Z(x) = Z[δ(x) + δ(x− l)], (3)

λ̂(x) = {kx, λΘ(x)Θ(l − x)} σ̂y (4)

ĥ(x) = hLΘ(−x)n̂L · σ̂ + hRΘ(x− l)n̂R · σ̂, (5)

∆̂(x) = ∆[eiφLΘ(−x) + eiφRΘ(x− l)](iσ̂y), (6)

where the basis is set as (c↑, c↓, c
†
↑, c

†
↓) and σ̂ is the Pauli ma-

trix for the spin space. Here, Z(x) denotes the barrier poten-

tial at the boundaries, λ̂(x) is the Rashba spin-orbit interac-

tion in the normal region, ĥ(x) is the exchange field in the

superconducting region and ∆̂(x) is the superconducting pair

potential, where δ(x) and Θ(x) are the δ function and step

function, respectively. To satisfy the Hermiticity of the Hamil-

tonian at the boundaries, we adopt {kx, λΘ(x)Θ(l − x)} σ̂y
as a Rashba spin-orbit interaction term instead of λkxσ̂y . In

addition, n̂η = (cos θη cos ζη, cos θη sin ζη, sin θη) is a unit

vector representing the direction of the Zeeman field in the

left (η = L,) and right (η = R) superconductors. In this pa-

per, we focus on the conventional s-wave superconductivity,

hence we assume that the magnitude of the superconducting

gap ∆ is constant and positive value. The band structure of

the Rashba wire and Zeeman-split superconductor are shown

in Figs.1 (b) and (c), where the systems are considered as infi-

nite.

By diagonalizing the model Hamiltonian, one can obtain

the wave function in the superconducting region under the
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plane-wave assumption as

ψ̂L(x) = aLe
−iq+

↑
x[u1 cos

θL
2
eiφL/2, u1 sin

θL
2
ei(ζL+φL/2),

− v1 sin
θL
2
ei(ζL−φL/2), v1 cos

θL
2
e−iφL/2]T

+ bLe
−iq+

↓
x[u2 sin

θL
2
e−i(ζL−φL/2),−u2 cos

θL
2
eiφL/2,

v2 cos
θL
2
e−iφL/2, v2 sin

θL
2
e−i(ζL+φL/2)]T

+ cLe
iq−

↑
x[v1 cos

θL
2
eiφL/2, v1 sin

θL
2
ei(ζL+φL/2),

− u1 sin
θL
2
ei(ζL−φL/2), u1 cos

θL
2
e−iφL/2]T

+ dLe
iq−

↓
x[v2 sin

θL
2
e−i(ζL−φL/2),−v2 cos

θL
2
eiφL/2,

u2 cos
θL
2
e−iφL/2, u2 sin

θL
2
e−i(ζL+φL/2)]T ,

(7)

ψ̂R(x) = aRe
iq+

↑
x[u1 cos

θR
2
eiφR/2, u1 sin

θR
2
ei(ζR+φR/2),

− v1 sin
θR
2
ei(ζR−φR/2), v1 cos

θR
2
e−iφR/2]T

+ bRe
iq+

↓
x[u2 sin

θR
2
e−i(ζR−φR/2),−u2 cos

θR
2
eiφR/2,

v2 cos
θR
2
e−iφR/2, v2 sin

θR
2
e−i(ζR+φR/2)]T

+ cRe
−iq−

↑
x[v1 cos

θR
2
eiφR/2, v1 sin

θR
2
ei(ζR+φR/2),

− u1 sin
θR
2
ei(ζR−φR/2), u1 cos

θR
2
e−iφR/2]T

+ dRe
−iq−

↓
x[v2 sin

θR
2
e−i(ζR−φR/2),−v2 cos

θR
2
eiφR/2,

u2 cos
θR
2
e−iφR/2, u2 sin

θR
2
e−i(ζR+φR/2)]T ,

(8)

where aj , bj , cj and dj with j = L,R are the coefficients of

electron-like quasiparticles with spin-↑, hole-like quasiparti-

cles with spin-↑, electron-like quasiparticles with spin-↓, and

hole like quasiparticles with spin-↓, respectively. Moreover,

we define

u1(2) =

√

√

√

√

1

2

(

1 +

√

[ε+ (−)h]2 −∆2

ε+ (−)h

)

(9)

v1(2) =

√

√

√

√

1

2

(

1−
√

[ε+ (−)h]2 −∆2

ε+ (−)h

)

. (10)

The wave vectors q±↑,↓ are represented as

q±↑,↓ =
√

(2m/~2)(εSF ± Ω↑,↓), (11)

Ω↑(↓) =
√

[ε+ (−)h]2 −∆2. (12)

We assume εSF ≫ |Ω| so that the wave-vectors can be treated

as q+↑ = q+↓ = q−↑ = q−↓ ≡ qF . In a similar manner, the total

wave-function in the normal region is described by

ψ̂N (x) =
1√
2
[a1e

ik1x(i, 1, 0, 0)T + a2e
ik2x(−i, 1, 0, 0)T

+ b1e
−ik1x(−i, 1, 0, 0)T + b2e

−ik2x(i, 1, 0, 0)T

+ c1e
−ik1x(0, 0,−i, 1)T + c2e

−ik2x(0, 0, i, 1)T

+ d1e
ik1x(0, 0, i, 1)T + d2e

ik2x(0, 0,−i, 1)T ], (13)

with

k1 = −λ+
√

λ2 + k2F , (14)

k2 = λ+
√

λ2 + k2F , (15)

where aj , bj , cj and dj are coefficients of a right-moving elec-

tron, a left-moving electron, a right-moving hole, and a left-

moving hole with wave number kj (j = 1, 2). Here, we set

~ = m = 1 for brevity. The boundary conditions for the wave

functions are given by

ψ̂L(0)− ψ̂N (0) = 0, (16)

ψ̂N (l)− ψ̂R(l) = 0, (17)

∂ψ̂L(x)

∂x

∣

∣

∣

∣

∣

x=0

− ∂ψ̂N (x)

∂x

∣

∣

∣

∣

∣

x=0

= (ZÎ + λτ̂ )ψ̂N (0), (18)

∂ψ̂N (x)

∂x

∣

∣

∣

∣

∣

x=l

− ∂ψ̂R(x)

∂x

∣

∣

∣

∣

∣

x=l

= (ZÎ − λτ̂ )ψ̂N (l), (19)

where Î is the 4× 4 identity matrix and

τ̂ =







0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0






. (20)

By matching the wave-functions in the different regions by us-

ing the boundary conditions, we obtain a system of equations

described as Âx̂ = 0 where Â is a 16 × 16 matrix and x̂ =
(a1, a2, b1, b2, c1, c2, d1, d2, aR, bR, cR, dR, aL, bL, cL, dL)

T .

Then, the Andreev level is determined by the condition

det(A) = 0.

Hereafter, we assume that kF = qF ≡ k and |hL| =
|hR| ≡ h, and fix the direction of the Zeeman field in the left

superconductor θL = 0 for simplicity. In the numerical calcu-

lations, we set h = 0.2∆. Such a magnitude of the exchange

splitting is experimentally well within reach using sub-Tesla

magnetic fields [11].

III. ANDREEV REFLECTION AND TUNNELING

CONDUCTANCE

We begin with the Andreev reflection process at the inter-

face, since this process is of fundamental importance with re-

gard to the formation of the Andreev levels we will later con-

sider in a Josephson setup. Here, we consider only the right
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FIG. 2: Normal B
(i)
j and Andreev D

(i)
j reflection probability of the

Rashba wire/Zeeman-split superconductor junction as a function of

energy E at ζR = π/2 for θR = 0 (black solid line), θR = π/4
(blue dashed line) and θR = π/2 (green dotted line). The left (right)

panels show the reflection probability for the electron with k1 (k2)

injected case. Here, the parameters are set as Z = 0.5 and λ/k = 1.

interface and set l = 0. Then we obtain the reflection coeffi-

cients b1, b2, d1 and d2.

In the presence of RSOI, the spin and momentum are locked

and the right moving electron with wave number k1 (k2) is a

spin-up (-down) eigenstate for the y quantization axis in our

model, which is shown in Fig.1 (b). Note that the left moving

electron has the opposite spin compared with the right moving

one. The reflection probability of a particle with kj (j = 1, 2)

for an electron with ki (i = 1, 2) injected case is defined as

B
(i)
j = |b(i)j |2 and D

(i)
j = |d(i)j |2. Here B

(i)
j and C

(i)
j are

nomal and Andreev reflection probabilities, respectively. (See

Appendix for more information regarding b
(i)
j and d

(i)
j )

In Fig.2, we show numerical results of the normal and An-

dreev reflection probability at the interface for various orienta-

tions of the Zeeman field. The left (right) panels show the

reflection probability for an electron with wave number k1
(k2) injected case. Let us start with the case where the ori-

entation of the Zeeman field n̂R is parallel to the z direction.

In this case, the spin-dependent reflection has taken place at

the interface, and thus all reflection probabilities for both k1
and k2 electron injected case are finite. Since the energy band

in the superconducting region is lifted as shown in Fig.1 (c),

there are double kink points at E = ∆ ± |h|. As can be seen

in Fig.2 (black line), the reflection probability for the elec-

tron with a k1 injected case is fully consistent with that for

the electron with k2 injected case (though the spin is oppo-

site), namely, B
(1)
1 = B

(2)
2 , B

(1)
2 = B

(2)
1 , D

(1)
1 = D

(2)
2 , and

D
(2)
1 = D

(1)
2 . With increasing θR for ζR = π/2, B

(1)
1 , D

(1)
2 ,

B
(1)
2 , andD

(2)
1 are suppressed, and when n̂R ‖ y (θR = π/2),

B
(1)
1 , D

(1)
2 , B

(2)
2 and D

(2)
1 become zero, since left- and right-

moving particles with the same wave number have the oppo-

site spin and there is no spin dependent scattering at the inter-

face. The reflection probabilityB
(1)
2 ,D

(1)
1 ,B

(2)
1 , andD

(2)
2 are

also changed by tuning θR as shown in Fig.2. At θR = π/2,

there is single kink point atE = ∆+h forB
(1)
2 andD

(1)
1 , and

at E = ∆−h forB
(2)
1 andD

(2)
2 , since the spin-up and -down

processes occurs separately. Note that here we vary the direc-

tion of the Zeeman field in the z-y plane, but the same results

can be obtained if we change the direction of the Zeeman field

in the x-y plane. For more information, the analytical formu-

las for the reflection coefficients for n̂R ‖ z (or x) and y are

shown in Appendix A.

Next, we calculate the tunneling conductance σs at zero

temperature given by [32–34]

σs =
∑

i=1,2

(1−B
(i)
1 −B

(i)
2 +D

(i)
1 +D

(i)
2 ). (21)

Figure 3 (a) [(b)] shows the numerical results of the tunnel-

ing conductance in the case of n̂R ‖ z (n̂R ‖ y). In these

figures, the back solid lines show the observable tunneling

conductance. Blue dashed and green dotted lines are the con-

tribution from electrons with the k1 and k2 injected case, re-

spectively. Although the contribution from the k1 or k2 in-

jected case depends on the orientation of the Zeeman field

when the fields are in the z-y plane, the total observable tun-

neling conductance does not depend on the direction. This

is because the contributions from the k1 injected case and k2
case completely compensate each other. Figure 4 (a) shows

the tunneling conductance as a function of the bias voltage

for various λ, and Fig.4(b) shows it as a function of λ at zero

bias voltage for various strengths of the barrier potential Z .

As can be seen in the figures, the tunneling conductance is

weakly affected by the RSOI, similarly to the results for two-

dimensional electron gas with RSOI/superconductor junctions

obtained by Yokoyama et. al [33]. Nevertheless, the Andreev

levels in the ZS/RW/ZS trilayer are dramatically affected by

the RSOI as shown below.
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FIG. 3: Tunneling conductance of a Rashba wire/Zeeman-split super-

conductor junction as a function of bias voltage for (a) n̂R ‖ z and

(b) n̂R ‖ y. Black solid lines show the observable tunneling conduc-

tance. Blue dashed and green dotted lines are the contribution from

the electron with k1 and k2 injected case, respectively. The total ob-

servable tunneling conductance does not depend on the orientation

of the Zeeman field.

0 1
0

1

2

0 1
0

1

2

(a) (b)

FIG. 4: (a) Tunneling conductance of Rashba wire/Zeeman split su-

perconductor junction as a function of bias voltage at Z = 0.5 for

λ/k = 0 (black solid line), λ/k = 0.5 (blue dashed line) and

λ/k = 1.0 (green dotted line). (b) Tunneling conductance as a func-

tion of the strength of the RSOI λ at zero voltage for Z = 0 (black

solid line), Z = 0.5 (blue dashed line), and Z = 1.0 (green dotted

line).

IV. ANDREEV LEVELS IN THE ABSENCE OF RASHBA

SPIN-ORBIT INTERACTION

Before we move to the main results of the Andreev level

in the presence of RSOI, we briefly review the case without

RSOI [16]. In the absence of the RSOI, the Andreev bound

state changes depending on the relative direction of the Zee-

man field in two superconductors. When the Zeeman fields in

two superconductors are parallel, the spin degeneracy of the

Andreev level is lifted and the Andreev level is described by

ε = ±∆cos
φ

2
± h, (22)

where φ = φR − φL and Z = 0. The first term of the right

hand of Eq. (22) is the Andreev level in the absence of the Zee-

0 1 2

−1

0

1

0 1 2

−1

0

1

0 1 2

−1

0

1

(a) (b) (c)

1 1 1

00 0

-1 -1-1

0 0 011 1 222

FIG. 5: Andreev level ε as a function of the phase difference φ in the

absence of the RSOI for (a) θR = 0, (b) θR = π/2, and (c) θR = π,

where the direction of the Zeeman field in the left superconductor is

fixed to θL = 0. When θL 6= 0, the Andreev levels ε for E − ∆ <
|ε| < E + ∆ are absent, the regions of which are shown with blue

shading.

man field [35]. Namely, the effect of the Zeeman field is sim-

ply the energy shift of ±h as shown in Fig.5 (a). In this case,

the Andreev level exists for −∆−h < E < ∆+h. By chang-

ing the relative direction of the Zeeman field from the parallel

configuration (vary θR), the magnitude of the band splitting

decreases. When the Zeeman field in the right superconduc-

tor has a finite angle, the spin dependent Andreev reflection

occurs at the right boundary, and a right-moving electron with

up-spin is reflected as a left moving hole that has both spin up

and down component. However, if the energy of the Andreev-

reflected hole is less than−∆+h (or the energy of the injected

electron is more than ∆ − h), the spin-up component of the

hole is not Andreev reflected at the left boundary because of

the spin-splitting energy gap of the left superconductor. This

means that the amplitude of the wave decays for every sin-

gle scattering process and the Andreev bound state can not be

formed for the energy region. Therefore, there are no lines for

∆ − h < |E| < ∆ + h in Fig.5 (b). When Zeeman fields in

the two superconductors are antiparallel the energy band is de-

generate, as shown Fig. 5 (c). In this case, the Andreev level

is described by the following expression:

ε = ± cot
φ

2

√

∆2(1− cosφ)− 2h2. (23)

It follows from Eq.(23) that the Andreev level exists for φc <
φ < 2π − φc with φc = cos−1(1− 2h/∆).

V. ANDREEV LEVELS IN THE PRESENCE OF RASHBA

SPIN-ORBIT INTERACTION

We now turn to the case with finite RSOI, which has not

been studied previously in the literature. In the presence of

RSOI, a degenerate energy band of the normal region splits

into two branches and the wave vectors have a different value

from that in the superconducting region. This wave vector

mismatch causes a natural barrier at the interface and leads to

the energy gap at φ = π. This gap opening effect at φ = π
can be seen in the absence of the Zeeman field and does not

depend on the relative direction of the Zeeman field and the

RSOI. The analytical expression of the Andreev level in the
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absence of the Zeeman field is given by

ε = ±∆

√

√

√

√

1

2

(

1 +
4k2(k2 + λ2) cosφ+ λ4 sin2(

√
k2 + λ2l)

4k2(k2 + λ2)− λ4 sin2(
√
k2 + λ2l)

)

,

(24)

and the energy gap at φ = π is

ε0 = ∆

√

λ4 sin2(
√
k2 + λ2l)

4k2(k2 + λ2) + λ4 sin2(
√
k2 + λ2l)

, (25)

where we set Z = 0 for simplicity. As seen from the above

equation, the magnitude of the energy gap depends on λ, k,

and l. The energy gap is closed when the parameters satisfy√
k2 + λ2l = nπ where n is an integer number. Figure 6 (a)

shows the magnitude of the energy gap at φ = π as a function

of λ for various l. The magnitude of the energy gap increases

with increasing λ with oscillation and the energy gap is closed

at

λ/k =
√

(nπ/kl)2 − 1. (26)

Figure 6 (b) shows the magnitude of the energy gap as a func-

tion of l for various λ. The magnitude of the energy gap oscil-

lates by changing l, but the maximum value of each interval

does not change. The energy gap is closed at

kl = nπ/
√

1 + λ2/k2, (27)

and the period of the oscillation slightly decreases with in-

creasing λ. Note that, in the presence of the Zeeman field,

the energy bands in the superconducting region also split so

that the wave vectors for up spin and down spin are different.

However, the difference between the wave vectors for up spin

and down spin caused by the Zeeman field are much smaller

than that caused by the RSOI since here we restrict the Zee-

man energy h < ∆. Therefore, we ignore the effect of the

wave-vector mismatch originating in the superconducting re-

gion.

Next, we discuss the phenomena that can be seen only in

the simultaneous presence of the Zeeman field and RSOI. We

begin with the case where the Zeeman field in both supercon-

ductors are oriented in the +z direction. In Fig.7 (first row),

we show the numerical results of the Andreev level ε as a func-

tion of φ for various λ. Here, black solid (blue dotted) lines

show the Andreev level for Z = 0 (Z = 0.5). As shown in

the figure, the magnitude of the energy splitting changes de-

pending on λ and l, with a period 2π/λl. Note that in the

numerical calculation, we have set λ≪ k, which gives rise to

a quite small gap at φ = π in the figure. At λ = nπ/l, the

magnitude of the band splitting has a maximum value for any

φ. On the other hand, if λ = (n+ 1/2)π/l, the magnitude of

the band splitting is minimum; δε = 0 for any φ. The black

solid line in Fig. 8 shows the magnitude of the band splitting

at φ = π as a function of the λl/2π. This oscillation of the

band splitting δε can be described by

δε = h cos(λl). (28)

0 5 10
0

0.02

0.04

0 0.5 1
0

0.2

0.4

(a) (b)

FIG. 6: (a) The magnitude of the energy gap ε0 at φ = π as a func-

tion of λ at lk = 10 (black solid), lk = 20 (blue dashed) and lk = 30
(green dotted). (b) The magnitude of the energy gap at φ = π as a

function of l at λ/k = 0.1 (black solid), λ/k = 0.2 (blue dashed),

and λ/k = 0.3 (green dotted).

Note that if the Zeeman field in the two superconductors is

an antiparallel configuration, the Andreev level is degenerated

in the absence of the RSOI. Then with increasing λ or l, the

magnitude of the band splitting oscillates, as shown by the

blue dotted line in Fig. 8. In the presence of the barrier po-

tential, the gap φ = π is enhanced as shown in Fig. 7. On

the other hand, the oscillation period of the magnitude of the

band splitting is not affected by the barrier potential.

This oscillatory behavior can be understood physically by

the spin precession that takes place in the Rashba wire. If an

electron or hole traveling in the Rashba wire has a spin com-

ponent perpendicular to the y direction, the spin precession

occurs [24, 25]. The precession angle is given by

θP = (k2 − k1)l = 2λl. (29)

When θP = π, a spin-up particle is converted to that with

down-spin by traveling through the Rashba wire and vice

versa. In this case, even if the Zeeman field in both super-

conductors is parallel (+z direction), the particles behave as

if the Zeeman field in the superconductors is antiparallel (+z
and −z direction). As a result, the magnitude of the Andreev

level is the same as that in the case of an antiparallel Zeeman

field without RSOI, which can be seen by comparing the third

panel of the first row of Fig.7 and Fig.5(c). Not only for the

parallel or antiparallel Zeeman case but also for the arbitrary

θR with fixed ζR = π/2, the magnitude of the energy split-

ting of the Andreev level is the same as that with θR = θP for

the non-RSOI case. Note that although the magnitudes of the

band splitting are identical to each other, the shapes of the An-

dreev levels are not the same. This is because an energy gap

appears at φ = π in the presence of RSOI. In addition, the

spin precession is not affected by the barrier potential. There-

fore the oscillation period of the band splitting is not changed

even in the presence of the barrier potential.

We also find that the oscillatory behavior of the band split-

ting by the RSOI changes depending on the relative direction

of the Zeeman field in the two superconductors. First, we

change the direction of the Zeeman field in the right super-

conductor in the y-z plane, i.e., vary θR for ζR = π/2. With
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FIG. 7: Andreev levels ε as a function of the phase difference φ for various λ values in the direction of the Zeeman fields in the right

superconductor n̂R ‖ z (upper low), n̂R ‖ y (middle low) and n̂R ‖ x (bottom low). Here, the direction of the Zeeman field in the left

superconductor is fixed to n̂L ‖ z. From left to right, λ/k varies from 0 to π/kl by π/4kl. The black solid (blue dotted) lines show the

Andreev levels in the case of Z = 0 (Z = 0.5).

0 0.5 1
0

1

FIG. 8: Normalized magnitude of the energy shift δε/h as a func-

tion of λl/2π for the parallel (black solid line) and antiparallel (blue

dotted) Zeeman case.

increasing θR for fixed ζR = π/2, the amplitude of the band

splitting becomes smaller. Then if the Zeeman field in the

right superconductor is parallel to the y direction, the magni-

tude of the band splitting does not depend on λ and l, as shown

in the middle row of Fig. 7. Note that as long as the Zeeman

field in either left or right superconductor is parallel to the y
direction, the magnitude of the band splitting does not depend

on λ and l. This is because, the spin of a particle coming from

the superconductor with a y-oriented Zeeman field does not

precess.

Next, we change the direction of the Zeeman field in the

right superconductor in the z-x plane. If the Zeeman field of

the right superconductor has the x component, the ε-φ curve

becomes asymmetric for φ, ε(φ) 6= ε(2π − φ), as shown in

the third row of Fig.7. In addition, the same as the parallel

Zeeman case, the magnitude of the band splitting oscillates

as a function of λ and l with a period 2π/λl. The asym-

metric Andreev level and resulting anomalous Josephson ef-

fect are predicted to be realized in S/F/S junctions with spin

active interfaces [36–38], S/F/S junctions with the RSOI in

the normal region [39–42], S/N/S junctions with unconven-

tional superconductors [43, 44] and many other systems, e.g.,

Refs.[45–47]. In most systems considered so far, to achieve

the anomalous Josephson effect, it is necessary to manipulate

the magnetic field, which is experimentally difficult. On the

other hand, in our system, the anomalous Josephson effect can

be realized by changing the strength of the RSOI, which is ex-

perimentally feasible.

There is another feature originating from the RSOI: the dis-
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appearance of the Andreev level for ∆ − h < |E| < ∆ + h.

Even if one introduces a small magnitude of the RSOI and the

Zeeman field is parallel, the Andreev level of the energy re-

gion suddenly disappears. This is because in the presence of

RSOI, there is the spin-dependent scattering at the interface.

This spin-dependent scattering prohibits the formation of the

bound state, as is discussed for the case of without RSOI in

Sec.IV.

The main effects of the RSOI on the shape of the Andreev

levels are (i) band shift, which is represented by Eq. (28),

and (ii) gap opening effect at φ = π, which is captured by

Eq. (24). In the presence of both RSOI and Zeeman field, the

analytical formula of the Andreev level is quite complicated.

However, by combining the above effects represented by Eqs.

(24) and (28), we derive the following approximate solution

for the parallel Zeeman case (z direction):

ε =±∆

√

√

√

√

1

2

(

1 +
4k2(k2 + λ2) cosφ+ λ4 sin2(

√
k2 + λ2l)

4k2(k2 + λ2)− λ4 sin2(
√
k2 + λ2l)

)

± h cosλl. (30)

This solution reproduces the numerical results quite well espe-

cially near φ = π.

Finally, we briefly comment on the difference between the

Andreev levels in the present system and those in the S/F/S

junctions. The periodic change of the Andreev level is also

known for the S/F/S junction [48–50]. In the S/F/S junction,

the Andreev level is given by

ε = ±∆cos
φ± lkρ

2
, (31)

where ρ is the magnitude of the exchange field normalized by

the Fermi energy and is considered as ρ ≪ 1. In this case,

with increasing the strength of the exchange field, the degen-

erate branches shift to the ±φ direction (horizontal direction

in ε-φ plot), which causes the π transition. On the other hand,

in the present system, the energy band shifts to a vertical di-

rection by changing the strength of the RSOI, which does not

cause a π transition.

VI. SUMMARY

In summary, we have theoretically studied how the Rashba

spin-orbit interaction in the normal region and the Zeeman

field in the superconducting region affect the formation of

Andreev levels in a Josephson junction. We have found that

the total tunneling conductance remains invariant, whereas the

Andreev reflection processes and the resulting Andreev levels

are sensitive to the relative orientation of the spin-orbit field

and the Zeeman field.

We have shown that the Andreev level is systematically

changed by tuning the strength of the Rashba spin-orbit inter-

action λ or length of the Rashba wire l. In particular, the mag-

nitude of the band splitting δε oscillates as a function of λ and

l, and we have clarified that this behavior is interpreted phys-

ically by the spin precession in the Rashba wire. It has been

also found that the ε-φ curve changes depending on the rela-

tive angle of the three independent vectors, i.e., the orientation

of Zeeman fields in the left superconductor, that in the right

superconductor, and the vector characterizing the spin-orbit

interaction. In particular, the ε-φ curve becomes asymmetric

with respect to the phase difference φ when either the left or

right Zeeman field has a component parallel to the junction (x
component). An interesting future direction is the possibility

to control the Josephson current in the considered system by

the change of the Andreev levels, which will be a subject of

future study. Moreover, it would be also interesting to study

the finite frequency response of this system as discussed in

other systems [51, 52].
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Appendix A: Andreev reflection coefficients

In this Appendix, we show the analytical formulas for the

normal and Andreev reflection coefficients of the RM/ZS junc-

tion. The reflection coefficients in the case of n̂R ‖ z are
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given by

b
(1)
1 = [2kkλλ

2(u2v1 − u1v2)(u2v1 + u1v2)]/Γ, (A1)

b
(1)
2 = λ2[(k2 + k2λ)(u

2
1 − v21)(u

2
2 − v22)

+ 2kkλ(u
2
1u

2
2 − v21v

2
2)]/Γ, (A2)

d
(1)
1 = 2ikkλ(u2v1 + u1v2)[(k

2 + k2λ)(u1u2 − v1v2)

+ 2kkλ(u1u2 + v1v2)]/Γ, (A3)

d
(1)
2 = 2ikkλ(u2v1 − u1v2)[(k

2 + k2λ)(u1u2 + v1v2)

+ 2kkλ(u1u2 − v1v2)]/Γ, (A4)

b
(2)
1 = b

(1)
2 , b

(2)
2 = b

(1)
1 , d

(2)
1 = d

(1)
2 , d

(2)
2 = d

(1)
1 , (A5)

with

kλ =
√

k2 + λ2, (A6)

Γ = [(k2 + k2λ)(u
2
1 − v21) + 2kkλ(u

2
1 + v21)]

× [(k2 + k2λ)(u
2
2 − v22) + 2kkλ(u

2
2 + v22)]. (A7)

Here, bi1, bi2, di1, and di2 with i = 1(i = 2) are the reflection co-

efficients b1, b2, d1, and d2 in Eq.(13) when an electron with

k1 (k2) is injected. On the other hand, the reflection coeffi-

cients in the case of n̂R ‖ y are given by

b
(1)
1 = 0, (A8)

b
(1)
2 =

λ2(u21 − v21)

(k2 + k2λ)(u
2
1 − v21) + 2kkλ(u21 + v21)

, (A9)

d
(1)
1 =

4ikkλu1v1
(k2 + k2λ)(u

2
1 − v21) + 2kkλ(u21 + v21)

, (A10)

d
(1)
2 = 0, (A11)

b
(2)
1 =

λ2(u22 − v22)

(k2 + k2λ)(u
2
2 − v22) + 2kkλ(u22 + v22)

, (A12)

b
(2)
2 = 0, (A13)

d
(2)
1 = 0, (A14)

d
(2)
2 =

4ikkλu2v2
(k2 + k2λ)(u

2
2 − v22) + 2kkλ(u22 + v22)

. (A15)

[1] B. Josephson, Physics Letters 1, 251 (1962).

[2] A. A. Golubov, M. Y. Kupriyanov, and E. Il’ichev, Rev. Mod.

Phys. 76, 411 (2004).

[3] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Rev. Mod. Phys.

77, 1321 (2005).

[4] A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005).

[5] V. V. Ryazanov, V. A. Oboznov, A. Y. Rusanov, A. V. Vereten-

nikov, A. A. Golubov, and J. Aarts, Phys. Rev. Lett. 86, 2427

(2001).

[6] L. Bulaevskii, V. Kuzii, and A. Sobyanin, Journal of Experi-

mental and Theoretical Physics Letters 25, 290 (1977).

[7] J. Linder and J. W. A. Robinson, Nat Phys 11, 307 (2015).

[8] M. Eschrig, Reports on Progress in Physics 78, 104501 (2015).

[9] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Phys. Rev. Lett.

86, 3140 (2001).

[10] A. A. Golubov, M. Y. Kupriyanov, and Y. V. Fominov, Jour-

nal of Experimental and Theoretical Physics Letters 75, 190

(2002).

[11] R. Meservey and P. Tedrow, Physics Reports 238, 173 (1994).

[12] F. Giazotto and F. Taddei, Phys. Rev. B 77, 132501 (2008).

[13] J. Linder, T. Yokoyama, Y. Tanaka, and A. Sudbø, Phys. Rev. B

78, 014516 (2008).

[14] H. Emamipour, Solid State Communications 236, 17 (2016).

[15] T. Yokoyama and Y. Tanaka, Phys. Rev. B 75, 132503 (2007).

[16] B. Bujnowski, D. Bercioux, F. Konschelle, J. Cayssol, and F. S.

Bergeret, EPL (Europhysics Letters) 115, 67001 (2016).

[17] X. Li, Z. Zheng, D. Y. Xing, G. Sun, and Z. Dong, Phys. Rev.

B 65, 134507 (2002).

[18] L. Xiao-Wei, Chinese Physics 16, 3514 (2007).

[19] L. Xiao-Wei, Communications in Theoretical Physics 52, 721

(2009).

[20] H. Emamipour, Solid State Communications 180, 11 (2014).

[21] H. Emamipour, Chinese Physics B 23, 057402 (2014).

[22] H. Emamipour and A. Khatibi, Journal of Superconductivity

and Novel Magnetism 27, 2415 (2014).

[23] L. Xiao-Wei and D. Zheng-Chao, Communications in Theoreti-

cal Physics 43, 551 (2005).

[24] S. Datta and B. Das, Applied Physics Letters 56, 665 (1990).

[25] A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov, and R. A. Duine,

Nat Mater 14, 871 (2015).

[26] M. Sato, Y. Takahashi, and S. Fujimoto, Phys. Rev. Lett. 103,

020401 (2009).

[27] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett.

105, 077001 (2010).

[28] Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105,

177002 (2010).

[29] P. Machon, M. Eschrig, and W. Belzig, Phys. Rev. Lett. 110,

047002 (2013).

[30] A. Ozaeta, P. Virtanen, F. S. Bergeret, and T. T. Heikkilä, Phys.
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