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Abstract

In this paper, controller design for discrete time bilinear systems is investigated
by using Sum of Squares (SOS) programming methods and quadratic Lyapunov
functions. The class of rational polynomial controllers are considered, and neces-
sary conditions on the degree of controller polynomials for quadratic stability are
derived. Next, a scalarized version of the Schur complement is proposed. For con-
troller design, the Lyapunov difference inequality is converted to a SOS problem,
and an optimization problem is proposed to design a controller which maximizes
the region of quadratic stability of the bilinear system. Input constraints can also
be accounted for.

1 Introduction
Since the work of Parrilo [1] there have been considerable advances on analysis and
controller design using Sum of Squares (SOS) programming. In [2] a general frame-
work using Sum of Squares (SOS) programming for analyzing nonlinear systems sta-
bility is developed for continuous-time systems. An extensive exposition of the use of
SOS programming for controller design and domain of attraction analysis for continu-
ous time systems is given in [3]. Use of SOS programming for the design of polyno-
mial controllers for polynomial continuous-time systems is studied in [4] and [5], while
works on nonlinear discrete-time systems include, e.g., [6], [7]. In [7] the use of linear
state feedback is studied, whereas [6] addresses the synthesis of polynomial controllers,
taking input saturation into account. This paper considers SOS based controller design
for discrete-time bilinear systems using rational polynomial controllers.

Bilinear systems are a subclass of polynomial input affine systems, where the non-
linearity consists of products between the states and inputs. Although the class of bi-
linear systems have properties which make them ’close’ to the class of linear systems,
linearization results in neglecting the main challenge in controller design for these sys-
tems. Bilinear systems find many practical applications in various fields (for example
power systems [8] or the control in intelligent buildings [9]), and many nonlinear sys-
tems could be approximated by bilinear models.

A substantial number of works have been devoted to control and analysis of continuous-
time bilinear systems. A representative overview of these works is beyond the scope
of this paper, but some inspiration from Gutman [10] is acknowledged. Closer to the
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topic of interest of the current paper, controller design using SOS programming for
continuous time bilinear systems has previously been addressed in [11, 12]. There are
fewer references on discrete time bilinear systems. In his 2009 book on bilinear control
systems, Elliott [13] devotes one chapter to discrete-time systems, whereas the book by
Pardalos and Yatsenko [14] considers continuous time exclusively. An important work
specifically addressing discrete-time bilinear systems is that of Lin and Byrnes [15],
who design a globally stabilizing controller for passive bilinear systems. In [16] a
nonlinear state feedback control has been proposed to asymptotically stabilize a neu-
trally stable system. In [17] robustly stabilizing controllers for singularly perturbed,
open loop stable discrete time bilinear systems with a single input are proposed. The
nominal controller designs in [17] are extended to multivariable systems in [18], again
for open loop stable systems. Lu et al. [19] considers global stabilization of neutrally
stable discrete-time bilinear descriptor systems while accounting for input saturation.
Tang and coworkers [20] study optimal control of bilinear discrete-time systems with a
quadratic performance criterion, and develop a controller requiring the on-line solution
of a two-point boundary value problem.

Model Predictive Control of discrete time bilinear systems is studied in, e.g., [21],
[22]. References [23] and [24] investigate the constrained and unconstrained stabiliza-
tion of discrete time bilinear systems using polyhedral Lyapunov functions. The results
are further developed in [25] to handle discrete bilinear system with additive bounded
disturbances.

From a structural point of view, it can be noted that several authors, (e.g. [15], [26])
have proposed controllers for discrete-time bilinear systems that take the form of ratios
of polynomials. In this paper it will be shown that under specified conditions on the
bilinear system structure, global quadratic stability of open loop unstable discrete-time
bilinear systems will require an open loop unstable state to have the same maximal
degree in the numerator and denominator polynomials of the controller. Subsequently,
a controller design procedure based on SOS programming will be developed.

To the best of the authors’ knowledge, this is the first work specifically addressing
the quadratic stabilization of discrete time bilinear systems using SOS programming,
with the exception of our previous work [27] which presents some preliminary re-
sults. The present work significantly extends the results of [27]. Unlike the designs
in [15–19, 26], the design procedure developed here can handle both open loop unsta-
ble systems and systems with multiple inputs. The design results in rational polyno-
mial controllers, with low online computational complexity compared to the control
proposed by Tang [20] and MPC-based approaches [21, 22]. The results in Section 5
indicate that a larger stable region is achieved than what is obtained in [24]. Although
the resulting computational problems at the design stage are relatively complex, it is
found that software for SOS programming are now of a quality that makes this tech-
nique useful and relatively accessible. The software package YALMIP [28, 29] has
been used for all SOS problems in this paper.

This paper is organized as follows: In Section 2, the problem is defined and pre-
liminary information is provided. Section 3 proposes to calculate the input as the ratio
of two polynomials in the states, and observations regarding the degrees of these poly-
nomials with regards to global quadratic stability are made. In Section 4 the proposed
controller design method is presented. Section 5 provides illustrative examples. The
paper ends with a brief conclusion section.
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Notation and definitions
A norm of a of a real vector in Rn is denoted by the symbol ‖.‖. A function ψ : R+ →
R+ is said to be of class K if it is continuous, zero at the origin and strictly increasing.
A class K function is called K∞ if it is also unbounded.

A function φ : Rn → R is positive semidefinite if φ(x) ≥ 0,∀x ∈ Rn. If φ(x) >
0∀x 6= 0 then the function is called positive definite. The function f(x) is negative
definite if −f(x) is positive definite.

Consider a discrete time system x(k + 1) = f(x(k)) with a fixed point f(0) = 0.

Definition 1. A set S ⊂ Rn is positive invariant with respect to the discrete-time
dynamics x(k + 1) = f(x(k)) if for all x ∈ S it holds that f(x) ∈ S.

Given a positive invariant set D ⊆ Rn with the origin in its interior, a function
V (.) : D → R with V (0) = 0 is a Lyapunov function if there exist W1,W2 ∈ K∞
such that:

W1(‖x‖) ≤ V (x) ≤W2(‖x‖), ∀x ∈ D (1)

and the rate of change V (f(x)) − V (x) < 0,∀x ∈ D \ {0}. The existence of a
Lyapunov function guarantees the asymptotic stability of the origin for any initial state
in D.

Definition 2. Given the discrete time system x(k + 1) = f(x(k)) with a fixed point
f(0) = 0, the set of all initial conditions x(0) ∈ Rn for which the trajectories converge
to the origin is called the domain of attraction.

This paper will focus on controller design for ensuring stability inside a sublevel
set of the Lyapunov function. A sublevel set of a Lyapunov function is by definition
positive invariant [30], and is a subset of the domain of attraction of the origin.

Definition 3. The system x(k+ 1) = f(x(k)) with a fixed point f(0) = 0 is quadratic
Lyapunov stable if there exists a matrix P > 0 defining a Lyapunov function V (x) =
xTPx and the domain D = {x ∈ Rn|xTPx ≤ γ} will define a positive invariant set
for a positive constant γ.

2 Problem statement and preliminaries
This paper considers the control of discrete-time bilinear systems:

x(k + 1) = Ax(k) +

m∑
i=1

(Bix(k) + bi)ui(k) (2)

where x(k) ∈ Rn is the state vector at time k, u(k) ∈ Rm is the input vector at time
k and ui(k) is the i−th element of input vector, while A ∈ Rn×n, Bi ∈ Rn×n, bi ∈
Rn×1 are matrices. It is assumed that the origin is an equilibrium point of the au-
tonomous system. For the sake of simplicity of notation, (2) is reformulated as:

x(k + 1) = Ax(k) + (Bx +B)u(k) (3)

where Bx = [B1x(k) B2x(k) · · · Bmx(k)] and B = [ b1 b2 · · · bm ]. In expressions
where no confusion can arise, and all states have the same time index k, the time index
may be dropped for simplicity.
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Of particular interest here are necessary and sufficient conditions for quadratic sta-
bility when using rational polynomial controllers:

ui(x) =
ci(x)

c0(x)
(4)

where ci(x) are polynomials in the state with lowest degree one and highest degree nn,
and c0(x) is a polynomial of lowest degree zero and highest degree nd. All inputs share
the same denominator polynomial c0(x). Note that for a given x, these polynomials
are linear in the polynomial coefficients (cci), an important fact when optimizing over
polynomial coefficients in the controller design. While the assumption of a common
denominator polynomial might seem restrictive, this is in fact not so, as the common
denominator polynomial can be chosen as the least common multiple of the denomina-
tor polynomials for the individual inputs.

For controller design, SOS methods are exploited in the present paper. The basic
idea behind the SOS approach for checking the positivity of a polynomial p(x), is to
replace the positivity with the condition that the polynomial can be transformed to a
sum of squares [1]:

p(x) =

N∑
i=1

h2
i (x) =

M∑
i=1

(qTi v(x))2 = vT (x)Qv(x) (5)

where Q = QT > 0. As the result, if it is possible to find a vector of monomials v(x)
and a positive definite matrix Q, positivity of p(x) is guaranteed. Similarly, a sym-
metric polynomial matrix M(x) is said to be an SOS matrix if it can be decomposed
into

M(x) = HT (x)H(x) (6)

The SOS decomposition can be computed by semi-definite programming with the help
of available software [29].

3 The functional form of the controller and require-
ments for global asymptotic stability

For bilinear systems with a diagonalizable matrix A, a change of coordinates can be
performed in order to obtain an equivalent state vector x̃, transforming (3) to

x̃(k + 1) = Λx̃(k) + (B̃x̃ + B̃)u(k) (7)

where Λ = diag(λj) is the eigenvalue matrix of A. Similarly, the controller polyno-
mials ci(x) and c0(x) may equivalently be expressed as c̃i(x̃) and c̃0(x̃), respectively.

Definition 4. The dynamical mode represented by the state x̃j corresponding to eigen-
value λj in (7) is called a linear mode if row j of B̃x̃ is zero. All modes that are not
linear are bilinear modes. The mode represented by the state x̃j is called endogenously
bilinear if row j of B̃x̃ exhibits linear dependence on x̃j (irrespective of possible linear
dependencies on other states x̃i, i 6= j).

Proposition 1. Consider a single-input bilinear discrete time system of the form (7)
and a rational polynomial controller (4). The closed loop system is globally quadratic
stable only if any state x̃j representing an endogenously bilinear mode has the same
maximal degree in the numerator and denominator polynomial of the rational polyno-
mial controller.
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Proof: Without loss of generality, assume that j = 1. The proposition will be
decomposed into two statements:

1. The maximal degree of x̃1 in the denominator must be at least as high as the
maximal degree of x̃1 in the numerator.

2. The maximal degree of x̃1 in the numerator must be at least as high as the maxi-
mal degree of x̃1 in the denominator.

For point 1), consider the Lyapunov difference inequality V (f(x̃))−V (x̃) < 0 for the
quadratic Lyapunov function V (x̃) = x̃T P̃ x̃. Substitute in the plant dynamics (7), the
controller (4), and multiply with c̃0(x̃)2 to obtain(

Λx̃c̃0(x̃) + (B̃x̃ + B̃)c̃1(x̃)
)T

P̃
(

Λx̃c̃0(x̃) + (B̃x̃ + B̃)c̃1(x̃)
)
−c̃0(x̃)x̃T P̃ x̃c̃0(x̃) < 0

(8)
If the maximal degree of x̃1 in c̃1(x̃) is higher than the maximal degree of x̃1 in c̃0(x̃),
the first term of the Lyapunov difference inequality will be of higher degree in x̃1

than the second term, since x̃1 is an endogenously bilinear mode. The inequality can
therefore not hold as x̃1 → ∞, since P̃ is positive definite. This point applies to all
endogenously bilinear modes, not just open loop unstable ones.

For point 2), evaluate the controller for x̃ =
[
x̃1 vT

]T
for any finite, constant

vector v, and let x̃1 → ∞. Suppose the maximal degree of x̃1 in c̃0(x̃) is higher
than the maximal degree of x̃1 in c̃1(x̃), then u → 0 as x̃1 → ∞. Then the stability
is assessed with respect to the open loop dynamics (which correspond to an unstable
mode) and leads to a contradiction. This argument applies to all open loop unstable
modes, not just endogenously bilinear ones. �

Remark 1. Proposition 1 holds also for for systems with a diagonalizable A-matrix
with complex-valued eigenvalues, since the eigenvalues and eigenvectors appear in
complex conjugate pairs. Provided one uses the complex conjugate transpose of the
vector x when evaluating the Lyapunov function V (x̃k+1) = x̃Tk+1P̃ x̃k+1, the imagi-
nary parts will cancel, and the proof above holds. The proof of Proposition 1 exploits
the endogenously bilinear modes and thus the diagonalization of the bilinear part is in-
strumental. Consequently, the case when the A-matrix is not diagonalizable (contains
a Jordan block) is not a trivial extension of the result.

Remark 2. Proposition 1 can be applied also to multiple input systems, if one assumes
that the highest degree of x̃1 in the first row of

B̃x̃

[
c̃1(x̃) · · · c̃m(x̃)

]T
is always one degree higher than the maximal degree of x̃1 in any c̃i(x̃) (i.e., if one
disregards the possibility that the maximal order terms may cancel when forming the
product between B̃x̃ and the controller numerator polynomials).

4 Controller design method
Proposition 1 documents the need for a controller design procedure which is able to
design rational polynomial state feedback controllers. This section addresses the sys-
tematic design of controllers of the form (4) to achieve stabilization of the system
(2) to the origin by designing a controller which satisfies input constraints. However,
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the controller design described in this section does not require the A-matrix in (2) to
be diagonalizable. The controller design is subject to control constraints of the form
|ui(x)| ≤ ui,max.

4.1 A scalarized Schur complement
The Schur complement is often used in system analysis or controller design based on
LMIs or SOS, as it can convert a non-linear relationship into an equivalent higher-
dimensional linear one. However, for matrices there may be a significant difference
between specifying xTQ(x)x > 0 and specifying that Q(x) should be an SOS matrix
- as the latter corresponds to demanding zTQ(x)z > 0 (where there is no relationship
between x and z).

It is therefore desirable to be able to retain scalar expressions when using the Schur
complement. This can in some cases be done, as is shown by the following Lemma.

Lemma 1. Given a matrix

M(x) =

[
E(x) HT (x)
H(x) P (x)

]
∈ R(n+r)×(n+r)

with P (x) ∈ Rr×r symmetric and invertible and x ∈ Rn. Then

[
xT zT

]
M(x)

[
x
z

]
> 0, ∀(x, z) 6= (0, 0)

is equivalent to

xT (E(x)−HT (x)P−1(x)H(x))x > 0,∀x 6= 0 and zTP (x)z > 0,∀z 6= 0

Proof: This follows from the identity

M(x) =

[
IE HT (x)P−1(x)
0 IP

] [
E(x)−HT (x)P−1(x)H(x) 0

0 P (x)

] [
IE 0

P−1(x)H(x) IP

]
(9)

where the subscripts on the identity matrices refer to the dimension of the matrices
E(x) and P (x). Denote [

x
w

]
=

[
IE 0

P−1(x)H(x) IP

] [
x
z

]
(10)

and obtain the identity

[
xT zT

]
M(x)

[
x
z

]
=
[
xT wT

] [E(x)−HT (x)P−1(x)H(x) 0
0 P (x)

] [
x
w

]
Whatever the value of x, a solution for z of (10) can be found for any value of w, and
vice versa. �

Remark 3. Most of the proof above is very similar to the proof of the standard Schur
complement. However, the key here is that one can pre- and postmultiply the matrix M
above with the appropriate vector, to obtain a scalar expression. This is not done in the
standard Schur complement. While this extension to the standard Schur complement
is mathematically very simple, its relevance in controller design will be illustrated in
Section 5.
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4.2 SOS formulation
This section addresses controller design, using controllers on the form (4), to optimize
the region of quadratic stability. The denominator polynomial c0(x) will be assumed
to be an SOS polynomial. However, there exists a possibility of using excessively
large inputs, if all square terms in c0 have roots accumulated in a small region of the
state space. To guard against this situation, the denominator polynomial is specified as
c0(x) = ć0(x) + 1, with ć0(x) an SOS polynomial, thus ensuring that the denominator
polynomial cannot approach zero anywhere in Rn. Furthermore, in order to be able to
apply the scalarized Schur complement, the controller is reformulated as

u(x(k)) =
C(x(k))x(k)

ć0(x(k)) + 1
. (11)

with C(x(k)) a polynomial matrix. Note that C(x(k)) is not uniquely determined1

by the polynomials ci(x(k)), and a particular parametrization therefore will have to be
chosen, but the product C(x(k))x(k) is indeed uniquely determined by the polynomi-
als ci(x(k)).

Theorem 1. Given a quadratic function V (x) = xTPx, a scalar γ > 0, polynomials
ci(x), i ∈ [1, . . . ,m], and SOS polynomials ć0(x) and s1(x, z), a bilinear discrete time
system (3) in closed loop with the control law (4) is stable ∀x such that xTPx < γ,
provided [

xT zT
]
M(x)

[
x
z

]
− s1(x, z)(γ − xTPx) > 0 (12)

where

M(x) =

[
(ć0(x) + 1)P

P ((ć0(x) + 1)A+ (Bx +B)C(x))
((ć0(x) + 1)A+ (Bx +B)C(x))

T
P

(ć0(x) + 1)P

]
(13)

Proof: Dividing (12) with the strictly positive (ć0(x)+1), and noting that s1(x,z)
ć0(x)+1 (γ−

xTPx) is positive ∀x 6= 0 with xTPx < γ, one may conclude that

[
xT zT

] 1

(ć0(x) + 1)
M(x)

[
x
z

]
> 0

for all x 6= 0 with xTPx < γ. Considering the controller in (11), the bilinear system
dynamics in (3) and Lemma 1, it can then be concluded that

x(k)TPx(k)−x(k+1)TPx(k+1)− s1(x(k), z)

ć0(x(k)) + 1
(γ−x(k)TPx(k)) > 0∀ x(k) 6= 0

(14)
(plus the trivial consequence that zTPz > 0), and hence the Lyapunov function de-
creases ∀x(k) 6= 0 with xT (k)Px(k) < γ. �

Theorem 2. Given the polynomial ci(x), SOS polynomials ć0(x) and qi(x), the input
constraint is satisfied ∀ x w ith xTPx < γ provided[

(ć0(x) + 1)u2
max,i − qi(x)(γ − xTPx) ci(x)

ci(x) ć0(x) + 1

]
> 0 (15)

1If the polynomial ci(x(k)) contains a term ĉmnxm(k)xn(k), row i of C(x(k)) may contain the
element ĉmnxm in column n, or the element ĉmnxn(k) in column m.
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Proof: Following the same approach as in the proof of Theorem 1, it can be shown
that (15) is equivalent to

u2
max,i − u2

i (x)− qi(x)

(ć0(x) + 1)
(γ − xTPx) > 0, (16)

and hence u2
max,i − u2

i (x) > 0 ∀ x ∈ {x|xTPx < γ}. �

4.3 Optimization formulation
Theorems 1 and 2 allow for controller design according to

maxć0(x),ci(x),s1(x,z),qi(x),P γ (17)
subject to : constraints (12) and (15), ć0(x), s1(x, z), qi(x) SOS,

P > 0, trace(P ) = constant

The final constraint in (17) is a normalizing constraint included in order to avoid both γ
and P growing without bound - without describing a larger quadratic stability region.

There are several bilinear terms in (17). With access to an optimization solver
handling bilinear constraints, (17) may be solved directly. Here it is instead proposed
to iteratively fix some variables and solve for the other variables, which appears to be
a common approach to solving bilinear SOS (see, e.g., [6]). Algorithm 1 describes the
resulting controller design procedure.

Algorithm 1: Controller design procedure
Data: Bilinear system model (2), input constraints ui,max, maximal number

of iterations jmax

Result: Controller design (11), guaranteed stable region {x|xTPx ≤ γ}
Initialization:

1 Design an LQ regulator for the linearized system.
Obtain the corresponding Riccati equation solution X and controller
u(k) = Kx(k). The corresponding controller in (11) is
C(x(k)) = K, ć0(x(k)) = 0.
P ←− tX/trace(X), with a constant t > 0

2 Maximize γ with the parameters of s1(x, z) and qi(x) as free variables,
subject to constraints (12) and (15), s1(x, z), qi(x) SOS. Equations (12) and
(15) contain bilinear terms in γ, s1(x, z) and qi(x), and the maximization is
therefore performed iteratively by verifying the constraints for increasing
values of γ.

3 j ←− 0
Main loop:

4 while j < jmax do
5 j ←− j + 1
6 For fixed values of P and γ, find a feasible solution to (12) and (15), with

the parameters of ci(x) and the SOS polynomials ć0(x), s1(x, z), qi(x)
as free variables.

7 For given polynomials ć0(x), ci(x), s1(x, z), and qi(x), maximize γ with
P > 0 as free variable, subject to constraints (12), (15), and
trace(P ) = t.

end
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Note that semidefinite solvers typically return solutions in the analytic center of
the feasible region [31]. Finding a feasible solution in step 6 above therefore provides
room for further optimization in step 7.

Although numerical experience with this approach is good, there is no formal proof
that this iteration will (in the limit) lead to the maximum region of convergence for a
rational polynomial controller with a quadratic Lyapunov function. Note, however, that
step 7 above can easily be modified such that the new region of convergence always
contains the region of convergence from the previous iteration.

4.4 Improving rate of convergence
It is well known that maximizing the region of convergence leads to rather slow con-
trol, in particular near the boundary of the region in question. To improve the rate of
convergence, a certain decrease in Lyapunov function in each step can be imposed by
requiring that

x(k)TPx(k)− x(k + 1)TPx(k + 1) > αx(k)TPx(k) (18)

for some α, 0 < α < 1. This changes element (1, 1) of matrix M(x) in (12) and (13)
to M11(x) = (1− α)(ć0(x) + 1)P .

Remark 4. The controller design approach in this section does not explicitly take into
account Proposition 1, although it can be used to guide the selection of the degrees
of the controller polynomials. However, Proposition 1 is concerned with global sta-
bilization, thus if stabilization in a bounded region of the state space is the aim, the
polynomial degrees may still be a degree of freedom in the design.

5 Numerical examples
This section will apply the controller design method described above to three examples.
In all three examples, the system studied is open loop unstable, making the controllers
proposed in [15], [16] and [17] inapplicable.

Example 1: In the following, a second-order bilinear system, proposed initially
in [24], is considered:

A =

[
1 0.01

0.01 1

]
, B1 =

[
0.001 0

0 −0.004

]
, b1 =

[
0.09
0.09

]
(19)

The input is constrained to |u| ≤ 2. The problem to be solved is the determina-
tion of the controller which stabilizes the system in the maximum possible region of
xTk Pxk < γ. P is considered as identity matrix.

First, the region of convergence is maximized while keeping P fixed. The highest
order considered in the controller polynomials is np = 2. The maximum region where
YALMIP could find a controller to stabilize the system is given by γ = 295. This
should be compared to the value γ = 150 obained in [27]. The difference is due to the
use of the scalarized Schur complement in the present work. The designed controller
based on (4) is as follows:

c1(xk) =− 0.0838x1 − 0.1586x2 − 0.0002x2
1 + 0.0046x1x2 − 0.0061x2

2

c0(xk) =1.0959− 0.0018x1 − 0.0029x2 + 0.0044x2
1 − 0.0046x1x2 + 0.0053x2

2
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Figure 1: Simulation results for example 1 system controlled by SOS method: (a)
states, (b) input, and (c) cost function

The state evolution in time, input and cost function for designed controller are shown
in Fig. 1 for the initial state of x0 = [−10, 13.9]T . Note that, although (13) cannot be
verified for γ > 295, this does not mean that the system is necessarily unstable in that
region.

In Fig. 2, the phase portrait of the closed loop system for initial states belonging to
the x2

1 + x2
2 = 295 is depicted.

Remark 5. The problem formulation in [24] includes the state constraints |xi| ≤
4, i ∈ {1, 2}, which makes the objective of the controller design different from the
one in the present paper. Nevertheless, Fig. 2 shows that the controller presented here
practically makes the set {x| |x1| ≤ 4, |x2| ≤ 4} positively invariant, and thus that
the state constraints are fulfilled for any initial condition within this set.

To improve the rate of convergence, the controller design is performed while spec-
ifying α = 0.015 in (18). Note that by adding α to the problem, the maximum region
of convergence will decrease. In this example, it decreases to γ = 122. The designed
controller is as follows:

c1(xk) =− 0.1022x1 − 0.1268x2 + 0.0008x2
1 + 0.0015x1x2 − 0.0052x2

2

c0(xk) =1.0039 + 0.0002x1 − 0.0007x2 + 0.0008x2
1 + 0.0001x1x2 + 0.0008x2

2

The responses of the system for both controllers (for α = 0 and α = 0.015) are shown
in Fig. 3, which shows that by adding the term α, the rate of convergence is increased.

Finally, the guaranteed stable region is increased using the iterative procedure de-
scribed in Section 4.3, starting with P = I . Figure 4 shows the initial region of con-
vergence, and the region of convergence obtained after 15 iterations.
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Figure 2: State trajectories for example 1: (a) starting from the border of the maximum
region of stability (b) starting from |xi| ≤ 4 as in [24]

Example 2: Consider the third-order bilinear system with two inputs found in [24]:

A =

 1.10 −0.2 −0.34
−0.06 0.7 −0.42
0.41 0.41 0.90

 , b1 =

 3.75
1.05
−0.85

 , b2 =

 0
−1.33
−0.49


B1 =

−0.12 −0.22 0.36
−0.32 0.48 0.36
−0.35 0.36 −0.18

 , B2 =

−0.18 0.30 0.07
−0.03 −0.18 −0.38
0.55 −0.74 −0.77


Both control inputs have to respect the linear constraints −1 ≤ ui ≤ 1. The matrix P
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Figure 3: Improvement of the response in example 1 by specifying α = 0.015, (γ =
120): (a) states, (b) input, and (c) cost function
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Figure 4: Initial region of convergence and region of convergence after 15 iterations

in the cost function is chosen as:

P =

 2 0.1 0.1
0.1 1.5 0.1
0.1 0.1 1


Using SOS programming, keeping P fixed, a region of stability parametrized by

γ = 33 results. The value obtained in [27] was γ = 4, again showing the advantage of
using the scalarized Schur complement. The designed controller is:

c1(xk) =− 0.1064x1 − 0.0002x2 + 0.0657x3 − 0.0043x2
1

− 0.0052x1x2 + 0.0026x2
2 + 0.0105x1x3 + 0.0028x2x3 − 0.0067x2

3

c2(xk) =− 0.0012x1 + 0.0105x2 − 0.0441x3 + 0.0042x2
1

− 0.0012x1x2 + 0.0049x2
2 − 0.0114x1x3 − 0.0011x2x3 + 0.0113x2

3

c0(xk) =1.0061− 0.0012x1 − 0.0014x2 + 0.0044x3

+ 0.0158x2
1 − 0.0012x1x2 + 0.0219x2

2 + 0.0068x1x3 + 0.0057x2x3 + 0.0045x2
3

The state responses for the calculated controller for the initial state x0 = [−3.4, 2.5,−1.3]T

is depicted in Fig. 5 along with input and cost function.
The region of quadratic stability (xTk Pxk < γ) calculated for this example is shown

in Fig. 6 in light (transparent) grey. In [24] an optimization problem is solved to max-
imize the region of convergence, using a problem formulation involving polyhedral
Lyapunov functions. The resulting region of convergence is shown in Fig. 6 in dark
grey for comparison.

Example 3: Consider the following second order bilinear system [23]:

A =

[
0.8 0.5
0.4 1.2

]
, B1 =

[
0.45 0.45
0.3 −0.3

]
, b1 =

[
1
2

]
(20)

The input is constrained to |u| ≤ 0.5. The problem to be solved is the determina-
tion of the controller which stabilizes the system in the maximum possible region of
xTk Pxk < γ. The matrix P is chosen as

P =

[
1 1
1 2

]
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Figure 5: Simulation results for example 2 system controlled by SOS method: (a)
states, (b) input, and (c) cost function

Figure 6: Region of stability calculated for example 2. Light grey: SOS design, dark
grey: the design in [24]

Solving the problem in YALMIP for maximum γ results in γ = 6. The designed
controller is as follows:

c1(xk) =− 0.1733x1 − 0.2312x2 + 0.0129x2
1 + 0.0176x1x2 − 0.0024x2

2

c0(xk) =1.0051 + 0.0073x1 + 0.0002x2 + 0.0070x2
1 − 0.0005x1x2 + 0.0062x2

2

State responses, input and cost function evolution in time is depicted in Fig. 7. In ad-
dition, the calculated region of convergence for SOS method is shown in Fig. 8. This
problem is also solved in [23] using polyhedral Lyapunov functions and calculated re-
gion of convergence is also shown in the same figure for comparison. In this example,
the value γ = 6 obtained is the same as in what was obtained in [27]. However, in-
creasing the allowable input to |u| ≤ 2.0 increases γ to 7.5 for the approach in [27],
whereas for the approach in this paper one obtains γ = 11.1. Note that the scalarized
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Figure 7: Simulation results for example 3 system controlled by SOS method: (a)
states, (b) input, and (c) cost function
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Schur complement is not used in Thm. 2 which addresses input constraints. Relaxing
the input constraint therefore increases the importance of utilizing the scalarized Schur
complement in Thm. 1.
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6 Conclusions
Conditions for global quadratic stability of discrete-time bilinear systems controlled
by rational polynomial controllers are studied. It is shown that the denominator poly-
nomial and numerator polynomials should have the same maximal degree in any state
representing an unstable endogenously bilinear mode.

A scalarized version of the Schur complement is presented, and this is used in
formulating optimization based conditions for controller design. Comparing results
of the examples in this paper with those in [27], it is found that using the scalarized
Schur complement resulted in significant enlargement of the stable region in two out
of three cases. In the third case, a severe input constraint was more important than the
conservatism of not using the scalarized Schur complement - and relaxing the input
constraint again allowed the scalarized Schur complement to provide an enlargement
of the stable region.

Optimization formulations for controller design based on SOS programming are
given, both for maximizing the region of convergence and for imposing a specified rate
of convergence within a given region of convergence.

The controller design is not applicable to systems such as Example 2 in [32] with
the parameter λ = 0. In that example, the origin is on the border of the stabilizable
region, and no continuous Lyapunov function can be used to prove stability. Note
also that the stability of the origin in such a system is not robust, even infinitesimal
disturbances may be sufficient to drive the system into the un-stabilizable region.

SOS-based controller design are known to rapidly become computationally de-
manding with increasing system size. The largest system for which the proposed design
method has been successfully handled by the authors has 7 states and 5 inputs. This
should be larger than many systems of engineering interest, for further details see [33].
Current research exploiting sparsity patterns in SOS calculations bear the promise of
enabling larger systems to be handled [34].
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