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Electrically driven Bose-Einstein condensation of magnons in antiferromagnets
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We explore routes to realize electrically driven Bose-Einstein condensation of magnons in insulating
antiferromagnets. Even in insulating antiferromagnets, the localized spins can strongly couple to itinerant spins
in adjacent metals via spin-transfer torque and spin pumping. We describe the formation of steady-state magnon
condensates controlled by a spin accumulation polarized along the staggered field in an adjacent normal metal.
Two types of magnons, which carry opposite magnetic moments, exist in antiferromagnets. Consequently, and
in contrast to ferromagnets, Bose-Einstein condensation can occur for either sign of the spin accumulation. This
condensation may occur even at room temperature when the interaction with the normal metal is fast compared
to the relaxation processes within the antiferromagnet. In antiferromagnets, the operating frequencies of the
condensate are orders of magnitude higher than in ferromagnets.
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I. INTRODUCTION

Bose-Einstein condensation (BEC) occurs in a wide variety
of systems [1–9]. At a sufficient density, magnons condense
into a single Bose quantum state. Spectroscopically generated
magnon condensates have been observed in ferrimagnetic
insulators at room temperature [5]. These findings imply that it
is feasible to demonstrate coherent quantum phenomena using
magnons. These effects could potentially be used in devices
without the need for complicated cooling equipment. Magnon
BEC manifests itself through a phase-coherent precession
of the magnetization and an accompanying peak in the
population of the magnons at the lowest-energy spin-wave
mode. Associated with magnon BEC is the possibility of
realizing and controlling spin superfluidity [10–19]. The
superfluid properties could enable long-range dissipationless
spin transport. In antiferromagnets, there are also reports of
condensation and superfluidity induced by nuclear magnetic
resonance [9,12].

In this paper, we explore an electrical route for controlling
the Bose-Einstein condensation of magnons in antiferromag-
netic insulators (AFIs). Spin pumping may be as operative
from AFIs as from ferromagnetic insulators [20], in apparent
contrast to naïve intuition. This means that the dynamical
precession of spins in AFIs may pump pure spin currents
into adjacent normal metals that are as large as those of ferro-
magnetic insulators. The effectiveness of spin pumping from
antiferromagnetic insulators to metals implies, via Onsager
reciprocity relations, that there is a considerable spin-transfer
torque on the AFIs via spin accumulations in neighboring
conductors [20]. A spin accumulation can be generated via the
spin Hall effect or from other ferromagnets. The combination
of significant spin-transfer torques and spin pumping enables
terahertz antiferromagnetic spin Hall nano-oscillators [21]. For
these reasons, antiferromagnetic insulators may be as effective
as ferromagnetic insulators in spintronics devices.

There is currently considerable interest in coupling the
electronic properties of normal metals and ferromagnetic
insulators. Although there is increasing attention on anti-
ferromagnetic insulators [15,20–28], they remain much less
explored for spintronics purposes than their ferromagnetic
counterparts. Whereas there are predictions of electrically

driven magnon condensation in ferromagnets [29,30], the case
for antiferromagnets is entirely unexplored.

In antiferromagnetic materials, the magnetic moments of
the atoms exhibit a staggered (Néel) order, which gives rise
to long-range correlations between the moments. However,
the order is such that the net magnetization vanishes in each
unit cell. An interesting aspect of antiferromagnets is that
the spin dynamics can be a thousand times faster than the
magnetization dynamics in ferromagnetic systems. Combining
an antiferromagnetic insulator with a normal metal paves the
way toward technological magnetic devices that operate at
terahertz frequencies.

To determine the feasibility of Bose-Einstein condensation
of magnons in antiferromagnetic insulators, we generalize
the theories of (staggered) spin transfer and spin pumping
in normal-metal–antiferromagnetic systems into the quantum
domain with quantized spin-wave excitations. To this end,
we employ a quantum-mechanical model to describe both the
localized electrons in the antiferromagnet and the conduction
electrons in the metal. In the metal, a spin accumulation
is assumed to exist via either the spin Hall effect or
spin injection from additional ferromagnets. We use a descrip-
tion in which the spins in the AFI are exchange coupled to
the itinerant spins in the metal. By computing the rates of
change of the occupation of the magnons, we will determine
the conditions for Bose-Einstein condensation driven by
the spin accumulation. We will consider a quasiequilibrated
system, where the magnon lifetime is long compared to the
thermalization time scale.

We consider easy axis antiferromagnets. In such antifer-
romagnets, there are two types of magnons. The difference
between these magnons is that they carry magnetic moments
in opposite directions along the easy axis. The two types
of magnons have identical dispersions and will therefore be
equally occupied at equilibrium. Out of equilibrium, the two
types of magnons are affected differently by the spin accumu-
lation. Consequently, we will show that magnon condensation
occurs for either polarity of the spin accumulation. This distinct
feature in antiferromagnets is because the spin-transfer torque
dampens the excitations of magnons of one type but can
dramatically change the state of the other type [20,21,31].
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FIG. 1. Schematic representation of the system and the interac-
tions that we study. An insulating antiferromagnet (right) is coupled
to a normal-metal conductor (left). The interface is parallel to the yz

plane. The antiferromagnet has an easy axis anisotropy along the z

axis. The positive y direction points into the plane of the figure. Two
types of magnons exist, which are related by a reflection in the xy

plane.

The remainder of this paper is organized as follows. We
introduce the Hamiltonian describing the magnons in the
antiferromagnet, the itinerant electrons in the normal metal,
and the electron-magnon interaction across the AFI–normal-
metal interface in Sec. II. Next, we compute the transport
rate for the transfer of spin angular momentum across the
interface in Sec. III. In Sec. IV, we compute the conditions
for Bose-Einstein condensation in systems where the magnon
temperature is held fixed by another reservoir. We conclude
our paper in Sec. V. The Appendices contain a substantial
part of our work, including the microscopic calculation of the
electron-magnon scattering amplitudes.

II. DYNAMICS

The system consists of a normal metal, an antiferromagnetic
insulator, and a metal-insulator interface. Across the interface,
the itinerant spins in the normal metal are exchange coupled
to the localized spins in the antiferromagnetic insulator. The
system is illustrated in Fig. 1. In the normal metal, the electrons
are driven out of equilibrium, thereby resulting in a spin
accumulation. We consider a scenario in which there is a
spin accumulation that is polarized along the z axis, which
is the easy axis of the antiferromagnet. The spin accumulation
is induced by the spin Hall effect or by spin injection from
ferromagnets [32].

A. Properties of the antiferromagnet

The antiferromagnet is shaped as a rectangular cuboid
aligned with the simple cubic lattice, and it contains N sites.
There is one spin at each site. The axes of the lattice are aligned
with those of the coordinate system defined in Fig. 1. We define
two sublattices, A and B. Each sublattice contains half of the
sites. In the classical ground state, all spins in sublattice A

are aligned along ẑ, and all spins in sublattice B point in the
opposite direction. Both sublattices are face-centered cubic,
and all nearest neighbors of a node in sublattice A reside in
sublattice B and vice versa. We include spin-spin interactions

between nearest-neighbor atoms. Furthermore, we assume that
the interaction between any pair of nearest neighbors is the
same.

Including an easy axis anisotropy along the z axis, the
antiferromagnet Hamiltonian becomes

HAF = J
∑

〈i,j〉|i,j∈AF

Si · Sj − Kz

∑
i

S2
iz (1)

where 〈i,j 〉 is a pair of nearest-neighbor sites. The indices i

and j uniquely identify lattice sites, and i ∈ AF indicates that
site i is in the antiferromagnet.

We refer to the yz plane, where there is translation
symmetry, as the transverse plane. Spin transport takes place
along the x direction. The AFI has left and right boundaries:
the left boundary is at the normal-metal–AFI interface, and
the right boundary is at the antiferromagnet-vacuum interface.
The distance between these boundaries, Nxd, is the length
of the AFI. Here, d is the lattice constant. We assume that
the AFI is longer than the spin-coherence length such that
the magnon properties at the left and right boundaries of the
AFI are independent. Similarly, the extent of the AFI in the
transverse directions is assumed to be sufficiently large such
that we can disregard the details of the transverse boundaries.
The y and z directions have widths Nyd and Nzd, respectively.
We use periodic boundary conditions in the transverse plane.
In this model, the two sublattices have the same reciprocal
lattice and Brillouin zone. The magnon momenta are defined
within this Brillouin zone. The Brillouin zone of the full lattice
is twice as large and contains twice as many possible momenta.

Using the Holstein-Primakoff transformation, we define
two sets of boson creation operators, a

†
i and b

†
i . Each operator

corresponds to the creation of a single boson at site i; a

and b denote the corresponding sublattices. We expand the
Hamiltonian in powers of the boson operators. Only terms
containing an even number of boson operators occur in the
Hamiltonian of Eq. (1). We assume that the state of the AFI is
close to the classical ground state in the sense that the expected
number of bosons is much smaller than the number of spins in
the AFI. The zeroth-order term in the Hamiltonian is a constant
and will be disregarded. The magnons are eigenstates of the
second-order term of the Hamiltonian. We derive the magnon
eigenstates in Appendix A. We describe the dynamics of the
spins in terms of the magnon eigenstates. The higher-order
terms of the Hamiltonian are perturbations. They give rise to
thermalization among the magnons, as discussed further in
Sec. III. Most of the magnon eigenstates are delocalized and
extend throughout the magnet. Additionally, there are surface
states localized toward the interface. The decay length of the
surface states, λEq , is introduced in Appendix A.

Let us first consider surface states with energies, Eq , that
are of the same order as the gap, E0. In this case, the decay
length, λEq , is of the same order as the decay length of the
magnon ground state λE0 . The latter is of the order dJ/Kz.
We assume that the anisotropy energy, Kz, is sufficiently
small compared to the exchange energy, J , such that dJ/Kz

is considerably longer than the length of the AFI, Nxd.
For the antiferromagnetic material RbMnF3, dJ/Kz is on
the order of 1 mm [33,34]. When dJ/Kz is considerably
longer than Nxd, the magnon surface states with energies on
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the order of the gap are approximately uniform throughout
the AFI. In Appendix A, we show that the uniform surface
states are approximately equal to delocalized states with zero
longitudinal momentum, qx = 0. Consequently, we model the
behavior of the surface states using the uniform delocalized
states.

When the magnon energy, Eq , is substantially higher than
the gap, the surface-state decay length, λEq , is of the same order
as the length of the AFI. In Appendices A and C, we show that
the magnon-electron interaction at the interface involving a
surface state is comparable to that involving a delocalized
state. For the surface states, the longitudinal momentum qx

is determined by the transverse momentum, q⊥ = (qy,qz), via
the boundary conditions, whereas qx is a free parameter for the
delocalized states. There are therefore many more delocalized
states than surface states. The latter nonuniform surface states
only constitute a small fraction of the high-energy magnons
and will be disregarded.

With this information, we can model the behavior of all
energy eigenstates using delocalized states, where the surface
states are modeled as uniform delocalized states. We define two
sets of delocalized states in terms of the annihilation operators
α+

q and α−
q . Here, q is the wave vector of the incoming part

of the delocalized state, and the superscripts + and − refer to
the type of magnon. The + (−) magnons carry a spin angular
momentum of h̄ pointing in the −ẑ (+ẑ) direction.

The amplitude of a magnon in a delocalized state α±
q at

node i is described in terms of a wave function. We express the
wave function using two continuous functions in real space;
each function provides the amplitudes associated with one
sublattice. By interchanging those functions in the state α+

q
between the two sublattices, we obtain the wave function
associated with the state α−

q . The interchange corresponds
to a reflection of all the spins of our system in the xy plane
while simultaneously shifting the lattice by one lattice spacing
in the transverse plane. Because HAF of Eq. (1) is symmetric
both under the reflection and under the shift, the two types
of magnons have the same dispersion relation. Therefore, the
magnon ground state is degenerate; one degenerate state is of
type +, and the other state is of type −.

We focus on the low-energy, long-wavelength spin-wave
excitations, qd � 1. The magnon dispersion for long wave-
lengths is derived in Appendix A. The result is well known:

Eq =
√

(h̄vq)2 + E2
0 , (2)

where the (high-energy) spin-wave velocity is v = √
3h̄J d

and the spin-wave gap is [35]

E0 = h̄2
√

6JKz. (3)

B. Properties of the normal metal

We consider a normal metal with the same cubic lattice
structure as the antiferromagnet. Deviations from such an
ideal system cause a renormalization of the electron-magnon
scattering rates but do not change the main physics; thus, they
are not considered further.

In a similar way as for the AFI, we disregard the details
of the boundaries in the transverse plane and use periodic
boundary conditions. We assume that the scattering processes

at the left and right boundaries of the normal metal are
independent due to inelastic scattering in the bulk of the metal.
We use a tight-binding model for the conduction electrons:

HN =
∑

〈i,j〉|i,j∈N,σ

−t(c†σ icσj + c
†
σj cσ i) + 6t (4)

where c
(†)
σ i annihilates (creates) an electron with spin σ at node

i. Here, i ∈ N indicates that site i is in the normal metal. We
assume half filling, and the Fermi energy is then EF = 6t .

C. Antiferromagnet-metal coupling

We consider a local exchange interaction, with energy scale
h̄2JI , between the spins in the antiferromagnetic insulator and
the itinerant spins in the normal metal along the interface:

HI = JI

∑
〈i,j〉|i∈AF,j∈N

Si · c
†
σjτ σσ ′cσ ′j , (5)

where τ = (τx,τy,τz) is a vector of Pauli matrices. When the
antiferromagnet is in its classical ground state, the exchange
interaction of Eq. (5) induces a static spin-dependent potential,
H

(0)
I , seen by the itinerant electrons at the interface. We

determine the energy eigenstates of the electrons in the normal
metal, including the interface potential H

(0)
I . In Appendix B,

we express the eigenstates as scattering states in a similar
way as for the magnons in the antiferromagnet detailed in
Appendix A.

The annihilation operators of the scattering states are
denoted as cσ k, where σ is the spin z component of the electron
spin and k is a wave vector that is incoming to the AFI-N
interface. The conduction-electron momenta are assumed to
be near the Fermi surface, and they are defined within the
Brillouin zone of the normal-metal lattice.

By expanding the interface exchange interaction of Eq. (5)
to first order in the magnon operators, we find in Appendix C
an interaction of the form

HI − H
(0)
I =

∑
q,k,k′

(V +
q,k,k′α

+
q + V −

q,k,k′α
−†
q )c†↓k′c↑k + H.c.

(6)
The sum over magnon and conduction-electron momenta
includes only the incoming wave vectors with respect to the
interface. We separate the wave vectors k into a part that is
parallel to the direction of transport, k‖ = kx , and a transverse
part, k⊥ = (ky,kz). We assume that the exchange energy,
Jh̄2, and the Fermi energy are large compared to the other
energy scales of the problem. In Appendix C, we calculate
the coefficients V ±

q,k,k′ for the modes that are uniform in the
direction of transport and the modes with finite longitudinal
momenta q‖ separately, and we find that they differ by a
factor [36] of

√
2:

V ±
q,k,k′ =

{
U±

q,k,k′ q‖ �= 0
1√
2
U±

q,k,k′ q‖ = 0
. (7)

The difference in the interface electron-magnon coupling of
Eq. (7) is the reason why the enhanced Gilbert damping for
the longitudinal finite wavelength modes is twice that of the
longitudinal homogeneous mode [36].
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In the limit of a large exchange energy and a large Fermi
energy, we can show that the dominant contributions to the
coefficients are

U±
q,k,k′ =

√
2h̄2JI

Mx

√
N

uq
sin(k′

xd) sin(kxd)

(λ2 + 1)2

× [δ⊥
k′U ,k±q(e±i(kx−k′

x )d − λ2)

+ δ⊥
k′,k±qλ(e±ikxd − e∓ik′

xd )], (8)

as shown in Appendix C. Here, δ⊥
p,q = δ p⊥,q⊥ are Kro-

necker deltas for the transverse vector components, and
λ = h̄2JI /(4t). The parameter uq ≈ [3h̄2J/(2Eq)]

1/2
is intro-

duced in Appendix A and is equal to the Bogoliubov coefficient
of the bulk model. Furthermore, we have defined the Umklapp-
scattered momentum kU such that kU

⊥ = k⊥ + π/d(ŷ + ẑ). We
define kU

‖ in terms of energy conservation, εk = εkU .
The amplitudes, V ±

q,k,k′ , of Eq. (8) are directly proportional
to the Bogoliubov coefficient uq . Since the exchange energy
is considerably larger than the relevant magnon energies,
uq � 1. Thus, the inclusion of this factor strongly enhances
the total transport rates. The amplitudes V ± describe pro-
cesses whereby a conduction electron creates or annihilates
a magnon. The delta functions in the expression for V

ensure that the momentum of the conduction electrons is
conserved in the transverse plane, but they also allow for
a shift by a large momentum π/d(ŷ + ẑ). We refer to the
processes where transverse momentum is conserved as normal
scattering processes and the processes where the transverse
momentum is shifted as Umklapp scattering processes. The
terms proportional to λ in Eq. (8) are caused by the proximity
effect. When λ � 1, the proximity effect is negligible, and
the total rate of scattering involving magnons is low. When
λ � 1 and electron scattering with a magnon does occur, the
Umklapp scattering process dominates the normal scattering
process.

III. TRANSPORT RATES

We assume that the electron-magnon interaction at the
interface is weak, and we treat it as a perturbation with respect
to the decoupled systems of electrons and magnons. We now
calculate the rate of change of the number of magnons of
each type, I±, caused by the electron-magnon coupling at the
interface. Using Fermi’s golden rule, we find that

I+ = 2π

h̄

∑
q,k,k′

[Tr{ρV +
q,k,k′α

+
q c

†
↓k′c↑kV

+∗
q,k,k′(α+

q )†c†↑kc↓k′ }

− Tr{ρV +∗
q,k,k′(α+

q )†c†↑kc↓k′V +
q,k,k′α

+
q c

†
↓k′c↑k}]δ(Ef −Ei),

(9a)

I− = 2π

h̄

∑
q,k,k′

[Tr{ρV −∗
q,k,k′α

−
q c

†
↑kc↓k′V −

q,k,k′(α−
q )†c†↓k′c↑k}

− Tr{ρV −
q,k,k′(α−

q )†c†↓k′c↑kV
−∗
q,k,k′α

−
q c

†
↑kc↓k′ }]δ(Ef −Ei).

(9b)

In Eq. (9), ρ is the density matrix of the decoupled systems
of electrons and magnons. The trace involves a sum over all

quantum states. The first line of Eq. (9a) [Eq. (9b)] represents
the creation of magnons of type + [−] from an initial state,
and the second line describes the annihilation of magnons.
The difference between the creation and annihilation rates
determines the magnon number rate of change I±. The creation
and annihilation of magnons cause a change in the spin angular
momentum of the itinerant electrons. Ef and Ei are the
final- and initial-state energies of the noninteracting model,
respectively.

The magnons and conduction electrons are also affected by
other interactions in the bulk of the materials. These interac-
tions may be between the magnons or between the electrons,
but there could also be interactions with other degrees of
freedom such as phonons. We consider bulk interactions that
conserve the number of magnons and electrons. In other words,
we assume that the magnon relaxation time is sufficiently
long such that the magnon distributions can be experimentally
observed. We use the phrase magnon number conserving
process to describe interactions where the numbers of magnons
of type + and − are conserved separately. Treating the
electron-magnon interaction at the interface as a perturbation,
we assume that the bulk interactions are considerably faster
than the interface interactions. Furthermore, we assume that
any bulk interactions that create or destroy magnons are
slower than the interface interactions. The assumption that
the magnon number conserving interactions are dominant is
valid for the magnons in the ferrimagnet yttrium-iron-garnet
(YIG) [37].

The symmetry of the Hamiltonian of Eq. (1) under rotations
in spin space around the z axis implies conservation of the
total spin angular momentum along the z direction. When the
total spin angular momentum of the magnons is conserved,
interactions conserving the total number of magnons also
conserve the number of magnons of types + and − separately.
The terms in the Hamiltonian of Eq. (1), where the magnon
number is not conserved, simultaneously create (annihilate)
both a + magnon and a − magnon. This does not violate the
conservation of angular momentum since the combined spin
angular momenta of the two magnons in such pairs vanish. We
disregard the processes where pairs of magnons are created or
annihilated from our model. The remaining magnon-magnon
interactions are examples of magnon-number-conserving bulk
interactions. Similarly, we assume that the magnon number is
conserved in the magnon-phonon interactions.

The bulk interactions can drive the magnons into a
quasiequilibrated distribution in a normal phase or a conden-
sate phase. For both the normal phase and the condensate
phase, there are two thermal baths of magnons with a Bose-
Einstein distribution: one for each type of magnon.

The electrons are assumed to be quasiequilibrated with a
Fermi-Dirac distribution, but we allow for a difference in the
chemical potentials μ↑ and μ↓ of the spin-up and spin-down
electrons. We define the spin accumulation as 
μ = μ↑ − μ↓.
The temperature of the conduction electrons is assumed to be
independent of the spin. We will show that the two types of
magnons are affected differently by the spin accumulation.

The interactions across the interface are slow compared
to the decoherence time of each subsystem. Therefore, the
density matrix of the coupled system is well approximated by
a decoupled density matrix of the form ρ = ρAF ⊗ ρN . Here,
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ρAF is the density matrix of the antiferromagnet, and ρN is
the density matrix of the normal metal. The quasiequilibrated
thermal states of the magnons and conduction electrons are
described by the density matrices ρAF and ρN , where

Tr{ρAF(α±
q )†α±

q ′ } = δq,0δq ′,0n
±
0

+ nB [β±(Eq − μ±)]δq,q ′ ,

Tr{ρNc
†
σ kcσ ′k′ } = nF [βN (εk − μσ )]δk,k′δσ,σ ′ . (10)

Here, σ is either spin up (↑) or spin down (↓), and εk is the
conduction-electron energy. nB and nF are the Bose-Einstein
and the Fermi-Dirac distribution functions, respectively. The
presence of a Bose-Einstein condensate implies a macroscopic
number of magnons in one or both of the magnon ground
states, n±

0 . In Eq. (10), μ+ (μ−) is the chemical potential of
the magnons of type + (−), and β± = 1/(kBT±), where T+
(T−) is the effective temperature of the magnons of type +
(−). Finally, βN = 1/(kBTN ), where TN is the temperature of
the conduction electrons.

We group the magnons into four contributions: the thermal
magnons of types + and − and the two possible condensates.
The number of magnons in each group is denoted by n±

Q and
n±

0 , respectively.
With this information, we will now compute the rate of

change of the magnon numbers n±
Q due to electron-magnon

scattering. To this end, we use Eq. (9) for the magnon current.
We assume that the Fermi energy of the conduction electrons
and the exchange energy of the antiferromagnet are both
considerably larger than the other relevant energy scales such
as the spin accumulation and the magnon gap. The dominant
contribution to I±

Q is

I±
Q = π

h̄

∫
g±

AF(E)g2
N |uE|2V ±(E)(E ± 
μ)

×{nB[βN (E ± 
μ)] − nB[β±(E − μ±)]}dE. (11)

In this expression, the coefficient uE that appears is defined in
the following way. We define qE as the length of a wave vector
q, where Eq = E and uE is the value of uq when |q| = qE . To
leading order, the Bogoliubov parameter uq and the magnon
energy Eq only depend on q through its magnitude.

In Eq. (11), we have introduced

V ±(E) = V 2
NVAF

(2π )9g±
AF(E)g2

N

∫∫∫
|V ±

k,k′,q |2
δ(E − Eq)

|uE|2
× δ(εk − EF ) δ (εk′ − EF + E) d3kd3k′d3q. (12)

Here, VAF = Nd3 is the volume of the antiferromagnet,
VN = Md3 is the volume of the normal metal, g+

AF (g−
AF) is

the density of states of the magnons of type + (−), and gN is
the conduction-electron density of states at the Fermi surface.

Similarly, the current into the condensate is

I±
0 = π

h̄
g2

N |u0|2V ±
0 (−E0 ∓ 
μ) n±

0 , (13)

where

V ±
0 = V 2

N

(2π )6g2
N

2

|u0|2
∫∫

|V ±
k,k′,0|2

× δ (εk − EF ) δ (εk′ − EF + E0) d3kd3k′. (14)

The energy integral in Eq. (11) runs over the energy of the
magnons that are created or annihilated at the interface. Only
magnons with energies that are considerably smaller than the
exchange energy and the Fermi energy contribute to the current
I±
Q . Therefore, it is sufficient to evaluate V ±(E) in the limit

where E is substantially smaller than the exchange energy and
the Fermi energy. In this limit, we find that

V ±(E) ≈ 2V ±
0 ≈ π2N⊥J 2

I h̄
4

M2N

(λ2 + 1)20.12 + λ20.40

(λ2 + 1)4
,

(15)

where N⊥ is the number of lattice nodes in one transverse
layer.

Note that the currents of Eqs. (13) and (11) are proportional
to the large factor |uE|2 = 3h̄2J/(2E). These factors do not
occur in the corresponding expressions for a ferromagnetic
system [29]. The implication is that the electron-magnon
coupling at the interface is considerably stronger in antifer-
romagnets than in ferromagnets. Consistent with this finding,
a similar enhancement occurs in the heat transfer across AFI-N
interfaces [38].

The density of states for the conduction electrons is
approximately constant because the dynamics involve only
electrons near the Fermi surface. The magnon density of states,
however, vanishes near the ground-state energy. The densities
of states of the conduction electrons and the magnons are,
respectively,

gN ≈ M

2t(2π )3
17.695, g±

AF(E) ≈ VAF

4π2

E|qE |
(h̄v)2

. (16)

We assume periodic boundary conditions when estimating the
densities of states of the AFI.

In Appendix A, we introduce a reflection angle, φq , that
determines the magnon amplitude near the interface. We
find that the reflection angle is much smaller than 1 for all
delocalized states with energy E on the order of the gap. For
magnons with energies that are much larger than the gap, we
can disregard the gap in the dispersion relation, Eq. (A8).
Using the approximate dispersion, we find that the reflection
angle is of the order q2d2/|qx |d. Typically, since the magnon
wavelength is considerably longer than the lattice spacing,
the reflection angle is also much smaller than 1 in this regime.
However, there are exceptions when the momentum vector q is
almost parallel to the interface, e.g., when qx is relatively small.
Nevertheless, only a small portion of the delocalized states in
the thermal bath have momenta parallel to the interface since
the magnon dispersion is isotropic. Since the delocalized states
with finite reflection angles only constitute a small portion of
the thermal cloud, and interact slower with the conduction
electrons than the rest of the thermal bath, their contributions
to the magnon currents in Eq. (12) are negligible.

IV. CONDENSATE AND INSTABILITY

The two types of magnons can both condense, and they
also form separate thermal clouds, which could have different
distributions. We assume that the temperatures of both clouds
remain fixed by an external reservoir such as phonons. We
denote the common magnon temperature as TAF.
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First, we consider the steady-state normal phase where
no condensates are present. In this regime, the magnon
chemical potentials for the two types of magnons together
with the temperatures determine the magnon distribution. The
magnon chemical potentials are smaller than the magnon
gap, μ± < E0. The vanishing of the net currents of magnons
into the antiferromagnet of Eq. (11) determines the chemical
potentials. We directly observe from Eq. (11) that when there
is no thermal bias, TN = TAF, the magnitudes of the chemical
potentials equal the spin accumulation, μ± = ∓
μ.

A finite thermal bias causes the magnitudes of the chemical
potentials to deviate from the spin accumulation. We consider
the case where TAF is large compared to the magnon gap E0,
and the relative difference between TN and TAF is small. In
this limit, we find that the chemical potentials are

μ± = ∓
μ + 18ζ (3)

π2
kB(TN − TAF). (17)

The Riemann zeta function is ζ (n) = ∑∞
k=1 1/kn for integral

numbers n.
When the magnon chemical potential for one type of

magnon approaches the magnon gap, the number of magnons
in the associated ground state becomes vast and macroscopic,
creating a condensate. However, the chemical potential never
increases beyond the magnon gap. In the condensate phase,
one of the magnon chemical potentials, μ+ or μ−, is equal to
the gap, E0. In the condensate phase, we also need to determine
the number of condensate magnons, n+

0 and n−
0 .

A spin accumulation in the normal metal increases the
number of magnons of one type and decreases the number
of magnons of the other type. This asymmetry causes the
creation of only one condensate. Without a loss of generality,
we assume that the spin accumulation 
μ is negative, which
implies that only the condensate of type + is present. The
dynamics of the system can now be described by

ṅ+
Q = I+

Q + I+
2 , (18a)

ṅ−
Q = I−

Q, (18b)

ṅ+
0 = I+

0 − I+
2 , (18c)

where I+
2 is the net magnon transfer rate from the condensate

to the thermal cloud. I+
2 is caused by magnon-number-

conserving bulk interactions. Next, we will find steady-state
solutions of the dynamical equations (18) and the threshold
values of the spin accumulation and temperature for inducing
a condensate.

When the spin accumulation is larger than the gap, swasing
can occur. The electron-magnon coupling-induced current of
Eq. (13) is proportional to the number of magnons already
present in the condensate. This feature can lead to an expo-
nential increase in the number of magnons in the condensate.
It is this phenomenon that is a swasing instability [29,30,39].
The direction of the current of Eq. (13) changes when the spin
accumulation increases beyond the gap. Beyond the swasing
instability, when the spin accumulation is larger than the gap,
the number of magnons in the condensate rapidly increases,
forming a large condensate. The growth of the condensate will
continue until higher-order interactions between the magnons
prevent a further population buildup.

However, a large spin accumulation −
μ > E0 does not
necessarily lead to swasing. To study this further, we need
to take into account interactions between the thermal bath
of magnons and the condensate, given by I+

2 . Such bulk
interactions are fast and ensure that the magnons in the cloud
remain in a nonequilibrium thermal distribution. Even when
the spin accumulation is larger than the gap, there could be
stable steady-state solutions where n+

0 = 0. When n+
0 = 0,

the system is in the normal phase. The normal phase state is
stable when the thermal cloud current of Eq. (11) vanishes
for a magnon chemical potential that is smaller than the gap,
μ+ < E0. This condition for the stability of the normal phase
state does not depend on the relative magnitude of the spin
accumulation and the gap. Therefore, Eq. (17) is valid even
for large spin accumulations as long as both μ+ and μ− are
below the threshold, E0, when we maintain the assumption
that TAF is much larger than E0/kB and |TAF − TN |. As shown
in Eq. (17), the normal phase state remains stable even when
the spin accumulation is larger than the gap provided that
the conduction-electron temperature TN is smaller than the
magnon temperature TAF. However, when TN is larger than
TAF and −
μ > E0, the normal phase is unstable, and swasing
will occur. The cases in which −
μ > E0 and a normal phase
state is a possible steady-state solution are hysteretic [30].
Whether swasing or a normal phase state occurs depends on
the history.

We now further consider the case in which the spin
accumulation is smaller than the gap, −
μ < E0. If the
conduction-electron temperature TN is larger than that of
the magnons, TAF, the normal phase may become unstable
even though the spin accumulation is small. In other words, a
condensate can form for spin accumulations that are too small
to induce swasing. When no stable normal phase state exists,
the current I+

Q of Eq. (11) is always positive, and the chemical
potential μ+ will increase until it approaches μ+ = E0. When
μ+ = E0, I+

Q can be fully determined using Eq. (11). We
will denote this current by IQ0. In the limit where TAF is
considerably larger than E0/kB and |TAF − TN |, we find that

IQ0 = π

h̄
V +(E0)g2

N

VAF

8
√

3π2

k2
BT 2

AF

h̄2v2

× [π2(−E0 − 
μ) + 18ζ (3)kB(TN − TAF)]. (19)

Furthermore, the number of thermal magnons is fixed. In this
case, using the conservation of the number of thermal magnons
n+

Q, Eqs. (18) and (13), we find that

ṅ+
0 = π

h̄
g2

NV +
0 |u0|2(−E0 − 
μ) n+

0 + IQ0. (20)

We define a time scale 1
τ0

= π
h̄
g2

NV +
0 |u0|2(E0 + 
μ), and we

use this time scale to express the solution of Eq. (20):

n+
0 (t) = τ0IQ0 + (n+

0 (0) − τ0IQ0) e
− t

τ0 . (21)

From Eq. (21), we observe that the steady-state number
of condensed magnons is n+

0 = τ0IQ0 and independent of
the initial conditions. In this steady state, I+

0 is negative,
which indicates that magnons are leaving the condensate
across the interface. However, the condensate is maintained
by the transfer from the thermal cloud. This is caused by
the bulk interactions that redistribute the magnons from the
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FIG. 2. Phase diagram for the region where |
μ| ≈ E0 and E0 �
kB (TN − TAF) in the high-temperature limit where kBTAF � E0.
Three phases exist: the normal phase, the swasing condensate, and the
Bose-Einstein condensate. The phase diagram contains four regions:
one region for each phase and a hysteretic region where either swasing
or a normal phase state may occur. Outside the hysteretic region, the
magnitude of the spin accumulation (|
μ|) and the thermal bias
(TAF − TN ) determine the phase. The sign of the spin accumulation
determines the type of magnons that form the condensate.

cloud and into the condensate. In turn, the spin accumulation
supplies magnons to the thermal cloud. This steady state
is a magnon Bose-Einstein condensate [30]. Figure 2 illus-
trates the conditions for Bose-Einstein condensation and for
swasing.

A bilayer of Pt and RbMnF3 is a candidate for experimental
realization of our model. The insulating antiferromagnet
RbMnF3 is well approximated by the Heisenberg model [40].
Platinum was chosen because it has a large spin Hall angle [41].
The spin accumulation, 
μ, is induced by a dc current with
a uniform density jc via the spin Hall effect. We consider
the case in which the spin accumulation is approximately
equal to the gap, E0, so that the thermal bias can be small.
We assume that the Pt layer is thicker than its spin-diffusion
length, λs . The dc current induces a spin accumulation of the
order |
μ| ∼ 2θSHλsjcρPtqe near the interface [37]. Here, ρPt

and θSH are the resistivity and the spin Hall angle of Pt, and
qe is the elementary charge. For RbMnF3, E0 is of the order
10−5 eV [34]. Using parameters from Ref. [41] for Pt, we find
jc ∼ 107 A/cm2.

We focus on systems where the interface interactions
are fast compared to the bulk relaxation of magnons. This
assumption is satisfied when the thickness of the AFI is
smaller than some value, LAF. The spin-diffusion length
is an upper bound for LAF. For NiO, the spin-diffusion
length is of the order 10 nm [25]. We estimate LAF by
comparing the rate of spin pumping and bulk relaxation for the
uniform mode. Phenomenologically, the bulk relaxation rate in
antiferromagnets is αAFωE = 2αAFω0|u0|2, where ωE = 3h̄J

and αAF is the Gilbert damping constant [38]. The large factor
|u0|2 appears both in the bulk relaxation rate and in the rate
of interface interactions. Therefore we use the thickness of an
FI where the rate of spin pumping is equal to the rate of bulk
relaxation as an estimate for LAF. For YIG, this thickness is
of the order 100 nm [42]. A coherent magnon condensate may
be detected in a magnetic resonance experiment [9] or using
Brillouin light scattering [5].

V. CONCLUSIONS

We have explored the prospect of Bose-Einstein conden-
sation of magnons in insulating antiferromagnets coupled to
normal metals. Condensation occurs when large numbers of
magnons are created at the interface. The creation of magnons
at the interface can be stimulated by a spin accumulation in the
normal metal and a temperature difference across the interface.
Starting from a quantum-mechanical model, we describe the
dynamics of the antiferromagnet in terms of two types of
magnons, which carry the same energy and opposite spin
angular momentum. Both types of magnons strongly interact
with the conduction electrons in an adjacent normal metal
compared to magnons in ferromagnets.

The spin accumulation, which can be induced via the spin
Hall effect, causes an imbalance of the magnon distribution
between the two types of magnons. For large imbalances,
a coherent magnon condensate is created in one of the two
degenerate uniform magnon ground states. In contrast to the
ferromagnetic model, a condensate can form for both signs of
the spin accumulation.
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APPENDIX A: MAGNON EIGENSTATES

We will now calculate the magnon eigenstates of the
semi-infinite Heisenberg antiferromagnet. In a similar way,
Appendix B presents the computation of the electron eigen-
states in the normal metal. Finally, we use the magnon and
electron eigenstates to compute the interface electron-magnon
coupling in Appendix C. We are only interested in magnons
with energies that are considerably lower than the exchange
energy. However, to ensure that we find the correct solutions
for small but finite magnon energies, we first find all magnon
eigenstates and then take the low-energy limit.

We define the sublattices A and B as described in Sec. II. We
represent the spin operators at each lattice site in terms of boson
operators by using the Holstein-Primakoff transformation:

Six + iSiy =

⎧⎪⎨
⎪⎩

h̄

√
1 − a

†
i aiai i ∈ A

h̄b
†
i

√
1 − b

†
i bi i ∈ B

, (A1a)

Six − iSiy =

⎧⎪⎨
⎪⎩

h̄a
†
i

√
1 − a

†
i ai i ∈ A

h̄

√
1 − b

†
i bibi i ∈ B

, (A1b)

Siz =
⎧⎨
⎩

h̄
(

1
2 − a

†
i ai

)
i ∈ A

h̄
(
− 1

2 + b
†
i bi

)
i ∈ B

, (A1c)

where ai annihilates a boson at site i, which belongs to
sublattice A, and bi is the corresponding annihilation operator
for a boson at site i in the B sublattice. We assume that
all the localized spins in the antiferromagnet have quantum
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number 1/2. Other quantum numbers can be accounted for by
redefining the exchange and anisotropy energies. The index
i can be decomposed into three integer indices i = (ix,iy,iz)
corresponding to the location of a lattice site along the three
axes x, y, and z. The sites where ix < 0 are in the normal
metal, and the sites in the AFI satisfy ix � 0. In real space,
the lattice site i is at coordinate r i = (xi,yi,zi). We choose
the coordinate system such that xi = xI + ixd in the AFI and
xi = xI + d − dI + ixd in the normal metal, where dI is the
thickness of the interface. The nodes in the antiferromagnet
that are adjacent to the interface are located in the transverse
plane x = xI . Similarly, nodes, i, in the normal metal that are
adjacent to the interface satisfy xi = xI − dI . Furthermore,
we define transverse coordinates as r i⊥ = (yi,zi) = d(iy,iz).
Analogously, for wave vectors p, we define the transverse
wave vector pi⊥ = (py,pz). We also choose the indices such
that the node i = (0,0,0) is on sublattice A.

To second order in the boson operators, the Hamiltonian of
Eq. (1) becomes

HAF = J h̄2

2

∑
〈i,j〉|i,j∈AF

(
aibj + a

†
i b

†
j − 1

2
+ a

†
i ai + b

†
j bj

)

−Kzh̄
2
∑
i∈A

(
1

4
− a

†
i ai

)
− Kzh̄

2
∑
i∈B

(
1

4
− b

†
i bi

)
.

(A2)

As discussed in Sec. II, we use periodic boundary conditions
in the transverse plane. We assume that the longitudinal length
is larger than the inelastic-scattering length and disregard
the boundary conditions at the right boundary opposite to
the interface. In this section, we will determine the energy
eigenstates of the magnons. We find the magnon eigenstates
with the ansatz

α+
p =

∑
i∈A

u p(xi)√
N/2

e−i p⊥·r i⊥ai −
∑
i∈B

v p(xi)√
N/2

ei p⊥·r i⊥b
†
i ,

(A3a)

α−
p =

∑
i∈B

u p(xi)√
N/2

e−i p⊥·r i⊥bi −
∑
i∈A

v p(xi)√
N/2

ei p⊥·r i⊥a
†
i .

(A3b)

We have to determine the longitudinal (x) dependence of
the energy eigenstates represented by the functions uq(xi)
and vq(xi).

The Hamiltonian of Eq. (A2) relates the functions uq(x)
and vq(x) by

0 = [(3J + Kz)h̄
2 − Eq]uq(xi)

+ Jh̄2

2
[2γ ⊥

q⊥v∗
q(xi) + v∗

q(xi − d) + v∗
q(xi + d)],

(A4a)

0 = [(3J + Kz)h̄
2 + Eq]vq(xi)

+ Jh̄2

2
[2γ ⊥

q⊥u∗
q(xi) + u∗

q(xi − d) + u∗
q(xi + d)]

(A4b)

for all nodes, i, in the bulk of the AFI. We have defined

γq = cos(qxd) + cos(qyd) + cos(qzd), (A5a)

γ ⊥
q⊥ = cos(qyd) + cos(qzd). (A5b)

At the normal-metal–AFI boundary, we find the conditions

0 =
[(

5

2
J + Kz

)
h̄2 − Eq

]
uq(xI )

+ Jh̄2

2
[2γ ⊥

q⊥v∗
q(xI ) + v∗

q(xI + d)], (A6a)

0 =
[(

5

2
J + Kz

)
h̄2 + Eq

]
vq(xI )

+ Jh̄2

2
[2γ ⊥

q⊥u∗
q(xI ) + u∗

q(xI + d)]. (A6b)

In the remainder of this Appendix, we will obtain the
solutions to Eqs. (A4) and (A6). We first determine bulk
solutions that solve Eq. (A4) only, and then we combine the
bulk solutions to satisfy the boundary condition of Eq. (A6).

1. Infinite system

In bulk antiferromagnets, the system is translationally
invariant in all directions. In this case, momentum is a
good quantum number. The bulk equations, Eq. (A4), are
solved by plane waves, u p(x) = u p exp (−ipxx) and v p(x) =
v p exp (ipxx). This solution provides the momentum eigen-
states:

β+
p =

∑
i∈A

u p√
N/2

e−i p·r i ai −
∑
i∈B

v p√
N/2

ei p·r i b
†
i , (A7a)

β−
p =

∑
i∈B

u p√
N/2

e−i p·r i bi −
∑
i∈A

v p√
N/2

ei p·r i a
†
i . (A7b)

The Bogoliubov parameters u p and v p satisfy the normal-
ization condition u2

p − v2
p = 1. From Eq. (A4), we find the

dispersion relation for the momentum eigenstates:

E p = h̄2
√

(3J + Kz)2 − J 2γ 2
p . (A8)

In an infinite system, the momenta p must be real valued since
there are no boundaries where evanescent states can originate.

2. Semi-infinite system

In a semi-infinite system, there are momentum eigenstates
for both complex and real-valued quantum numbers p. When
p is real, the states represent propagating magnons with
momentum p. The momentum eigenstates with complex p
are evanescent states. The broken symmetry at the interface
implies that the energy eigenstates are linear combinations of
left- and right-going propagating states as well as evanescent
states. Explicitly, this follows from the boundary condition of
Eq. (A6). All parts of the energy eigenstates have identical
energy in the dispersion of Eq. (A8) and the same transverse
momentum, p⊥.

We classify the energy eigenstates according to the mo-
mentum of the incoming propagating wave, p. The momen-
tum eigenstate with incoming momentum p can elastically
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scatter into three other momentum eigenstates. The reflected
momentum of one of these states is pR = (−px, p⊥). The
other two states have momenta P , which satisfy γP = −γ p,
whereas the transverse momentum remains P⊥ = p⊥. In total,
the energy eigenstates are linear combinations of momentum
eigenstates with momenta p, pR , P , and PR = (−Px,P⊥).
For evanescent momentum eigenstates, we only consider states
that are localized near the interface.

Three types of energy eigenstates exist. There are
(i) eigenstates containing only plane waves, (ii) purely
evanescent states, and (iii) combinations of plane waves and
evanescent waves. It can be shown that the eigenstates of type
(i) have energies on the order of the exchange energy. Such
high-energy magnons are not relevant to our discussion of
the low-energy physics. Therefore, all the states of type (i)
are disregarded from this point. Type (ii) and type (iii) states
have a wide range of energies from the magnon gap and up to
the order of the exchange energy. We will first write expres-
sions for the magnon eigenstates of type (ii) and type (iii) that
are valid for all energies. Later, we will consider the limiting
case where the magnon energy is considerably smaller than
the exchange energy.

a. Surface states

The evanescent surface states of type (ii) are described
by [43]

uq(xi) = u0
qe

−Im{qx }(xi−xI ) + Uq(−1)ix e−Qx (xi−xI ),

(A9a)

vq(xi) = v0
qe

−Im{qx }(xi−xI ) + Vq(−1)ix e−Qx (xi−xI ),

(A9b)

where the longitudinal wave number qx is purely imaginary.
The imaginary wave number Im{qx} and the real number
Qx = −i(Px − π/d) are determined by fulfilling both the
dispersion relation of Eq. (A8) and

E2
q = (3J + Kz)(2J + Kz)h̄

4 − γ ⊥2
q⊥ J 2 h̄4 (3J + Kz)

(2J + Kz)
,

(A10)

which follows from the boundary conditions of Eq. (A6). The
coefficients u0

q , v0
q , Uq , and Vq appearing in the surface states

of Eq. (A9) should be determined from the bulk and boundary
conditions of Eqs. (A4) and (A6) and the normalization
condition.

For each value of the transverse momenta qy and qz, there
are two surface states: one of type + and one of type −.
These states have the same energy and carry opposite angular
momentum.

b. Delocalized states

The delocalized states of type (iii) are given by the functions

uq(xi) = uφ
q cos(qx(xi − xI ) − φq) + Uq(−1)ix e−Qx (xi−xI ),

(A11a)

vq(xi) = vφ
q cos(qx(xi − xI ) − φq) + Vq(−1)ix e−Qx (xi−xI ).

(A11b)

The real-valued parameter Qx is governed by q via the
dispersion relation of Eq. (A8). The incoming longitudinal
momentum qx is a free parameter, and the boundary conditions
of Eq. (A6) determine the angle φq :

cot(qxd) − tan(φq)

= 2ω0e
Qxd − [cosh(Qxd) + cos(qxd)]

sin(qxd){2ω0 − eQxd [cosh(Qxd) + cos(qxd)]} ,
(A12)

where we have introduced ω0 = 3 + Kz/J . The coefficients
u

φ
q , v

φ
q , Uq , and Vq of the delocalized states are governed by

the bulk and boundary conditions of Eqs. (A4) and (A6) and
the normalization condition.

3. Low-energy magnons

The magnon wave functions given in Appendix A2 are
eigenstates of the Hamiltonian of Eq. (A2), but the expressions
for the magnon currents are complicated. In this section,
we consider the low-energy limit, where the magnon wave
functions are simpler. We consider a magnon temperature TAF

that is considerably smaller than the Néel temperature, TNeel.
In this low-energy limit, the magnon energy is much smaller
than the exchange energy, Jh̄2.

a. Low-energy momentum eigenstates

In this section, we study the momentum eigenstates of
Appendix A1 in the low-energy limit. When the energy E p

is considerably smaller than the exchange energy, we see
from the dispersion of Eq. (A8) that p satisfies γ p ≈ ±3.
For low-energy propagating plane waves with momentum p,
γ p ≈ 3. The low-energy momentum eigenstates with γP ≈ −3
are staggered evanescent states.

We consider the limit of long wavelength and small
anisotropy. In other words, we perform expansions in | p|d
and Kz/J . The leading-order terms in this expansion for the
Bogoliubov parameters, u p and v p, are given by u p = −v p =
[3h̄2J/(2E p)]1/2.

The wave functions of the staggered evanescent states decay
exponentially and oscillate rapidly along the x axis within
each sublattice. Using the dispersion relation of Eq. (A8), we
expand Px in powers of | p|d and Kz/J . We determine the
wave functions of the staggered evanescent states in the long-
wavelength and small anisotropy limit using this expression
for Px . To leading order in the long-wavelength and small
anisotropy expansion, the decay length, 1/Qx , of the staggered
states is d/ arccosh (5).

b. Low-energy surface states

We now discuss the surface states of type (ii), as given
in Eq. (A9). We expand in the small parameters | p⊥|d and
Kz/J . The nonstaggered part of the wave function decays
exponentially in the longitudinal (x) direction with a decay
length λEq = 1/Im{qx}. The staggered part has a decay length
1/Qx . Expanding in powers of |q|d and Kz/J , we find to
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leading orders

Im{qx}d = 1√
6

(
1

2
|q⊥|2d2 + Kz

J

)
, (A13a)

Qxd = arccosh(5) − 1

2
√

6
|q⊥|2d2. (A13b)

Substituting the expression Eq. (A13a) into Eq. (A8), we
find that, to leading order, Eq = Eq0 . Here, we have defined
q0 = (0,q⊥). This means that the low-energy surface state
has approximately the same energy as a delocalized state
that is uniform along the x direction. We will show in this
section that we can approximate the low-energy surface states
using uniform delocalized states. The decay length λEq =
6
√

6h̄4J 2d/E2
q of the surface state is given by Eq. (A13a).

In the limit of long wavelength and small anisotropy,

Uq = Vq = u0
q

Eq

6h̄2J (2 + √
6)

, (A14a)

v0
q = u0

q

(
−1 + Eq

3h̄2J

)
. (A14b)

The results in Eqs. (A13) and (A14) determine the surface-state
wave function completely except for the normalization factor,
u0

q . The condition for normalization,

(
u0

q

)2 = (uq0 )2 2Im{qx}Nxd

1 − e−2Im{qx }Nxd
, (A15)

follows from the commutation relations between the magnon
operators, α±

q . The staggered part of the wave function does not
contribute to Eq. (A15) because the normalization condition
is dominated by contributions from the bulk of the AFI and
the staggered part of the wave function is localized near the
interface. In Eq. (A15), uq0 is a Bogoliubov parameter of
the momentum eigenstate with momentum q0. When Nxd �
λEq , the surface state is approximately uniform along the x

direction, and the normalization factor u0
q is approximately

equal to the Bogoliubov parameter uq0 .
In Sec. II, we showed that the surface states relevant to

our problem are approximately uniform along the x direction.
These states are approximately equal to uniform delocalized
states, meaning that their wave functions are approximately
equal everywhere in the AFI. We use the uniform delocalized
states to model the behavior of the surface states. The uniform
delocalized states are defined by Eq. (A11) for qx = 0 and
φq = 0 and satisfy u

φ
q = uq0 . Like the surface states, the

uniform delocalized states satisfy Eq. (A14).

c. Low-energy delocalized states

We now consider the delocalized states of type (iii) in
the low-energy limit. In general, these states are given by
Eq. (A11). The reflection angle, φq , is determined from
Eq. (A12). In the long-wavelength and low-anisotropy limit,
we find that the reflection angle φq is tan (φq) = 1/(qxλEq ).
The smallest possible value of the momentum qx is on the
order of the inverse of the length of the AFI. This lower bound
provides an upper boundary for the reflection angle, φq , of
the order Nxd/λEq . We have shown in Sec. II that λEq is
considerably longer than the AFI length, Nxd, for magnon

energies, Eq , on the order of the gap, E0. Therefore, the
reflection angle φq is small for magnons with energies on the
order of the gap. We have shown in Sec. III that the reflection
angle φq is also small for thermal magnons with energies that
are considerably higher than the gap. Consequently, we model
the behavior of all the states of type (iii) using delocalized
states with a vanishing reflection angle.

We consider the long-wavelength and small-anisotropy
limit. For small reflection angles, the delocalized states are
described in terms of coefficients that, as the surface states,
fulfill Eq. (A14). However, to leading order in the long-
wavelength and small-anisotropy expansion, the normalization
factor differs and is

uφ
q =

√
2uq =

√
3h̄2J

Eq
. (A16)

The normalization factor for a state of type (iii) is larger than
that of a uniform delocalized state by a factor of

√
2. The

enhancement is caused by constructive interference between
the incoming and reflected waves.

APPENDIX B: NORMAL-METAL SCATTERING STATES

Next, we determine the scattering states in the normal metal.
In the bulk, the Hamiltonian is governed by Eq. (4). We will
find the energy eigenstates of the conduction electrons when
the antiferromagnet is in the classical ground state. In Sec. III,
we included the coupling of conduction electrons and magnons
as a perturbation. The exchange coupling of Eq. (5) results in
a spin-dependent potential at the interface that represents the
proximity effect. The total Hamiltonian for the conduction
electrons is HNT = HN + H

(0)
I , where the interface proximity

effect is captured by

H
(0)
I = −h̄2JI

4

∑
〈i,j〉|i∈A,j∈N

(c†↑j c↑j − c
†
↓j c↓j )

+ h̄2JI

4

∑
〈i,j〉|i∈B,j∈N

(c†↑j c↑j − c
†
↓j c↓j ). (B1)

We consider a half-filled system. Transport is governed by
the states near the Fermi surface. In this case, we assume that
the scattering states are of the form

c
†
mk = 1√

2M

∑
i

(
eik·r i + r∗

mke
ikR ·r i + r∗U

mk eikUR ·r i
)
c
†
mi.

(B2)

The coefficient rmk represents specular reflection, and the
coefficient rU

mk describes Umklapp reflection. These coef-
ficients are elements of the S matrix. The S matrix is
unitary, which ensures the conservation of particle number.
Because the S matrix is unitary, the coefficients rmk and rU

mk
satisfy r∗

mkU rU
mk + rmkr

U∗
mkU = 0 and 1 = |rmk|2 + |rU

mk|2. These
conditions can be used to determine rmk and rU

mk. The normal
metal has the same lengths Myd and Mzd in the y and z

directions as the AFI, My = Ny , and Mz = Nz. The normal
metal extends a finite length Mxd in the negative x direction
from x = xI − dI . The number of sites in the normal metal
is MxMyMz.
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The plane-wave states,
∑

i expik·r i c
†
mi , are eigenstates of

HN except at the interface. The plane-wave states and the
scattering states both satisfy the dispersion relation

εk = −2t[cos(kxd) + cos(kyd) + cos(kzd)] + 6t. (B3)

The scattering state c
†
mk consists of one incoming plane-wave

state with respect to the interface and two reflected (normal
and Umklapp) plane-wave states. The wave vector k satisfies
Re{kx} � 0 and is therefore incoming.

We require the scattering states of Eq. (B2) to be eigenstates
of HNT . From the Hamiltonian at the sites along the interface,
we find the boundary conditions

h̄2JI

4t
m(e−ikU

x (xI −dI ) + r∗
mkU e−ikUR

x (xI −dI ))

= (
r∗U
mkU e−ikR

x (xI −dI +d)
)
,

h̄2JI

4t
m

(
r∗U
mk e−ikUR

x (xI −dI )
)

= (e−ikx (xI −dI +d) + r∗
mke

ikR
x (xI −dI +d)). (B4)

Defining λm = h̄2JIm/(4t), the solutions to the boundary and
unitarity conditions are [44]

rmk = −e2ikx (xI −dI ) λ2
m − ei(kx−kU

x )d

λ2
m − e−i(kx+kU

x )d
,

rU
mk =

2iλmei(kx+kU
x )(xI −dI )

√
sin(kxd) sin

(
kU
x d

)
λ2

m − e−i(kx+kU
x )d

. (B5)

In the limit of weak or strong exchange interaction at the
interface, |λm| � 1 or |λm| � 1, the Umklapp scattering am-
plitude rU

mk and hence the proximity effect are negligible. The
influence of the antiferromagnet attains its maximum when
the exchange interaction is comparable to the nearest-neighbor
hopping parameter. The Umklapp scattering amplitude can be
related to the spin-mixing conductance [15].

APPENDIX C: SURFACE COUPLING

In Appendices A and B, we found the energy eigenstates
of the noninteracting system of magnons and conduction elec-
trons. In this section, we determine the dominant interaction
term, starting from the interface interaction of Eq. (5). We will
arrive at Eqs. (6) and (8).

We perform the Holstein-Primakoff transformation as
described in Sec. II, and we expand Eq. (5) in powers of
boson creation and annihilation operators. The zeroth-order
terms have already been accounted for in Appendix B, and
therefore we disregard them here. Disregarding higher-order
terms in the bosonic spin operators, we find that

HI = H
(0)
I + JI h̄2

2

∑
〈i,j〉|i∈A,j∈N

aic
†
↓j c↑j + a

†
i c

†
↑j c↓j

+ JI h̄2

2

∑
〈i,j〉|i∈B,j∈N

b
†
i c

†
↓j c↑j + bic

†
↑j c↓j . (C1)

We now substitute the delocalized states derived in Appen-
dices A and B into Eq. (C1). After this substitution, we arrive
at Eq. (6), which defines the interaction amplitudes V ±.

V ± is determined from the amplitude of the delocalized
states at the interface. The amplitude of a magnon state α+

q (α−
q )

along the interface is given by uq(xI ) on the A (B) sublattice
and vq(xI ) on sublattice B (A). To leading order in the magnon
exchange energy h̄2J , we find that

uq(xI ) = −vq(xI ) =
√

2uq√
2

δqx ,0
= 1

√
2

δqx ,0

√
3h̄2J

Eq
. (C2)

The wave function of the conduction-electron scattering state
cmk at the interface has two components. One component
oscillates with momentum k⊥ as we move along the interface,
and the other component oscillates with momentum kU

⊥ .
This mixing is caused by the proximity effect. The absolute
value of the amplitude of each component is constant along
the interface. This absolute value is Ck

m = sin (kxd)/(λ2 + 1)
for the component with momentum k⊥ and Ck

mλ for the
component with momentum kU

⊥ .
Using the amplitudes of the delocalized states, we find to

leading order that

V ±
q,K ,K ′ = h̄2JI

(
CK ′

m CK
m

)
2Mx

√
N

∑
k,k′

[uq(xI ) − vq(xI )]

× (e∓iK ′
xdδ⊥

K ′,k′ + λδ⊥
K ′,k′U )

× (e±iKxdδ⊥
K ,k − λδ⊥

K ,kU )δ⊥
±qU ,k′−k. (C3)

The delta functions δ⊥
K ′,k′ ensure conservation of momentum

in the transverse plane. Four different combinations of delta
functions appear because each of the conduction-electron
states cmk has two components. These delta functions in turn
give rise to two different momentum conditions in Eq. (8).
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