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We investigate spin transport by thermally excited spin waves in an antiferromagnetic insulator. Starting
from a stochastic Landau-Lifshitz-Gilbert phenomenology, we obtain the out-of-equilibrium spin-wave
properties. In linear response to spin biasing and a temperature gradient, we compute the spin transport
through a normal-metal–antiferromagnet–normal-metal heterostructure. We show that the spin conduct-
ance diverges as one approaches the spin-flop transition; this enhancement of the conductance should be
readily observable by sweeping the magnetic field across the spin-flop transition. The results from such
experiments may, on the one hand, enhance our understanding of spin transport near a phase transition, and
on the other be useful for applications that require a large degree of tunability of spin currents. In contrast,
the spin Seebeck coefficient does not diverge at the spin-flop transition. Furthermore, the spin Seebeck
coefficient is finite even at zero magnetic field, provided that the normal metal contacts break the symmetry
between the antiferromagnetic sublattices.
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Introduction.—Antiferromagnets have recently garnered
increasing interest in the spintronics community, for both
their novel intrinsic properties and their technological
potential. Their appealing features are their lack of stray
magnetic fields, fast dynamics relative to ferromagnets,
and robustness against external fields [1]. The last property
is a double-edged sword, as the lack of response to an
external field makes control of antiferromagnets challeng-
ing. Recent theoretical and experimental work has instead
sought to generate and detect antiferromagnetic dynamics
optically [2] and electrically [3].
Spin transport through insulators is of particular interest

because there is no dissipation associated with the motion of
electrons. However, there is currently a lack of understand-
ing of how spins can flow between metals via antiferro-
magnetic insulators. Exploring these phenomena is essential
for exploiting antiferromagnetic insulators in a more active
role in spintronics. In ferromagnets, equilibrium thermal
fluctuations generate spin waves that can drive coherent
magnetic dynamics [4] or transport spins [5]. For instance, a
nonlocal spin conductance contains signatures of the spin
transport properties. Measurements of this spin conductance
have generated considerable excitement in the spintronics
community [5]. It is of interest to see if thermal magnons can
provide a similar long-range spin transport in antiferromag-
netic insulators. We predict that the spin conductance is as
substantial in antiferromagnets and therefore expect that
thermal magnon transport in these systems will generate a
sizable interest as well. Below we discuss in detail two
scenarios to open the door for long-range spin transport
through antiferromagnetic insulators, without the need for
adjacent ferromagnets, or, in principle, magnetic fields.

In antiferromagnets, at zero magnetic fields, spin-wave
excitations are doubly degenerate. The two branches carry
opposite spin polarity. Thus, to realize spin transport by
thermally generated spin waves, the symmetry between the
antiferromagnetic sublattices must be lifted. One means of
achieving this is to employ a ferromagnetic layer, controlled
by amagnetic field [6]. Alternatively, themagnetic field itself
suffices to break the sublattice symmetry, eliminating the
need for a ferromagnetic component. Reference [7]measured
the spin Seebeck effect [8,9], in which angular momentum is
driven by a temperature gradient in bipartite electrically
insulating antiferromagnets at finite magnetic fields.
The first scenario is the injection of thermal magnons

by a spin accumulation in an adjacent metal. While
spin-accumulation-induced thermal magnon injection in
ferromagnet–normal-metal heterostructures has been the
subject of recent theoretical research [10,11], predictions
for the antiferromagnetic analogue are currently lacking and
are restricted to coherent magnetic dynamics of the anti-
ferromagnetic order and the resulting spin superfluidity that
requires external fields [12,13]. Here, we show that the spin
conductivity of thermalmagnons is strongly enhanced upon
approaching the spin-flop transition. This leads to a large
amount of tunability of the magnon transport by an external
field, which may be desirable for applications.
A second possibility for engineering magnon spin trans-

port in antiferromagnets is to break the interface sublattice
symmetry. Magnetically uncompensated antiferromagnet-
metal interfaces have been studied theoretically [14].
Nevertheless, the possibility of realizing a spin Seebeck
effect by breaking the sublattice symmetry at the interface
has not been proposed until now.

PRL 119, 056804 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

4 AUGUST 2017

0031-9007=17=119(5)=056804(5) 056804-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevLett.119.056804
https://doi.org/10.1103/PhysRevLett.119.056804
https://doi.org/10.1103/PhysRevLett.119.056804
https://doi.org/10.1103/PhysRevLett.119.056804


Stochastic dynamics.—We consider a bipartite antiferro-
magnet (AF). The system is translationally invariant in the
yz plane. There is an interface along the plane x ¼ −d=2 on
the left with a normal metal (LNM) and an interface along
the plane x ¼ d=2 with an identical normal metal (RNM)
on the right [see Fig. 1(a)]. Let us suppose that a spin
accumulation μ ¼ μẑ is fixed by, e.g., spin Hall physics in
the left lead, or that a linear phonon temperature profile is
established across the structure [15].
We begin by parameterizing the AF spin degrees of

freedom in the long wavelength limit by the Néel order unit
vector n and dimensionless magnetization m. At zero
temperature, the AF relaxes towards a ground state deter-
mined by the free energy U [16],

U ¼ s
Z
V
d3r

�
m2

2χ
þ A

2

X3
i¼1

ð∂inÞ2 −
1

2
Kn2z −H ·m

�
: ð1Þ

Here, s ¼ sa þ sb is the sum of the saturation spin densities
of the a and b sublattices (in units of ℏ), V is the volume of
the AF, χ is the susceptibility, A is the Néel order exchange
stiffness, and Kð>0Þ is the uniaxial, easy-axis anisotropy.
The external magnetic field H is taken to be applied along
the z direction in order to preserve rotational symmetry
around the z axis in spin space. The bulk symmetry of the
bipartite lattice under the interchange of the sublattices,
which sends m → m and n → −n, is manifest in the form
of U.
At sufficiently small magnetic fields, jHj<Hc ¼

ffiffiffiffiffiffiffiffiffi
K=χ

p
,

the ground states are degenerate, given by n ¼ �z and
m ¼ 0, and the AF is in the antiferromagnetic phase. In the
antiferromagnetic phase, the ground state magnetic texture
is insensitive to the spin accumulation μ in the linear

response, and the AF does not support a spin current at zero
temperature. At fields jHj > Hc, the ground state is “spin-
flopped,” withm ∝ z and n in the xy plane. Spin biasing of
the spin-flopped state generates a spin super current [12,13]
at zero temperature. In order to focus on transport by
thermally activated spin waves, we restrict the following
discussion to the antiferromagnetic phase. Furthermore, in
this phase, the spin waves are circular and therefore simpler
to analyze.
At finite temperatures, fluctuations drive the AF texture

away from the zero-temperature configuration, necessitat-
ing equations of motion that incorporate bulk and boundary
fluctuations and dissipation. The small amplitude excita-
tions of the Néel order above the ground state n ¼ −z are
δn, described by the linearized equation of motion in the
bulk (−d=2 < x < d=2),

ð∂2
x þ q2Þn ¼ −fB=A: ð2Þ

(see Supplemental Material [17]). Here, n ¼ nðx;q;ωÞ is
the Fourier transform (in the coordinates ρ ¼ yŷ þ zẑ
and t) of nðx; ρ; tÞ≡ nxðx; ρ; tÞ þ inyðx; ρ; tÞ, while q2 ≡
−q2 − K=Aþ η2ω=Aχ þ iαℏω=A with ηω ≡ χðℏωþHÞ.
The stochastic force fB, modeling fluctuations of the AF
lattice that drive n, is connected to the bulk Gilbert damping
α by the fluctuation dissipation theorem (here in the large
exchange regime, χ−1 ≫ ℏωþH),

hf�Bðx;q;ωÞfBðx0;q;ω0Þi

¼ ×δðx − x0Þδðq − q0Þδðω − ω0Þ 2αð2πÞ3ℏω
tanh½ℏω=2T� ; ð3Þ

where T ¼ TðxÞ is the local temperature in units of energy.
Complementing Eq. (2) are boundary conditions on n,

A∂xnþ iα0ωdðℏω − μÞn ¼ −fL ðx ¼ −d=2Þ
−A∂xnþ iα0ωdℏωn ¼ −fR ðx ¼ d=2Þ; ð4Þ

where fL and fR correspond to fluctuations by lead electrons
at the interfaces. The quantity α0ω ≡ α0 − ηω ~α

0, describing
dissipation of magnetic dynamics at the interfaces (which
we have taken to be identical for simplicity), has contri-
butions from both sublattice-symmetry-respecting (α0)
and -breaking ( ~α0) microscopics there. For example, in a
simple model in which fluctuation and dissipation torques
for the two sublattices are treated independently (see
Supplemental Material [17]), one finds α0 ¼ ðα0a þ α0bÞ=2
and ~α0 ¼ ðα0a − α0bÞ=2; here α0ζ ¼ g↑↓ζ =4πsd (with g↑↓ζ as
the spin-mixing conductance) is the effective damping
due to spin pumping for sublattice ζ ¼ a, b [12,14] [see
Fig. 1(b)]. Such a model corresponds to the continuum limit
of a synthetic antiferromagnet (composed of ferromagnetic
macrospins separated by normal metals) in which sublattice

(a) (b) (c) 

FIG. 1. (a) LNM-AF-RNM setup. A spin accumulation μ ¼ μz
at the left interface inside the left normal metal and temperature
gradient ∂xT across the heterostructure are applied; as a result
a spin current j flows across the right interface. (b) Metal-
antiferromagnet interface, with unbroken (α0a ¼ α0b, top) and
broken (α0a ≠ α0b, bottom) sublattice symmetries. (c) Symmetry
breaking in a synthetic antiferromagnet, composed of alternating
metallic spacers and ferromagnetic layers with respective
damping parameters α1, α2…. If, for example, the contact (blue)
material differs from that of the interlayer spacer (gray), then
α1 ≠ α2, analogously to (b).
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symmetry breaking may be more carefully controlled [see
Fig. 1(c)].
The effective surface forces fLðRÞ and damping coeffi-

cient α0ω are connected via the fluctuation-dissipation
theorems for the l ¼ L, R interfaces,

hf�l ðq;ωÞfl0 ðq;ω0Þi

¼ ×δll0δðq − q0Þδðω − ω0Þ 2sα
0
ωð2πÞ3ðℏω − μlÞ

tanh½ðℏω − μlÞ=2Tl�
; ð5Þ

where we have retained terms up to first order in ηω. Here
TL and TR are lead electronic temperatures and, in our
setup, μL ¼ μ and μR ¼ 0.
Spin transport.—We now obtain the spin current that

flows across the right interface in linear response to the spin
accumulation μ ¼ μẑ at the left interface. Rewriting the
equation of motion for the magnetization m [Eq. (2) in the
Supplemental Material [17]] as a continuity equation for
the spin density s ¼ sℏm, one obtains an expression for
the spin current, j ¼ −sAn × ∂xn. Solving Eqs. (2)–(5)
in the absence of a temperature gradient, retaining terms
only up to linear order in μ, the z-spin current flowing
through the right interface becomes

j≡ hẑ · ji ¼ AsImhn�ðrÞ∂xnðrÞix¼d=2 ¼ Gμ; ð6Þ

where we have introduced the spin conductance G.
In the low-damping or thin-film limit, d ≪ λ, where λ2 ≡

A=αT is the imaginary correction to q2 (i.e., q2 ¼ q2r þ iλ−2

with qr real) due to Gilbert damping, the spin current is
carried by well-defined spin-wave modes [corresponding
to solutions to Eq. (2) in the absence of noise] with fre-

quencies ωð�Þ
lq ¼ −H=ℏ� ℏ−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Aq2 þ Aðlπ=dÞ2 þ K�=χ

p
.

Here q is the transverse wave vector, l is an integer denoting
spin-wave confinement in the x direction, and the labels �
corresponds to the two spin-wave branches for which n

rotates in opposite directions, as ωðþÞ
lq has the opposite sign

of ωð−Þ
lq (though a different magnitude when H ≠ 0). In the

low-damping or thin-film limit, the spin conductance G is
therefore a sum over contributions from each of these
modes and can further be broken into “symmetric” and
“antisymmetric” (under interchange of the sublattices)
pieces,

G ¼
X

l¼0;1;2;…

Z
d2q
ð2πÞ2 ðG

ðSÞ
lq þ GðAÞ

lq Þ: ð7Þ

Defining

Fði;jÞ
� ðξ=TÞ≡ ðT=ξÞiðℏωð�Þ=TÞ1þj

sinh2ðℏωð�Þ=2TÞ ; ð8Þ

with ℏωð�Þ ¼ −H � ξ, the symmetric contribution, which
is proportional to α0, is

GðSÞ
lq ¼ ðςlα0Þ2

2ςlα
0 þ α

�
1

χT

�
GðSÞðξlq=TÞ; ð9Þ

where ξlq ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðq2 þ ½lπ=d�2Þ=χ þ K=χ

p
and GðSÞðξ=TÞ ¼

Fð1;0Þ
þ ðξ=TÞ − Fð1;0Þ

− ðξ=TÞ, with ςl ¼ 1 for l ¼ 0 and ςl ¼ 2

for l > 0 (reflecting the exchange boundary conditions
[18,19]). The antisymmetric piece, which is proportional to
~α0, reads

GðAÞ
lq ¼ ςl ~α

0 2ςlα
0ðςlα0 þ αÞ

ð2ςlα0 þ αÞ2 GðAÞðξlq=TÞ; ð10Þ

where GðAÞðξ=TÞ ¼ Fð0;0Þ
þ ðξ=TÞ þ Fð0;0Þ

− ðξ=TÞ and we have
assumed that ~α0 ≲ α0. From Eqs. (9) and (10) we find an
algebraic decay of the spin current with film thickness. In
the extreme thin-film limit, d ≪ g↑↓=4πsα, the damping at
the interface dominates over bulk, and both contributions
decay as 1=d; in the opposite regime, d ≫ g↑↓=4πsα, one
has that both again decay in the same way, as 1=d2. The
symmetric and antisymmetric contributions may instead be
distinguished by reversing the direction of the applied field:
GðAÞðξ=TÞ changes sign under H → −H (and therefore
vanishes at zero field), while GðSÞðξ=TÞ remains the same.
Note, however, that the antisymmetric contribution,
Eq. (10), is suppressed by a factor of Tχ ≪ 1 relative to
the symmetric contribution, Eq. (9).
As a consequence of the divergence of the Bose-Einstein

distribution at zero spin-wave gap (and as a precursor to
superfluid transport [12]), the spin conductance diverges as
one approaches the spin-flop transition. The boundary for
the antiferromagnetic phase is defined by the vanishing of
the spin-wave gap for one of the modes (ℏωð�Þ

00 ¼ 0), which
determines the critical field, Hc ¼

ffiffiffiffiffiffiffiffiffi
K=χ

p
. Then, from

Eqs. (9) and (10), both the symmetric and antisymmetric
contributions diverge as 1=ð1 − jHj=HcÞ as H → Hc (see
Fig. 2). This enhancement of the spin-wave conductance is
a key feature of spin transport in antiferromagetic insulators
with a spin-flop transition.
We may compare these results with spin transport driven

by a temperature gradient. Supposing a linear temperature
gradient TðxÞ¼Tþð∂xTÞx, with a continuous profile
across the structure so that TL ¼T−∂xTd=2 and TR ¼
T þ ∂xTd=2, Eqs. (2)–(5) yield a spin current for μ ¼ 0,

j ¼ −SΔT; ð11Þ

whereΔT ¼ d∂xT is the temperature change across the AF.
In the low-damping or thin-film limit, the Seebeck coef-
ficient S similarly separates into symmetric and antisym-
metric sums over discrete spin-wave modes,

S ¼
X

l¼0;1;2;…

Z
d2q
ð2πÞ2 ðS

ðSÞ
lq þ SðAÞlq Þ; ð12Þ

PRL 119, 056804 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

4 AUGUST 2017

056804-3



where

SðSÞlq ¼ ðςlα0=8Þð1=χTÞSðSÞðξlq=TÞ ð13Þ

is the symmetric contribution, with SðSÞðξ=TÞ≡
Fð1;1Þ
þ ðξ=TÞ − Fð1;1Þ

− ðξ=TÞ, and

SðAÞlq ¼ ςlð ~α0=4ÞSðaÞðξlq=TÞ ð14Þ

the antisymmetric contribution, with SðAÞðξ=TÞ≡
Fð0;1Þ
þ ðξ=TÞ þ Fð0;1Þ

− ðξ=TÞ (see Fig. 3). In contrast to the
spin conductance, there is no divergence in the spin
Seebeck coefficient as H → Hc. Furthermore, the antisym-
metric contribution is even under H → −H (and is gen-
erally nonzero at zero field), while the symmetric
contribution is odd (vanishing at zero field, as is required
by sublattice symmetry); in contrast to spin biasing, a
temperature gradient requires either a field or sublattice
symmetry breaking at the interfaces in order to generate a
spin current, else the two branches � carry equal and
opposite spin currents. Both symmetric and antisymmetric
contributions to S decay as 1=d; writing j ¼ SΔT ¼ ς∂xT,
one finds that ς≡ Sd is constant, reflecting that the
Seebeck effect here is driven by bulk fluctuations.
The transport coefficients G and S may be inferred from

a number of different experiments. Suppose, for example,
the leads are heavy metal with large spin-orbit interactions.
The spin conductance G may then be measured electrically
as follows. Via the spin Hall effect, a spin accumulation is
created in the LNM from an applied electric current IL
flowing in the y direction. In turn, the spin accumulation
excites spin waves in the AF, as described above. Via the
inverse spin Hall effect, this spin current is then converted
to a measurable electrical current flowing in the y direction
inside the RNM. Under closed-circuit conditions, this
current manifests as a voltage buildup VR. For a platinum-
MnF2-platinum structure, we find a nonlocal resistance
R ¼ VR=IL ∼mΩ from our theory, which is of the same
order of magnitude as that measured in [10] for a
ferromagnet. Similarly, for the same setup, the Seebeck
coefficient S can be obtained by applying a temperature
difference across the structure. We estimate that a temper-
ature difference of ΔT ¼ 10−3 K applied across a 10-nm-
thick AF results in a voltage ∼μV, which is in the range of
that measured by [7]. (See third section of the Supplemental
Material [17].) In addition to MnF2, other materials, such
NiO [20] and Cr2O3 [1,21], are also possible candidates for
the insulating antiferromagnetic layer.
Conclusion and discussion.—In this Letter, we have

theoretically demonstrated two methods to realize spin
transport in thin antiferromagnetic insulators that do not
require the presence of a magnetic field or a ferromagnet.
Working from a stochastic Landau-Lifshitz-Gilbert phe-
nomenology, we obtained two key results. First, the spin
conductance diverges as the magnetic field approaches the
spin-flop transition. Second, the spin Seebeck effect may
survive at zero field if the symmetry between antiferro-
magnetic sublattices is broken at the interface with normal
metal contacts. Additionally, we estimated the inverse spin
Hall voltages that would be produced by spin and temper-
ature biasing in experiments.
The thin-film approximation, Eqs. (7) to (14), in

which the structural transport coefficients consist of con-
tributions from well-defined spin-wave modes, are valid for
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FIG. 2. Total conductance G times l2 ≡ Aχ for χ−1 ¼ 10Hc,
d ¼ l, α ¼ α0 ¼ ~α0 ¼ 0.1, for varying temperatures T=Hc from 1
to 5 in steps of 1. Inset: Symmetric magnon conductance GðSÞ
[defined below Eq. (9)] for a single magnon mode with energy
ℏωðþÞ ¼ −H þ ξ as a function of ξ for fixed temperature T. As
ξ → H, corresponding to the closing of the magnon gap
(H → Hc) and thus approaching the spin-flop transition, the
conductance diverges. Shown are different fields (corresponding
to the vertical dashed lines) for 0 to Hc in steps of T=10, with the
corresponding curves for GðSÞ shown in shades of purple to green.
GðAÞ is qualitatively similar and therefore not shown.

FIG. 3. Total spin Seebeck coefficient S for the symmetric case
( ~α0 ¼ 0), Eq. (12) for α0 ¼ 0.1, d ¼ l ¼ ffiffiffiffiffiffi

Aχ
p

, and χ−1 ¼ 10Hc.
SðSÞ (upper inset) and SðAÞ (lower inset) as functions of temper-
ature for fixed ξ. While the symmetric contribution vanishes at
high temperatures, the antisymmetric contribution saturates at
SðAÞ ¼ 8. The solid purple or green curves correspond to H
ranging from 0 to Hc in increments of Hc=10. At high temper-
atures, S grows larger with temperature, in contrast with [7,9]; see
second section of Supplemental Material [17].
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thicknesses d ≪ λ. The parameter λ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
A=αT

p
, which

describes the decay of magnons across the thickness of
the film, can be estimated from a Heisenberg model on a
lattice as λ ∼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TN=Tα

p
(supposing T ≪ H, K), where TN

is the Néel temperature and a the lattice spacing. For
T ∼ TN=10, a low damping factor α ∼ 10−3 and a lattice
spacing a ∼ nm, for example, λ corresponds to a thickness
of ∼50 nm, which grows larger at lower temperatures.
The stochastic Landau-Lifshitz-Gilbert phenomenology

we employed, Eqs. (2)–(5), may of course be extended to
thicker films, resulting in, for example, an exponential
decay over the length scale λ2jkT j ∼

ffiffiffiffiffiffi
Aχ

p
=α (with jkT j as

the magnon thermal wave vector) rather than an algebraic
decay of the spin conductance with distance. Thicker films,
however, introduce additional complications, e.g., elastic
disorder scattering and phonon-magnon coupling (e.g.,
phonon drag). Spin-wave interactions (scattering and mean
field effects), which are absent in the single-particle treat-
ment above, may change transport at higher spin-wave
densities, e.g., at higher temperatures or thicker films or
near the spin-flop transition, where the Bose-Einstein
divergence may necessitate a many-body treatment, thereby
altering the conductanceG. The scattering times and length
scales over which such effects become important remain an
open question. In addition, in our model the transition from
the antiferromagnetic to spin-flop phase is second order;
the presence of the Dzyaloshinskii-Moriya interaction,
spin-wave interactions, or in-plane anisotropy can change
critical exponents such as ν in G ∼ ð1 − jHj=HcÞν from its
value ν ¼ −1 obtained above or even alter the order of the
phase transition, thereby modifying the field dependence
of G [22].
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