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Spin pumping and inverse spin Hall voltages from dynamical antiferromagnets
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Dynamical antiferromagnets can pump spins into adjacent conductors. The high antiferromagnetic resonance
frequencies represent a challenge for experimental detection, but magnetic fields can reduce these resonance
frequencies. We compute the ac and dc inverse spin Hall voltages resulting from dynamical spin excitations
as a function of a magnetic field along the easy axis and the polarization of the driving ac magnetic field
perpendicular to the easy axis. We consider the insulating antiferromagnets MnF2, FeF2, and NiO. Near the
spin-flop transition, there is a significant enhancement of the dc spin pumping and inverse spin Hall voltage for
the uniaxial antiferromagnets MnF2 and FeF2. In the uniaxial antiferromagnets it is also found that the ac spin
pumping is independent of the external magnetic field when the driving field has the optimal circular polarization.
In the biaxial NiO, the voltages are much weaker, and there is no spin-flop enhancement of the dc component.
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Spin pumping is a versatile tool for probing spin dynamics
in ferromagnets [1–6]. The magnitude of the pumped spin
currents reveals information about the magnetization dynamics
and the electron-magnon coupling at interfaces [7–9]. The
precessing spins generate a pure spin flow into adjacent con-
ductors. Inside the conductor, the resulting spin accumulation
and currents give insight into the spin-orbit coupling. The
inverse spin Hall effect (ISHE) is often used to convert the pure
spin current into a charge current, which is detected [10,11].
Additionally, the induced nonequilibrium spins can be probed
with x-ray magnetic circular dichroism measurements [12,13].

Antiferromagnets differ strikingly from ferromagnets [14].
There are no stray fields in antiferromagnets, making them
more robust against the influence of external magnetic
fields. The recent discovery of anisotropic magnetoresistance
[15–17], spin-orbit torques [18], and electrical switching
of an antiferromagnet [19] demonstrate the feasibility of
antiferromagnets as active spintronics components.

The real benefit of antiferromagnets is that they can enable
terahertz circuits. Unlike ferromagnets, the resonance fre-
quency of antiferromagnets is also governed by the tremendous
exchange energy. We recently demonstrated that the transverse
spin conductance, a governing factor of spin pumping, is as
large in antiferromagnet–normal metal junctions (AF|N) as in
ferromagnet–normal metal junctions [20]. Furthermore, this
result is valid even when the magnetic system is insulating.
The firm electron-magnon coupling at the interface opens the
door for electrical probing of the ultrafast spin dynamics in
antiferromagnets [20,21].

Precessing spins in antiferromagnets generate terahertz
currents in adjacent conductors. This ability opens new
territory in high-frequency spintronics. Such studies could
become influential in gathering vital insight into fast electron
dynamics and eventually for a broad range of applications.
These electric signals also provide further knowledge about the
less explored field of antiferromagnetic spin dynamics. This
potential requires thorough exploration; we need to establish
several critical aspects.

The manner in which spin pumping generates ac and dc
inverse spin Hall voltages has yet to be studied in detail.
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Furthermore, there is a large variety of antiferromagnets and
external field configurations that require knowledge beyond
the first predictions of the magnitude of the pumped spin
current of Ref. [20]. Recently, researchers explored spin
transport through, e.g., the insulating antiferromagnets NiO
and MnF2. Unlike the treatment of Ref. [20], in NiO, there
are two significant anisotropies to consider. As a starting
point in the exploration of high-frequency spintronics, it
is also important to tune the resonance frequencies to a
lower gigahertz range for easier detection by conventional
electronics. The application of an external magnetic field can
lower the resonance frequency. However, the details of the
magnetic field and its ac component polarization dependence
also remain to be classified, a task that we will perform
here.

In this Rapid Communication, we compute the inverse spin
Hall ac and dc voltages generated by spin pumping. We hope
that our studies will further motivate these voltages to be exper-
imentally measured. Such studies will provide a needed deeper
insight into antiferromagnetic resonance phenomena, features
much less explored than their ferromagnetic counterparts in
recent decades.

We consider an insulating antiferromagnet–normal metal
bilayer, as illustrated in Fig. 1. We also consider a variety
of magnetic anisotropies and magnetic field configurations
and strengths. Therefore, the results apply to more complex
systems such as biaxial antiferromagnets with elliptical pre-
cessional modes. The model also accounts for spin backflow
due to the spin accumulation in the metal. We also study how
the inverse spin Hall voltages depend on the polarization of the
ac magnetic field for different systems, which we find to have
a strong influence on the resulting signal. Our main findings
are that, when applying an external magnetic field along the
easy axis close to the spin-flop transition, we can decrease
the resonance frequency while simultaneously significantly
increasing the inverse spin Hall signal. The increase in the
signal can even overcome the previously anticipated limiting
factor in antiferromagnet spin pumping: the ratio of the
anisotropic energy to the exchange energy [20].

We consider a small antiferromagnet in the macrospin
limit whereby all spin excitations are homogeneous. The
antiferromagnet has two sublattices, with temporal magne-
tizations M1 and M2. The dynamics are described by the
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FIG. 1. The precession of m and n around their equilibrium values
pumps spins into the adjacent normal metal of thickness dN . In turn,
the spin accumulation μN

s in the normal metal causes a backflow of
spins into the antiferromagnet. The spin current in the normal metal
causes ac and dc electric fields in the x and z directions, respectively,
through the inverse spin Hall effect.

staggered magnetizations L = (M1 − M2)/2 = Ln and the
magnetization M = (M1 + M2)/2 = Lm. These fields satisfy
the constraints n2 + m2 = 1 and n · m = 0. At equilibrium,
the sublattice magnetizations are antiparallel. An ac magnetic
field, with a general polarization, drives the magnetic moments
at resonance.

The antiferromagnets that we consider are described by the
free energy

F =LV

γ

[
ωE(m2 − n2) + ω⊥

(
m2

z + n2
z

) − ω‖
(
m2

x + n2
x

)
− 2ωxmx − 2ωymy − 2ωzmz

]
, (1)

where γ is the gyromagnetic ratio, V is the volume of
the antiferromagnet, ωE � 0 is the exchange frequency, and
ω⊥ � 0 and ω‖ � 0 are the hard axis (z axis) and easy axis (x
axis) anisotropy frequencies. The frequency ωx quantifies the
influence of the external magnetic field along the easy axis,
whereas ωy and ωz quantify the influence of the ac magnetic
field in the yz plane. In Table I, we list the exchange and
anisotropy frequencies for MnF2, FeF2, and NiO.

The dynamic Landau-Lifshitz-Gilbert (LLG) equations that
describe the precession of n and m are

ṅ = 1
2 (ωm × n + ωn × m) + τ n, (2a)

ṁ = 1
2 (ωn × n + ωm × m) + τm, (2b)

TABLE I. Exchange and anisotropy frequencies.

Material ωE (1012 s−1) ω‖ (1012 s−1) ω⊥ (1012 s−1)

MnF2 [22] 9.3 1.5 × 10−1

FeF2 [23] 9.5 3.5
NiO [24,25] 1.7 × 102 2.3 × 10−3 1.3 × 10−1

with the effective fields ωn = −(γ /L)∂F/∂n and ωm =
−(γ /L)∂F/∂m. The dissipation and spin-pumping torques
are

τ n = α[n × ṁ + m × ṅ], (3a)

τm = α[n × ṅ + m × ṁ], (3b)

where the total Gilbert damping coefficient α is a sum of the
intrinsic damping and the spin-pumping-enhanced damping:
α = α0 + αSP [20,26].

A linear response expansion around the equilibrium values
of n and m determines the antiferromagnetic resonance
(AFMR) frequencies. For simplicity, we only present the
resonance frequencies in the exchange limit ω‖,ω⊥ � ωE .
This limit is valid for many antiferromagnets but not for FeF2

due to a large anisotropy. In our numerical calculations below,
we do not make this approximation. In the exchange limit, the
four resonance frequencies below spin flop are [27]

ω2
res ≈ ω2

x + ω2
0 ±

√
ω2

Eω2
⊥ + 4ω2

xω
2
0, (4)

where ω2
0 = ωE(2ω‖ + ω⊥). The critical field strength at which

the spin-flop transition occurs is |ωcrit
x | = √

ω‖(2ωE + ω‖)
in both uniaxial and biaxial antiferromagnets. We will only
consider magnetic fields below this value.

Herein, we focus on the right-handed low-energy mode
since we want to decrease the resonance frequency. In the
absence of an external magnetic field, the resonance frequency
of this mode is 0.27 THz for MnF2, 1.41 THz for FeF2,
and 0.14 THz for NiO. By applying a magnetic field close
to the spin-flop transition, we can reduce these resonance
frequencies down to the gigahertz range. Such a reduction
should enable detection of AFMR and the resulting significant
spin-pumping-induced ac and dc ISHE voltages.

The pumped spin current from a dynamical antiferromagnet
into a normal metal is [20]

Ip
s = h̄g⊥

2π
(n × ṅ + m × ṁ), (5)

where g⊥ is the transverse (“mixing”) conductance. The
spin pumping from the antiferromagnetic insulator causes
a spin accumulation in the normal metal, which in turn
produces a spin backflow current [11]. In antiferromagnetic
insulators, the backflow spin currents within the sublattices
add constructively [20,28]:

Ib
s = − g⊥

2π

[
m × (

μN
s × m

) + n × (
μN

s × n
)]

, (6)

where μN
s is the spin accumulation in the normal metal.

The most significant contributions to the spin current are
second order in the deviations from equilibrium along the
easy axis and first order along the perpendicular directions.
Nevertheless, the leading-order terms in the total spin current
only depend on the first-order deviations of the magnetic
moments from their equilibrium values, n0 = ex and m0 =
0. It is therefore sufficient to consider the linear response
expansions

n = n0 + 1
2 (δneiωt + δn∗e−iωt ), (7a)

m = 1
2 (δmeiωt + δm∗e−iωt ), (7b)
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where the transverse deviations are δn = δnyey + δnzez and
δm = δmyey + δmzez. ω is the driving frequency of the ac
magnetic field.

The spin accumulation μN
s is a solution of the spin diffusion

equation

∂μN
s (r,t)
∂t

= γNHex × μN
s + DN

∂2μN
s

∂y2
− μN

s

τN
sf

, (8)

where the terms on the right-hand side of Eq. (8) are properties
of the normal metal such as the diffusion coefficient DN , the
gyromagnetic ratio γN , and the spin-flip relaxation time τN

sf ,
and Hex is the external magnetic field. The boundary conditions
for μN

s require that the spin current vanishes at the outer edge of
the normal metal (y = dN ) and that the current is continuous
across the antiferromagnet–normal metal interface (y = 0).
The diffusion equation can be solved in position-frequency
space [11,29] in terms of the Fourier components of the total
spin current IN

s = Ip
s + Ib

s at y = 0.
The spin current in the normal metal causes a charge current

perpendicular to the spin current’s direction and polarization
through the ISHE. This charge current is given by [30,31]

jISHE
c (y,t) = θN

2e

Ah̄
ey × IN

s (y,t), (9)

where θN is the spin Hall angle in the normal metal and
A is the area of the AF|N interface. Since the system is
an open circuit, the charge current accumulates charges at
the interfaces. In turn, a generated electric field ensures that
the net charge current through the metal vanishes. To determine
this electric field, we integrate the charge current jISHE

c over the
metallic system to find the electric field needed to cancel the
charge current. See the Supplemental Material [32] for the full
derivation. The dc component of this electric field becomes

Edc
z = εN

(
1 − 1

cosh
(
dN/λN

sd

)
)

μx
0, (10)

the first harmonic ac component is

Eac
x (t) = εNRe

[(
μz

1 + iμ
y

1

cosh [κ3(ω)dN ]

+ μz
1 − iμ

y

1

cosh [κ2(ω)dN ]
− 2μz

1

)
eiωt

]
, (11)

and the second harmonic ac component is

Eac
z (t) = 2εNRe

[(
1 − 1

cosh [κ1(2ω)dN ]

)
μx

2e
2iωt

]
. (12)

Here, we have introduced the conversion coefficient εN =
θNeνDN/(σNdN ), where σN is the conductivity of the normal
metal. The factors μ

x/y/z
n are the nth Fourier components of the

spin accumulation at the AF|N interface (y = 0). We compute

that they are

μ
y

1 = − ih̄ωg⊥
4π

[
�2(ω) + g⊥

2π

]
δnz + �3(ω)δny[

�2(ω) + g⊥
2π

]2 + �2
3(ω)

, (13a)

μz
1 = ih̄ωg⊥

4π

[
�2(ω) + g⊥

2π

]
δny − �3(ω)δnz[

�2(ω) + g⊥
2π

]2 + �2
3(ω)

, (13b)

μx
2 = g⊥

4π�1(2ω)

(
μ

y

1δny + μz
1δnz

)
(13c)

for the first and second harmonic ac components, and

μx
0 = g⊥

2π�1(0)

[
Re

(
μ

y

1δn
∗
y + μz

1δn
∗
z

)
− h̄ω Im

(
δn∗

yδnz + δm∗
yδmz

)]
(14)

for the dc component. All other components of the spin accu-
mulation vanish. The components of the spin accumulation of
Eqs. (13) and (14) are expressed in terms of the functions

�1(ω) = 1
2 h̄νADN�1(ω), (15a)

�2(ω) = 1
4 h̄νADN [�2(ω) + �3(ω)], (15b)

�3(ω) = i
4 h̄νADN [�2(ω) − �3(ω)], (15c)

with �i(ω) = κi(ω) tanh [κi(ω)dN ]. Here, we have defined
κ2

1 = (1 + iωτN
sf )/(λN

sd)2, κ2
(2,3) = κ2

1 ∓ iγNHex/DN , the spin

diffusion length λN
sd =

√
DNτN

sf , and the one-spin density
of state ν. Note that μx

2 and consequently Eac
z vanish in

the absence of a magnetic field [�3(ω) = 0] and when
the precession of the staggered magnetization is circular
(δnz = ±iδny).

We will now use our model to compute the ISHE signal as
a function of external magnetic fields in an AF|Pt bilayer. By
inserting the linear response ansatz of Eq. (7) into the LLG
equations in Eq. (2), we determine the functions δn and δm.
The components of the ac magnetic field that drives these
perturbations are given by ωj = |ωj | exp(iωt + iθj ) for j =
y,z. The phase difference θz − θy determines the polarization
of the ac field, and significantly affects the resulting spin
current. In our calculations, we let |ωy | = |ωz|.

As the material properties of Pt, we use τN
sf = 0.01 ps

[11], ν = 4.55 × 1047 J−1 m−3 [33], σN = 5 × 106 (� m)−1

[34], λN
sd = 1.5 nm, and θN = 0.075 [35]. These properties

are at 10 K. The transverse spin conductance g⊥ is of
the same order of magnitude as that of a ferromagnetic or
ferrimagnetic material [20]. We therefore estimate this to be
g⊥/A = 3 × 1018 m−2 [36,37]. Experimental measurements
of g⊥ are needed and are further motivated by the present
calculations.

The magnitude of the ISHE signal depends on the thickness
of the Pt layer. It increases approximately linearly with
dN for dN/λN

sd � 1 and is inversely proportional to dN for
dN/λN

sd 	 1. This qualitative behavior is similar to that in
ferromagnetic/normal metal bilayers (cf. Fig. 3(a) in Ref. [11]).
The peak of the ISHE signal is at some value dN ∼ λN

sd, and for
our choice of parameters, it peaks at dN ≈ 0.8λN

sd = 1.2 nm.
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FIG. 2. dc and first harmonic ac components of the ISHE electric
field for MnF2 [(a) and (b)], FeF2 [(c) and (d)], and NiO [(e) and
(f)] as a function of external magnetic field along the easy axis for
different polarizations of the ac magnetic field. The ac field is 1 mT,
and α = 0.01.

We use this thickness of the Pt layer for the remaining
calculations. The optimal thickness dN weakly depends on
the value of g⊥/A and should therefore be determined
experimentally.

Figure 2 plots the dc and the first harmonic ac components
of the ISHE electric field as a function of the magnetic
field. In the uniaxial antiferromagnets, MnF2 and FeF2, one
contribution to the dc signal is independent of the ac magnetic
field polarization, and the other contribution is proportional
to sin(θz − θy). At high magnetic fields, these contributions
are equal in magnitude but add constructively or destructively,
depending on the circular polarization of the ac magnetic field.

Reference [20] demonstrated that the pumped dc spin
current in uniaxial antiferromagnets at resonance is suppressed
by the factor

√
ω‖/ωE . Since

√
ω‖/ωE is significantly larger

in FeF2 (0.61) than in MnF2 (0.13), it was believed that FeF2

gives a stronger signal than does MnF2. However, with our
present additional insight, we reach the opposite conclusion
at finite magnetic fields. We find that when ωx → ωcrit

x , the
dc signal diverges as (ωcrit

x − ωx)−1. The utilization of the
divergence is a better route toward enhancing the ISHE signal
than increasing

√
ω‖/ωE . This implies that MnF2 is a more

promising candidate than FeF2 because the spin-flop field of
MnF2 (9.5 T) is easier to achieve experimentally than is that
of FeF2 (50.4 T).

The dc signal diverges because the linear response model
breaks down close to the spin-flop transition. By analyzing
the magnitude of |δn| we find that it is 0.01 at ωx ≈ 0.95ωcrit

x

and 0.1 at ωx ≈ 0.995ωcrit
x for the uniaxial antiferromagnets.

Consequently, linear response is a good approximation fairly
close to the divergence. The enhancement of the dc spin
pumping close to the spin-flop transition is therefore a real

phenomenon. We find that the breakdown of the linear
response theory is even softer for the biaxial NiO.

Unlike the dc component, the first harmonic ac component
is independent of the ac magnetic field polarization in the
absence of a uniform external magnetic field and converges
toward a finite value as ωx → ωcrit

x . The signal when the
polarization is circular (θz − θy = π/2) gives the largest dc
signal (and ac signal for sufficiently large magnetic fields).
Furthermore, this curve becomes independent of the magnetic
field. The origin of this is a complicated compensation between
the diverging contributions from the out-of-equilibrium fields
and the vanishing resonance frequency around the spin-flop
transition.

In NiO, the dominant ac magnetic field contribution is
linear in the polarization, which is proportional to cos(θz − θy).
Such a feature appears when there is a hard axis, and the
precession is in the easy plane. The linear contribution dom-
inates when ω⊥/

√
ωEω‖ 	 α. In biaxial antiferromagnets,

we find that the pumped current is governed by the scaling
factor αω‖/ω⊥ instead of

√
ω‖/ωE . In discussing the strength

of the spin-pumping signals, we should also note that, in
both uniaxial and easy-plane antiferromagnets, the signal is
inversely proportional to ωE . Since ω‖/ω⊥ ∼ 0.02 and since
ωE is exceptionally large in NiO, the dc spin pumping signal is
weak in comparison to that of MnF2 and FeF2. In addition, the
dc signal in NiO does not exhibit a divergence as ωx → ωcrit

x .
We do not present the second harmonic ac voltage since it
is minimal (and in many cases identically zero). Our results
imply that uniaxial antiferromagnets are preferred candidates
for the observation of spin pumping compared to hard-axis
antiferromagnets such as NiO.

Reference [22] conducted preliminary spin-pumping ex-
periments for a MnF2|Pt system. However, they attributed the
dominant dc signal to microwave rectification and not spin
pumping. Nevertheless, they observed a small change in the
signal upon reversal of the magnetic field, which is consistent
with spin pumping.

We propose a different experimental geometry to enhance
the spin-pumping signal. The use of the ac magnetic field
in a plane perpendicular to the easy axis and a polarization
θz − θy = π/2 increases the dc ISHE signal by a factor of
4. Additionally, by reducing the thickness of the Pt layer
from 7 nm to the thickness where the ISHE signal attains
its maximum (in our calculations, this is 1.2 nm), we can
further amplify the signal by a factor of 2. Together, these
improvements will increase the signal strength by an order of
magnitude. Whether the signal is due to spin pumping can
then easily be tested by the dependence on the polarization
of the ac magnetic field according to our model. A circular
polarization with θz − θy = π/2 doubles the signal strength
compared to a linear polarization. On the other hand, a
circular polarization with θz − θy = −π/2 results in no dc spin
pumping. In contrast, microwave rectification effects should
be much less sensitive to the polarization.

In summary, we computed the inverse spin Hall signal as a
result of spin pumping and spin backflow in an AF|N bilayer.
Our results apply to any polarization of the ac magnetic field
and precessional motion of the magnetizations, and the results
can also be used in more complex biaxial antiferromagnets. We
demonstrate that the dc signal increases substantially near the
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spin-flop transition in uniaxial antiferromagnets. Furthermore,
the signal strongly depends on the polarization of the ac
magnetic field. We also suggest an improved experimental
geometry that considerably enhances the dc signal resulting
from spin pumping.

The research leading to these results has received funding
from the European Research Council via Advanced Grant No.
669442 “Insulatronics”, EU FET “Transpire” via Grant No.
737038, and The Research Council of Norway via Grant No.
239926.
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