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Antiferromagnets may exhibit spin superfluidity since the dipole interaction is weak. We seek to
establish that this phenomenon occurs in insulators such as NiO, which is a good spin conductor according
to previous studies. We investigate nonlocal spin transport in a planar antiferromagnetic insulator with
a weak uniaxial anisotropy. The anisotropy hinders spin superfluidity by creating a substantial threshold
that the current must overcome. Nevertheless, we show that applying a high magnetic field removes this
obstacle near the spin-flop transition of the antiferromagnet. Importantly, the spin superfluidity can then
persist across many micrometers, even in dirty samples.
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Introduction.—Achieving long-range spin transport is
essential in spintronics. In metals, conduction electrons can
carry spin information. The spin-diffusion length is gen-
erally less than a few hundred nanometers and often as
short as a couple of nanometers. However, in ferromagnets
there are additional transport channels via spin excitations,
typically in the form of spin waves. In ferromagnetic
insulators, the absence of noisy itinerant carriers implies
less dissipation such that magnons can traverse distances up
to several microns [1]. Magnetic low-damping insulators in
which new spin transport mechanisms can exist are of
interest and can be promising candidates in low-dissipation
spintronics.
Antiferromagnets (AFMs) have ordered spin configura-

tions, but there is no net magnetization at equilibrium. New
observations and advances in our understanding have
stimulated increased interest in AFM spintronics [2–5].
AFMs produce no stray fields that can influence other
elements. There are more known high-temperature AFM
insulators and semiconductors than their ferromagnetic
counterparts. AFMs exhibit transport properties similar
to those of ferromagnets. Some of these features are
anisotropic magnetoresistance [6], giant magnetoresistance
[7], the large anomalous Hall effect in noncollinear AFMs
[8], and the spin Hall effect (SHE) [9]. There are also recent
investigations of the spin Seebeck effect in AFMs [10–13].
Additionally, there are observations of spin transport in
AFMs via spin pumping from an adjacent ferromagnet into
AFMs [14–17]. In these experiments, it is possible that
(evanescent) magnons carry the spin current [18]. A unique
aspect of AFMs is that it is possible to trigger ultrafast THz
dynamics of the AFM order parameter via charge [19,20]
and spin currents [21], magnons [22], spin-orbit torques
[23], light [24], and spin Hall oscillators [25]. Furthermore,
magnon Bose-Einstein condensation (BEC) occurs in AFM
insulators [26–28].
In this Letter, we investigate spin transport via spin

superfluidity (SSF) in AFM insulators. We focus on NiO as

a prototypical biaxial AFM insulator [29–31]. Crucially,
the additional anisotropy normally hinders SSF [32–34].
However, we demonstrate that near the spin-flop transition
[35] superfluid behavior still emerges and long-range spin
transport beyond micrometers is feasible. This makes NiO
and other biaxial AFMs promising for the first explicit
experimental demonstration of SSF in magnetic materials.
Superfluidity is a dissipationless flow mediated by soft

Nambu-Goldstone boson modes [36]. Models of super-
fluidity typically use a complex scalar field with global
U(1) symmetry. The superfluid velocity is proportional to
the gradient of the condensate phase [36]. Halperin and
Hohenberg demonstrated an analogy between the spin
dynamics in planar magnetic systems and the hydrody-
namic behavior of ideal liquids [37]. In a series of seminal
works, Sonin extended the concept of superfluidity of
electron-hole pairs [38,39] to spin systems and introduced
the notion of SSF [32]. In this scenario, SSF involves a 2π
rotation of spins in a planar magnet.
However, some of us have recently demonstrated that in

planar ferromagnets, even as thin as 5 nm, the long-range
dipole interaction destroys SSF based on the proposed
mechanism [40]. Superfluidity reappears in synthetic AFM
systems [40]. Since the dipole interaction is negligible in
AFMs, we further explore SSF in AFMs [32,41,42].
The azimuthal angle of the order parameter ϕ and the

out-of-plane component of the total magnetization mz,
can describe SSF [28,32,37,40–42]. They are conjugate
variables for AFMs. In the superfluid phase, mz is the
superfluid density and ϕ is the phase of the condensate.
The transverse component of the order parameter precesses.
The spatial gradient of the superfluid phase is proportional
to the spin supercurrent.
Setup.—We consider a quasi-one-dimensional (1D) biax-

ial AFM insulator. There is a strong hard-axis anisotropy and
a weaker easy-axis anisotropy. Two metallic layers attach
at the left and the right of the antiferromagnetic sample,
as shown in Fig. 1. Inducing SSF requires the spin
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accumulation to be polarized along the hard anisotropy axis.
The spin-valve structure proposed in Ref. [40] can meet this
requirement. It is also possible to use a heavymetal to create
a spin current via SHE. In the latter case, there must be a
finite angle between the hard axis and the interface normal to
ensure a significant superfluid spin density.
The width of both leads isW, and the separation between

them is 2W. The total system length is L ¼ 4W. A spin
accumulation generated by one of the two mentioned
injection methods induces a spin current from the left.
In turn, the spin current exerts a torque on the spins in the
AFM and causes precession. A small spatial gradient of the
phase of the precession governs superfluidity. Finally, spin
pumping into the right lead causes a spin accumulation
therein. The resulting spin accumulation can be measured
using either a spin-valve structure or the inverse SHE.
Spin dynamics and stability criteria.—Superfluidity can

be described semiclassically. We assume an AFM with
two equivalent magnetic sublattices. The unit vectors along
the directions of the magnetic moments are mAðr; tÞ and
mBðr; tÞ. At equilibrium, mAðr; tÞ and mBðr; tÞ are anti-
parallel. We introduce the magnetization,m¼ðmAþmBÞ=2,
and the staggered order parameter, n ¼ ðmA −mBÞ=2. The
effective total free energy density, see Eq. (S2) [43], is
given by [2,44]

f ¼ λ2ω∥ð∇nÞ2 þ ω⊥ðn · ẑÞ2 − ω∥ðn · x̂Þ2 þ ω2
H

2ωex
ðH · nÞ2;

ð1Þ
where λ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

A=ω∥
p

is the domain wall (DW) length, A is
the exchange stiffness, ω∥ is the uniaxial anisotropy, ω⊥ is
the hard-axis anisotropy, ωex is the homogeneous exchange
energy, and ωH the Zeeman energy induced by an external
magnetic field in theH direction. The exchange stiffnessA
and the homogeneous exchange energy ωex are related via
ωex=A ¼ 2D=d2, where D and d are the spatial dimension
and the lattice constant, respectively. The magnetization
is a slave variable of the staggered order parameter,
m ¼ _n × n=4ωex þ ωHn × ðH × nÞ=2ωex [2,19,20].
We consider an external magnetic field along the

easy axis. Equation (1) highlights that a critical magnetic
field Hc ¼ ωc

H=γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωexω∥

p
=γ compensates the uniaxial

anisotropy. This peculiarity of AFM systems is known as
the spin-flop transition [35]. At the spin-flop transition, in
this model, the free energies of biaxial AFMs become
similar to those of planar AFMs with U(1) symmetry.
However, the focus on this feature remains insufficient to
prove, or fully understand, the range of validity of SSF.
The additional feature is that the magnetic field

continues to influence the dynamic part of the AFM
Lagrangian. This influence is via a gyrotropic term that
breaks the Lorentz-invariant properties of AFMs, Lkin½n� ¼
ð _n2 þ 4ωH _n · n ×HÞ=ð8ωexÞ. It is the total Lagrangian
density, L ¼ Lkin − f, that determines the dynamics of
the Néel vector. In the presence of the spin transfer torque
exerted by the spin accumulation in the left lead μins
and the dissipation, see Eq. (S1) [43], the dynamics of
the staggered field is

n × ½n̈ − 8λ2ωexω∥∇2n − 4ωHH × _nþ 8ωexω⊥nzẑ
− 8ωexω̄∥nxx̂þ 8αωex _n − 4αSPωexn × μins � ¼ 0; ð2Þ

where ω̄∥ ¼ ω∥ − ω2
H=ð2ωexÞ is the effective easy-axis

anisotropy energy that has been renormalized by the
magnetic field, and the damping αðrÞ ¼ αG þ αSPðrÞ, is
sum of the Gilbert damping αG and the local damping
enhancement αSPðrÞ.
To study spin transport in the setup of Fig. 1, we consider

1D solutions of the linearized equation of motion of Eq. (2).
We use spherical coordinates for the staggered order
parameter field n ¼ f

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − n2z

p
cosϕ;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − n2z

p
sinϕ; nzg,

where nz is the out-of-plane deviation.
First, we consider the static regime to find the critical

current required to trigger SSF and the Landau criteria for
the breakdown of SSF. To the linear order in nz, we find

ω̄∥ sin 2ϕ − 2λ2ω∥∂2
xϕ ¼ −αSPμz; ð3aÞ

ðω⊥ þ ω̄∥cos2ϕÞnz − λ2ω∥∂2
xnz ¼ 0; ð3bÞ

where the driving force is μz ¼ μinszΘðW − xÞ and Θ is the
Heaviside function. One solution of Eq. (3) is a homo-
geneous state. The spins are then in the easy plane, nz ¼ 0,
and the azimuthal angle is governed by the STT,
sin 2ϕ0 ¼ −ðVL=V0ÞαSPμinsz=ω̄∥, where VL is the partial
AFM volume below the left lead. The static macrospin
solution becomes unstable when the spin-transfer torque is
sufficiently large, jαSPμinsz j > V0ω̄∥=VL. Consequently, in
the presence of a finite effective uniaxial anisotropy ω̄∥,
triggering SSF requires a large spin accumulation when the
spin-pumping-enhanced damping αSP is small. It is there-
fore essential to reduce the effective uniaxial anisotropy
by an external magnetic field. In this regime, there are
also two types of spatially varying solutions of Eq. (3). An
in-plane homogeneous spiral state is a stable state when
ω̄∥ ¼ 0, while a kinklike state becomes more stable in
ω̄∥ ≠ 0 [34,45].

FIG. 1. SSF in a biaxial AFM insulator. The left and right
normal metals (NMs) act as a spin injector and spin detector,
respectively. The easy plane is the xy plane and the easy axis is
the x direction. SSF occurs when the spins are tilted out of the
easy plane and start to rotate around the hard axis with a spatially
varying phase.
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Next, we allow the spins to vary in time. The dynamics
of the conjugate variables, up to the linear order in nz and
the derivatives of ϕ, are described by

_ϕ ¼ −4ωexmz − 2ωHnz cosϕ; ð4aÞ
_mz ¼ −2λ2ω∥∂2

xϕþ ω̄∥ sin 2ϕþ 2αG _ϕ

þ ωH

2ωex
ð _nz cosϕþ nz _ϕ sinϕÞ: ð4bÞ

Equation (4b) is a continuity equation for the out-of-plane
component of the magnetization. In an ideal planar AFM,
ω∥ ¼ ωH ¼ αG ¼ 0; thus, the z component of the mag-
netization is conserved and Eqs. (4a) and (4b) are similar to
the Josephson supercurrent equations [32,34].
Finally, the dynamics of ϕ and nz read as

ϕ̈− v2c

�
∂2
xϕ−

1

2λ̄2
sin2ϕ

�
þ 8αGωex

_ϕþ 4ωH _nz cosϕ¼ 0;

ð5aÞ

n̈z − v2c∂2
xnz þ 8αGωex _nz þ 8ωexnzðω⊥ þ ω̄∥cos2ϕÞ

− 4ωH cosϕ _ϕ ¼ 0; ð5bÞ

where λ̄ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
A=ω̄∥

p
is the effective DW length and vc ¼

2λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωexω∥

p
is the effective velocity of “light.” The AFM

spin wave velocity vc is significantly larger than its
ferromagnetic counterpart by a factor of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωex=ω⊥

p
[34].

The gyrotropic term in the Lagrangian causes the last
terms in the dynamical equations, Eqs. (4a)–(5b). The
gyroscopic term couples the dynamics of the condensate
phase to the out-of-plane component of the order param-
eter. However, this term is proportional to _nz, Eq. (5a), and
might be disregarded when a strong hard-axis anisotropy
suppresses the out-of-plane dynamics [43].
Equations (5a) and (5b) decouple if ωH ¼ ω∥ ¼ 0. Then,

Eq. (5a) determines gapless phase excitations, ωϕ ¼ vck.
Conversely, Eq. (5b) implies that excitations of nz have a
gap, ωnz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2ck2 þ 8ω⊥ωex

p
. Since the gap is large, it is

considerably more difficult to excite dynamic variations in
nz. This is different in planar ferromagnets, where there is
only one gapless magnon mode with linear dispersion
[41,42,47]. In the considered regime, ωH ¼ ω∥ ¼ 0, the
steady-state solution is ϕðx; tÞ ¼ ϕðxÞ þ Ωt. The preces-
sion frequency is determined by the driving force of
Eq. (3) such that αGΩ ¼ λ2ω∥∂2

xϕ. The z component of
the magnetization is conserved. The continuity equation in
the low Gilbert damping limit reads as Ms _mz ¼ −∂xJsz ,
where Ms is the saturation magnetization and the spin
supercurrent density is Jsz ¼ 2Msλ

2ω∥∂xϕðxÞ [32,41,42].
In the presence of a finite uniaxial anisotropy and

magnetic field, the superfluid density mz is no longer
conserved. Nevertheless, in the weak dissipation limit and

at the spin-flop transition, the angular momentum is
conserved; see Fig. S1 [43].
When ω̄∥ ≠ 0, Eq. (5a) has a kinklike soliton solution for

the condensate phase, ϕðx;tÞ¼2tan−1fexp½�ðx−x0−vtÞ=
ðλ̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ½v=vc�2

p
Þ�g, where x0 is the arbitrary DW center

position and v is the DW velocity. An inhomogeneous state
then becomes stable. The DW velocity is determined by
the driving force, resulting in v ∼�WαSPμ

in
s =ð2παGÞ < vc.

The traveling solitons generate an ac signal on top of a dc
output in the detector. At the spin-flop transition, λ̄−1 ¼ 0,
only the dc component of the signal survives and the
system exhibits perfect SSF.
Let us investigate the conditions for SSF stability. We

will find two criteria that also exist in similar forms in
ferromagnetic SSF [32]. To this end, we consider the limit
of a large hard-axis anisotropy; then, nz is very small,
and the total free energy becomes f ∼ λ2ω∥ð∂xϕÞ2 þ
½ω⊥ − λ2ω∥ð∂xϕÞ2 þ ω̄∥cos2ϕ�n2z − ω̄∥cos2ϕ. At the spin-
flop transition, ω̄∥ ¼ 0, the free energy implies that the SSF

remains stable provided that ∂xϕ <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω⊥=ðλ2ω∥Þ

q
. This

upper critical limit for the gradient of the condensate phase
is analogous to the Landau criterion in conventional
superfluidity. A finite effective anisotropy increases the
upper critical limit. Another necessary condition is that the
spin supercurrent must be spatially uniform. The steady-
state solution of Eq. (5a) gives rise to an approximately
uniform spin supercurrent only when ∂xϕ ≫ 1=λ̄ [32].
Numerical results and discussion.—To establish SSF,

we numerically solve the coupled Landau-Lifshitz-Gilbert
(LLG) equations for sublattice magnetization mA and mB,
Eq. (S1) [43], for the setup in Fig. 1. In the numerical
calculations, we use parameters for the prototypical AFM
insulator NiO [29–31,48]. The spin-flop transition occurs at
a critical external magnetic field of Hc ∼ 8.5 T [49]. It was
experimentally shown that at near room temperature Hc
is reduced to approximately 2 T in NiO [49]. We also
estimate, ωc

H=2ωex ∼ 10−3, and thus, the z component of

FIG. 2. The ratio between the output spin accumulation and the
input spin accumulation as a function of the applied magnetic
field for two different input spin accumulations.
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the spin current is approximately conserved at the spin-flop
transition Eq. (4b).
The spin accumulation pumped into the right lead, in the

limit of low spin-memory loss, is μouts ¼ −ð1=2ÞPimi × _mi
[50]. When the hard-axis anisotropy is large, the z
component of the pumped spin accumulation is given by
μoutsz ≈ − _ϕ. In Fig. 2, we plot the normalized spin accumu-
lation in the right lead versus the input spin accumulation in
the left lead, μoutsz =μ

in
sz , as a function of the applied magnetic

field along the x direction H. The system length is
L ¼ 0.75 μm. We consider two STT amplitudes: μinsz ¼
0.44 and μinsz ¼ 4.4 μeV. In both cases, the maximum spin-
transport efficiency occurs at the spin-flop transition. When
the STT energy is smaller than the easy-axis energy, the
output signal vanishes rapidly when the applied magnetic
field deviates from the critical field. Naturally, we still find
large signals when the input STT energy is larger than the
uniaxial energy. In the latter case, the STT is strong enough
to overcome the pinning arising from the effective uniaxial
anisotropy and triggers coherent spin dynamics even at
lower external magnetic fields. This field-dependent behav-
ior can be used to experimentally distinguish the spin
current arising from usual magnons and the spin current
carried by SSF.
In Fig. 3, we plot the detected spin accumulation as a

function of the STT amplitude for a system size
L ¼ 0.75 μm. We show the results with and without an
applied critical magnetic field. When there is no magnetic
field, the spins are pinned by the uniaxial anisotropy. In this
case, the STT amplitude should be larger than a threshold
that is proportional to the effective uniaxial anisotropy
energy ω̄x to induce spin transfer. Near the spin-flop
transition, this limit vanishes due to the restoration of
the U(1) symmetry. At the spin-flop transition, higher order
anisotropy terms may be present in the free energy; see,
for example, Ref. [2]. In this case, there is no longer a
perfect U(1) symmetry. This residual anisotropy can easily
be overcome by a small spin accumulation. Above the

threshold, the ratio between the pumped and injected spin
currents is linear in the input spin accumulation but only up
to another critical value determined by the Landau cri-
terion. There is no longer a typical superfluidity behavior
beyond this point.
The magnetic moments in NiO are ferromagnetically

aligned in the f111g planes. The adjacent planes are
antiferromagnetically coupled. Thus, the easy planes are
not parallel to, e.g., a surface along f100g. We, therefore,
also explore the likely effect of a finite angle between the
easy plane of the NiO layer and a Pt=NiO interface. To this
end, we rotate the easy plane in our numerical calculations
while maintaining the applied magnetic field in the x
direction. Figure 3 demonstrates that SSF remains feasible
at finite angles. Only the component of the magnetic field
parallel to the uniaxial anisotropy reduces the effective
anisotropy. Then, in the presence of a finite angle between
the external magnetic field and the uniaxial anisotropy θ,
the critical magnetic field is increased to Hc= cos θ.
We plot the time evolution of the spin current for

different length scales in Fig. 4. At the spin-flop transition
point, even in a dirty sample where αG ∼ 6.8 × 10−3 [29],
SSF persists up to a few micrometers. This micron size
range of the spin transport by SSF is considerably larger
than the damping decay length of magnons in NiO,
λG ¼ vc=ð4αGωexÞ ∼ 40 nm. Figure 4 also shows that
when the system size increases, the transient time increases.
In general, in the presence of a uniaxial anisotropy and a
strong STT amplitude, the output spin accumulation has
both ac components in the GHz regime together with a dc
component. As discussed, the ac signal is a consequence of
injecting kinklike solitons from the left lead. There is a
reduction of the ac signal near the spin-flop transition. The
signal is purely dc exactly at the transition point.
Experimentally, magnons and SSF contribute to the

output spin accumulation. Their contributions can be
distinguished either by changing the strength and direction

FIG. 3. The output spin accumulation (in the right lead) as a
function of the input spin injection (in the left lead).

FIG. 4. The time evolution of the output spin accumulation for
different length scales at the spin-flop transition H ¼ Hc when
μinsz ¼ 2 μeV. Inset: Below the spin-flop transition H ≃ 6.6 T
when μinsz ¼ 4.4 μeV.
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of the magnetic field or by changing the sample size.
Magnons decay exponentially with the system size,
whereas we expect a very small algebraic decay for SSF
in our setup.
Conclusion.—NiO is a biaxial AFM without a U(1)

symmetry. This material can also have a significant Gilbert
damping. These features appear to be detrimental to long-
range spin transport via both magnons and SSF.
Nevertheless, we demonstrate that NiO and other biaxial
AFMs are good candidates for observing SSF over
micrometer length scales. SSF behavior is dramatically
improved around the spin-flop transition, which can be
reached by applying an external magnetic field. SSF can be
observed in standard nonlocal spin-transport setups and
reach distances beyond micrometers.
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