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Backscattering in helical edge states from a magnetic impurity and Rashba disorder
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Transport by helical edge states of a quantum spin Hall insulator is experimentally characterized by a weakly
temperature-dependent mean free path of a few microns and by reproducible conductance oscillations, challenging
proposed theoretical explanations. We consider a model where edge electrons experience spatially random Rashba
spin-orbit coupling and couple to a magnetic impurity with spin S � 1/2. In a finite bias steady state, we find for
S > 1/2 an impurity induced resistance with a temperature dependence in agreement with experiments. Since
backscattering is elastic, interference between different scatterers possibly explains conductance fluctuations.
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Introduction. During the last decade, the quantum spin Hall
effect (QSHE) [1–3] has become an important example of a
topologically ordered state with time-reversal invariance. One
of its key features is the existence of helical edge states [4] with
a quantized conductance of e2/h per edge, as edge electrons
are protected from elastic single particle backscattering by
time-reversal symmetry [1,4,5]. Soon after the theoretical
prediction [6], the QSHE was realized in HgTe/CdTe quantum
wells [7], and the quantized conductance [7] as well as the
demonstration of nonlocal transport [8] were crucial signatures
for this first-time experimental observation. However, already
in this first as well as in subsequent experiments [7–12], devia-
tions from the quantized conductance with a weak temperature
dependence were found for edges longer than approximately
1 μm. Moreover, in short samples, where the conductance
is essentially quantized, small conductance fluctuations are
observed as the back-gate voltage is tuned [7,8,12,13]. After
the prediction [14] of the QSHE in InAs/GaSb/AlSb quantum
wells, the same qualitative behavior of the conductance as in
HgTe/CdTe was observed also in these devices [15–18].

A multitude of other mechanisms beyond elastic sin-
gle particle backscattering have been proposed as possible
explanations for the relatively short mean free path [19]:
inelastic single particle [20–23] and two-particle backscat-
tering [1,4,5,23–25] which can be caused by electron-electron
or electron-phonon interactions, both of which are usually
considered in combination with other time-reversal invariant
perturbations; tunneling of electrons into charge puddles
caused by inhomogeneous doping, giving rise to inelastic
single particle backscattering [26,27]; coupling of edge elec-
trons to a spin bath which gets dynamically polarized [28],
thus effectively breaking time-reversal symmetry and giving
rise to elastic backscattering in conjunction with Rashba
disorder [29]; time-reversal symmetry breaking by an exciton
condensate [30]; and coupling of edge electrons to a single
Kondo impurity [4,31,32], to a lattice of Kondo impurities [33],
to a single Kondo impurity in the presence of homogeneous
Rashba spin-orbit coupling [34,35], or to several Kondo
impurities with random anisotropies [36]. Although these
mechanisms are very diverse, many of them have in common
a pronounced temperature dependence, usually some power
law T α with positive exponent α for the resistance. However,
only a weak temperature dependence has been observed

experimentally, with the exception of a recent study using
very low excitation currents [37]. In fact, in some experi-
ments, a slight increase of the resistance is observed when
the temperature is decreased [7,11,12]. With respect to the
conductance fluctuations, only charge puddles [26,27] as well
as coherent scattering between several magnetic impurities
with large spin S > 1 and uniaxial single-ion anisotropy [38]
were considered as possible explanations. Theories that build
on scattering from local disorder are also supported by recent
scanning gate microscopy experiments [39], which identified
individual scattering centers.

In this Rapid Communication, we consider scattering of
helical edge electrons from a magnetic impurity with spin
S � 1/2 in combination with a spatially fluctuating Rashba
spin-orbit coupling. The latter originates from a fluctuating
electric field in the out-of-plane direction due to disorder
in the doping layers [40–44]. From a T -matrix calculation
accounting for the combined scattering events off these
perturbations, we derive an effective additional coupling to the
impurity. This coupling provides a backscattering mechanism
which is enhanced by an increased polarization of the impurity
with spin S > 1/2. The polarization of the impurity spin is
determined from the steady state solution to a semiclassical
scattering rate equation. We consider the linear and the
nonlinear regime. Upon entering the nonlinear regime with the
source drain voltage larger than temperature, the impurity gets
polarized and the Rashba disorder induced effective coupling
leads to an increased resistance, thus providing a possible
explanation for the experimental results. We assume that the
relevant Kondo temperature is exponentially suppressed and
well below the temperature regime studied in our analysis.
Since the dominant contribution to backscattering is elastic in
our model, quantum interference between different scatterers
is possible, and can give rise to conductance fluctuations as
observed in Refs. [7,8,12,13].

Model. The edge states are described by

H0 =
∫

dx �†
α(x)σ z

αβ(−iv�∂x)�β(x), (1)

where �↑(x) annihilates a right-moving electron, v is the edge
velocity, and the spin quantization axis is in the z direction. A
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FIG. 1. (a) Diagrammatic representation of the second-order
scattering process that gives rise to elastic backscattering without
an impurity spin flip [cf. Eq. (4)]. (b) The corresponding first-order
process from the effective coupling H ′

S [cf. Eq. (5)]. The dashed line
denotes the (effective) coupling of the impurity and electron. The
dotted line with a cross represents the Rashba potential.

disordered Rashba spin-orbit coupling is described by [40–43]

HR =
∫

dx �†
α(x)σy

αβ{a(x),i∂x}�β(x), (2)

with the correlator 〈a(x)a(x ′)〉dis = V0F (x − x ′) and F (0) =
1 [44,45]. Being time-reversal invariant, HR does not cause
elastic backscattering [1]. The essential ingredient is the
coupling of electrons to a local magnetic impurity with spin S

via

HS = JzS
zsz + J⊥(S+s− + S−s+) + Janiso(S+ + S−)sz.

(3)
As usual, S± = Sx ± iSy and si = �†

α(0)σ i
αβ�β(0) are the

local spin density operators of the edge electrons. For Janiso =
0, HS describes a Heisenberg XXZ coupling, which has an
axial rotation symmetry and was the subject of earlier studies
[4,31–35]. In systems with axial symmetric HS , the z compo-
nent of the total spin is conserved and the dc conductance is
exactly quantized [32]. A finite Janiso breaks the axial rotation
symmetry, thus enabling persistent backscattering in the dc
limit [46].

In general, a coupling to the impurity spin could also involve
terms such as S+s+ + S−s− and Sz(s+ + s−) that break axial
rotation symmetry. However, a microscopic analysis, based
on an isotropic sp-d exchange interaction of bulk electrons
with the impurity, results only in the terms in Eq. (3), at
least for HgTe/CdTe quantum wells [45]. Nevertheless, as we
will explain, the combined processes of impurity and Rashba
disorder scattering effectively give rise to such additional
terms.

Effective couplings from second-order processes. We now
consider the combined scattering from the impurity and the
Rashba disorder by using the T matrix T (ε) = (HS + HR) +
(HS + HR)G(ε)T , with G(ε) = (ε − H0)−1. The T -matrix
element associated with the first term of Eqs. (3) and (2) is

〈m; −k, − σ |Tz,R(εi)|m; k,σ 〉

= σ iJz〈m|Sz|m〉
L

√
L

∑
k′

(
(k − k′)a−k−k′

�v(k − k′)
+ (k′ + k)ak′−k

�v(k′ + k)

)

(4)

(cf. Fig. 1). Here, |m; k,σ 〉 denotes a product state of the local
moment in the Sz eigenstate |m〉 and an electron with helical
spin σ and momentum �k, L the distance between the left
and right reservoir, εi = σv�k the energy of the initial state
|m; k,σ 〉, and aq the Fourier components of a(x). The energy

difference between the initial and intermediate state in the
denominator compensates the matrix element from Rashba
disorder in the numerator.

With regard to scattering rates, to be discussed below, the
second-order process described in Eq. (4) can effectively be
described as a first-order process resulting from the additional
anisotropic coupling

H ′
S = Jz,RSz(s+ + s−). (5)

Here, Jz,R = 2
√

ηJz is an effective coupling constant with
η = V0/�

2v2. Analogously to the combined process described
by Tz,R, there are also second-order processes where electrons
scatter from the Rashba disorder and from the impurity by
either the J⊥ or the Janiso term of HS in Eq. (3). Again, these ef-
fects can be captured by considering first-order processes from
the effective couplings J⊥,R(S+ + S−)sz and Janiso,R(S+s+ +
S+s− + H.c.), with J⊥,R = √

ηJ⊥ and Janiso,R = 2
√

ηJaniso,
respectively. J⊥,R only renormalizes the Janiso coupling already
present in HS . In contrast, Janiso,R, besides renormalizing J⊥,
opens an additional scattering channel via the S+s+ + S−s−
terms.

Scattering rates. Since we are interested in the effect of the
impurity on dc transport, we pursue two aims: (i) We want to
achieve a description of the impurity spin in a driven steady
state, and (ii) we want to compute the transport scattering
rates determining the impurity induced dc resistance. To
achieve (i), we calculate the integrated rates 	σ ′σ

m′m, which
characterize the scattering of an electron from an initial state
with helical spin σ into a final state with helical spin σ ′,
as the impurity spin is flipped from |m〉 to |m′〉. 	σ ′σ

m′m are
obtained by weighting the rates for scattering from |m; k,σ 〉
to |m′; k′,σ ′〉 with the probability for the initial and final state
to be occupied or unoccupied, respectively, and then summing
over initial and final momenta. To calculate the individual
rates, we employ Fermi’s golden rule for H eff

S , including all
original and effective impurity couplings. For temperatures
and voltages much smaller than the bulk excitation gap of
the topological insulator, the weak momentum dependence
of 〈m′; k′,σ ′|H eff

S |m; k,σ 〉 can be neglected. For forward
scattering with σ ′ = σ , we then find

	σσ
m′m(β) = L2

2π�3v2β
|〈m′; σ |H eff

S |m; σ 〉|2, (6)

where the temperature dependence is due to the integrated
occupation factors

∫
dE fσ (1 − fσ ) = 1/β. Here, f↑ (f↓) de-

notes the Fermi distribution function describing the occupation
of right-moving (left-moving) electrons from the left (right)
reservoir. In the case of backscattering σ ′ = −σ , the rates
involve occupation factors fσ (1 − f−σ ), leading to a voltage
dependence

	−σσ
m′m (β,eV ) = L2

2π�3v2β
|〈m′; −σ |H eff

S |m; σ 〉|2I σ (βeV ),

(7)
where

I σ ≡ β

∫
dE fσ (1 − f−σ ) = σβeV

eσβeV

eσβeV − 1
. (8)

At low bias voltage, βeV 
 1, I σ � 1 so that the forward and
backscattering rates have the same temperature dependence.
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TABLE I. Results for the integrated scattering rates 	σσ ′
mm′ .

Process 	 × (2π�
3v2β/L2)

|m; σ 〉 → |m; −σ 〉 J 2
z,R|〈m|Sz|m〉|2I σ

|m; ↑〉 → |m + 1; ↓〉 (J 2
⊥ + J 2

aniso,R)|〈m + 1|S+|m〉|2I↑

|m; ↑〉 → |m − 1; ↓〉 J 2
aniso,R|〈m − 1|S−|m〉|2I↑

|m; σ 〉 → |m ± 1; σ 〉 (J 2
aniso + J 2

⊥,R)|〈m ± 1|S±|m〉|2

On the other hand, when βeV  1, the backscattering of right
movers is linearly enhanced, while the backscattering of left
movers is exponentially suppressed. For detailed results, see
Table I.

Master equation. We describe the state of the impurity
by a density matrix ρ and assume that dephasing from the
coupling to the electron bath is sufficiently strong, such that we
can neglect coherences and consider ρ = ∑

m Pm|m〉〈m| to be
diagonal in the basis of eigenstates of Sz, Sz|m〉 = m|m〉. We
can then proceed to determine the steady state of the impurity
spin at finite temperature and under an applied transport
voltage V from the master equation

∂tPm =
∑
m′

(	mm′Pm′ − 	m′mPm), (9)

where 	m′m = ∑
σ ′σ 	σ ′σ

m′m. In a steady state, ∂tPm = 0, and
we find the recursively defined solution Pm−1 = ζPm, with
ζ = 	m−1,m/	m,m−1. ζ depends on βeV and the (effective)
coupling constants, but not on m because the m-dependent
matrix elements of the ladder operators S± cancel. We provide
an explicit expression in the Supplemental Material [45]. For
the model considered here, we have 0 � ζ � 1 and the two
limiting cases have simple solutions: ζ = 0 implies Pm = δm,S

and corresponds to a maximally polarized local moment, while
for ζ = 1 the impurity is completely unpolarized, i.e., Pm =
1/(2S + 1). Notice that βeV = 0 implies ζ = 1, because,
without an applied transport voltage, there is no asymmetry
between the rates for forward and backscattering [cf. Eqs. (6)
and (7)]. The general dependence of Pm on m interpolates
between the two limiting cases:

Pm = (1 − ζ )ζ S

1 − ζ 1+2S

(
1

ζ

)m

. (10)

Impurity induced resistance. The backscattering probability
R can be related to a scattering rate 1/τ by multiplying with the
time of flight L/v. This compensates a dependence 1/τ ∝ 1/L

in all scattering rates, due to the normalization of the plane
wave with a factor 1/

√
L. In this way, both R and the edge

conductance G = (1 − R)e2/h are independent of the system
size L, as expected for a single scattering site. For R 
 1, R

equals the impurity induced resistance normalized by h/e2.
From the effective impurity coupling we have two important
backscattering mechanisms [48], and hence obtain

R = L

v

(
1

τz,R
+ 1

τ⊥

)
, (11)

where a Fermi’s golden rule calculation yields

0 2 4 6 8 10
0
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βeV

ζ

0

0.5

1

1.5

R
/
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FIG. 2. The normalized impurity induced backscattering prob-
ability R/R0 and ζ , both in dependence of the ratio of transport
voltage and temperature βeV . R0 is the backscattering probability
for βeV 
 1. In both cases, S = 5/2 and J 2

z /J 2
⊥ = J 2

⊥/J 2
aniso = 10.

R0 is enhanced by two orders of magnitude as the dimensionless
strength of Rashba disorder η is increased from 0 to 1.

1

τ⊥
= J 2

⊥ + J 2
aniso,R

�2vL
p⊥

S−1∑
m=−S

|〈m + 1|S+|m〉|2Pm, (12a)

1

τz,R
= J 2

z,R

�2vL

S∑
m=−S

|〈m|Sz|m〉|2Pm. (12b)

Here, p⊥ = 1 − 	
↑↓
m,m+1/	m,m+1 accounts for the fact that

the dc resistance is affected only by those backscattering events
of right-moving electrons which are not compensated by a
subsequent backscattering of a left-moving electron [45]. For
example, in the case of vanishing Rashba disorder and HS with
axial rotation symmetry, we find 	

↑↓
m,m+1 = 	m,m+1, hence p⊥

vanishes.
Results. Although the framework that we set up so far

does not rely on any specific assumptions about the couplings
in HS , it is helpful to focus on the parameter regime J 2

z 
J 2

⊥  J 2
aniso for three reasons: (i) From a microscopic analysis

we found that this regime is experimentally relevant for
HgTe/CdTe quantum wells [45]. (ii) The importance of the
Rashba disorder induced effective couplings with regard to
the dc resistance becomes particularly clear in this parameter
regime. (iii) A clear hierarchy of couplings allows one to dis-
entangle the discussion of scattering processes. The following
detailed discussion about the relevancy of Rashba disorder for
the impurity induced resistance leads to two important results:
First, while R(βeV ) is a monotonically decreasing function
without Rashba disorder, this monotonicity is reversed in
the presence of Rashba disorder (see Fig. 2). Second, R0,
the backscattering probability in the limit βeV 
 1, is
significantly increased by Rashba disorder.

Let us consider first the case where Rashba disorder is
absent, i.e., η = 0. The only nonvanishing backscattering
rate is 1/τ⊥ from Eq. (12a), which is small as it arises
from an interplay of scattering due to J⊥ and Janiso. In
particular, R0 is found to be proportional to the harmonic
mean of J 2

⊥ and 2J 2
aniso, because p⊥ = [1 + J 2

⊥/2J 2
aniso]

−1
for

βeV = 0. Consequently, when J 2
⊥ and J 2

aniso are very different
in magnitude, it is the smaller of the two which determines
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(a) (b)

x xx x

FIG. 3. A right-moving wave (gray) is phase coherently backscat-
tered from impurities at x0 (red) and x0 + l (black). Destructive
(constructive) interference occurs when kFl = νπ with half-integer
(integer) ν—cf. (a) [(b)].

the magnitude of R0. With increasing βeV , the backscattering
of right movers via J⊥S+s− becomes increasingly dominant
relative to other scattering rates and tends to polarize the
impurity, such that ζ � 2J 2

aniso/βeV J 2
⊥ approaches zero in the

large βeV limit (cf. Fig. 2). With increasing polarization, the
probability for the impurity spin to be in state |S〉 increases,
and the probability for an individual right-moving electron to
be backscattered is suppressed. This leads to the monotonic
decrease of R(βeV ) shown in Fig. 2, with R ∼ J 2

aniso/βeV in
the large βeV limit [49].

Rashba disorder, described by a finite η, has a profound
effect on the impurity induced resistance. Since J 2

z  J 2
⊥ 

J 2
aniso, 1/τz,R dominates 1/τ⊥ already for very weak Rashba

disorder with η � 4J 2
aniso/J

2
z . The magnitude of R0 is then

determined by J 2
z,R instead of J 2

aniso, which, depending on
the precise values of the couplings and η, can be a large
difference. Regarding the dependence on the polarization,
1/τz,R is qualitatively different from 1/τ⊥. Evaluating the
sum over m in Eq. (12b) for the limiting cases of perfect
polarization, Pm = δm,S , and vanishing polarization, Pm =
1/(2S + 1), yields S2 in the former and S(S + 1)/3 in the
latter case, respectively. This shows that, for spin S > 1/2,
the rate 1/τz,R increases with increasing polarization, because

S2 > S(S + 1)/3. However, 1/τz,R is independent of ζ for
S = 1/2. Thus, in contrast to the case without Rashba disorder,
R is now found to monotonically increase with βeV when
S > 1/2.

For real samples with several impurities, the total backscat-
tering rate is proportional to the number of impurities in the
absence of localization. Based on Eq. (11), we estimate the
mean free path to be 4 μm in 7.0 nm wide HgTe quantum wells
with a lattice constant a = 0.65 nm and v = 4 × 105 m/s,
by assuming (i) that there is a concentration of 10−4 Mn2+

ions (S = 5/2) per unit cell, (ii) ζ = 0.5 and spatial average
〈J 2

z /�
2v2〉 = 0.035 [45], and (iii) η ≈ 3 based on the estimate

for V0 from Refs. [29,44].
A plane wave eikFx with Fermi momentum kF can be

backscattered elastically from impurities at x0 and x0 + l by the
process Eq. (4) (see Fig. 3). The partial waves e−ikF(x−x0)+ikFx0

and e−ikF(x−x0−l)+ikF(x0+l) interfere, resulting in a contribution
to the backscattering probability ∝ cos kFl. Tuning kF via a
back-gate voltage alternately causes constructive or destruc-
tive interference. Hence, conductance fluctuations occur, in
agreement with experiment. Several impurities give rise to
more complex oscillations.

Summary. We determined the dc resistance of helical edge
states in the presence of Rashba disorder and a magnetic
impurity with spin S > 1/2. As a key result, we find that
combined scattering from both Rashba disorder and impurity
is enhanced as the impurity becomes more polarized, giving
rise to a resistance that slowly increases as the ratio of
transport voltage and temperature increases, in agreement with
experiments [7,11,12]. Since backscattering is elastic, quan-
tum interference can explain the occurrence of conductance
fluctuations.

We acknowledge valuable discussions with A. Yacoby, S.
Hart, and B. I. Halperin, and financial support by ESF and
DFG Grants No. RO 2247/7-1 and No. RO 2247/8-1.
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