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Abstract 

This paper deals with two speed optimization problems for ships that sail in 
and out of Emission Control Areas (ECAs) with strict limits on sulphur 
emissions. For ships crossing in and out of ECAs, such as deep-sea vessels, 
one of the common options for complying with these limits is to burn heavy 
fuel oil (HFO) outside the ECA and switch to low-sulphur fuel such as marine 
gas oil (MGO) inside the ECA. As the prices of these two fuels are generally 
very different, so may be the speeds that the ship will sail at outside and 
inside the ECA. The first optimization problem examined by the paper 
considers an extension of the model of Ronen (1982) in which ship speeds 
both inside and outside the ECA are optimized. The second problem is called 
the ECA refraction problem, due to its conceptual similarity with the 
refraction problem when light travels across two different media, and also 
involves optimizing the point at which the ship crosses the ECA boundary. In 
both cases the objective of the problem is to maximize daily profit. In 
addition to mathematical formulations, examples and sensitivity analyses 
are presented for both problems.    
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1. INTRODUCTION 

Ocean-going vessels carry more than 90 per cent of global trade (IMO, 2014), and 
shipping is considered an environment-friendly mode of transport. However, there 
are still significant emissions associated with shipping operations. Emissions from the 
shipping industry are closely correlated to its consumption of fuel, which has been 
estimated to be between 279 and 400 million tons (Cullinane and Bergqvist, 2014). 
The so-called Third IMO GHG study 2014 (Smith et al, 2014) provided updated 
estimates of carbon dioxide (CO2) emissions from international shipping from 2007 
to 2012. The 2012 figure was 796 million tonnes, down from 885 million in 2007, or 
2.2% of global CO2 emissions. CO2 from all shipping was estimated at 940 million 
tonnes, down from 1,100 tonnes in 2007. The reduction was mainly attributed to 
slow steaming. 
 
As early as in 1997 in Kyoto, the United Nations Framework Conference on Climate 
Change (UNFCCC) designated the International Maritime Organization (IMO), the 
United Nations specialized agency with responsibility for the safety and security of 
shipping and the prevention of marine pollution by ships, as the body responsible for 
regulating maritime air emissions. In 2008, the Marine Environment Protection 
Committee (MEPC) of the IMO adopted amendments to the MARPOL Annex VI 
regulations that deal with SOx and NOx emissions. These amendments set the global 
limit on the sulphur content of a ship’s fuel to 3.50% (from 2012) followed by a 
reduction to 0.50% from 2020 (though subject to a review to be completed by 2018 
which may conclude to prolong this stricter requirement to 2025).  
 

 
Figure 1: Map over current Emission Control Areas (Fagerholt et al., 2015) 

Four Emission Control Areas (ECAs) have also been defined by MARPOL, as shown in 
Figure 1. These are the Baltic Sea, the North Sea and English Channel, and the North 



3 
 

American and the US Caribbean coasts. The North American ECA applies to all ships 
sailing within 200 nautical miles of the North American coastline, including Canada, 
while for the other ones they are as illustrated in Figure 1. Within these ECAs there is 
even more stringent control of the sulphur emissions with a limit of 0.1% sulphur 
content in the ship’s fuel from January 1, 2015. The North American and US 
Caribbean ECAs also regulate NOx emissions. In addition, the EU has adopted 
legislation transposing the IMO regulations into EU law, the latest version of which is 
Directive 2012/33/EU (also known as the sulphur directive). The sulphur directive is 
more stringent than MARPOL Annex VI, as irrespective of the outcome of the 
proposed IMO review in 2018, a reduction to a cap of 0.50% sulphur content will be 
unilaterally implemented in the EU on 1 January 2020 and also all passenger ships in 
the EU’s non-ECA waters will have a maximum 1.5% sulphur content until that time.  
 
There are mainly three ways shipping companies can achieve compliance with the 
ECA sulphur regulations, i.e. fuel switching, installing a scrubber and using liquefied 
natural gas (LNG) as fuel. For ships that operate both within and outside ECAs, such 
as deep-sea vessels, fuel switching is a straightforward compliance alternative. This 
means that the ships burns marine gas oil (MGO) within ECAs, while the more 
commonly used and cheaper fuel type, heavy fuel oil (HFO), is used outside. The 
ability to switch fuels is a necessity for deep-sea vessels that cross in and out of ECAs, 
so these ships need to keep two sets of segregated fuel tanks, one for HFO and 
another for MGO. Modifications should also be made in the fuel pump system and 
would also involve installing a fuel switch and a cooler, as HFO is preheated whereas 
MGO should be injected cold. The corresponding investment costs are ship 
dependent but in any event are about an order of magnitude lower as compared to 
the other two compliance options (see below). 
 
The second option is to install a scrubber, which is a filtering/cleaning system to 
remove the sulphur from the exhaust. This permits the ship to use HFO in ECAs. The 
scrubber solutions are usually not considered cost effective for deep-sea vessels as 
the portion of time they spend in ECAs is low. 
 
The third alternative involves using liquefied natural gas (LNG) as fuel. This virtually 
eliminates emissions of sulphur and potentially many other substances such as 
nitrogen oxides. This involves high investments for retrofitting the ship so that it can 
store and burn LNG, and also making sure there are adequate shoreside LNG supply 
facilities at the ports in which the ship will refuel.  
 
Compliance with ECA regulations has received significant attention lately, both from 
shipping companies and from the research community. A recent special issue in 
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Transportation Research Part D (Cullinane and Bergqvist, 2014) included several 
papers examining the ECA issue from various angles. These included Jiang et al. 
(2014) who performed an economic analysis to compare scrubbers and fuel 
switching, and Panagakos et al. (2014) who examined the possible designation of the 
Mediterranean as a Sulphur ECA. Brynolf et al. (2013), and Balland et al. (2012; 2013) 
also analyzed SOx compliance in combination with NOx abatement.  
 
Fagerholt et al. (2015) developed an optimization model to be applied by ship 
operators for determining optimal routing and sailing speeds for a ship along a given 
sequence of ports, where some of the sailing is within ECAs. The objective was to 
minimize fuel costs. The paper considered fuel switch as a compliance means. A 
computational study was performed on a number of realistic shipping routes in 
order to evaluate possible impacts on fuel consumption and costs from the speed 
and routing decisions resulting from the ECA regulations. In contrast to what we do 
in this paper, Fagerholt et al. (2015) minimized costs and assumed there were time 
windows at the ports along the route.  
 
In this paper we consider two new speed optimization problems that arise for ships 
that use fuel switch and sail in and out of ECAs, such as for instance deep-sea vessels. 
The first problem, studied in Section 2, is similar as the one introduced by Ronen 
(1982) in his pioneering paper on speed optimization, though extended to the 
situation with ECAs. The second problem we consider, presented in Section 3, is the 
so-called ECA-refraction problem. This problem also considers determining the 
sailing path between a port within the ECA and one outside the ECA, including the 
crossover point through the ECA boundary. In both cases the objective of the 
problem is to maximize daily profit. It should be emphasized that when maximizing 
daily profit, there is a tradeoff between the revenue and the fuel costs. A higher 
speed increases the revenue per time unit as the ship will be able to perform more 
voyages, but this also increases fuel consumption and fuel cost. For each of these 
two speed optimization problems with ECAs we propose a mathematical formulation 
and provide some test examples including sensitivity analysis. 

2. EXTENSION OF RONEN’S APPROACH TO ECAS 

Ronen (1982) considered determining the optimal speed for three different types of 
voyages, where his Model 1 for an income generating leg probably has the most 
practical applicability. Therefore, we consider this type of voyage and extend 
Ronen’s model to the case where the sailing leg is partially within the ECA and 
partially outside. This means there is a given distance within the ECA where the ship 
must use the more expensive fuel (e.g. MGO) and a given distance outside where the 
ship can consume normal fuel (HFO). Because of the differences of fuel prices and 
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the convex non-decreasing fuel consumption as a function of speed, it will generally 
be optimal to sail with different speeds within and outside the ECA. 
 
The problem therefore consists of determining the optimal speeds on the sailing leg 
within and outside the ECA. 
 
2.1 Mathematical formulation 
The following model assumes a cubic fuel consumption function as in Ronen (1982), 
i.e. the fuel consumption per time unit increases to the power of three with speed. 
This is a reasonable approximation for most cargo ships even though there might 
ship types where other approximations would be better, see the discussion in 
Psaraftis and Kontovas (2013). It should be noted that the following model can be 
modified also to other fuel consumption functions.  
 
We define the following notation. 
 
Input parameters: 
𝑅  Revenue for the given sailing leg 
𝐶𝐸 Cost per tonne of fuel inside ECA (i.e. cost of MGO) 
𝐶𝑁 Cost per tonne of fuel outside ECA (i.e. cost of HFO) 
𝐷𝐸  Distance within ECA for the sailing leg analyzed 
𝐷𝑁 Distance outside ECA for the sailing leg analyzed 
𝑉�  Maximum sailing speed 
𝑉 Minimum sailing speed 
𝐹  Conversion factor between speed and fuel consumption. 𝐹 is such that the 

daily fuel consumption at speed 𝑣 is equal to 𝐹𝑣3.  
 
Variables: 
𝑣𝐸  Sailing speed within ECA 
𝑣𝑁 Sailing speed outside ECA 
𝑡𝐸 Duration spent inside ECA (auxiliary variable)  
𝑡𝑁  Duration spent outside ECA (auxiliary variable) 
 
The cost of fuel consumed inside the ECA is1 

𝐹𝐶𝐸𝑣𝐸3𝑡𝐸 = 𝐹𝐶𝐸𝐷𝐸𝑣𝐸2, 
while the cost for the fuel used outside is 

𝐹𝐶𝑁𝐷𝑁𝑣𝑁2  . 

                                                 
1 To avoid dividing by 24, we assume that speeds are expressed in nautical miles per day. 
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This gives the following total fuel cost per sailing leg: 

𝐹𝐶𝐸𝐷𝐸𝑣𝐸2 + 𝐹𝐶𝑁𝐷𝑁𝑣𝑁2  
 
The total profit (or actually gross margin to be precise) per sailing leg is given as the 
revenue minus the total fuel cost, and is given as follows: 

𝑅 − 𝐹𝐶𝐸𝐷𝐸𝑣𝐸2 − 𝐹𝐶𝑁𝐷𝑁𝑣𝑁2   
 
The objective is to maximize the profit per time unit (i.e. daily profit), which is the 
total profit divided by the total number of sailing days (for simplicity we leave out 
the port days as this can be considered fixed). This gives the following expression for 
the daily profit: 

(𝑅 − 𝐹𝐶𝐸𝐷𝐸𝑣𝐸2 − 𝐹𝐶𝑁𝐷𝑁𝑣𝑁2)
𝑡𝐸 + 𝑡𝑁

 =  
(𝑅 − 𝐹𝐶𝐸𝐷𝐸𝑣𝐸2 − 𝐹𝐶𝑁𝐷𝑁𝑣𝑁2)

𝐷𝐸
𝑣𝐸

+ 𝐷𝑁
𝑣𝑁

 

 

The optimization problem then becomes: 
 

max 𝑧 =  
(𝑅 − 𝐹𝐶𝐸𝐷𝐸𝑣𝐸2 − 𝐹𝐶𝑁𝐷𝑁𝑣𝑁2)

𝐷𝐸
𝑣𝐸

+ 𝐷𝑁
𝑣𝑁

 (1) 

 
subject to 
 

𝑉 ≤ 𝑣𝐸, 𝑣𝑁 ≤ 𝑉�  (2) 
 
This can be solved in a similar way as by Ronen (1982), by setting the partial 

derivatives of 𝑧 with respect to 𝑣𝐸  and 𝑣𝑁 to zero, respectively, i.e. 𝜕𝜕
𝜕𝑣𝐸

= 0 and 
𝜕𝜕
𝜕𝑣𝑁

= 0, and checking that the values of 𝑣𝐸  and 𝑣𝑁 are within the allowed interval. If 

not, one must also check the upper and lower limits of the speed interval. 
 
As discussed and analyzed in Fagerholt et al. (2015), the introduction of ECAs may 
also affect what is the optimal sailing path between ports. By defining alternative 
sailing leg options between the ports (giving different values of 𝐷𝐸  and 𝐷𝑁), and 
solving this for each sailing leg option, we can compare the options, and determine 
which leg option is most profitable. 
 
In the above we assume that the ship’s route does not involve pickup and delivery 
scenarios that may radically change the ship’s payload along it. This means that ship 
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payload along the route can be reasonably assumed constant and hence the 
conceivable dependency of fuel consumption on ship payload can safely be ignored2.  
If ship payload  is constant along a roundtrip, it can be shown that the above analysis 
is also valid for any roundtrip where the ship sails in and out of ECAs. In that case, 
the revenue 𝑅 denotes the total revenue for the roundtrip, while the distances 𝐷𝐸  
and 𝐷𝑁 are the total distances along the roundtrip within and outside the ECA, 
respectively.  
 
2.2 Example and sensitivity analysis 
The model described in Section 2.1 has been tested on a realistic example case. In 
this case we have used fuel consumption data for a real ship transporting cars and 
trucks (so-called Pure Car and Truck Carrier, or PCTC). This ship has for all practical 
purposes minimum and maximum speeds of 15 and 21 knots, respectively. In our 
base case, we have used fuel prices of 294.50 USD/tonne for HFO and 589 
USD/tonne for MGO (gathered from Bunkerworld.com (Bunkerworld, 2015) for 
Houston). This gives a ratio of 2.0 between the price of MGO and HFO. Furthermore, 
we have used the voyage between Antwerp and Halifax as an example in our 
analysis. This voyage has a total distance of 2873 nautical miles, including 773 miles 
within the ECA, i.e. 𝐷𝐸 = 773 and 𝐷𝑁 = 2100. This means that 26.9 % of the sailing 
distance is within the ECA in our base case. Furthermore, we define a revenue ratio, 
for which a value of 1.0 gives the revenue per sailing leg of 𝑅, which has been 
estimated based on data from a shipping company. Different values of the revenue 
ratio correspond to different market situations. Due to confidentiality reasons, we 
do not show the actual value of the revenue, 𝑅. 
 
In addition to the solve the problem with the numbers given above for our base case, 
we will in the following present analyses showing the sensitivity on the optimal 
speeds within and outside ECA for different 

• ratios of MGO/HFO fuel prices for the above voyage, 
• ratios of the distance within the ECA (which could be the case for other 

voyages), and 
• revenue ratios, showing the effect on optimal speeds from various revenue 

rates, reflecting different market situations. 
 
Fuel sensitivity: 
In this analysis the price of HFO has been kept fixed, while we have changed the 
price of MGO giving different ratios of the price of MGO compared to HFO. This 
                                                 
2 A fortiori, changes in ship payload due to fuel consumption are too small to cause noticeable changes 
in fuel consumption and can safely be ignored too. See Psaraftis and Kontovas (2013) for a discussion 
of factors that may affect fuel consumption. 
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means that when the ratio between the MGO and HFO prices increases, so does the 
total fuel costs for sailing the voyage, and vice versa.  

 

 
Figure 2: Optimal speeds within and outside the ECA as a function of the ratio of the 

fuel price of MGO/HFO 
 
Figure 2 shows that for the base case with a ratio of 2.0 between the price of MGO 
and HFO, the optimal speeds within and outside the ECA are 15.8 and 19.9 knots, 
respectively. Due to the higher fuel price, it is rather intuitive that the optimal speed 
within the ECA is smaller than the speed outside. However, the magnitude of the 
speed difference shows the importance of taking the ECA into account when 
determining the optimal speeds.  
 
As shown in Figure 2, when the fuel price ratio decreases, so does the difference of 
the two speeds, and vice versa. We may also note that when the ratio decreases, 
meaning that the total fuel costs become less important compared to the revenue of 
sailing the voyage, both speeds increase, and vice versa. Finally, we see from Figure 2 
that the optimal speed within the ECA reaches the ship’s minimum speed of 15 knots 
when the fuel price ratio is 2.4 or larger. 
 
Sensitivity with respect to ratio sailed within the ECA: 
In this analysis we show how the optimal speeds within and outside the ECA vary 
with varying distance within the ECA compared to the total sailing distance. As 
mentioned previously, in the base case used in the analysis shown in Figure 2, the 
distance within the ECA was 26.9 % of the total distance. 
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Figure 3: Optimal speeds within and outside the ECA as a function of the distance 

within the ECA compared to the total distance sailed 
 
Figure 3 shows that both speeds decrease with increased distance within the ECA. 
This is natural since it means that the ship has to use more of the expensive fuel, and 
the fuel costs become more dominant.  
 
Sensitivity with respect to revenue per voyage: 
Here, we show how the optimal speeds vary with respect to the revenue per voyage, 
𝑅. It should be noted that a revenue ration of 1.0 corresponds to what have been 
used in the analyses shown in Figures 2 and 3. A ratio less than 1.0 indicates a slow 
market with reduced rates, while a higher a higher ratio corresponds to a good 
market with high rates. 
 

 
Figure 4: Optimal speeds within and outside the ECA as a function of the revenue  

 
Figure 4 shows, as expected, that both speeds increase when the revenue increases. 
This can be explained by noting that when the revenue per voyage increases, one 
wants to increase the speed to be able to perform more voyages per unit time. It can 
also be noted that for a revenue ratio of 1.25 and higher, the optimal speed outside 
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the ECA reaches the ship’s maximum speed of 21 knots, while the optimal speed 
within the ECA is similar to the minimum speed for ratios of 0.75 and lower. 

3. THE ECA REFRACTION SPEED OPTIMIZATION PROBLEM 

In this section we consider another, though related, speed optimization problem that 
arises in the presence of ECAs. The relation of this problem to the problem of Section 
2 will be discussed later. Assume a ship sailing from A to B, where A is within an ECA, 
while 𝐵 is outside, as illustrated in Figure 5. 

 

Figure 5: Illustration of the ECA refraction problem 

We still assume that the ship must use expensive fuel (MGO) within the ECA, while it 
can switch to normal fuel (HFO) outside the ECA. The ECA refraction and speed 
optimization problem consists of determining the speeds within and outside the ECA, 
respectively, as well as the refraction point C, where the ship leaves the ECA and 
enters the non ECA, which maximizes daily profit. Point C will be defined by 𝑥, as 
illustrated in Figure 5. Distances 𝐻𝐸, 𝐻𝑁 and 𝐷𝑥, also as defined in Figure 5, are 
assumed to be known. It is assumed that there are no obstacles such as islands, 
peninsulas or other physical barriers that would prevent the ship to travel directly 
from A to C and then directly from C to B. If this is not the case, the analysis can still 
be performed but would be more involved as it should also include a determination 
of the path around the barrier.  
 
It should be noted parenthetically that in the equivalent refraction problem in an 
optical scenario in which the speed of light is different within two adjacent media, 
the refraction point is such that the travel time of light from origin to destination is 
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minimized. The optical refraction problem is an ‘easier’ version of the ECA refraction 
problem, in the sense that the speed in each of the media is fixed. It can also be 
proven in the optical refraction problem that light would follow a path that would 
minimize travel time. 
 
It should also be noted that in the case where point 𝐶 in Figure 5 lies within another 
ECA, another refraction point 𝐷 would be needed. This problem would be a 
straightforward extension of the single refraction point problem illustrated in Figure 
5, and which is considered in the following mathematical analysis.  
 
3.1 Mathematical formulation 
We consider, as in Section 2, a situation where there is a given income for sailing the 
leg given by 𝑅, and a cubic relationship between ship speed and fuel consumption 
per time unit. Using the notation introduced in Figure 5, the distances for the sailing 

within and outside the ECA can be defined as �𝐻𝐸2 + 𝑥2  and �𝐻𝑁2 + (𝐷𝑥 − 𝑥)2, 
respectively. Sailing with the speed 𝑣𝐸  and 𝑣𝑁 within and outside the ECA, 
respectively, the total sailing time becomes 

 �𝐻𝐸2 + 𝑥2 
𝑣𝐸

+
�𝐻𝑁2 + (𝐷𝑥 − 𝑥)2

𝑣𝑁
 (3) 

where the first term represents the sailing time within the ECA and the second 
outside the ECA.  
 
We note here parenthetically is that in reality ships follow the great circle distance 
routes between two points, while we have approximated the distances using the 
Pythagorean theorem, which applies to Euclidean two-dimensional geometry and 
also conforms to the two-dimensional nature of maritime maps. If the approximation 
introduced by the Pythagorean theorem is not considered satisfactory, then one can 

always drop the square root term �𝐻𝐸2 + 𝑥2  in favor of a more accurate function 
𝑓(𝐻𝐸, 𝑥) that gives the real great circle distance between points A and C, and do the 
same with the distance between points C and B. The analyses will otherwise remain 
the same.    
 
Furthermore, it can easily be shown that the fuel consumption per distance unit 
becomes a quadratic function. Using the same notation as in Section 2, the fuel cost 
per distance unit within and outside the ECA can be defined as 𝐹𝐶𝐸𝑣𝐸2 and 𝐹𝐶𝑁𝑣𝑁2 , 
respectively.  
 
The total profit for the sailing leg can now be calculated as follows: 
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𝑅 − 𝐹𝐶𝐸𝑣𝐸2 �𝐻𝐸2 + 𝑥2 − 𝐹𝐶𝑁𝑣𝑁2  �𝐻𝑁2 + (𝐷𝑥 − 𝑥)2 (4) 

The first term is the income for the sailing leg, while the next two terms calculate the 
fuel costs for the sailing within and outside the ECA, respectively.  
 
The daily profit, which we want to maximize, can be defined by dividing the 
expression in (4) by the total sailing time defined in (3), which gives the following 
optimization problem: 
 

max  𝑧 =
�𝑅 − 𝐹𝐶𝐸𝑣𝐸2 �𝐻𝐸2 + 𝑥2 − 𝐹𝐶𝑁𝑣𝑁2  �𝐻𝑁2 + (𝐷𝑥 − 𝑥)2�

  �𝐻𝐸
2 + 𝑥2 
𝑣𝐸

+ �𝐻𝑁2 + (𝐷𝑥 − 𝑥)2
𝑣𝑁

 (5) 

subject to 
 

𝑉 ≤ 𝑣𝐸, 𝑣𝑁 ≤ 𝑉�  (6) 
 
We may also include non-negative requirements on the 𝑥 variable. However, this is 
strictly not necessary since the optimal solution will always give non-negative values 
of 𝑥 as long as the sailing costs within and outside the ECAs are positive. 
 
While the speed optimization problem in Section 2 had two decision variables, i.e. 
the two speeds within and outside the ECA, this problem also has third decision 
variable 𝑥 for the refraction point. Again, this can be solved by setting the partial 
derivatives of 𝑧 with respect to 𝑥, 𝑣𝐸  and 𝑣𝑁, to 0, respectively, which will give the 
optimal solution if the speeds are within their feasible interval. Otherwise, the 
optimal speeds can be found on their limits. 
 
Again, if we assume that the ship’s fuel consumption is not dependent on the load 
on board the ship or if the load onboard is the same on the return trip from 𝐵 to 𝐴, 
the above analyses will also be valid for the roundtrip case (i.e. from 𝐴 to 𝐵 and back 
to 𝐴).  
 
What is the relation between Ronen’s extension as described in Section 2 and the 
ECA refraction problem as described above? Even though in the former problem the 
shapes of the paths within and outside the ECA can be general, and all that matters 
are distances 𝐷𝐸  and 𝐷𝑁, in case these paths are straight lines it can be seen that the 
former problem is a constrained version of the latter. In this case, assuming 𝐷𝐸  and 
𝐷𝑁 are known and constant is the same as assuming 𝑥 fixed. This means that the 
objective function of (1) can be derived from the one of (5) by the following 
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substitutions: 𝐷𝐸 = �𝐻𝐸2 + 𝑥2  and 𝐷𝑁 = �𝐻𝑁2 + (𝐷𝑥 − 𝑥)2. This also means that 
the optimal value of the problem defined in (1) is a lower bound to the equivalent 
one of (5), if all other inputs are the same. 
 
3.2. Example and sensitivity analysis 
Suppose, as in the previous example, that the fuel that must be used in the ECA is 
twice as expensive as the fuel that can be used outside. Furthermore, assume 
𝐷𝑥 = 400, 𝐻𝑁 = 𝐻𝐸 = 200. This is also in accordance with that the ECA goes 200 
nautical miles outside the coastline. Since it is natural to assume that a longer 
voyage has a higher revenue, we adjust the value used in Section 2.2 for the revenue 
per sailing leg, 𝑅, so that it has the same value per distance unit. Then, we get the 
following relations between total sailing cost, total distance sailed (second axis in the 
figure below) and the value of 𝑥 (first axis). 
 

 
Figure 6: Relationship between profit and total distance as a function of the value of 
𝑥 (refraction point). All values are normalized against the values for 𝑥 = 200, which 

corresponds to the shortest voyage (with a distance of 565.7). 
 
Looking at Figure 6, we can see that the value of 𝑥 that gives the highest daily profit 
is approximately 155. This gives an increase of the daily profit of about 1 % 
compared to sailing the shortest distance (at 𝑥 = 200). It is interesting to note that 
the optimal speeds, which are not shown in Figure 6, varied with less than 0.1 knots 
for the different values of 𝑥 that were tested. Their values were approximately 
𝑣𝐸∗ = 15.4 and 𝑣𝑁∗ = 19.4. This shows that the optimal speeds are robust with 
respect to the chosen refraction point. It also indicates that a simplified solution 
approach, where the optimal speeds are first determined for a given value of 𝑥, and 
then subsequently determine the optimal value of 𝑥 for the given speeds, will 
provide close to optimal solutions. 
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In the analysis above we have used the values 𝐷𝑥 = 400, 𝐻𝑁 = 𝐻𝐸 = 200, see 
Figure 5, and assumed that MGO is twice as expensive as HFO (i.e. fuel price ratio 
MGO/HFO = 2). It can also be interesting to analyze how the optimal refraction point 
varies with 𝐷𝑥 for different fuel price ratios. However, increasing 𝐷𝑥 while keeping all 
other parameters fixed will also increase the sailing distance of the voyage between 
points 𝐴 and 𝐵 (Figure 5). We let the revenue per sailing leg, 𝑅, vary linearly with the 
(shortest) distance for the voyage in order to reflect that longer voyages normally 
have higher revenues.  
 
Figure 7 shows the optimal refraction point as a function of 𝐷𝑥 for three different 
fuel price ratios (assuming the values of 𝐻𝑁 and 𝐻𝐸 are kept fixed).  
 

 
Figure 7: Optimal refraction point as a function of horizontal distance, 𝐷𝑥, for various 

ratios of fuel price of MGO to HFO 
 
When the fuel price ratio is 1, i.e. the price of the two fuels are the same, it is always 
optimal to sail the shortest route, which is a straight line from A to B. In fact it can be 

shown that in this case 𝑥 = 𝐷𝑥𝐻𝐸
𝐻𝐸+𝐻𝑁

. With the numbers used in this example this gives 

an optimal value of 𝑥 that is equal to 𝐷𝑥
2

, which is also shown in Figure 7. However, 

when the fuel price ratio increases, i.e. MGO becomes more expensive than HFO, the 
optimal refraction point increases at a much slower pace, especially for high values 
of 𝐷𝑥. Actually it can be shown that when 𝐷𝑥 goes to infinity (or becomes very large), 
the optimal value of 𝑥 asymptotically reaches a maximum bounded value provided 
that the fuel price ratio is greater than 1. In our examples these 𝑥-values are 260.9 
and 191.5 for the fuel price ratios of 2 and 3, respectively.  
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The above shows again that for high fuel price ratios, it is optimal for the ships to sail 
short distances within the ECA and longer distances outside. Although in a somewhat 
different problem context, this also corresponds to the findings in Fagerholt et al. 
(2015). 

4. DISCUSSION AND CONCLUDING REMARKS 

Fuel costs have become an important cost item in shipping, sometimes accounting 
for more than 50% of the total operational costs. Strict limits on the maximum 
sulphur content in fuel used by ships have recently been imposed by MARPOL in 
some Emission Control Areas (ECAs). In order to comply with these regulations 
many ship operators will need to switch to low-sulphur fuel (e.g. Marine Gas Oil 
(MGO)) when sailing inside ECAs. Low-sulphur fuel is more expensive than normal 
Heavy Fuel Oil (HFO), which can be used outside the ECAs, and the new ECA 
regulations will therefore impact international shipping in several ways.  
 
In this paper we considered two new speed optimization problems that arise for 
ships that use fuel switch and sail in and out of ECAs, such as for instance deep-sea 
vessels. The first problem was similar as the one introduced by Ronen (1982), though 
extended to the situation with ECAs. The second problem was the so-called ECA-
refraction problem, which, in addition to optimal speeds, calls for the determination 
of the optimal crossover point through the ECA boundary. In both cases the 
objective of the problem was to maximize daily profit. We proposed a mathematical 
formulation for each of the two problems and provided some test examples 
including sensitivity analyses. 
 
In terms of managerial implications, we believe that the value of this paper is to help 
carriers refine their routing when moving in and out of ECAs. The paper has shown 
that some benefits can be obtained if such an optimization is performed. The 
method can be applied not only to car carriers, which was the example used here, 
but to other types of ships as well.  
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