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Summary

A method for calculating fluxes and temperature and chemical potential profiles over interfaces
using an approach called the integrated interface approach is established for systems with known
properties of bulk phases for vapor and liquid and a system in steady state. In the integrated
interface approach flux equations are derived in a systematic manner using non-equilibrium
thermodynamics including all possible coupling effects and opening for the possibility of non-
equilibrium over the interface. The system where the transport between the two phase bulks
takes place is treated as three subsystems; the vapor diffusion film, the interface and the liquid
diffusion film. Resistivities and local driving forces are assumed constant within each of these
subsystems.

A de-ethanizer distillation column is modelled using ChemSep, a commercially available software
where an approach developed by Taylor and Krishna is used. In their approach equilibrium
over the interface is assumed, and coupling between heat and mass transport is neglected. It is
shown that when these assumptions are taken in the integrated interface approach will the two
approaches be equivalent, except for the mass and heat transfer coefficients used.

New fluxes and temperature and chemical potential profiles are calculated using the integrated
interface approach. The impact of the choice of diffusion film thicknesses and Soret coefficients
is examined. The calculated fluxes and profiles are compared with the fluxes and profiles
calculated by ChemSep. The importance of including non-equilibrium over the interface and
coupling of heat and mass transport is examined by neglecting these effects and comparing the
results with calculations where all these effects are included.

Both the choice of film thickness and Soret coefficients had a high impact on the system. The
dependecy on the film thicknesses was especially high, at the same time as this value is related
to a high level of uncertainity.

The fluxes calculated by ChemSep deviate widely from the fluxes calculated using the integrated
interface approach, also when the same assumptions concerning interface and coupling are used.
This deviation is then due to the different coefficients used. The impact of including non-
equilibrium over the interface and coupling between heat and mass transport is shown to be
small for the distillation column considered here. Both neglecting the interface resistance and
multiplying the interface resistance with 10 change the fluxes with less than 0.5 %. Neglecting
the coupling of heat and mass transport changes the fluxes with less than 2 %. The impact of
these effects can be higher for other distillation prosesses.
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Chapter 1

Introduction

Distillation is a separation method where chemical components are separated based on their
different volatilities. Distillation columns are important process equipment that are widely used
in the industry. The process is the most common separation method, and it consumes large
amounts of energy. In 1991 it accounted for 11 % of the industrial energy demand in the United
States [7]. Good models can help to design better and more energy efficient columns, and
through this save the environment.

The classical distillation model has been an equilibrium model. In such models equilibrium
is assumed between the vapor and liquid stream leaving each distillation tray. In reality such
an equilibrium is not reached. The Murphree efficiency was introduced to account for this
irreversibility [9]. This efficiency measures to which degree equilibrium is reached. However,
this efficiency provides no physical explanation for why equilibrium is not reached.

During the last 30 years also non-equilibrium models have been introduced. They seek to model
the distillation processes more accurate by assuming equilibrium only at the interface, and then
include the transport of heat and mass that take place in the liquid and the vapor phases.
Taylor and Krishna have played central roles in the development of such models, and they
describe their research in the book “Multicomponent Mass Transfer” [17]. They propose to use
mass transfer coefficients from correlations that apply to the type of equipment. ChemSep [1]
is a commercially available software where Taylor and Krishna’s approach is used, and it is
developed by among others Taylor.

By using irreversible thermodynamics, transport equations for distillation can be derived in
a systematic way with all possible coupling effects included. The approach of Taylor and
Krishna is based on irreversible thermodynamics, but they neglect the coupling of heat and
mass transport. Kjelstrup and de Koeĳer have developed a more general formulation called the
interface integrated approach [11]. This approach includes all coupling effects. It also includes
the possibilty for not having equilibrium across the interface by treating the interface as a
separate phase where only local equilibrium is assumed.

This project aims to calculate fluxes in distillation columns using the integrated interface ap-
proach. A closer look is taken at the differences between this approach and Taylor and Krishna’s
approach. The importance of including effects from non-equilibrium over the interface and from
coupling between heat and mass is investigated for transport equations for use in non-equilibrium
distillation models.

A de-ethanizer column is modelled using ChemSep, and new fluxes are calculated for this
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column. The fluxes are calculated both with and without including the effects mentioned
above, and the differences are investigated. The calculated fluxes are also compared to the
fluxes calculated by ChemSep, to see the differences between the two approaches.

The project is a part of an overall effort at Department of Chemistry to find applications for
the theory of non-equilibrium thermodynamics. A long term goal is to make an accurate non-
equilibrium distillation model using the integrated interface approach.

The remainder of this thesis is outlined as follows: First the relevant theory is presented in
chapter 2. The concept of distillation is explained and a general introduction to non-equilibrium
thermodynamics and to different descriptions of the interface is given. Taylor and Krishna’s
approach to non-equilibrium distillation and the integrated interface approach is presented. A
comparison between the theory of the to approaches is given. Then the method used to do the
calculations are described in chapter 3. The results are presented and discussed in chapter 4,
and eventually in this chapter are suggestions for further work described. A conclusion is given
in chapter 5.
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Chapter 2

Theory

2.1 Distillation

A distillation process is a process in which the varying volatility of chemical components are
used to separate them. Because of the varying volatility, the distribution of the components
in the vapor and the liquid phase is different. If a part of a mixture is evaporated, the vapor
phase will be richer on the more volatile component than the liquid phase. The vapor phase can
be condensed, and the process can be repeated to give an even purer vapor phase. Distillation
is done industrially in distillation columns where evaporations and condensations are done in
several stages. The vapor of each stage will continually flow up and mix with the contents of
the stage above, and the liquid will flow down to the step below. There are two main designs
of distillation columns; tray columns and packed columns. Only tray columns are considered in
this project. In tray columns, each column stage consists of a tray in which liquid and vapor
are brought into contact.

2.2 Non-equilibrium thermodynamics

In this section a short presentation on non-equilibrium thermodynamics, also called irreversible
thermodynamics, will be given following Førland, Førland and Kjelstrup [5] and Kjelstrup and
Bedeaux [10].

Non-equilibrium thermodynamics can be used to describe systems which are not in global
equilibrium. The theory describes interacting transport processes in a systematic way, using
fluxes and forces obtained from the entropy production. Coupling between different types of
transport in the same system is included. The description in this section will be limited to
systems with only heat and mass transport.

The local entropy production of a system, σ, can be written as the product sum of fluxes, Ji,
and driving forces, Xi. The second law of thermodynamics gives:

σ =
∑
i

JiXi ≥ 0 (2.1)

The total entropy production is the integral of this over the volume. A basic assumption in
non-equilibrium thermodynamics is that each of these fluxes is given by linear combinations of
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the driving forces:
Ji =

∑
j

LijXj (2.2)

where the L’s express conductivity. The theory is limited to systems with microscopic re-
versibility. For such a system, the reciprocal relation has been proven:

Lij = Lji (2.3)

The flux equations, equation 2.2, can alternatively be written as forces that are linear combi-
nations of fluxes:

Xi =
∑
j

RijJj (2.4)

where the R’s express resistivity, and we have the relation:

R× L = I (2.5)

where R and L are n × n matrices with the resistivities and conductivities of the system and
I is the identity matrix. Now the reciprocal relation is expressed as:

Rij = Rji (2.6)

It can be shown that as a consequence of the second law of thermodynamics must all pairs of
coefficients obey the following boundary condition:

RiiRjj −RijRji ≥ 0 (2.7)

2.3 Description of interface

An interface is the thin layer between two different homogeneous phases. It is often looked upon
as a two dimensional surface that not has any volume, nor any other extensive variables. It is
often assumed to be equilibrium over the interface, so that temperature and chemical potential
is continous through this surface. This means that the temperature and chemical potential at
each side of the surface has to be the same. A shematic overview of a temperature profile for
a system out of equilibrium, but with equilibrium over the interface is given in figure 2.1. In
Taylor and Krishna’s approach to non-equilibrium distillation, the interface between vapor and
liquid is treated like this.

If a higher preciseness is needed, the description above is not good enough. The interface
layer has a thickness, even though it is small, and thus also a volume and other extensive vari-
ables. Already in 1874 Gibbs described how these layers can have special profiles for intensive
variables [15]. He constructed a thermodynamic description of equilibrium surfaces in terms of
excess densities and treated the surface as an autonomous thermodynamic system. The descrip-
tion implies for instance that the surface has its own temperature. Kjelstrup and Bedeaux [10]
show how Gibbs description of interfaces in systems with global equilibrium can be extended to
systems that are out of equilibrium, also over the interface. Then local equilibrium has to be
assumed through the whole system. Now temperatures and chemical potentials do not have to
be the same on each side of the interface. The property of the interface that is of interest for
this project is the entropy production, to be able to calculate the fluxes and the forces of the
system. This is treated more in detail in section 2.5, and after some assumptions we shall see
that only the properties on each side on the interface are of importance. A shematic overview
of a temperature profile for such a system is given in figure 2.2, where the profile inside the
surface is left out since it is not needed in this project.
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Figure 2.1: Shematic overview of temperature profile in a two phase system with equilibrium
across the interface.

Figure 2.2: Shematic overview of temperature profile in a two phase system where the interface
is treated as a separate thermodynamic system where only local equilibrium is assumed.

2.4 Modelling non-equilibrium distillation

The following section is based on Taylor and Krishna’s [17] discussion of nonequilibrium stage
models on multicomponent distillation.

A non-equilibrium model will include material balances, energy balances, equilibrium relations,
summation equations and mass and energy transfer models. The mass and energy balances
are written for each phase in the considered stage. The balances are linked together, as all
components leaving one phase have to enter the other phase. Equilibrium relations are used
to relate compositions of either side of the phase interface. These realtions are dependent on
temperature and compostion at the interface. Transport equations describe the transfer of mass
and energy inside the phases.

Throughout this section, all main equations are written on a form with zero on the left hand
side, as they are intended to be solved numerically, and each such equation is given a letter in
the font sansserif. L and V are molar liquid and gas streams, respectively. x and y are molar

5



Figure 2.3: Shematic illustration of flows of mass and energy in tray j in a distillation column.
The dashed line represents the interface. The thin, black arrows represent mass transfer, and
the thick, grey arrows represent energy transfer. N refers to interface mass transport while E
refers to interface energy transport.

fractions of the liquid and gas phases. H is molar enthalpy, T is temperature and Q is heat
stream. f is molar feed. In this section subscript i refers to component i, and subscript j refers
to stage j. Superscript V refers to the vapor diffusion film and L refers to the liquid diffusion
film, superscript I refers to interface, fV refers to vapor feed, fL refers to liquid feed, V b refers
to the vapor bulk and Lb refers to the liquid bulk.

A shematic illustration of a distillation tray is given in figure 2.3.

2.4.1 Mass balances

On the principle of conservation of mass, balance equations of both phases can be written for
each stage. There is no accumulation of mass in the system.

The component material balance for the two phases can be written as follows:

MV
ij ≡ Vjy

V b
ij − Vj+1y

V b
i,j+1 − fVij +N V

ij

= 0 (2.8)

ML
ij ≡ Ljx

Lb
ij − Lj−1x

Lb
i,j−1 − fLij −NL

ij

= 0 (2.9)

where N refers to the interphase transport, and transport from the vapor to the liquid phase
is defined positive. No mass accumulates at the interphase, implying the following equation:

MI
ij ≡ N V

ij −NL
ij = 0 (2.10)
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By summing equation 2.8 and equation 2.9 over the components, the total material balances
for stage j are obtained:

MV
tj ≡ Vj − Vj+1 − F Vj +N V

tj = 0 (2.11)

ML
tj ≡ Lj − Lj−1 − FLj −NL

tj = 0 (2.12)

where the subscript t means total, Fj =
∑c
i=1 fij and Ntj =

∑c
i=1Nij . The interphase mass

transport is described in section 2.4.3.

2.4.2 Energy balances

When assuming no heat leakage from the column, the conservation law yield the following
balance for energy in the vapor phase and gas phase respectively:

EVij ≡ VjHV b
j − Vj+1H

V b
j+1 − F Vj H

fV
j +QVj − EVj = 0 (2.13)

ELij ≡ LjHLb
j − Lj−1H

Lb
j−1 − FLj H

fL
j +QLj − ELj = 0 (2.14)

where H are molar enthalpies, Q is heat added or withdrawed from the tray, and E represents
the energy loss or gain due to interphase transfer.

As there is no energy accumulation at the interface, an energy balance yields:

EIij ≡ EVj − ELj = 0 (2.15)

2.4.3 Taylor and Krishna’s transport equations

The mass transfer rates in the vapor and liquid diffusion films have to be modelled. The fluxes
inside each bulk phase, relative to a stationary interface, can be given by:

JV,TKi = JV,TKi,am + JV,TKt yV bi (2.16)

JL,TKi = JL,TKi,am + JL,TKt xLbi (2.17)

where the superscript TK indicates that these are the transport equations used by Taylor and
Krishna. am indicate that the flux is relative to the average molar velocity. Jt is the mixture
molar flux.

Ideally mixed bulk phases with diffusion films along the interface are assumed. Taylor and
Krishna estimate the molar diffusion fluxes with the following equations:

(JV,TKam ) = cV [kV ](yV b − yI) (2.18)
(JL,TKam ) = cL[kL](xI − xLb) (2.19)

where [kV ] and [kL] are matrices with mass transfer coefficients.

[kP ] = [RP ]−1[Γ] (2.20)
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where the superscript P refers to an arbitrary phase, [R] is a matrix with mass transfer re-
sistances and [Γ] is a matrix of thermodynamic factors. The matrix of thermodynamic factors
appears bacause the fundamental driving force for mass transfer is the chemical potential gra-
dient, and not the mole fraction gradient.

The resistances are calculated from the following formulae:

RPii = zi
kPic

+
c∑

k=1,k 6=i

zk
kPik

(2.21)

RPij = −zi

(
1
kPij
− 1
kPic

)
(2.22)

where z is the mole fraction of the phase in question and the k’s are binary mass transfer
coefficients computed from empirical models. c is te number of components in the system.

The thermodynamic factor matrix Γ is defined by:

ΓPij = δij + zi

(
∂ lnφPi
∂zj

)
T,P,zk,k 6=j=1,...,c−1

(2.23)

where δij is the Kronecker delta and φ is the fugacity coefficient. When the mixture is ideal,
the thermodynamic factor matrix is an identity matrix.

By combining the equations 2.16 - 2.19 and multiplying with the interfacial area, aj , the total
mass transfer rates for the two phase bulks in each stage are obtained:

N V
ij = cV [kVj ]aj(yV bij − yIij) +N V

tj y
V b
ij (2.24)

NL
ij = cL[kLj ]aj(xIij − xLbij ) +NL

tjx
Lb
ij (2.25)

where Ntj = ajJ
TK
tj is the total mass trasfer rate on stage j and aj is the net interfacial area

of stage j. The interfacial area is dependent on equipment and operating conditions, and can
be found from empirical models.

Since the system described is steady state, there can not be any accumulation at the interface,
so there are only one set of independent mass transfer rates, and Nij = N V

ij = NL
ij can be

substituted into equation 2.8, 2.9, 2.11 and 2.12. By combining the mass transfer rate equations
and the interface material balances the following relations occur:

RVij ≡ Nij −N V
ij = 0 (2.26)

RLij ≡ Nij −NL
ij = 0 (2.27)

The heat flux for each phase can be written as:

JV,TKq = hVj (T V bj − T Ij ) +
c∑
i=1

JV,TKij H
V b
ij (2.28)

JL,TKq = hLj (T Ij − TLbj ) +
c∑
i=1

JL,TKij H
Lb
ij (2.29)

where hj is the heat transfer coefficient, and H ij is the partial molar enthalpy of component
i for stage j.
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The energy transfer rates are obtained by multiplying the fluxes with the interfacial area, aj :

EVj = hVj aj(T V bj − T Ij ) +
c∑
i=1
NijH

V b
ij (2.30)

ELj = hLj aj(T Ij − TLbj ) +
c∑
i=1
NijH

Lb
ij (2.31)

2.4.4 The interface model

At the interface, there is assumed to exist phase equilibrium, as in figure 2.1. At face equilibrium
the ratio between the vapor and liquid mole fraction of each component is called the K-value of
this component:

Kij =
yIij
xIij

(2.32)

where K is the K-value. This value is dependent on temperature and composition at the
interface. Rewriting this equation gives:

QI
ij = Kijx

I
ij − yIij = 0 (2.33)

Furthermore, the mole fractions at the interface have to sum to unity:

SV Ij =
c∑
i=1

yIij − 1 = 0 (2.34)

SLIj =
c∑
i=1

xIij − 1 = 0 (2.35)

2.4.5 Hydraulic equations

The pressure drop over the column depends on the design and the operating conditions. The
pressure of each tray is dependent on the tray above, and this can be expressed as follows:

Pj ≡ Pj − Pj−1 − (∆Pj−1) = 0 (2.36)

where Pj is the pressure of stage j, and ∆Pj−1 is the pressure drop from stage j− 1 to stage j.
If the column has a condenser, the pressure has to be specified, and the condenser is numbered
as stage 1. The pressure of the top tray also has to be specified, and this is numbered as stage
2.

P1 ≡ Pc − P1 = 0 (2.37)

P2 ≡ Ps − P2 = 0 (2.38)

where Pc is the pressure of the condenser, and Ps is the specified pressure of the top tray.

9



2.4.6 ChemSep

Taylor has used the theory presented here to develop the non-equilibrium distillation model
program ChemSep [1]. The approach has been tested for various systems, compared with
real systems and found to give good results, see Taylor and Krishna [17], Krishnamurthy and
Taylor [14] and the ChemSep Book [12].

2.5 The integrated interface approach

In this section diffusive transport equations for a heterogenous system with two components and
only heat and mass transport are derived using non-equilibrium thermodynamics including non-
equilibrium over the interface. The approach used by Kjelstrup and de Koeĳer [11] is followed,
but in this document the fluxes are defined positive when directed from vapor to liquid. The
approach is called the integrated interface approach. The system consists of a bulk phase with
vapor, a diffusion layer in the vapor, an interface, a diffusion layer in the liquid and bulk phase
with liquid, as shown in figure 2.2. The bulk phases are assumed to be uniform. The system
is in a stationary state, so the mass fluxes and the total heat flux is constant throughout the
system. The measurable heat flux, however, is not constant due to changes in molar enthalpies
at the phase transitions. All fluxes and forces are assumed to be perpendicular to the interface,
so for the derivation of these equations, the system can be considered one dimensional.

The total entropy production rate of the system is then:

dSirr

dt
= dSirr,V

dt
+ dSirr,I

dt
+ dSirr,L

dt
(2.39)

where dSirr

dt is total entropy production, and here the superscript V refers to the vapor diffusion
film, I refers to the interface and L refers to the liquid diffusion film.

2.5.1 Interface

For an interface with a binary mixture, the entropy production along a one-dimensional part
across the whole interface can be written:

dSirr,I

dt
= J ′Vq X ′Iq + J1X

I
1 + J2X

I
2 (2.40)

J ′Vq is the measurable heat flux in the vapor, and J1 and J2 are the fluxes of component
1 and 2. A derivation of this expression is given in appendix A.1.1 where the following driving
forces are obtained:

X ′Iq = ∆V I,LI

( 1
T

)
(2.41)

XI
1 = − 1

TLI
∆V I,LIµ1,T (TLI) (2.42)

XI
2 = − 1

TLI
∆V I,LIµ2,T (TLI) (2.43)
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Each driving force can be written as a sum of products of resistivities and fluxes:

X ′Iq = rIqqJ
′V
q + rIq1J1 + rIq2J2 (2.44)

XI
1 = rI1qJ

′V
q + rI11J1 + rI12J2 (2.45)

XI
2 = rI2qJ

′V
q + rI21J1 + rI22J2 (2.46)

where the r’s express the resistivities.

2.5.2 Diffusion films

For the liquid and vapor films in the system, the local entropy production can be written for
P = L, V :

σP = J ′Pq X ′P,locq + J1X
P,loc
1 + J2X

P,loc
2 (2.47)

A derivation of this expression is given in appendix A.1.2 where the following local driving
forces are obtained:

X ′P,locq = d

dx

( 1
TP

)
(2.48)

XP,loc
1 = − 1

TP
dµ1,T (TP )

dx
(2.49)

XP,loc
2 = − 1

TP
dµ2,T (TP )

dx
(2.50)

The local driving forces can be written as:

X ′P,locq = rPqqJ
′P
q + rPq1J1 + rPq2J2 (2.51)

XP,loc
1 = rP1qJ

′P
q + rP11J1 + rP12J2 (2.52)

XP,loc
2 = rP2qJ

′P
q + rP21J1 + rP22J2 (2.53)

To find the total entropy production of the diffusion films, the integral over the film thickness
is taken:

dSirr,P

dt
=
∫
δP
σPdx = J ′Pq X ′Pq + J1X

P
1 + J2X

P
2 (2.54)

where δP is the thickness of the diffusion film of phase P . We assume here that the value of
the enthalpy of the mass streams does not vary due to temperature gradient over the diffusion
film. We then have that the measurable heat flux is constant throughout the film.

By assuming constant local driving forces and resistivities, the total driving forces for the films
can be written:

X ′Pq = δPX ′P,locq = r̄PqqJ
′P
q + r̄Pq1J1 + r̄Pq2J2 (2.55)

XP
1 = δPXP,loc

1 = r̄P1qJ
′P
q + r̄P11J1 + r̄P12J2 (2.56)

XP
2 = δPXP,loc

2 = r̄P2qJ
′P
q + r̄P21J1 + r̄P22J2 (2.57)

where r̄P = δP rP . Note that one common film is defined for all the transport processes in each
phase. The thickness of this film vary with different operating conditions in the column.
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2.5.3 Total system

The total entropy production of the system is the sum of the entropy production for each of
the subsystems. Equation 2.39, 2.40 and 2.54 give:

dSirr

dt
= J ′Vq (X ′Vq +X ′Iq ) + J ′Lq X

L
q + J1(XV

1 +XI
1 +XL

1 ) + J2(XV
2 +XI

2 +XL
2 ) (2.58)

The measurable heat flux in the liquid, J ′Lq , can be eliminated using the energy balance for the
interface:

J ′Lq = J ′Vq + J1∆vapH1 + J2∆vapH2 (2.59)

This gives:

dSirr

dt
= J ′Vq (X ′Vq +X ′Iq +X ′Lq )

+J1(XV
1 +XI

1 +XL
1 + ∆vapH1X

′L
q )

+J2(XV
2 +XI

2 +XL
2 + ∆vapH2X

′L
q )

= J ′Vq X ′q + J1X1 + J2X2 (2.60)

Then we have that the driving forces for the whole system are:

X ′q = X ′Vq +X ′Iq +X ′Lq (2.61)
X1 = XV

1 +XI
1 +XL

1 + ∆vapH1X
′L
q (2.62)

X2 = XV
2 +XI

2 +XL
2 + ∆vapH2X

′L
q (2.63)

The relationship between the fluxes and the overall forces can be written:

X ′q = rqqJ
′V
q + rq1J1 + rq2J2 (2.64)

X1 = r1qJ
′V
q + r11J1 + r12J2 (2.65)

X2 = r2qJ
′V
q + r21J1 + r22J2 (2.66)

where the r̄’s are overall coefficients for the entire system. By filling in the expressions for the
forces in equation 2.61 - 2.63 and comparing with equation 2.64 - 2.66, the following expressions
for the resistivities can be found, where the reciprocal relations are still fulfilled:

rqq = r̄Vqq + rIqq + r̄Lqq (2.67)
rq1 = r̄1q = r̄Vq1 + rIq1 + r̄Lq1 + r̄Lqq∆vapH1 (2.68)
rq2 = r̄2q = r̄Vq2 + rIq2 + r̄Lq2 + r̄Lqq∆vapH2 (2.69)
r11 = r̄V11 + rI11 + r̄L11 + 2∆vapH1r̄

L
q1 + ∆vapH

2
1 r̄
L
qq (2.70)

r22 = r̄V22 + rI22 + r̄L22 + 2∆vapH2r̄
L
q2 + ∆vapH

2
2 r̄
L
qq (2.71)

r12 = r̄21 = r̄V12 + rI12 + r̄L12 + ∆vapH2r̄
L
q1 + ∆vapH1r̄

L
q2 + ∆vapH1∆vapH2r̄

L
qq (2.72)

In order to have expressions for the fluxes equation 2.64 - 2.66 can be rewritten: J ′Vq
J1
J2

 =

 rqq rq1 rq2
r1q r11 r12
r2q r21 r22


−1  X ′q

X1
X2

 (2.73)
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2.5.4 Resistivities

The interface resistivities can be found from kinetic theory. In kinetic theory ideal gas is
assumed, and the molecules are treated like hard spheres. For the interface it is also assumed
a thickness of approximately one Knudsen layer, or one mean free path. The expressions for
a binary mixture used by Kjelstrup and de Koeĳer [11], corrected for misprints in Bedeaux et
al [3], are:

rIqq =
√
π

4cVR(T V )2vmp

×

1 + 104
25π

(yI1λV1
λV

)2(
1 + cV2

cV1

4

√
M1
M2

)
+
(
yI2λ

V
2

λV

)2(
1 + cV1

cV2

4

√
M2
M1

) (2.74)

rIq1 = rI1q =
√
π

8cV T V vmp

[
1 + 16yI1λV1

5πλV

(
1 + cV2

cV1

4

√
M1
M2

)]
(2.75)

rIq2 = rI2q =
√
π

8cV T V vmp

[
1 + 16yI2λV2

5πλV

(
1 + cV1

cV2

4

√
M2
M1

)]
(2.76)

rI11 = R
√
π

16cV vmp
×
[
1 + 32

( 1
σ1

+ 1
π
− 3

4

)(
1 + cV2

cV1

4

√
M1
M2

)]
(2.77)

rI22 = R
√
π

16cV vmp
×
[
1 + 32

( 1
σ2

+ 1
π
− 3

4

)(
1 + cV1

cV2

4

√
M2
M1

)]
(2.78)

rI12 = rI21 = R
√
π

16cV vmp
(2.79)

where λ is thermal conductivity, M is molar mass and σi is the condensation coefficient,
meaning the fraction of component i that stays in the interface after collision. vmp is the average
of the most probable velocities of the components given by:

vmp = 1
cV

cV1
√

2RT V
M1

+ cV2

√
2RT V
M2

 (2.80)

Resistivities for the diffusion films can be found from Maxwell-Stefan diffusivities, thermal
conductivities and Soret coefficients. This is shown in appendix A.2. The derived relations are:

rPqq = 1
λP (TP )2

(2.81)

rP1q = −zP2 rPqqsT

(
∂ lnφ
∂ ln zP1

+ 1
)
R(TP )2 (2.82)

rP2q = −z
P
1
zP2
rP1q (2.83)

rP11 = RzP2
zP1 c

P D̄P
12

+
rP1q

2

rPqq
(2.84)

rP12 = −z
P
1
zP2
rP11 (2.85)

rP22 = −z
P
1
zP2
rP12 (2.86)

where P = V b, Lb.
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2.5.5 Chemical potentials

The chemical potential of a liquid component i in equilibrium with an imaginary ideal vapor at
the liquid interface temperature is:

µLi (TLI) = µV,0i (TLI) +RTLI ln p
∗
i (TLI)xi
p0

(2.87)

where p∗i is the vapor pressure of the liquid component i. The chemical potential of an ideal
vapor at the liquid interface temperature is:

µVi (TLI) = µV,0i (TLI) +RTLI ln pi
p0

(2.88)

This gives that:

−∆V I,LIµi(TLI)
TLI

= R ln pi
p∗i (TLI)xIi

(2.89)

and we have:

XI
i = R ln pi

p∗i (TLI)xIi
(2.90)

for i = 1, 2. Here, the gas is assumed to be ideal. For a non-ideal gas, the pressure must be
replaced by fugacity. If we assume constant resistivities and driving forces for the diffusion
films, we have the same way as above that:

XV
i = −R ln

(
yI

yV b

)
(2.91)

XL
i = −R ln

(
xLb

xI

)
(2.92)

2.6 Comparison between the integrated interface approach and
Taylor and Krishna’s approach

In their approach Taylor and Krishna assume equilibrium at the interface and no coupling
between heat and mass transport. This is equivalent to setting all interface resistivities and all
coupling coefficients between heat and mass transport in the integrated interface approach to
zero.

2.6.1 Mass transport

In appendix A.3 it is shown that when the Soret effect is neglected in the integrated interface
equations, the mass transport equations for two components within one phase can be rewritten
on the same form as Taylor and Krishna’s mass transport equations:

JP1,am = −cP D̄P
12ΓP

∂z1
∂x

(2.93)

JP1 = JP1,am + z1J
P
t (2.94)
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By comparing these equations with equation 2.16 - 2.19, it is clear that the only remaining
difference between the two approaches is the coefficients. The Maxwell-Stefan diffusivity divided
by film thickness is replaced with −k in Taylor and Krishna’s approach. This is valid also for
systems with more than two components.

The binary mass transfer coefficients used by Taylor and Krishna are functions of tray design
as well as operating conditions. In ChemSep a set of different empirical models are used for
the binary mass transfer coefficients, and the model chosen for each case depend on the tray
conditions. More can be read about this in The ChemSep Book [12]. In ”Multicomponent Mass
Transfer” [17], Taylor and Krishna start with describing diffusion in general with the Maxwell-
Stefan equations. For diffusion in distillation, however, they choose to use the binary pair mass
transfer coefficients.

2.6.2 Heat transport

When the Dufour effect is neglected the integrated interface equation for the measurable heat
flux is equal to Fourier’s law:

J ′Pq = −λP ∆T
∆x

(2.95)

where ∆x is the length difference.

The corresponding equation from Taylor and Krishna’s approach is the measurable heat flux
part from equation 2.28 and 2.29:

J ′P,TKq = h∆T (2.96)

The equations have the same form, but the heat conductivity divided by the film thickness in the
integrated interface equation is replaced by −h in Taylor and Krishna’s equation. Taylor and
Krishna calculate the heat transfer coefficients from analogies between heat and mass transfer
such as the Chilton-Colburn analogy or penetration models. More can be read about this in
”Multicomponent Mass Transfer” [17]. They recommend to correct the estimated heat transfer
coefficients for the effects of mass transfer by multiplying with a correction factor. So first
they neglect the Dufour effect, but then they correct for the mass transport effects through this
factor.
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Chapter 3

Methodology

The integrated interface approach was tested on a de-ethanizer column. This column was
first modelled using ChemSep. Then the fluxes and temperature and mole fraction profiles of
this column were calculated using this approach. The impact of the choice of diffusion film
thicknesses and Soret coefficients was examined. The importance of including heat and mass
coupling and non-equilibrium over the interface was analyzed.

The de-ethanizer that was used as test-case was an ethane-propane column with 5 trays. The
column pressure was 12 bar throughout the column. The feed was vapor at 280 K and 12
bar with 0.05 kmol/s ethane and 0.15 kmol/s propane. An overview of physical properties
calculated by ChemSep for each tray, and of the properties of the phase bulks calculated by
ChemSep is given in apendix B. In the ChemSep model, the heater and condenser, tray 1 and
5, were modelled as equilibrium trays, while tray 2 - 4 were modelled as non-equilibrium trays.
Thus only trays 2 - 4 are used here. The mixtures were assumed ideal.

3.1 Solving the integrated interface transport equations

To find the fluxes over the interface, the temperature and composition profiles must be found
to be able to find the right resistivities. The bulk temperatures and compositions are already
set and used as boundary conditions for the system. We assume constant resistivities within
each phase, and use the mean temperature and composition of the phase to approximate them.
Temperatures and compositions are assumed to vary linearly through each phase. The overall
driving forces for phase P can be written:

X ′Pq = ∆A,B
1
T

(3.1)

XP
1 = −R ln

(
zB1
zA1

)
(3.2)

XP
2 = −R ln

(
zB2
zA2

)
(3.3)

where A and B are the diffusion film borders from left to right.

We then have the following 9 unknown variables: J ′Vq , J1, J2, T V I , yI(1), yI(2), TLI , xI(1) and
xI(2). From section 2.5, we see that the variables are determined if the following equations are
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fulfilled:  J ′Vq
J1
J2

 =

 rqq rq1 rq2
r1q r11 r12
r2q r21 r22


−1  X ′q

X1
X2

 (2.73)

X ′Pq = r̄PqqJ
′P
q + r̄Pq1J1 + r̄Pq2J2 (2.55)

XP
1 = r̄P1qJ

′P
q + r̄P11J1 + r̄P12J2 (2.56)

XP
2 = r̄P2qJ

′P
q + r̄P21J1 + r̄P22J2 (2.57)

where equation 2.55 - 2.57 must be fulfilled both for the vapor and liquid phase. Alterna-
tively the equation set for one of the phases can be replaced with the corresponding equations
for the interface, equation 2.44 - 2.46. The forces are functions of interface temperature and
composition, see equation 3.1 - 3.3.

These equations were solved iteratively, with a procedure explained below using matlab. An
overview of the procedure is given in figure 3.1. First initial guesses for the profiles were made.
Here the interface temperature and mole fractions from ChemSep’s solution of the system were
used, both at the vapor and the liquid side of the interface. These values were used to calculate
the resistivities, r, see equations in section 2.5.4. Then the total forces, X, were calculated using
equation 2.61 - 2.63. Here, only TLI is a variable, since most of the interface properties cancel out
and the bulk properties are constant. Next step is to calculate the fluxes, using equation 2.73.
Then the vapor phase and liquid phase forces were calculated using equation 2.55 - 2.57. New
temperatures and mole fractions were found from these forces, using equation 3.1 - 3.3. This
procedure was repeated until convergence was obtained. The value of J ′Lq was then calculated
using equation 2.59.

In the calculation the values for densities, molar weight for mixture and diffusivities were taken
from the ChemSep model for the exact same tray. The heat conductivities were taken for
the correct temperatures from the databank in ChemSep. Ideal mixtures were assumed, and
the Antoine model for vapor pressure was used. When calculating the interface resistivities,
the condensation coefficients are set to 0.8. If nothing else is specified are the diffusion film
thicknesses used 600 µm and 35 µm for the vapor and liquid film respectively. The Soret
coefficients are −6.0 · 10−4 for the liquid, and from 0.0234 · 10−4 - 0.3617 · 10−4 for the vapor.

The answers were checked for consistency in several ways. The calculated mole fractions were
checked whether they summed to 1. It was checked whether Gibbs-Duhem’s equation was
fulfilled within the vapor and liquid diffusion film, and if the coupling coefficients calculated
lie within their boundary values, see equation 2.7. The temperature and µT,i/(T ) profiles were
plotted, and inspection of these plots was also used to evaluate the answers.

The matlab program used was written such that different resistances can easialy be enlargened
or neglected. In this project different cases with such assumptions are used in the calculations.
These cases are labelled and explained in table 3.1.

3.2 Sensitivity to diffusion film thicknesses

The sensitivity to the choice of diffusion film thicknesses was analysed. Also an evaluation on
what thicknesses to use further was done.
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In ChemSep empirical relations for distillation columns are used to find the mass transfer
coefficients. Thus the widths of the diffusion layers are not used in ChemSep, as the resistances
of these layers are taken into account through the mass transfer coefficients. In order to find
a rough approximation for the thicknesses of the diffusion layers, Fick’s law was used together
with values for diffusion fluxes, concentrations, mole fractions and molar diffusivities calculated
by ChemSep, see appendix C. Based on this a selection of thicknesses was tested for one of the
distillation trays. To be able to compare with ChemSep, the resistances from the interface and
the coupling coefficients between heat and mass were neglected. The results were inspected,
both concerning the values of the fluxes and the temperature and composition profiles. Only the

START

Initialize start
variables

T V I , TLI , yI and xI

r̄V (T V I , yI)
r̄L(TLI , xI)

r(T V I , TLI , yI , xI)
X(TLI)

J(r,X)

XV (r̄V , J)
XL(r̄L, J)

T V I(XV )
TLI(XL)
yI(XV )
xI(XL)

Convergence

Use new
T V I , TLI , yI and xI

EXITno yes

Figure 3.1: Flowchart over iteration method for finding fluxes and temperature and mole fraction
profiles.
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Table 3.1: Overview over cases with neglected or enlargened resistances used in this project.

Label Explanation

Standard No resistances are neglected or enlargened
rIij = 0 The coupling between the two components in the interface is neglected
rI = 0 All resistance in the interface is neglected
rI · 10 All resistance in the interface is multiplied with 10
rPqi = 0 The coupling between heat and mass in both diffusion layers is neglected

fluxes are of importance for importance for use in a distillation model, but the profiles provide
information on whether the solution makes sense or not. Eventually one set of film thicknesses
was chosen and tested for all the trays, both with the assumptions used above and with no
assumptions, to see if it could be used for further calculations.

3.3 Sensitivity to Soret coefficient

The choice of Soret coefficients is based on data for similar mixtures to the ethane - propane
mixture for the liquid coefficient, and on kinetic theory for the vapor coefficient, see appendix D.
Higher and lower extreme values for the Soret coefficients were tested to see the influence from
these values.

3.4 Assumptions on coupling and interface

The importance of including the coupling of heat and mass and the resistance of the interface
was analyzed by neglecting these effects by setting the resistivities to zero and see if this changed
the solution. First the coupling between the components in the interface was neglected. Then
the entire interface was neglected. As this made almost no difference and the interface resistance
used is for hard spherical molecules, also calculations with the interface resistance multiplied
with 10 were done to check the influence of this. Eventually the coupling coefficients between
heat and mass in the diffusion films were neglected, while the interface was included.
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Chapter 4

Results and Discussion

4.1 Sensitivity to diffusion film thicknesses

The fluxes found for tray 2 with different film thicknesses and the same assumptions as Chem-
Sep are listed in table 4.1 together with the fluxes calculated by ChemSep. The (µT,i)/T -,
composition and temperature profiles are shown in figure 4.1 - 4.5. The profiles calculated for
cases with the same film thickness ratios were identical, so only one figure is shown for each
ratio. The (µT,i)/T profiles vary so little that the variation is hard to see in the plots.

Table 4.1: Fluxes calculated with different film thicknesses and assuming no heat and mass
coupling and no resistance in the interface for tray 2. The bottom line shows the fluxes calculated
by ChemSep. The precision is reduced to two digits since this is enough to show the variation
between the fluxes.

δV δL δL/δV J ′Vq J ′Lq J1 J2
[µm] [µm] [J/s] [J/s] [mmol/s] [mmol/s]

1200 700 0.58 -4.8 · 101 5.7 · 102 5.4 4.0 · 101

1200 70 0.058 1.4 · 101 7.7 · 102 9.0 4.7 · 101

1200 7 0.0058 2.1 · 101 2.1 · 103 4.5 · 101 1.2 · 102

120 700 5.8 -3.2 · 103 2.4 · 103 6.0 · 101 4.1 · 102

120 70 0.58 -4.8 · 102 5.7 · 103 5.4 · 101 4.0 · 102

120 7 0.058 1.4 · 102 7.7 · 103 9.0 · 101 4.7 · 102

12 700 58 -5.0 · 104 3.3 · 103 6.7 · 102 4.3 · 103

12 70 5.8 -3.2 · 104 2.4 · 104 6.0 · 102 4.1 · 103

12 7 0.58 -4.8 · 103 5.7 · 104 5.4 · 102 4.0 · 103

ChemSep 2.7 · 102 6.7 · 102 -5.5 · 103 6.8 · 103

All the fluxes are inversely proportional to the film thicknesses as long as the ratios between
the thicknesses are the same. This is in agreement with that a higher resistivity gives a lower
flux. Since the local resistivities only are dependent on temperature and composition, and the
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same ratios give the same profiles, the same local resistivities are obtained. As the resistance of
the interface is neglected, we have that the total resistance is directly proportional to the film
thicknesses.
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Figure 4.1: Profiles calculated for δL/δV = 0.0058 for tray 2. The calculated profiles are shown
with black lines while the ChemSep profiles are grey. The mole fraction profile labelled 1 is for
ethane while 2 is for propane.

The profiles are calculated from the values of XV and XL. As the interface resistivity is
neglected, the overall resistivity matrix consists only of terms multiplied by δV and δL, see
equation 2.67 - 2.72. The inverse of this 3×3 matrix has only terms multiplied with a factor
consisting of two film thicknesses (δV or δL) divided by terms with tree such film thicknesses.
This matrix is used to find the vector of fluxes, see equation 2.73. This means that the equations
for the fluxes consist of only terms multiplied with two film thickness ratios divided by either
δV or δL, thus the fluxes are dependent on the magnitude of the film thicknesses as commented
above. When XV and XL are calculated from equation 2.55 - 2.57, all the terms will again
be multiplied with δV or δL. This is why the profiles only are dependent on the film thickness
ratio.

The interface temperatures lie between the vapor and liquid temperatures for ratio 0.0058 and
0.058, but it increases with increasing ratio, and at ratio 58 it is around 30 K higher than the
vapor temperature.

For cases with high temperatures at the interface, the mole fractions at the liquid side of the
interface do not sum to 1. This is a result of a vapor pressure model that performs badly at
these temperatures. The Antoine vapor pressure model is used, and as the temperature rises it
starts to predict vapor pressures for ethane that are too high. This gives mole fractions that are
sometimes far too low at the liquid side of the interface, see equation 2.87. This again influences
the liquid resistivities that are calculated, since they among other things are dependent on the
mean mole fractions of the liquid phase. Through this, the bad performance of the vapor
pressure model is responsible for some error in all the profiles and fluxes calculated for cases
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Figure 4.2: Profiles calculated for δL/δV = 0.058 for tray 2. The calculated profiles are shown
with black lines while the ChemSep profiles are grey. The mole fraction profile labelled 1 is for
ethane while 2 is for propane.
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Figure 4.3: Profiles calculated for δL/δV = 0.58 for tray 2. The calculated profiles are shown
with black lines while the ChemSep profiles are grey. The mole fraction profile labelled 1 is for
ethane while 2 is for propane.
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Figure 4.4: Profiles calculated for δL/δV = 5.8 for tray 2. The calculated profiles are shown
with black lines while the ChemSep profiles are grey. The mole fraction profile labelled 1 is for
ethane while 2 is for propane.
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Figure 4.5: Profiles calculated for δL/δV = 58 for tray 2. The calculated profiles are shown
with black lines while the ChemSep profiles are grey. The mole fraction profile labelled 1 is for
ethane while 2 is for propane.
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with this high temperatures. This error was first assumed to be small, so the equation was not
replaced, but after checking this more thoroughly, it was shown to have a higher impact than
first assumed, see appendix E.

4.1.1 Choosing film thicknesses for further calculations

The diffusion film thicknesses vary strongly with the geometry of the equipment and the hy-
draulics of the system. But as the choice of film thicknesses will imply a high level of uncertainty
anyway, the thicknesses will be assumed to be constant throughout the column.

From the section above, we see that some film thickness ratios give very high temperature
gradients through the systems. The most extreme case has a temperature rise on 30 K over 12
µm. Such temperature profiles can not appear in reality. The ratio δL/δV = 0.058 is the tested
ratio that gives the profile closest to the profiles calculated by ChemSep. This ratio is chosen
for further work. None of the cases tested in the previous section gave fluxes that all were close
to the fluxes calculated by ChemSep. The case with 120 µm and 7 µm diffusion films give a
heat flux at the vapor side that is in the same order of magnitude as the same flux calculated
by ChemSep, while the case with 1200 µm and 70 µm give a heat flux at the liquid side that is
not too far from the flux calculated by ChemSep. None of these have comparable mass fluxes,
especially not for ethane. To be able to go on with the calculations, the thicknesses 600 and 35
µm is chosen for the vapor and the liquid film, respectively. This is a compromise between the
two cases mentioned above, and it still has the thickness ratio 0.058. Both thicknesses are also
within the intervals proposed by Bedeaux and Kjelstrup, see appendix C.

The chosen thicknesses are tested also for tray 3 and 4, both with the assumptions used by
ChemSep and with all resistances included. This is to check that the thicknesses still can be
used. The impact of the assumption and the still big difference from ChemSep’s calculation is
discussed later in this chapter. The fluxes of the tested thicknesses are listed in table 4.2. The
profiles for tray 3 and 4 are shown in figure 4.6 - 4.7. The profiles for tray 2 are already shown
in figure 4.3. Only the profiles for calculations with ChemSep assumptions are shown, because
the differences between the profiles for this and for the calculation with all resistances included
are minimal. Also for tray 3 and 4 the profiles look sensible, and they are quite close to the
ChemSep profiles. The fluxes do not fit very well with the fluxes calculated by ChemSep, but
compared to the other thicknesses tested for tray 2, they are ok. To be able to go on with the
calculations, these film thicknesses are considered acceptable.
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Table 4.2: Fluxes calculated for tray 2 - 4 with 600 and 35 µm for vapor and liquid film
thicknesses, respectively. Calculations labelled “int int” are calculations done in this project
with the integrated interface approach, while calculations labelled “ChemSep” are done by
ChemSep. The numbers are given with three digits since this is the precision of the input
numbers used in the integrated interface calculations.

Tray Calculation Assumptions J ′Vq J ′Lq J1 J2
[J/s] [J/s] [mmol/s] [mmol/s]

2 int int Standard 2.73 · 101 1.54 · 103 1.77 · 101 9.35 · 101

int int rI = 0, rPqi = 0 2.78 · 101 1.55 · 103 1.79 · 101 9.40 · 101

ChemSep rI = 0, rPqi = 0 2.75 · 102 6.71 · 102 -5.52 · 103 6.79 · 103

3 int int Standard 7.16 · 101 5.10 · 103 6.87 · 101 3.08 · 102

int int rI = 0, rPqi = 0 7.27 · 101 5.14 · 103 6.98 · 101 3.09 · 102

ChemSep rI = 0, rPqi = 0 2.45 · 102 6.71 · 102 -2.31 · 104 3.02 · 104

4 int int Standard 2.08 · 101 5.82 · 103 4.40 · 101 3.85 · 102

int int rI = 0, rPqi = 0 2.05 · 101 5.86 · 103 4.46 · 101 3.88 · 102

ChemSep rI = 0, rPqi = 0 2.35 · 102 7.14 · 102 -1.65 · 104 2.29 · 104

4.2 Sensitivity to Soret coefficient

The choice of Soret coefficients is based only on data for a few similar mixtures for the liquid
coefficient, and on kinetic theory for the vapor coefficient, see appendix D. To see how dependent
the calculated fluxes are on these coefficients, calculations with values 10 times bigger than the
values used are checked, and also calculations for this value with opposite sign. These values
were compared with calculations with Soret coefficients equalling zero. The results are presented
in table 4.3.

For variation of the vapor Soret coefficients, the measurable heat flux at the vapor side is 21 %
higher for the high positive Soret coefficient than for zero Soret coefficient, and for the low
negative value, the vapor measurable heat flux was 21 % lower than for zero Soret coefficient.
The other fluxes changed only with less than 1 %. For variation of the liquid Soret coefficient,
the vapor heat flux increased and decreased with around 3 % when using the extreme cases
compared to coefficients equalling zero. The liquid heat flux increased and decreased with
around 6 %. The ethane flux increased and decreased with around 15 %, while the propane flux
increased and decreased with around 5 %. Equation 2.82 and 2.83 show how the heat and mass
coupling parts of the equations are directly dependent on the Soret coefficients. The variations
in the profiles caused by the different Soret coefficients are so small that they are not visible in
the plots.
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Figure 4.6: Profiles calculated for chosen film thicknesses with ChemSep assumptions for tray
3. The calculated profiles are shown with black lines while the ChemSep profiles are grey. The
mole fraction profile labelled 1 is for ethane while 2 is for propane.

V VI LI L
0

0.2

0.4

0.6

0.8

1
Mole fractions

 

 

1
2

V VI LI L
101

103

105

(µ
T,1

)/T [JK−1mol−1]

V VI LI L
113.5

114

114.5

115

(µ
T,2

)/T [JK−1mol−1]

V VI LI L
298

299

300

301

302
Temperature [K]

Figure 4.7: Profiles calculated for chosen film thicknesses with ChemSep assumtions for tray 4.
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Table 4.3: Fluxes calculated for different Soret coefficients for tray 2. The numbers are given
with three digits since this is the precision of the numbers used in the integrated interface
calculations. sVT is the vapor Soret coefficient while sLT is the liquid Soret coefficient.

sVT sLT J ′Vq J ′Lq J1 J2
[J/s] [J/s] [mmol/s] [mmol/s]

-4.00 · 10−4 - 6.00 · 10−4 33.6 1.55 · 103 17.7 93.7
0 - 6.00 · 10−4 27.8 1.54 · 103 17.7 93.5

4.00 · 10−4 - 6.00 · 10−4 22.1 1.53 · 103 17.6 93.3

3.60 · 10−5 - 6.00 · 10−3 28.1 1.46 · 103 15.5 89.2
3.60 · 10−5 0 27.3 1.54 · 103 17.9 94.0
3.60 · 10−5 6.00 · 10−3 26.5 1.64 · 103 20.6 99.2

4.3 Assumptions on coupling and interface

The fluxes calculated for tray 2 - 4 with different assumptions are listed in table 4.4. The
differences between the results of each calculation and the same calculation with standard
assumptions are also listed. When the coupling between the two components in the interface is
neglected are the changes in the fluxes too small to be visible with tree digits accuracy. When
all resistance in the interface is neglected, the calculated fluxes are changed with around 2 h
for the heat flux at the liquid side and for the ethane mass flux for tray 3. All the other fluxes
had too small changes to be visible. When the interface resistances are multiplied with 10 are
the fluxes changed with from -6.49 h to 3.47 h. Neglecting all coupling between heat and
mass in the two diffusion films changed the fluxes with -14.4 h to 18.3 h.

The temperature, (µT,i)/T and composition profiles calculated with the different assumptions
gave so similar results that it is impossible to see the differences in the profile plots. The
profiles for tray 2, 3 and 4 look all identical to the profiles in figure 4.2, 4.6 and 4.7. Figure 4.8
shows the temperature and (µT,i)/T profiles for tray 2 when zoomed in dramatically so that
only the interface area is shown and that it is possible to distinct the profiles from each other.
All the profiles calculated for rI12 = 0 and the profiles calculated with standard assumptions
overlap even in this plot. The profile calculated with rI = 0 is around 0.0001 K higher than the
profile with standard assumptions in the temperature plot. In the (µT,i)/T plots, the profiles lie
around 50 µJK−1mol−1 over and 30 µJK−1mol−1 below the profile with standard assumptions.
These profiles are all straight lines, as the assumption means that there must be equilibrium
over the interface. The temperature and chemical potential have to be the same on each side.
This implies that also the values for (µT,i)/T must be the same on each side. The profiles for
the calculations with the interface resisance multiplied with 10 have a higher slope than the
others, since the higher resistance implies that the system is further away from equilibrium over
the interface. For the temperature is the profile on the most 0.001 K lower than the profile
with standard assumptions, and the (µT,i)/T profiles are 0.0003 JK−1mol−1 lower and around
0.0001 JK−1mol−1 higher than the profile with standard assumptions. The profile calculated
for rPqi = 0 lie around 0.004 K higher than the other profiles in the temperature plot. In the
(µT,i)/T plots, the profiles lie very close to the profiles for standard assumptions. Generally, the
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Table 4.4: Fluxes calculated using different assumptions for tray 2 - 4. The columns labelled
“Diff” give the difference of the foregoing flux from the same flux calculated without any as-
sumptions. The values are given with three digits since this is the precision of the numbers used
in the calculations.

Tray Assumptions J ′Vq Diff J ′Lq Diff J1 Diff J2 Diff
[J/s] [h] [J/s] [h] [mmol/s] [h] [mmol/s] [h]

2 Standard 27.3 - 1.54 · 103 - 17.7 - 93.5 -
rI12 = 0 27.3 0.00 1.54 · 103 0.00 17.7 0.00 93.5 0.00
rI = 0 27.3 0.00 1.54 · 103 0.00 17.7 0.00 93.5 0.00
rI × 10 27.3 0.00 1.53 · 103 -6.49 17.6 -5.65 93.3 -2.14
rPqi = 0 27.8 18.3 1.55 · 103 6.49 17.9 11.3 94.0 5.35

3 Standard 71.6 - 5.10 · 103 - 68.7 - 308 -
rI12 = 0 71.6 0.00 5.10 · 103 0.00 68.7 0.00 308 0.00
rI = 0 71.6 0.00 5.11 · 103 1.96 68.8 1.46 308 0.00
rI × 10 71.6 0.00 5.10 · 103 0.00 68.5 -2.91 307 -3.25
rPqi = 0 72.7 15.4 5.14 · 103 7.84 69.7 14.5 309 3.25

4 Standard 20.8 - 5.82 · 103 - 44.0 - 385 -
rI12 = 0 20.8 0.00 5.82 · 103 0.00 44.0 0.00 385 0.00
rI = 0 20.8 0.00 5.82 · 103 0.00 44.0 0.00 385 0.00
rI × 10 20.9 3.47 5.80 · 103 -3.44 43.8 -4.54 384 -2.60
rPqi = 0 20.5 -14.4 5.85 · 103 5.15 44.6 13.6 388 7.79
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differences caused by the assumptions taken here are minimal. For the fluxes, the assumption
on neglecting the coupling between heat and mass has highest impact. The magnitude of this
impact is dependent on the values of the Soret coefficients, which in this project have a high
level of uncertainty. In the previous section we saw how the fluxes were much more influenced
when higher values for the Soret coefficients were used.

The interface was expected to have a bigger impact on the calculations than what is seen here.
To have a closer look on this, the contributions from the interface resistances to the overall
resistances are calculated and plotted in table 4.5. It can be seen that for this system the
interface contributions are all far less than 1 %. To multiply the interface resistances with 10
made more difference, but still not much.

Table 4.5: Interface contribution to overall resistance in tray 2. The values are given with three
digits since this is the precision of the numbers used in the calculation.

Resistance Overall Interface Interface contribution [%]

rqq 3.74 · 10−7 8.13 · 10−12 2.17 · 10−3

rq1 2.08 · 10−5 8.89 · 10−9 4.28 · 10−2

rq2 6.95 · 10−5 8.52 · 10−9 1.23 · 10−2

r11 4.11 · 101 3.70 · 10−4 9.01 · 10−4

r22 8.42 2.27 · 10−4 2.70 · 10−3

r12 -1.53 · 101 5.27 · 10−6 -3.43 · 10−5

For systems with other components, pressures and temperatures, can the influence of the inter-
face to the overall resistance be higher. For instance are rIq1 and rIq2 inversely proportional to
temperature, while r̄Pq1 and r̄Pq2 are temperature dependent only through the Soret coefficient
and thermal conductivity. All the interface resistivities are dependent on pressure through the
cV -terms. They will all increase with decreasing pressure. r̄Pqq is not dependent on pressure,
and if the system is assumed ideal r̄P1q and r̄P2q are only pressure dependent through the Soret
coefficient. In calculations done by Bock and van der Ham [4] for distillation of air, the heat
fluxes became around twice and the mass fluxes half as big when neglecting the interface re-
sistance compared to using standard assumptions. This is radically different from the results
found here. The fluxes are calculated with a different approach, but the same assumptions can
be checked. Air distillation operates with pressures just above 1 bar and temperatures around
85 K.

The relative influence from the resistivities in the diffusion films compared to the resistivities in
the interface is also highly dependent on the chosen values of the film thicknesses. If lower film
thicknesses are assumed, the resistances in the vapor and liquid films will be correspondingly
lower. Thus the interface resistance will be responsible for more of the overall resistance.

4.4 Heat of transfer in interface

An interesting property of the interface is its high values for heats of transfer. If we write the
general transport equations as fluxes, and rewrite to replace one of the component’s mass force
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in the heat flux equation with a mass flux, we have that:

J ′Vq = lqqXq + lq1
l11

(J1 − l1qXq − l12X2) + lq2X2 (4.1)

The coefficient in front of the mass flux is the heat of transfer for this component. Kjelstrup
and Bedeaux [10] have shown that for the interface is this coefficient related to the heat of
evaporation, and therefore big. As we can see from the equation will the measurable heat flux
then get a high contribution from the mass flux. The same is true also for the other component.
This effect is especially important in the case of distillation, where it is a goal to achieve high
mass fluxes across the interface. For the rest of the system is the heat of transfer not necessarily
that big. In tray 2 in the distillation column considered here is the heat of transfer -1.11 · 103

J/mol for component 1 in the interface, while it is -3.95 · 102 J/mol for the overall system.

The three fluxes in the system can be looked upon as several fluxes in series. Since we have
steady state, do the fluxes in the same series have the same magnitude, but each of them can
have different contributions from other fluxes and forces. The fact that the properties of the
transport through the interface is different than the transport through other phases do not
influence the importance of including the interface resistance. This importance is only decided
through the contribution of the interface resistances to the overall resistances.

4.5 Comparison with ChemSep

In table 4.2 we saw that the fluxes calculated by ChemSep deviate widely from the fluxes calcu-
lated here, even when the same assumptions are taken with respect to the interface and coupling
between heat and mass. The differences within the solutions from the integrated interface ap-
proach caused by different assumptions are very small compared to the differences between the
solutions of the two approaches. In section 2.6 we saw that with the same assumptions, the only
differences between the two approaches are the coefficients used. Since we know that ChemSep
has given good results compared to experiments, it is natural to assume that their coefficients
give better results than the ones used in the integrated interface approach.

The ChemSep results give fluxes of the two components with different signs. The fluxes cal-
culated here have the same sign, but the flux of ethane is smaller than the one for propane.
The two different sets of fluxes predict very different separation properties of the column. The
fluxes calculated by ChemSep give a better separation because in each tray, a net flux of ethane
evaporate while propane condensate. The fluxes calculated here predict condensation of both
ethane and propane. This will still give some separation, since taking the composition of the
mixtures into account, more propane condensate than ethane.

The difference between the vapor and liquid measurable heat fluxes calculated is much higher
than the difference between the same fluxes calculated by ChemSep. This is related to that
ChemSep predicts just a small net condensation, while the calculations done here predict a high
net condensation, see equation 2.59.

4.6 Error sources and uncertainity

In this project, some variables with a high level of uncertainity are used. The film thicknesses
found as described above have a high level of uncertainity, and they have a high impact on
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the system as seen in section 4.1. Using a 10 times higher or lower film thickness changed
the order of magnitude or the sign of some of the fluxes, and the temperature and chemical
potential profiles changed dramatically when different ratios between the thicknesses were used.
Physical properties are taken from the ChemSep databank, and are related to a low level of
uncertainity compared to this. The vapor pressure model was used outside its temperature
limits, and is therefore the source of some error as discussed earlier in this chapter and in
appendix E. It influenced the values of some of the resistivities and resistances. This however is
of less importance than the uncertainity of the film thicknesses that have a direct impact on all
the resistances, and have a higher level of uncertainity. The vapor pressure error was smaller
in tray 2 than in tray 3 and 4. When assumptions are tested in section 4.3 the influence of
the asumptions have around the same size for all trays, even though the error from the vapor
pressure model is of diffent sizes. The choice of Soret coefficients is also related to a high level of
uncertainity, but the highest and lowest Soret coefficients tested in section 4.2 only changed the
fluxes within the same order of magnitude, and the changes in the temperatures and chemical
potentials were not visible in the profile plots.

A general estimation of uncertainities in the calculated values is not done, since the film thick-
nesses seem to be of higher importance than anything else, and since it is hard to evaluate the
uncertainity they contain.

4.7 Suggested directions for further work

Before further work with this project, all calculations should be done again with a better vapor
pressure model, just to get rid of this error source. Then the approach should be tested on more
systems, to get an overview on how big influence the interface and coupling between heat and
mass have on different distillation systems. One start can be to look closer on air distillation,
since Bock and van der Ham have found a high influence from the interface in this system. If
the conclusion is that these things have an influence of importance, it is worth to work further
with this.

Since the coefficients used by ChemSep are assumed to give better results for diffusion in dis-
tillation columns, a way to continue this work can be to use these coefficients in the integrated
interface approach. If this is possible, we will have the advantage of the ChemSep coefficients
that take the tray conditions and design into account, and that are shown to give good results,
in addition to the advantage of including the effects of the interface and the coupling between
heat and mass.

The ChemSep coefficients can be included in the integrated interface approach by deriving
expressions for resistivities the same way as is done in appendix A.2, but by comparing with the
transport equations used by ChemSep instead of Fourier’s law and the Maxwell-Stefan equations.
The expressions for these resistivities will contain the film thicknesses in the denominator. As
the expressions later will be multiplied with the film thickness when the total resistances are
found, the film thickness will cancel out. This means that the problem with finding good film
thicknesses disappears. As an example the expression for rPqq found this way is shown below:

rPqq∗ = − 1
δPhPT 2 (4.2)

where the * indicates that this is a resistivity found from Taylor and Krishna’s equations.
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The heat transfer coefficients used by ChemSep are corrected for the influence of the mass
transfer with a correction factor. When used in the integrated interface approach, this factor
must not be included, as the Dufour effect is taken into account through the coupling terms.
Taylor and Krishna [17] write that such correction factors not are necessary to correct the
mass transfer coefficients in distillation, so they have probably not used it on mass transport in
ChemSep, but this has to be checked. It must also be checked whether effects from the interface
somehow can be included in the coefficients, to make sure that this is not taken into account
twice.

The long term goal with this project is to make a non-equilibrium model with the interface
effects and coupling between heat and mass included. If the method proposed above gives good
results, these transport equations can be included in Taylor and Krishna’s non-equilibrium
model instead of the equations they use.
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Chapter 5

Conclusion

A method for calculating fluxes and temperature and chemical potential profiles over interfaces
using non-equilibrium thermodynamics is established. Fluxes and profiles are calculated for a
de-ethanizer column. It is found challenging to find reasonable values for film thicknesses and
Soret coefficients. Both these values are shown to have a high impact on the solution, especially
the film thicknesses. The fluxes calculated deviate widely from the same fluxes calculated by
ChemSep. This deviation is concluded to come from different coefficients used in the transport
equations. With the film thicknesses and Soret coefficients chosen, the coupling of heat and
mass and the inclusion of resistance in the interface is shown to have only a small impact on the
solution. Both neglecting the interface resistance and multiplying the interface resistance with
10 change the fluxes with less than 0.5 %. Neglecting the coupling of heat and mass transport
changes the fluxes with less than 2 %. It is proposed to check this also for other distillation
processes with other operating conditions, and a direction for further work is outlined.
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Appendix A

Derivations

A.1 Entropy Production of Two-Component System

To be able to find equations for transport using non-equilibrium thermodynamics, the entropy
production of the liquid diffusion layer, the interface and the vapor diffusion layer must be
derived. The system has only transport of heat and mass, it is in a stationary state, and
consists of c different components. Local equilibrium is assumed so the local thermodynamic
state functions, expressed as densities, have the same values as they would have had in an
equilibrium situation. The derivations below follows Kjelstrup and Bedeaux [10]. All fluxes are
relative to the laboratory frame of reference.

A.1.1 Interface

A shematic overview of the interface with all fluxes entering and leaving is given in figure A.1.

Figure A.1: Shematic overview over fluxes entering and leaving the interface.

The entropy balance for the interface can be written:

∂sI

∂t
= ∂Sirr,I

∂t
+ JV Is − JLIs (A.1)

where s is entropy density, Js is entropy flux and ∂Sirr

∂t is the entropy production. Local
equilibrium is assumed, thus the Gibbs equation must be valid, and for an interface element on
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local form it is as follows:
duI = T IdsI +

c∑
i=1

µIi dΓi (A.2)

where u is internal energy density and Γ is the excess interface concentration. Rewriting and
taking the time derivative of the entropy density gives:

∂sI

∂t
= 1
T I

∂uI

∂t
− 1
T I

c∑
i=1

µIi
∂Γi
∂t

(A.3)

The first law of thermodynamics gives for this system:

duI

dt
= JV Iq − JLIq (A.4)

where Jq is the total heat flux. The mass balance around the surface gives:

dΓi
dt

= JV Ii − JLIi (A.5)

There are no chemical reactions in the system, only phase transformations. Mass enter and
leave the surface as liquid at one side and as vapor at the other side. By inserting equation A.4
and A.5 in equation A.3, the following equation is obtained:

∂sI

∂t
= 1
T I

(JVq − JLq )− 1
T I

c∑
i=1

µIi (JVi − JLi ) (A.6)

By rewriting the entropy balance, equation A.1, using that Js = 1
T (Jq−

∑c
i=1 µiJi), and inserting

equation A.6, we have that the entropy production is:

∂Sirr,I

∂t
= JLq ( 1

T I
− 1
TLI

) + JVq ( 1
T V I

− 1
T I

)−
c∑
i=1

JLi (µ
I
i

T I
− µLIi
TLI

)−
c∑
i=1

JVi (µ
V I
i

T V I
− µIi
T I

) (A.7)

The total heat fluxes consists of the measurable heats and the enthalpies of the mass fluxes:

Jq = J ′q +
c∑
i=1

HiJi (A.8)

The term ∆LI,I(µiT ) can be approximated using linearization the following way by using −Si =(
∂µi
∂T

)
p,n

and µi = Hi − TSi:

∆LI,I(
µi
T

) = µIi (T I)
T I

− µLIi (TLI)
TLI

= µIi (T I)
T I

− µLIi (T I)
T I

+ µLIi (T I)
T I

− µLIi (TLI)
TLI

= 1
T I

∆LI,Iµi,T (T I) +
(
∂

∂T

µLIi
T

)
T=TLI

(T I − TLI)

= 1
T I

∆LI,Iµi,T (T I)−
(

1
TLI

SLIi + µLIi
(TLI)2

)
(T I − TLI)

= 1
T I

∆LI,Iµi,T (T I) +
(
SLIi + µLIi

TLI

)
T I∆LI,I

( 1
T

)

= 1
T I

∆LI,Iµi,T (T I) +HLI
i

(
T I

TLI

)
∆LI,I

( 1
T

)
(A.9)
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The ratio T I

TLI
can be approximated to 1, so that:

∆LI,I(
µi
T

) = 1
T I

∆LI,Iµi,T (T I) +HLI
i ∆LI,I

( 1
T

)
(A.10)

By inserting equation A.8 and A.10 into equation A.7, the entropy production can be expressed
the following way:

∂Sirr,I

∂t
= J ′Lq ∆LI,I

1
T

+J ′Vq ∆I,V
1
T

+
c∑
i=1

JLi

(
− 1
T I

∆LI,Iµi,T (T I)
)

+
c∑
i=1

JVi

(
− 1
T I

∆I,V Iµi,T (T I)
)

(A.11)
For a stationary state JL = JV = J . Then the above equation can be rewritten as:

∂Sirr,I

∂t
= J ′Lq ∆LI,I

1
T

+ J ′Vq ∆I,V I
1
T

+
c∑
i=1

Ji

(
− 1
T I

∆LI,V Iµi,T (T I)
)

(A.12)

Here the chemical potential differences are evaluated at the surface temperature. In a stationary
state the total heat flux is constant throughout the system, giving the following relation:

Jq = J ′Vq +
c∑
i=1

HV
i Ji = J ′Lq +

c∑
i=1

HL
i Ji (A.13)

By using this, the liquid heat flux in equation A.12 can be eliminated. Gibbs-Helmholtz’
equation

∂(µ/T )
∂(1/T )

= H (A.14)

can be used to rewrite the term expressing the force conjugate to the mass flux:

1
T I

∆LI,V Iµi,T (T I) = 1
TLI

∆LI,V Iµi,T (TLI) +
(

∂

∂(1/T )

[
µV I(T )− µLI(T )

T

])
T=TLI

( 1
T I
− 1
TLI

)
= 1

TLI
∆LI,V Iµi,T (TLI) + (HV I −HLI)

( 1
T I
− 1
TLI

)
(A.15)

Now, the entropy production can be written:

∂Sirr,I

∂t
= J ′Vq ∆LI,V I

( 1
T

)
+

c∑
i=1

Ji

(
− 1
TLI

∆LI,V Iµi,T (TLI)
)

(A.16)

A.1.2 Diffusion Film

The derivation of the entropy production in the diffusion films follows the same procedure as
the derivation for the interface. The entropy balance in a volume element in a homogeneous
phase is given by:

∂sP

∂t
= σP − ∂

∂x
JPs (A.17)

where σ is the local entropy production. Where P = V,L and means that the variables belong to
a volume element in the vapor or liquid diffusion films. Also here local equilibrium is assumed,
and then we have Gibbs equation on local form for a volume element:

duP = TPdsP +
c∑
i=1

µPi dc
P
i (A.18)
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Rewriting this and taking the time derivative of the entropy density gives:

∂sP

∂t
= 1
TP

∂uP

∂t
− 1
TP

c∑
i=1

µPi
∂cPi
∂t

(A.19)

From the first law of thermodynamics we have:

duP

dt
= − ∂

∂x
JPq (A.20)

and a mass balance gives:
dcPi
dt

= − ∂

∂x
JPi (A.21)

By inserting equation A.20 and A.21 in equation A.19 we have:

∂sP

∂t
= − 1

TP
∂

∂x
JPq + 1

TP

c∑
i=1

µPi
∂

∂x
JPi (A.22)

The entropy balance, equation A.17, can be rewritten using that Js = 1
T (Jq −

∑c
i=1 µiJi) and

inserting equation A.22. We then have that the entropy production is:

σP = JPq
∂

∂x

1
TP

+
c∑
i=1

JPi

(
− ∂

∂x

µPi
TP

)
(A.23)

We see from using the definition of derivation:

∂

∂x

µPi
TP

= lim
∆x−−>0

1
∆x

(
µPi (zi(x+ ∆x), T (x+ ∆x))

T (x+ ∆x)
− µPi (zi(x), T (x))

T (x)

)
(A.24)

where zi is the mole fraction of component i of the phase in question, that the term can be
approximated with linearization the same way as equation A.9. We then have that:

∂

∂x

µPi
TP

= 1
TP

∂

∂x
µPi,T (TP ) +HP

i

∂

∂x

( 1
TP

)
(A.25)

where the subscript T indicates that the derivative of the term is taken with constant tempera-
ture. By using this and equation A.8 in equation A.23, the entropy production can be expressed
as:

σP = J ′Pq
∂

∂x

( 1
TP

)
+

c∑
i=1

JPi

(
− ∂

∂x

µi,T (TP )
TP

)
(A.26)
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A.2 Resistivities for Vapor and Liquid Phase

Values for the resistivities of the vapor and the liquid phase can be found from Maxwell-
Stefan diffusion coefficients, thermal conductivity and Soret coefficients. Relations between the
resistivities and these values are derived here, following Kjelstrup and Bedeaux [10].

From section 2.5.2 we have the following equations describing the fluxes and forces within a
vapor or liquid layer:

d

dx

( 1
TP

)
= rPqqJ

′P
q + rPq1J1 + rPq2J2 (A.27)

− 1
TP

dµ1,T
dx

= rP1qJ
′P
q + rP11J1 + rP12J2 (A.28)

− 1
TP

dµ2,T
dx

= rP2qJ
′P
q + rP21J1 + rP22J2 (A.29)

where superscript P = V,L and indicates phase. These equations can be written in terms of
velocities instead of component fluxes, where the velocity of component i is defined by vi ≡ Ji/ci:

∂

∂x

1
TP

= r′qqJ
′P
q + r′q1v1 + r′q2v2 (A.30)

− c1
TP

∂µ1,T
∂x

= r′1qJ
′P
q + r′11v1 + r′12v2 (A.31)

− c2
TP

∂µ2,T
∂x

= r′2qJ
′P
q + r′21v1 + r′22v2 (A.32)

Written this way, the Onsager reciprocal relations hold also for the new resistivities. The
relations between the new and old resistivities are:

r′qq = rPqq r′q1 = rPq1c1 r′q2 = rPq2c2

r′1q = rP1qc1 r′11 = rP11c
2
1 r′12 = rP12c1c2 (A.33)

r′2q = rP21c2 r′21 = rP21c1c2 r′22 = rP22c
2
2

The sum of the left hand side of equation A.31 and A.32 is zero according to Gibbs-Duhem’s
equation. And as Onsager reciprocal relations apply, and equation A.30 - A.32 hold for any
arbitrary measurable heat flux and component velocities, it follows that the resistivities in the
matrix are dependent, and satisfy

r′1q + r′2q = 0
r′11 + r′21 = 0 (A.34)
r′12 + r′22 = 0

When the mass fluxes, or velocities, are zero, equation A.30 reduces to:

∂

∂x

1
T

= r′qqJ
′P
q (A.35)

For simplicity the superscript indicating phase on temperature is suppressed. By comparing
with Fourier’s law,

J ′Pq = −λP ∂T
∂x

(A.36)
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where λ is the thermal conductivity of the mixture, and as equation A.30 is valid for all com-
ponent velocities, the following relation is obtained:

rPqq = r′qq = 1
λPT 2 (A.37)

The Soret coefficient, sT , which can be found from experiments, is the ratio between the thermal
diffusion coefficient and the interdiffusion coefficient, and we have that:

sT1 = q∗1
c1T

(
∂µ1,T
∂c1

)−1
(A.38)

where q∗i indicates measurable heat of transfer of component i and is given by:

q∗j = −
rPqj
rPqq

(A.39)

Rewritten, equation A.38 gives:

r1q = −rqqsT c1T
∂µ1,T
∂c1

(A.40)

Differentiation of the chemical potential with respect to the concentration of component 1 gives:

∂µ1,T
∂c1

= ∂(µ0 +RT ln(φx1p))
∂c1

= RT
∂(lnφ+ ln x1)

∂x1

∂( c1
c )

∂c1

= RT

(
∂ lnφ
∂ ln x1

∂ ln x1
∂x1

+ ∂ ln x1
∂x1

)( ∂c1
∂c1
c− ∂c

∂c1
c1

c2

)

= RT

(
∂ lnφ
∂ ln x1

1
x1

+ 1
x1

)(
c− c1
c2

)
= RT

x1

(
∂ lnφ
∂ ln x1

+ 1
)
x2
c

(A.41)

where p is the total pressure if the phase considered is vapor, and vapor pressure of component
1 if the phase is liquid. The vapor pressure is only dependent on temperature, and the total
pressure is assumed constant. Using this in equation A.40 gives:

rP1q = −x2r
P
qqsT

(
1 + ∂ lnφ

∂ ln x1

)
RT 2 (A.42)

From equations A.34 and A.33 we have that

rP2q = −x1
x2
rP1q (A.43)

For further analysis it is convenient to write equation A.30 - A.32 in the following form:

∂T

∂x
= − 1

λ

(
J ′q − c1q∗1v1 − c2q∗2v2

)
(A.44)

c1
T

∂µ1,T
∂x

= −c1q
∗
1

T 2
∂T

∂x
−R11v1 −R12v2 (A.45)

c2
T

∂µ2,T
∂x

= −c2q
∗
2

T 2
∂T

∂x
−R21v1 −R22v2 (A.46)
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where
Rjk = r′jk −

r′jqr
′
qk

r′qq
(A.47)

with j, k = 1, 2.

From equations A.34 and A.33 we have that:

c1q
∗
1 + c2q

∗
2 = 0

R11 +R12 = 0 (A.48)
R21 +R22 = 0

The Maxwell-Stefan equations describe multi-component diffusion at constant temperature, and
Krishna and Wesselingh [13] write them the following way for two components:

−∂µ1
∂x

= RT

D̄12
x2(v1 − v2) (A.49)

−∂µ2
∂x

= RT

D̄21
x1(v2 − v1) (A.50)

where D̄12 is the Maxwell-Stefan diffusivity for component 1 and 2. These coefficients can be
used to describe multicomponent diffusion, but they are binary, and therefore easily available
from experiments. They are symmetric, so D̄12 = D̄21.

Equation A.45 and A.46 rewritten for constant temperature are:

−∂µ1,T
∂x

= T

c1
R11v1 + T

c1
R12v2 (A.51)

−∂µ2,T
∂x

= T

c2
R21v1 + T

c2
R22v2 (A.52)

Since equation A.45 and A.46 are fulfilled at any temperature gradient, we have from comparing
equation A.49 - A.50 and A.51 - A.52 that:

R11 = cR
x1x2

D̄12
R12 = −cRx1x2

D̄12

R21 = −cRx1x2

D̄12
R22 = cR

x1x2

D̄12
(A.53)

This is consistent with Onsager reciprocal relations and equations A.48. From these equations,
equations A.33 and equation A.47 we have that:

rP11 = Rx2

x1cD̄12
+
rPq1

2

rPqq
(A.54)

Equations A.33 and A.34 gives:

rP12 = −x1
x2
rP11 (A.55)

rP22 = −x1
x2
rP12 (A.56)

The expressions for the resistivities derived here are summarized in table A.1. The same ex-
pressions were derived by Kjelstrup and de Koeĳer [11], following a somehow different track of
derivation using the Maxwell-Stefan equations with temperature gradient.
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Table A.1: Expressions for resistivities in the diffusion films

rPqq
1

λPT 2

rP1q −x2r
P
qqsT

(
∂ lnφ
∂ lnx1

+ 1
)
RT 2

rP2q −x1
x2
rP1q

rP11
Rx2

x1cP D̄P12
+ rP1q

2

rPqq

rP12 −x1
x2
rP11

rP22 −x1
x2
rP12

A.3 Rewriting the integrated interface mass transport equa-
tions

In order to describe mass transport within one phase, Taylor and Krishna find the diffusion
relative to the average molar velocity, and from this the total mass transfer rate relative to a
stationary interface:

JTK1,am = ckΓ∆zi (A.57)
JTK1 = JTK1,am + z1Jt (A.58)

The Soret effect is neglected. k is a binary pair mass transfer coefficient. In this appendix is
superscript indicating the phase suppressed for convenience.

The equations used by de Koeĳer are given in a form directly relative to a stationary interface,
see section 2.5. It is also possible to describe the same system with equations for the fluxes
relative to the average molar velocity, and relate these fluxes to the stationary interface. These
two equation sets are equivalent. The latter set is easier to compare with Taylor and Krishna’s
equations, and is therefore derived below.

This derivation is based on Kjelstrup and Bedeaux’s discussion on how to use different frames of
reference [10]. Here, a two-component system is considered, but the derivation can be extended
to multicomponent systems.

When the average molar velocity is used as reference velocity, we have:

vref = vam = z1v1 + z2v2 (A.59)

Then we have the velocities of each component relative to the average molar frame of reference:

v1,am = v1 − vam (A.60)
v2,am = v2 − vam (A.61)
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where v1, v2 and vam are relative to the laboratory frame of reference. The corresponding fluxes
are:

J1,am = J1 − c1vam (A.62)
J2,am = J2 − c2vam (A.63)

Using equation A.59, A.62 and A.63 we have:

J1,am + J2,am = 0 (A.64)

The transport equation for component 1 can be written:
c1
T

∂µ1,T
∂x

= −R11
c1

J1,am −
R12
c2

J2,am (A.65)

The equation for component 2 follows from Gibbs-Duhem equation. This equation is indepen-
dent of frame of reference, since as we can see in appendix A.2:

R11 +R12 = 0 (A.66)

Since the equation is independent of frame of reference, we can use the same relation between
the Maxwell-Stefan diffusivities as used in appendix A.2:

R11 = cR
x1x2

D̄12
(A.67)

By using equation A.64, A.66, A.67 and rewriting we have that:

− 1
T

∂µ1,T
∂x

= R

c1

(
z2

D̄12
+ z1

D̄12

)
J1,am (A.68)

The chemical potential driving force can be rewritten to a mole fraction driving force:
∂µ1,T
∂x

= ∂µ1,T
∂z1

∂z1
∂x

= ∂

∂z1

(
µ0
i +RT ln(z1γ1p)

) ∂z1
∂x

= RT

( 1
z1

+ ∂ ln γ1
∂z1

)
∂z1
∂x

= RT

z1

(
1 + z1

∂ ln γ1
∂z1

)
∂z1
∂x

= RT

z1
Γ∂z1
∂x

(A.69)

where p is the total pressure if this is the gas, and the vapor pressure of component 1 if this
is the liquid. Γ is often called the thermodynamic factor, and for multicomponent systems it
becomes a matrix with factors. When the system considered is ideal, the thermodynamic matrix
is an identity matrix.

Using equation A.69 and rewriting equation A.68 we have that:

J1,am = −cD̄12Γ
∂z1
∂x

(A.70)

Since c1vam = z1Jt where Jt = J1 + J2, we have from equation A.62 that:

J1 = J1,am + z1Jt (A.71)

which can be used to find the fluxes relative to the stationary interface.
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Appendix B

Properties provided by ChemSep

The properties of the phase bulks of each distillation tray used as boundary conditions for the
calculated profiles are taken from the ChemSep model. These properties are listed in table B.1.

Table B.1: Properties of the phase bulks of each tray taken from the ChemSep model. Compo-
nent 1 is ethane while component 2 is propane. The values are listed with the accuracy provided
by ChemSep.

Property Tray 2 Tray 3 Tray 4 Units

T V b 296.1878 297.4220 301.8949 K
TLb 294.6957 293.0536 298.9381 K
yV b1 0.322084 0.292616 0.171869 -
xV b2 0.677916 0.707384 0.828131 -
yLb1 0.110894 0.123711 0.0689183 -
xLb2 0.889106 0.876289 0.931082 -

Most of the physical properties used in the calculations are taken from the ChemSep model.
The values of these properties are listed in table B.2.
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Table B.2: Physical properties used in the calculations taken from ChemSep. The values are
listed with the accuracy provided by ChemSep.

Property Component Tray 2 Tray 3 Tray 4 Units

Molar mass ethane 30.070 · 10−3 30.070 · 10−3 30.070 · 10−3 kg/mol
propane 44.097 · 10−3 44.097 · 10−3 44.097 · 10−3 kg/mol

Vapor thermal conductivity ethane 2.08 · 10−2 2.08 · 10−2 2.08 · 10−2 J/(m2s)
propane 1.74 · 10−2 1.74 · 10−2 1.74 · 10−2 J/(m2s)

Liquid thermal conductivity ethane 7.47 · 10−2 7.47 · 10−2 7.47 · 10−2 J/(m2s)
propane 9.39 · 10−2 9.39 · 10−2 9.39 · 10−2 J/(m2s)

Density vapor 19.3 19.4 19.9 kg/m3

Density liquid 487 489 485 kg/m3

Vapor mixture molar mass 39.6 · 10−3 40.0 · 10−3 41.7 · 10−3 kg/mol
Liquid mixture molar mass 42.5 · 10−3 42.4 · 10−3 43.1 · 10−3 kg/mol
Diffusivity vapor 7.28 · 10−7 7.33 · 10−7 7.52 · 10−7 m2/s
Diffusivity liquid 1.50 · 10−8 1.48 · 10−8 1.53 · 10−8 m2/s
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Appendix C

Diffusion film

The thicknesses of the diffusion films in chemical processes are strongly related to chemical
species, geometry of equipment and the hydraulics of the system. Thus, they vary with tray
design and operating conditions. For distillation trays, the geometry is made such that as much
contact between vapor and liquid as possible is obtained. This results in a complex mixture
between vapor and liquid. Vapor enters the tray from below, first forming vapor jets or bubbles,
froth and foam when the vapor is mixed with the liquid. Froth also enters from the tray above,
and mixes with the rest. Figure C.1 gives a small impression on the complexity of the interfaces
in the trays. It shows idealized views of distillation trays dominated by two different bubbling
regimes.

Figure C.1: Idealized views of the free bubbling regime and the spray regime on a distillation
tray respectively. Taylor and Krishna, 1993 [17].

Often for such complex systems empirical relations for heat and mass transfer coefficients are
used rather than diffusivities, heat conductivities and diffusion film thicknesses. In addition,
heat and mass transport are usually considered separately, such that the diffusion films of the
two types of transport not necessarily have the same thicknesses. This project considers coupling
of processes, and thus one film thickness must be found for each phase.

De Koeĳer [11] determined resistivities for distillation of water and ethanol. In lack of precise
knowledge about the diffusion films, he used two different ratios between the liquid and vapor
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film thicknesses. Then he found the liquid film thicknesses by fitting the entropy production of
the system calculated from non-equilibrium transport equations to the entropy production from
experimental data, where this value was the only adjustable variable in the fit. The first ratio
was taken from the literature, Taylor and Krishna [17], where vapor controlled mass transfer is
claimed to have a ratio between liquid and vapor film thickness around 0.001. The second ratio
he found from using the thermal conductivity and Fick’s diffusion coefficient, and this gave a
ratio of 10. For more details about this, see the article cited above.

Bedeaux and Kjelstrup [2] write that the film thicknesses vary from 10−4 to 10−3 m for the
vapor film and 10−5 to 10−4 m for the liquid film, refering to Taylor and Krishna [17].

To find approximate film thicknesses for this project, the column in question was modelled with
ChemSep. In ChemSep empirical relations for distillation columns are used to find the heat
and mass transfer coefficients, which corresponds to the thermal conductivities and diffusivities
divided by the film thicknesses. Thus the width of the diffusion layers are not used explicitely
in ChemSep, as they are taken into account through the heat and mass transfer coefficients.
To find from this approximate film thicknesses, Fourier’s and Fick’s law were used. These
equations are the most banal models for heat and mass transport, and no cross-effects are taken
into account.

Fourier’s law is given by:

J
′P
q = −λP ∆T

δPq
(C.1)

where J ′Pq is the measurable heat flux in phase P , λP is the thermal conductivity of phase P ,
∆T is the temperature difference and δq is the thickness of the thermal diffusion film.

Fick’s law is given by:

JPi =
−cDP

ij∆zi
δPµ

(C.2)

where JPi is the diffusion flux of component i in phase P , c is the total concentration, δPµ is the
mass diffusion film thickness, DP

ij is the molar Fick’s diffusivity of component i in component j
in phase P and ∆zi is the mole fraction difference of component i.

Fick’s law rewritten to find the mass diffusion film thicknesses given by:

δPµ = −cDij∆xi
Ji

(C.3)

All values on the right hand side can be found from the ChemSep model. ChemSep calculate
Dij because it is used in the empirical mass transfer coefficient model. The mass flux equations
are based on the Maxwell-Stefan equations.

In ChemSep the heat flux was found with the following equation:

J
′P
q = −hP∆T (C.4)

where hP is the heat transfer coefficient, which is found from analogies between heat and mass
transport. By comparing equation C.4 with equation C.1 we see that the heat diffusion film
thickness can be approximated with the following equation:

δPq = λP

hP
(C.5)
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Both λP and hP are calculated by ChemSep, although only hP is used directly in the heat
transport equations.

The film thicknesses obtained this way are very approximate as they are found from Fick’s
and Fourier’s equations, which are very simple models, using ChemSep, which again is another
model. The film thicknesses will vary strongly within each distillation tray, and it can be seen
in the sections below how they vary from tray to tray. But as the values found here are already
not precise, the thicknesses will be treated as constant within each system modelled.

Film thicknesses approximated for the ethane-propane column, assuming ideal mixture, are
given in table C.1. Based on these numbers, 120 µm and 70 µm are chosen as sensible values
for the vapor and liquid film thickness, respectively. These thicknesses lay within the values
given by Bedeaux and Kjelstrup, and the ratio between liquid and vapor film thickness is 1.7
which is close to de Koĳer’s second ratio. These values are used as basis for a number of values
that are tested and compared, see section 4.1.

Table C.1: Diffusion film thicknesses

Colum stage δVµ δVq δLµ δLq
µm µm µm µm

2 104 98.8 22.4 93.6
3 155 146 50.7 133
4 156 145 33.1 135
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Appendix D

Soret Coefficient

D.1 Ethane-propane

Soret coefficients for ethane-propane mixtures at 12 bar and around 300 K are needed. An
approximate value for the Soret coefficient of the liquid mixture is found from the measured
thermal diffusion factors of two similar mixtures, see table D.1. The relation between the
thermal diffusion factor and the Soret coefficient is:

αT = TsT (D.1)

Table D.1: Thermal diffusion factors and Soret coefficients for component 2 in two hydrocarbon
mixtures

Component 1 Component 2 x1 x2 T p αT2 sT2
[K] [bar]

Methane Propane 0.34 0.66 346 40.5 0.79 2.3 · 10−3

n-hexane n-octane 0.55 0.45 320 1 0.161 5.03 · 10−4

According to Kjelstrup and Bedeaux [10], the Soret effect is larger in liquids than in gases,
and the magnitude increases the closer one comes to the critical point. The coefficient is
smaller for mixtures with more similar molar weights and volumes. Also, the Soret coefficient
is often positive for the lighter component and negative for the heavier. This does not apply
to the mixtures in the table, and is therefore assumed to also not apply to the ethane-propane
mixture.

To find an approximate Soret coefficient for the mixtures at 12 bar, an interpolation between
the two coefficients as a function of pressure is done. Then, the value is 0.001. Since the value
needed is for a mixture with a lower temperature, the coefficient should be a bit lower. Also the
components are more similar in the ethane-propane mixture, than the mixtures in the table,
so the Soret effect should be smaller. Thus eventually the Soret coefficient for propane in the
ethane-propane mixture at 12 bar and around 300 K is assumed to be 0.0006, giving the value
-0.0006 for ethane. The coefficient is also dependent on composition. For a methane-propane
mixture the thermal diffusion factor varies between 0.65 and 12.51 due to this, see Kempers [8].
This is not taken into account for the value found here.
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For the vapor mixture, the Soret coefficients were found using kinetic theory. The method used
is described by Hirschfelder et. al. [6]. This gave the values in table D.2 for the ethane-propane
column. These values show that the Soret coefficient vary a lot with the conditions on each
tray. This indicates that the Soret coefficients found here, both for vapor and for liquid, only
are rough estimates.

Table D.2: Vapor Soret coefficients for ethane calculated from kinetic theory

Column stage sT

2 0.3617 · 10−4

3 0.3266 · 10−4

4 0.0235 · 10−4
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Appendix E

Discussion on error from vapor
pressure model

The vapor pressure model used is the Antoine equation. For this model is the applicable tem-
perature range not large, and it should never be used outside the stated temperature limits [16].
The upper temperature limit for ethane is 273.32 K. The temperatures used here are all higher
than this. This has resulted in that the vapor pressure model predicts ethane vapor pressures
that are too high, giving ethane mole fractions that are too low. Thus the mole fractions do
not sum to unity. This can be seen in figure 4.3 - 4.5. The calculated mole fractions are used
to find values for the resistivities. First the impact on these values were assumed to be small,
so the model was not replaced. The temperatures used here are slighly higher than the critical
temperature of ethane, so to find another way to estimate the mole fractions can be challenging.
Later the impact of the mole fractions was checked more thoroughly, and shown to be higher
than first assumed.

The influence on the whole system is hard to calculate, since the equations were solved itera-
tively. To get an impression of the influence, Gauss’ law of error propagation was used to see
how the error in the ethane mole fractions propagate to the resistivities and resistances.

The mole fractions used to find the resistivities, xL, are the mean of the liquid interface and
the liquid bulk mole fractions, xLI and xLb. The error propagation in this can be written:

σ2
xL1

=
(
∂xL1
∂xLI1

)2

σ2
xLI1

=
(1

2

)2
σ2
xLI1

(E.1)

The error propagation in the liquid resistivities that depend on the liquid mole fraction is
described with:

σ2
rL2q

=
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∂rL2q
∂xL1

)2

σ2
xL1
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(
rLqqsT
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(E.2)

σ2
rL11

=
(
∂rL11
∂xL1

)2

σ2
xL1

=
(

Rx2

2x2
1c
LD̄L

12

)2

σ2
xL1

(E.3)
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(E.4)
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This again propagates to the overall resistivities:
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=
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)2
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+ (∆vapH1)2 σ2
rLq2

(E.9)

The propagation of error from the ethane mole fraction to the resistivities and resistances in
tray 2 - 4 with chosen film thicknesses is calculated and given in table E.1. The value used as
the error in the mole fraction is the deviation of the sum of the mole fractions from 1. The error
propagation is calculated with the values obtained after the iteration is finished, and it do not
show the full impact on the system. It just shows that the mole fractions have a considerable
impact on some of the variables. Even an error of 0.015 in tray 2, causes an error of 15.5
% on r12. From equation 2.73 and equation 2.55 - 2.57 we see how errors in the resistances
and resistivities will propagate directly to the fluxes and temperature and chemical potential
profiles.

Table E.1: The propagation of error in the ethane mole fraction to resistivities and resistances
in tray 2 - 4. The values are calculated using Gauss’ law of error propagation, and using values
for finished iterations. The error is given in percentage of the absolute values of the resistivities
and resistances, with three digits that is the precision of the values used for the calculation.

Value error tray 2 error tray 3 error tray 4
[%] [%] [%]

xLI1 1.50 · 10−2 5.00 · 10−2 5.00 · 10−2

rLq2 6.77 20.3 36.3
rL11 3.63 12.3 22.8
rL22 9.86 27.9 40.3
rL12 7.54 22.3 49.8

rq2 2.07 · 10−2 6.89 · 10−2 7.66 · 10−2

r11 1.19 3.72 6.78
r22 2.49 · 10−1 8.00 · 10−1 1.35
r12 15.5 53.4 36.7
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Nomenclature

(JL,TKam ) Column vector with Taylor and Krishna’s liquid diffusion fluxes relative to average
molar velocity mol/m2s

(JV,TKam ) Column vector with Taylor and Krishna’s vapor diffusion fluxes relative to average
molar velocity mol/m2s

[ΓP ] Matrix with thermodynamic factors for phase P

[kL] Matrix with Taylor and Krishna’s liquid mass transfer coefficients m/s

[kV ] Matrix with Taylor and Krishna’s vapor mass transfer coefficients m/s

[RP ] Matrix with mass transfer resistances for phase P s/m

αT Thermal diffusion factor

D̄12 Maxwell-Stefan diffusivity m2/s

D̄P
12 Maxwell-Stefan diffusivity of component 1 in component 2 in phase P m2/s

r̄P Resistance in phase P

∆Pj−1 Pressure drop from stage j − 1 to stage j Pa

∆T Temperature difference K

∆x Length difference m

δP Diffusion film thickness in phase P m

δPµ Mass diffusion film thickness in phase P m

δPq Thermal diffusion film thickness in phase P m

δij Kronecker delta

∆vapHi Evaporation enthalpy of component i J mol−1

dSirr,I

dt Entropy production in interface J/(K s)

dSirr,L

dt Entropy production in liquid diffusion film J/(K s)

dSirr,P

dt Entropy production in phase P diffusion film J/(K s)

dSirr,V

dt Entropy production in vapor diffusion film J/(K s)
dSirr

dt Total entropy production J/(K s)

ΓP Thermodynamic factor for two-component system in phase P
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Γi Excess interface concentration mol m−2

λP Thermal conductivity of phase P J/(m2s)

λV Thermal conductivity in vapor J/(m2s)

λVi Thermal conductivity of component i in vapor J/(m2s)

ELj Energy loss due to evaporation J/s

EVj Energy loss due to condensation J/s

Nij Molar rate of phase transposition of component i on stage j mol/s

NL
ij Molar rate of phase transposition from liquid of component i on stage j mol/s

N V
ij Molar rate of phase transposition from vapor of component i on stage j mol/s

NL
tj Total mass transfer rate from liquid phase in stage j mol/s

N V
tj Total mass transfer rate from vapor phase in stage j mol/s

NL
tj Molar rate of total phase transposition from liquid in phase j mol/s

N V
tj Molar rate of total phase transposition from vapor in phase j mol/s

µLi Liquid chemical potential for component i J/mol

µVi Vapor chemical potential for component i J/mol

µV,0i Standard chemical potential for component i J/mol

µIi Interface chemical potential for component i J/mol

µT,i Chemical potential for component i differentiated at constant T J mol−1

HL
ij Partial molar enthalpy of component i in liquid for stage j J/mol

HV
ij Partial molar enthalpy of component i in vapor for stage j J/mol

φPi Fugacity coefficient for component i in phase P

σ Local entropy production J K−1 m−3 s−1

σP Local entropy production in phase P J K−1 m−3 s−1

σi Condensation coefficient for comonent i

σx Error in quantity x

ELij Energy balance equation for liquid on stage j J/s

EVij Energy balance equation for vapor on stage j J/s

MI
ij Mass balance equation for interface of component i on stage j mol/s

ML
ij Mass balance equation for liquid phase of component i on stage j mol/s

MV
ij Mass balance equation for vapor phase of component i on stage j mol/s

SLIj Summation equation for liquid for stage j at interface

SV Ij Summation equation for vapor for stage j at interface
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aj Interfacial area in stage j m2

c Number of components in the system

cL Total concentration in liquid phase mol/m3

cP Total concentration in phase P mol m−2

cV Total concentration in vapor phase mol/m3

cV Total concentration in vapor phase mol m−3

cVi Concentration of component i in vapor phase mol m−3

DP
ij Molar diffusivity of component i in component j in phase P m2/s

FLj Total molar liquid feed flow to stage j mol/s

F Vj Total molar vapor feed flow to stage j mol/s

fLij Molar feed flow rate of component i to stage j in liquid phase mol/s

fVij Molar feed flow rate of component i to stage j in vapor phase mol/s

hP Heat transfer coefficient J/(m2Ks)

hLj Heat transfer coefficient in liquid for stage j W/m2K

hVj Heat transfer coefficient in vapor for stage j W/m2K

HLb
j Molar enthalpy of liquid in tray j J/mol

HLF
j Molar enthalpy of liquid feed to tray j J/mol

HV b
j Molar enthalpy of vapor in tray j J/mol

HV F
j Molar enthalpy of vapor feed to tray j J/mol

I Identity matrix

J ′Pq Measurable heat flux of phase P J/(m2s)

JPi,am Integrated interface diffusional flux of component i in phase P relative to average molar
velocity mol m−2 s−1

JPt Integrated interface mixture molar flux of phase P mol m−2 s−1

JL,TKi Taylor and Krishna’s molar flux in liquid phase for component i mol m−2 s−1

JV,TKi Taylor and Krishna’s molar flux in vapor phase for component i mol m−2 s−1

J1 Mass flux 1 J/(m2s)

J2 Mass flux 2 J/(m2s)

Ji Diffusion flux of component i mol/(m2s)

Ji General symbol for flux of i mol m−2 s-1 or J m−2 s-1

J ′Vq Measurable vapor heat flux J/(m2s)

JL,TKq Taylor and Krishna’s total heat flux in liquid due to interphase transfer J/(mol s)
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JV,TKq Taylor and Krishna’s total heat flux in vapor due to interphase transfer J/(mol s)

JPs Entropy flux for phase P J K−1 s−1

JL,TKt Taylor and Krishna’s liquid mixture molar flux mol m−2 s−1

JV,TKt Taylor and Krishna’s vapor mixture molar flux mol m−2 s−1

JL,TKi,am Taylor and Krishna’s diffusional liquid flux of component i relative to average molar
velocity mol m−2 s−1

JV,TKi,am Taylor and Krishna’s diffusional vapor flux of component i relative to average molar
velocity mol m−2 s−1

Kij K-value for component i at stage j

kPij Taylor and Krishna’s binary mass transfer coefficients for phase P

Lj Molar flow rate in liquid phase from stage j mol/s

Lij , lij Conductivity coefficient for coupling of fluxes i and j

Mi Molar mass kg mol−1

p Total pressure if in vapor, vapor pressure if in liquid Pa

p∗i Vapor pressure of component i Pa

p0 Standard pressure Pa

Pc Pressure of the condenser Pa

Pj Pressure of stage j Pa

Ps Specified pressure at the top tray Pa

Q Heat added or withdrawed from column J/s

qi∗ Measurable heat of transfer for component i J/mol

R Gas constant J K−1 mol−1

Rij , rij Resistivity coefficient for coupling of fluxes i and j

rPij∗ Resistivity found from Taylor and Krishna’s equations

sP Entropy density for phase P J K−1 m−3

TLI Temperature at liquid side of interface K

T V I Temperature at vapor side of interface K

T Ij Temperature in interface in stage j K

TLbj Temperature in liquid bulk in stage j K

T V bj Temperature in vapor bulk in stage j K

uP Internal energy density for phase P J m−3

Vj Molar flow rate in vapor phase from stage j mol/s

vmp Average of most probable velocities m/s
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xLbij Molar fraction of component i from stage j in liquid phase

XI
1 Driving force konjugate to mass flux 1 in interface J mol−1 K−1 m−1

XL
1 Driving force konjugate to mass flux 1 in liquid J mol−1 K−1 m−1

XP
1 Driving force konjugate to mass flux 1 in phase P J mol−1 K−1 m−1

XV
1 Driving force konjugate to mass flux 1 in vapor J mol−1 K−1 m−1

XP,loc
1 Local driving force konjugate to mass flux 1 in phase P J mol−1 K−1 m−1

XI
2 Driving force konjugate to mass flux 2 in interface J mol−1 K−1 m−1

XL
2 Driving force konjugate to mass flux 2 in liquid J mol−1 K−1 m−1

XP
2 Driving force konjugate to mass flux 2 in phase P J mol−1 K−1 m−1

XV
2 Driving force konjugate to mass flux 2 in vapor J mol−1 K−1 m−1

XP,loc
2 Local driving force konjugate to mass flux 2 in phase P J mol−1 K−1 m−1

Xi Driving force konjugate to flux i J mol−1m1K−1 or K−1m−1

X ′Iq Driving force konjugate to measurable heat flux at vapor side in interface K−1m−1

X ′Lq Driving force konjugate to measurable heat flux in liquid K−1m−1

X ′Pq Driving force konjugate to measurable heat flux in phase P K−1m−1

X ′Vq Driving force konjugate to measurable heat flux in vapor K−1m−1

X ′P,locq Local driving force konjugate to measurable heat flux in phase P K−1m−1

xIij Liquid mole fraction of component i at stage j at interface

yIij Vapor mole fraction of component i at stage j at interface

yV bij Molar fraction of component i from stage j in vapor phase

zi Mole fraction of component i in arbitrary phase

sT General Soret coeffcient

sLT Liquid Soret coeffcient

sVT Vapor Soret coeffcient

vi Velocity of component i mol/s
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