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Summary

In this thesis we used non-equilibrium molecular dynamics (NEMD) to study non-equilibrium
behaviors of two irreversible systems, both exposed to large temperature gradients. As
modeling systems, we have chosen a simple chemical reaction, 2F � F2, and a liquid-vapor
interface of a Lenard-Jones spline fluid. The primary goal of this thesis is to investigate
the nature of coupled transfer of heat and mass, and to obtain insight into the underlying
molecular mechanisms, dynamic structure and properties of the non-equilibrium systems.

Heat and mass transports are central in mechanical as well as in chemical engineering.
In order to predict transport properties of such systems, we need to confirm that there
is a sound basis for the relevant transport equations. For the purpose, NEMD simula-
tions have been used to study both equilibrium and dynamical behavior of the systems.
To model the chemical reaction, Stillinger and Weber’s two- and three-body potentials
were used. In addition to the two-body potential, the three-body potential is needed in
order to sufficiently represent the main features of the reaction. Suitable NEMD tech-
niques with the efficient reaction model were developed to study the fluorine reaction,
in both stationary equilibrium and non-equilibrium states. Large temperature gradients
were imposed through the boundaries in the NEMD box. With the NEMD simulations,
the usefulness and validity of the theory of non-equilibrium thermodynamics (NET) have
been investigated. The validity of the assumption of ’local equilibrium’ was tested for the
chemical reaction in various temperature gradients. Furthermore, the quantitative defi-
nitions for the local ’chemical’ equilibrium were presented using the results from NEMD.
The dynamic properties of the system are governed by the system’s entropy production.
We gave the expression for the entropy production from NET to define the fluxes and
forces in the system. Proper transport equations were presented for determination of the
transport coefficients of the reacting system. Origins of transport properties, i.e. ther-
mal diffusion coefficients (or Soret coefficient), heats of transfer, and Onsager coefficients,
were discussed in a microscopic level. A dissipative or dynamic structure of the chemical
reaction was displayed.

In addition we studied a phase transition, i.e. coupled heat and mass transfer across a
liquid-vapor interface of a one-component system. The NEMD simulations with a Lenard-
Johns spline potential were performed in different thermodynamic environments, e.g. with
temperature gradients or/and concentration gradients. In the first place of this work, we
proofed the validity of the assumption of local equilibrium at the surface where heat
and mass transfer simultaneously. We then developed new algorithms to independently
determine all four interfacial transfer coefficients for the surface. In the framework of
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NET, two sets of force- flux equations were defined by using the measurable heat flux on
the vapor side as well as on the liquid side. The aim of this work is to find the interfacial
coupling (Onsager) coefficients along the liquid-vapor coexistence curve and to add a proof
of the Onsager’s reciprocal relations (ORR). To the best of our knowledge, this is the first
time to test the validity of Onsager relations for a surface using NEMD.



Nomenclature

Here follows an overview of notation used in chapters 1 to 6.

Abbreviations

MC Monte Carlo
MD molecular dynamics
NEMD non-equilibrium molecular dynamics
BD-
NEMD

boundary-driven non-equilibrium molecular dynamics

NVE constant number of particles, volume, and energy
NVT constant number of particles, volume, and temperature

Latin letters

c molar density, mol m−3

ck,eq Molar density of component k in equilibrium, mol m−3

c0
k Standard molar density of component k, mol m−3

D Interdiffusion coefficient in the reacting mixture, m2 s−1

E energy, J
F force
Fi force on particle i
Fij force on particle i exerted by particle j
f fugacity, bar
f0

k Maxwell-Boltzmann velocity distribution of component k
fk Maxwell-Boltzmann velocity distribution of component k, in a temperature gradient
G Gibbs free energy, J mol−1

ΔrG
� standard reaction Gibbs energy, J mol−1

ΔrG reaction Gibbs energy, J mol−1

H molar enthalpy, J mol−1

ΔrH reaction enthalpy, J mol−1

J molar flux, mol m−2 s−1

v
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Jq total heat flux or energy flux, J m−2 s−1

J ′
q measurable heat flux, J m−2 s−1

Kp equilibrium constant
Keq thermodynamic equilibrium constant
kB Boltzmann’s constant, 1.381×10−23 J K−1

kf Forward reaction rate constant, m3 mol−1 s−1

Lij conductivity coefficient
Lα length of the MD box in α−coordinate, m
M Maxwell velocity distribution
m mass, kg
m0 atomic mass, 10−26 kg
N number of particles
NA Avogadro’s number
P probability distribution
p pressure, bar
p� standard pressure, 1 bar
Q reaction quotient
q∗ heat of transfer, J mol−1

Rij Resistivity coefficient
r net reaction rate, mol m−3 s−1

rb backward reaction rate, mol m−3 s−1

rc cutoff distance for bonded fluorine molecule, 1.7σ0 m
rf forward reaction rate, mol m−3s
rij distance between particle i and particle j, m
rlist cutoff distance for neighbour list, m
Sk Entropy of component k, J mol−1 K−1

ΔrS Reaction entropy, J mol−1 K−1

T temperature, K
Tt temperature at the triple point, K
t time, s
u potential, J
V volume, m3

vk velocity of component k, m s−1

w weight function
yk molar fraction of component k, mol m−3

Greek letters

β kBT
Δ increment, difference
λ conductivity
Φ the total potential energy, J
φk Pertubation factor for Maxwell distribution of component k
μ chemical potential, J mol−1
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Δrμeq Reaction chemical potential in equilibrium, J mol−1

σ entropy production rate, W K−1 m−3

ρ density (N/V )
ρt density at the triple point
γ surface tension
γk activity coeffcient of component k
γp activity coeffcient ratio

Subscripts and superscripts

α direction (x, y or z)
k component
i, j, k particle numbers
2 2-body contribution
3 3-body contribution
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Chapter 1

Introduction

1.1 Main objective and motivation

For more than 150 years, heat and mass transfer has been studied and received much
attention, because of its universal existence in many branches of science and engineering.
The most common systems existing in nature and in industry are normally far from global
equilibrium. They occur normally not only in the presence of concentration gradients, but
also in the presence of temperature and pressure gradients. As a consequence of these
exposed gradients, heat and mass transfer occur simultaneously in many processes, for
instance, evaporation at the surface of a water drop, wood drying, and cooling processes,
etc. In this thesis, we shall employ non-equilibrium dynamics (NEMD) simulations to
study the coupled heat and mass transport in two systems, a chemical reaction and a
surface, both in a large temperature gradient. The main aim of this thesis is to obtain
molecular insight into the nature of such transport processes, and to contribute to the
understanding of the coupling effects between heat and mass transfer.

1.1.1 A chemical reaction

Combined heat and mass transports especially in conjunction with chemical reactions
are of great importance in many processes of plants. Chemical reactions occurring in
flame, chemical reactor, combustors, turbines, in micro-porous or turbulent flow fields,
are normally out of global equilibrium. For instance, the temperature gradient in flames
is as high as about 108 K m−1. The theory of non-equilibrium thermodynamics (NET)
provides a sound non-equilibrium description of the coupled transport processes in systems
driven out of global equilibrium [1–3]. The hypothesis of local equilibrium is fundamental
in NET. It says that, although the total system is not in equilibrium, there exists within
a small volume element a state of ’local equilibrium’, for which all normal thermodynamic
relations hold. Knowledge of conditions for local equilibrium will offer a sound basis for
relevant transport equations in non-equilibrium systems where heat and mass transport.
In the modeling of chemical and mechanical processes in typical engineering problems,
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2 Chapter 1. Introduction

it is normally taken as granted that this assumption of local equilibrium is valid and all
normal thermodynamic relations can be applied in any volume element of the system [3].

The assumption of local equilibrium have been validated earlier, in a homogeneous
two-component mixture [4] and at surfaces [5,6]. Non-equilibrium dynamics (NEMD) sim-
ulations were employed to successfully characterize these non-equilibrium systems on the
molecular scale, all exposed to large thermal gradients. Hafskjold and Ratkje [4] verified
the assumption of local equilibrium holds in the homogeneous non-reactive two-component
system, in a temperature gradient up to 108 K m−1. They gave four different criteria to
analyze the concept of local equilibrium in the homogeneous mixture with transport of
heat and mass. To our knowledge, chemical reactions have not been investigated before
from this perspective. One may wonder how good the assumption of local equilibrium is
in a chemical reacting system in a large temperature gradient, for instance, in flame.

According to the original formulation of Prigogine, the Gibbs equation remains valid for
a large class of irreversible processes, provided that the Maxwell distributions of molecular
velocities are perturbed only slightly. The class includes also chemical reactions slow
enough not to disturb the equilibrium form of the distribution to an appreciable extent. In
this thesis, it is therefore interesting to examine weather our reacting system is Maxwellian
in its component velocity distributions or not? Related questions are arisen: are their
shifts related to the temperature gradient, and how far the reaction is from local chemical

equilibrium? Local chemical equilibrium as a subclass of local thermodynamic equilibrium,
has thus to be introduced and means that in addition, the reaction Gibbs energy is equal
to zero in the volume element of the system [3].

Transport properties are of primary importance as they reflect not only what happens
at equilibrium but the rate at which equilibrium is attained. The state of thermodynamic
equilibrium is well defined, being that state for which the total entropy of the system and
its surroundings is a maximum [7]. With a sound statistical basis for use of nonequilib-
rium thermodynamics theory, NEMD simulations have also been used to predict transport
properties for pure components and mixtures [6, 8, 9]. Computations showed that separa-
tions of the components and mole fraction gradients are displayed in a fluid mixture in a
thermal gradient [4], which is well known as the Soret effect (or the thermal effect). For
more sophisticated mixtures, in the presence of a chemical reaction, it shall be a challenge
to learn the specific transport coefficients and how they vary with a temperature gradient.
These coefficients, especially coupling coefficients, shall sled light on their practical use
in non-equilibrium transport processes; for instance in chemical reactor engineering, or in
flame modeling.

1.1.2 A surface

Phase transitions are common phenomena in industrial as well as in living systems. It
involves simultaneous transfer of heat and mass across a surface. Evaporation or conden-
sation is one such central example of heat and mass transport. In spite of the technical
importance of vapor-liquid phase transitions, little systematic information is known about
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the interface resistivity to transport. From a literature review [10], most of the thermody-
namic modeling of these transitions assumes equilibrium between the phases at the phase
boundary, i.e., continuity in the chemical potential and the temperature. It means that
the resistivites of the surface to heat and mass transfer is negligible, like in most engi-
neering description of phase transitions. However, experimental [11–13], numerical [14]
and computational [6,8,9] evidence have been accumulated to show that this assumption
is not generally true. One aim of this thesis is thus to question this assumption for a
liquid-vapor phase transition in a large temperature gradient.

In the description of the transfer coefficients, we use nonequilibrium thermodynamics
theory for surfaces. In NET theory, the famous Onsager’s reciprocal relations express the
equality of certain relations between fluxes and forces in thermodynamic systems out of
equilibrium, but where a notion of local equilibrium holds [15]. The importance of the On-
sager’s relations is that it can reduce the number of phenomenological coefficients which
are essential in processes. More practically to say, it simplifies transport problems. In
homogeneous system the Onsager relations have been verified both experimentally [1] and
by NEMD simulations [4]. However, for this respective such verification has not yet been
given for the interface. A few years ago, Røsjorde et al. computed a liquid-vapor phase
transition in a one-component system by NEMD. They showed the validity of local ther-
modynamic equilibrium at the interfacial film [5]. They also obtained interfacial transfer
(coupling or Onsager) coefficients and resistivities for the interface, but by assuming a
validity of the Onsager reciprocal relations [9]. In this thesis, our aim is to find the inter-
facial coupling coefficients independently and to add a proof of the Onsager’s reciprocal
relations (ORR). Here the same system shall be use by NEMD studies to investigate the
coupled transport phenomena of heat and mass as used by Røsjorde at al. for a surface.
To our knowledge, this is the first verification of ORR for a liquid-vapor interface tested
by NEMD.

1.2 Non-equilibrium thermodynamics as a necessary tool

Non-equilibrium thermodynamics provides theoretical prediction of transport properties
of irreversible systems that are out of global equilibrium. This theory was first established
in 1931 by Onsager [15], to describe transport processes in homogeneous systems. Later
large efforts [16–18] have been devoted to extend it for transports in heterogeneous systems.
Until recently, a systematic NET description has been given by Kjelstrup and Bedeaux [3]
for transports in heterogeneous systems and in particular to surface transport phenomena.

According to the second law of thermodynamics, the primary quantity of a non-
equilibrium system is the entropy production. This quantity governs the equations of
transport. In NET, the second law of thermodynamics is reformulated in terms of the lo-
cal entropy production rate, σ, by assuming its local validity. By filling the energy balance,
mass balance, charge conservation, second law of thermodynamics, into the Gibbs equa-
tion, the local entropy production rate is given by the product sum of so-called conjugate
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fluxes, Ji and driving forces, Xi, in the system. The second law becomes

σ =
∑

i

JiXi ≥ 0 (1.1)

Onsager prescribed that each flux is connected to its conjugate forces via the phenomeno-
logical coefficients [15]. A linear relation between each flux and all forces exist and it
is

Ji =
n∑

j=1

LijXj (i = 1, 2, · · · , n) (1.2)

Alternatively, each force is a linear combination of all forces:

Xi =
n∑

j=1

RijJj (i = 1, 2, · · · , n) (1.3)

The phenomenological coefficients Lij in Eq. 1.2 are conductivities, while the ones in
Eq. 1.3 are resistivities. Onsager assumed the regression of microscopic thermal fluctu-
ations at equilibrium follows the macroscopic law of relaxation of small non-equilibrium
disturbances, known as the Onsager’s regressionhypothesis. Using also the principle of
microscopic reversibility, Onsager proved the equality of the coupling coefficients for inde-
pendent forces and fluxes (Onsager’s reciprocal relations) [15]:

Lij = Lji and Rij = Rji (i, j = 1, 2, · · · , n) (1.4)

In the Onsager symmetric matrix, the coupling coefficient Lij or Rij is only a function of
the state variables (e.g. the local pressure and temperature), but not of the force Xj or
the flux Jj . By introducing the complete set of extensive, independent thermodynamic
variables, Ai, the conjugate fluxes and forces are defined as

Ji = dAi/dt and Xi = ∂S/∂Ai (1.5)

The usefulness of non-equilibrium thermodynamics has been generalized in four ways
[3]. First of all, the theory gives an accurate description of coupled transport processes.
In complex systems, for instance, mass transports take place not only in the presence of
the concentration gradient, but also in the presence of the temperature gradient or the
electric potential gradient. The simple flux equations of heat, mass and charge transport
given by Fourier, Fick and Ohm’s laws are not enough to describe the coupled transport
phenomena. The coupling among fluxes can be captured in NET by the so-called coupling
coefficients. Secondly, a framework can be obtained for the definition of experiments. Non-
equilibrium thermodynamics is instrumental for design of experiments that aim to find
transport properties. Thirdly, the theory quantifies not only the entropy that is produced
during transport, but also the work that is done and the lost work. Non-equilibrium
thermodynamics is probably the only method that can be used to assess how energy
resources are exploited within a system. According to NET, processes with small losses in
exergy (In thermodynamics, the exergy of a system is the maximum work possible during a
process that brings the system into equilibrium with a heat reservoir.), have a high second
law efficiency. Finally, The NET theory allows us to check that the thermodynamics
equations that have been used to model the system are in agreement with the second law.
The entropy balance of the system and the expression for the entropy production can be
used to control the internal consistency of the thermodynamic description.
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1.3 Outline of the thesis

The outline of this thesis is as follows. Chapter 2 serves as an introduction to molecu-
lar dynamics. In Chapter 2, we present background information on molecular simulation
techniques, especially on boundary driven NEMD methods. We then present our NEMD
studies in two modeling systems in Chapters 3-5, which have been published in the jour-
nals.

In Chapters 3 and 4, we study a simple chemical reaction, 2F� F2, in a temperature
gradient, using NEMD simulations. In Chapter 3 we aim to find conditions for local

equilibrium in the reaction. We first set up a reaction model to be used with NEMD.
Suitable NEMD algorithms with the Stillinger and Weber’s 2- and 3-body potential are
developed for the chemical reaction A. The reliability of our new NEMD program is tested,
by comparing the results from Stillinger and Weber in equilibrium MD (EMD) simulations.
We present some important thermodynamic properties of the reacting mixture in EMD
and NEMD simulations. Local chemical equilibrium as a subclass of local thermodynamic
equilibrium is investigated under six NEMD cases. Our results show local equilibrium
holds in the chemical reaction where heat and mass transport in a temperature gradient
up to 1012 K m−1.

In Chapter 4 we continue the study of the chemical reaction that is in stationary non-
equilibrium state. We find further supports to define local equilibrium in the reaction.
We investigate transport behaviors of the chemical reaction. Analysis is made for the
NEMD cases at their stationary states, both in local chemical equilibrium and near local

chemical equilibrium (close, but not at chemical equilibrium). A dissipative (dynamic)
picture of the reaction in a temperature gradient is drawn according to minimum entropy
production of the reaction itself. Transport coefficients, such as the thermal conductivity
and the inter-diffusion coefficient, are determined from our analytical solutions of the
relevant transport equations. Impacts of the chemical reaction with a thermal driving
force on these coefficients are discussed.

In Chapter 5 we investigate transfers of heat and mass into, across and out of a
surface which is a flat thin film between liquid and vapor phases of a one-component
system. In this heterogeneous system, a temperature gradient or/and a concentration
gradient are applied. The surface is described by Gibbs excess properties and is regarded
as an autonomous system with its own temperature and chemical potential. In this work,
we firstly test the validity of the assumption of local equilibrium as this assumption is
crucial for the proof of the Onsager relations [1–3]. All four interfacial coefficients are
determined independently from 48 NEMD simulations. The cross (coupling) coefficients
are shown as equal within the calculation accuracy. This gives a first verification of the
Onsager’s reciprocal relations for transport through a surface by molecular simulations.
Furthermore, appropriate expressions for the interface film resistivities are proposed with
kinetic theory (as only a function of the temperature of the surface). They can be well
compared with NEMD values.

Finally, in Chapter 6 we give some concluding remarks and outlook for future studies.
The implementation of 2- and 3-body potential in NEMD for fluorine reaction is presented
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in Appendix A.



Chapter 2

Molecular simulations

2.1 Introduction

In recent years, molecular simulations have been widely used to supply valuable insight
into molecular systems and to understand and achieve research goals. The developments
were progressed not only with the rapid growth of high performance computing, but also
with the development of much of the methodology of simulation techniques. Molecular
simulations based on model systems constitute a link between experiment and theory.
Simulations benefit from avoiding costly and dangerous experiments. On the other side,
molecular simulations can be used as a test of the validity of a theory or a theoretical
conjecture. Comparing the simulation results to those of real experiments, one can check
if the model is a good one and provide useful information to both theory and experiment.
Moreover, simulations provide a direct route between the microscopic and the macroscopic
world. For example, given microscopic details of a system (such as atomic mass, inter-
actions between particles, molecular structure, etc.) one can use molecular simulations
to obtain macroscopic properties of the system, i.e. thermodynamic quantities, transport
coefficients, equations of state, etc..

In molecular simulations, any physical system (gas, liquid, or solid) is treated as a
collection of particles. Molecular simulation techniques require the adoption of an inter-
molecular potential to represent interactions between the particles of the physical system.
The computer generates either the motion or different states of the particles and the values
of the physical quantities of interest can be calculated. Two general classes of molecular
simulations are Monte Carlo (MC) and molecular dynamics (MD) simulations.

2.1.1 Monte Carlo

The MC method, which has its origin in the Metropolis algorithm [19], is based on a
stochastic approach. It seeks to efficiently calculate ensemble averages of a model sys-
tem based on the underlying distribution known from statistical mechanics. The basic

7
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Metropolis Monte Carlo is achived by the following three steps: (1) Assign an initial po-
sition of a randomly selected particle i, and calculate its energy u

(
r
N
)
. (2) Give the

particle a random displacement, r′ = r + Δ, and calculate its new energy u
(
r
′N
)
. (3)

Accept the move from r
N to r

′N with probability, min
[
1, exp

{
−β

[
u
(
r
′N
)
− u

(
r
N
)]}]

,
in which β = 1/kBT and kB is the Boltzmann constant and r

N ≡ r1, r2, · · · , rN . , or
reject it otherwise.

The Metropolis MC and the other numerous methods based on it are suitable to
study equilibrium properties of physical systems. A conventional MC simulation probes a
canonical ensemble with constant number of particles (N), volume (V ) and temperature
(T ). To relate the simulation to experiments one can implement MC in various ensembles.
Some important kinds of MC methods are the constant NPT Monte Carlo, the grand
canonical Monte Carlo (GCMC) (i.e. constant μV T ), and the microcanonical Monte
Carlo (i.e. constant NV T ) [20].

Other advanced Monte Carlo methods, for example, the reaction ensemble Monte Carlo
(RxMC) is developed to predict equilibrium properties of chemically reacting mixtures.
RxMC simulations have been applied to reactions at high temperature and/or high pres-
sure, at phase interfaces and highly non-ideal environments [21]. The RxMC method was
published by two different groups in 1994 [22, 23]. The RxMC simulation method uses
Monte Carlo (MC) sampling to directly simulate pre-defined forward and reverse reaction
events in a simulation, yielding the equilibrium composition of the reacting mixture. In
these simulations, completed forward and reverse reaction events are sampled, so that
the energetics of bond breaking and bond formation are unnecessary. Another impor-
tant feature of the RxMC is that this approach can be performed in any number of basic
ensembles. For example, the RxMC method can be combined with the Gibbs ensemble
Monte Carlo (GEMC) technique to simulate combined reaction and phase equilibria (i.e.
vapor-liquid coexistence) [24,25].

2.1.2 Molecular dynamics

Molecular dynamics (MD) is a specialized discipline of molecular simulation giving in-
sight into molecular motion on an atomic scale. In addition to study static properties of
many-body systems, molecular dynamics simulations also provide information about their
dynamical behavior, including time correlation functions, diffusion, and other transport
properties. The molecular dynamics (MD) technique follows a dynamic approach, which
implies a numerical solution of the Newtonian equations of motion for all atoms in the clas-
sical many-body system. Hence, the molecular trajectories are the time related positions
of individual particles, which can be viewed in a classical dynamical motion picture. The
basics of the MD method [26–30] relies on classical mechanics, determining the trajectory
in the phase space of the system and taking time averages of the observables of interest
along this trajectory. At each step of the MD simulation, the microscopic coordinates and
momentum of all the particles are calculated according to equations of classical mechanics
where forces are computed from some predefined expressions, called the force field. With a
classical inter-particle potential, the particle (i) motion in a N -body system can be given
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by the Newton’s second law (force equals mass times acceleration):

mi
d2

ri

dt2
= −

∂U(rN )

∂ri
(2.1)

where mi is the mass of particle i, ri the position of particle i and U the interaction
potential.

Basic MD produces a NV E ensemble (microcanonical, with constant number of parti-
cles N , volume V , and total energy E). Similar to MC, MD can also be implemented with
other ensembles, for example, at constant pressure, at constant temperature (canonical
MD), and at constant chemical potential (grand canonical MD). The main justification of
the MD method is that statistical ensemble averages are equal to time averages of the sys-
tem, known as the ergodic hypothesis. To implement a MD simulation, special attentions
have to be put on the integration scheme and a proper time step that does not violate the
energy conservation implicit in the Newton’s equations. The time step is usually chosen
of the order of femtoseconds (10−15 s) and a typical MD simulation covers a time interval
of 10−8 − 10−10 seconds. In MD, the (velocity) Verlet algorithm is the most common and
usually the best numerical scheme to integrate the equations of motion Eq. 2.1 [20].

Molecular dynamics has two basic classes: equilibrium molecular dynamics (EMD)
and non-equilibrium molecular dynamics (NEMD). Both the EMD and the NEMD can be
used to compute the equilibrium and transport properties of the many body system. In
EMD simulations, transport properties can be determined by Einstein or Green-Kubo [31]
integrals. The appealing property of NEMD is that this method can be used to study
the properties of the many body systems, in both global equilibrium and out of global
equilibrium [32]. One can therefore first find the equation of state and other equilibrium
properties (in equilibrium systems), and then the transport properties (in non-equilibrium
systems).

For chemical reactions, the reaction ensemble molecular dynamics (RxMD) [33] was
developed to study the equilibrium transport properties of chemically reacting mixtures.
RxMD combines the RxMC method with constant-temperature MD [20]. In the RxMD
simulation box, a molecular dynamics simulation cell (dynamic cell) is placed in the center
of two reaction mixture simulation cells (control cells). In the control cells, the RxMC
method is applied to forward and reverse reaction steps. Constant-temperature molecular
dynamics simulations are performed in both the dynamic cell and the control cells. At
chemical equilibrium, thermodynamic and equilibrium transport properties such as the
velocity autocorrelation functions and the self-diffusion coefficients are calculated in the
dynamic cell. This method can be applied to both homogenous and inhomogeneous sys-
tems, while the control cells must remain at identical thermodynamic conditions via the
RxMC method. However, in the dual control cell reaction ensemble molecular dynamics
method (DCC-RxMD), the control cells can be maintained at different thermodynamic
conditions via the RxMC and GCMC methods, respectively. The DCC-RxMD method
allows calculation of both equilibrium properties and non-equilibrium transport proper-
ties in nanoporous materials such as diffusion coefficients, permeability and mass flux [34].
Similiar to the RxMD simulation cells, a membrane is placed at the centre of the DCC-
RxMD simulation box and two control cells (one for reactions and another for transport)
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are sitted at two sides of the membrane. The trajectories of the fluid particles within the
entire DCC-RxMD simulation box are generated by the MD simulation method, while the
reaction equilibrium is controlled in the reaction control cell by the RxMC method. To
maintain a flux of particles through the membrane, a pressure gradient has to be imposed
by performing GCMC particle insertion and deletion steps in the transport control cell.
Algorithms and application of these methods have been described in the literatures [21]
and references therein.

2.2 Boundary-driven NEMD simulations

Non-equilibrium molecular dynamics (NEMD) is a powerful computing technique that is
designed to investigate particle behavior in systems with gradients in intensive variables.
Algorithms of boundary-driven NEMD (simply called NEMD in this thesis) were developed
by Hafskjold and coworkers [35]. The basic idea of the NEMD method is that one can apply
external forces through the boundaries of a system as in a real experiment [4–6,32,35–46].
The external force must be congruous with the boundary conditions, like introducing
some types of walls into the system. At the boundaries, one can impose a temperature
gradient or a chemical potential gradient (concentration gradient), or the walls can be
interactive [36] as in a porous system. Another known non-equilibrium molecular dynamics
method is called synthetic NEMD where the external thermodynamic force is built into
the equation of motion for the system [32].

2.2.1 The interaction potential

On a microscopic level, any system is composed by particles (i = 1, · · · , N). It is important
to find a proper potential which describes interactions between particles in the system.
Often, one can approximate the atomic interactions with a classical potential. A general
form of the interaction potential U(rN ) is the sum of grouped terms dependent on two-
body, three-body, etc. contributions:

U(rN ) =

i<j∑
i,j

u2(ri, rj) +

i<j<k∑
i,j,k

u3(ri, rj , rk) + · · · (2.2)

where the subscripts i, j and k indicate different atoms, u2 is a two-atom potential and
u3 is a three-atom potential.

In addition to the intermolecular potentials, intramolecular potentials are also impor-
tant in the simulation of the molecular and crystal behaviors [6, 46]. The intramolecular
potentials describe the bond-stretching, bending and torsion vibration of each particle. In
the present work, these potentials are not of interest.
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Pair potential

Often, the molecular properties are assumed to be ’pair-additive’ and interactions between
pairs of particles make the overwhelming contribution to the overall intermolecular interac-
tion. The interaction potential is thus usually taken from a classical pair-wise interaction
potential, which is a function of the atom-atom distance rij (rij ≡ |ri − rj |). A most
common pair potential for particle interaction in fluids is the Lennard-Jones potential:

u(rij) = 4ε

[(
σ

rij

)12

−

(
σ

rij

)6
]

(2.3)

where σ is the collision diameter, which is the separation of the particle at which u(rij) = 0,
and ε is the depth of the potential well at the minimum in u(rij). The Lennard-Jones
(LJ) potential provides an adequate description of the interaction between pairs of inert
gas atoms and also of some molecules. In molecular dynamics, several truncated LJ
potentials can be applied to save computation time. A simple truncated LJ potential uses
a cut-off rc, called as the cut-off LJ potential. When the distance is beyond the cut-off
distance, r ≥ rc, this potential is taken to be equal to zero. In order to obtain a consistent
description of equilibrium and non-equilibrium properties, it is necessary to use a shifted
cut-off LJ potential [47].

Another alternative pair-wise interaction potential is the Lennar-Jones spline potential,
which was used in our NEMD simulations of this thesis to study behaviors of a liquid-vapor
interface. The potential is expressed in terms of the inter-particle distance rij between
any pair of particles i and j:

U(rij) =

⎧⎨
⎩

4ε[(σ/rij)
12 − (σ/rij)

6] for 0 < rij < rc

a(rij − rs)
2 − b(rij + rs)

3 for rc < rij < rs

0 for rs < rij

(2.4)

where the shifted distance rs follows rs = (48/67)rc. Detailed expressions of the constants
aij and bij can be found in Chapter 5. In this thesis, we used the cut-off distant rc

∼=
1.7371σ rather short range compared to the truncated cut-off distance implemented in
the other works by Ge et al. [48]. They chosen rc = 2.5σ and rs = (48/67)rc

∼= 1.7910.
With this long range LJ spline potential, Ge et al. performed NEMD simulations for the
same heterogeneous system under the same experimental conditions as we investigated.
They reported different NEMD results in the equilibrium as well as the non-equilibrium
behaviors of the system. These significant changes have been discussed and considered as
the influence of the different choices of the truncated distances, i.e. short-range and long
range LJ splines [3, 48].

The two- and three-body potential

Recently researches have been done to seek more ’virtual’ potentials for effective presen-
tation of the dynamics of chemical reactions. Stillinger and Weber pointed out that the
traditional additive pair-wise interaction (i.e. LJ spline) can not suffice to represent the
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main features of chemical bonding in a chemical reactive system. The interactions of the
triple particles can make a significant contribution to the total interactions [49–54]. Still-
inger and Weber constructed a linear combination of two-body and three-body potentials
to give a energy surface in a chemical reaction, 2A � A2 where A represents a highly
chemical reacting substance, such as fluorine and sulfur [50–53]. The general form for the
potential surfaces was given:

Φ(r1, · · · , rN ) =
∑

pairs i,j

u2(rij) +
∑

triplets i,j,k

u3(rij , rik, rjk). (2.5)

where u2 is a function of the atom-atom distance, and u3 is a function of the three atom-
atom distances rij , rik and rjk.

In this thesis we shall study the chemical reaction:

2F � F2 (2.6)

The two- and three-body potential surface for the fluorine reaction was given by Stillinger
and Weber. Detailed functions of u2 and u3 are expressed in Chapters 3. Stillinger and
Weber provided this combined potential based on the acceptable approximation to the
ground electronic state potential surface for the collection of atoms. The pair potential
u2 was selected to give a good representation of the isolated diatomic fluorine molecule.
The triple potential u3 was fitted to the atomic behavior by a scaling from the well-known
potential surface of H+H2 [52]. The combined u2 and u3 are required to produce weak
van der Waals attractions between neighboring diatomic molecules. A major role of the
three-body potential is to prevent formation of more than one covalent bond to each
fluorine atom. With the two- and three-body potential, Stillinger and Weber modeled the
reaction (Eq. 2.6) by performing equilibrium MD simulations in a cubic MD box with 1000
fluorine particles. They computed the time correlation functions of fluorine monomers and
other equilibrium properties of the reaction under various thermodynamic environments.
Compared with the experimental at the same conditions, their results have shown that
the two- and three-body potential model can sufficiently represent the main features of
the chemical binding in Eq. 2.6 [52].

In NEMD and other molecular simulations, it is common to apply periodic boundary
conditions. This is a very effective way to overcome the obstacle of surface effects and
thus efficiently compute a larger and more representative system. Figure 2.1 shows such
a system at the periodic boundary condition in two-dimensions. The simulation box is
indicated by the black lines and its periodic images are indicated by the grey lines. When
a particle moves out of the simulation box, one of its images enters the box through the
opposite face. There are no walls at the boundary of the simulation box, and there are no
surface particles. In order to effectively compute the interactions between particles, it is
also necessary to use an approximation called the ’minimum image convention’. Taking
particle i as a center, one can construct a box (grey dashed lines) with the same size and
shape of the original simulation box. By using a cutoff radius rc , one can further reduce
the number of particles need to be considered in the interactions with particle i. Clearly,
rc must be less than half of the box length to avoid the interaction of particles with their
own periodic images.
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Figure 2.1: Periodic boundary conditions, minimum image convention and cutoff. The
arrows indicate pair-wise forces. The original simulation box is in black boundaries. The
periodic images are in grey boundaries. The minimum image box is in dashed boundaries.
rc is a cutoff radius.

In molecular dynamics simulations, the most computational and time costly part is
the force calculation. At every time step, potential energy and forces are calculated for
the N particles in the system. To save CPU and increase the efficiency of the program,
a neighborhood list method is useful. ’Neighbors’ of particle i are then updated during
certain time steps. Particles within a little larger distance than the cutoff radius are
considered in the stage of ’updating’ the neighborhood list. In the NEMD simulation
in our chemical reaction, we developed a useful neighborhood list method, named as
NEIGHBOUR3. This new method enables effective calculations of ’neighbors’ through
all necessary loops for pairs and triples, see Chapter 3. Figure 2.2 shows a schematic
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Figure 2.2: A schematic picture of a boundary-driven NEMD simulation box in the x−,
y− and z− coordinates. H represents hot layers in high temperature and C represents
cold layers in low temperature.

picture of a NEMD simulation box (or MD box). The MD box is rectangular (or cubic)
with dimmensions Lx, Ly and Lz (Lx > Ly = Lz). Here x is the direction along the
box, y is the vertical direction and z is the depth direction. The MD box contains N
particles and is equally divided into many small volumes (layers) along the x-direction.
The boundary regions lie in layers in the middle and near the ends of the MD box where
H indicates ’hot’ and L indicates ’cold’. The MD box is symmetric in the x direction
and periodic boundary conditions are applied in all the three directions. Special attention
has to be paid on extrapolation to the thermodynamic limit and to the limit of vanishing
force, in the boundary regions. The boundaries like ’walls’ formed by particles at fixed
position or a layer of particles obeying perturbed equations of motion [32]. For example, in
the boundaries, the temperature, chemical potential, or momentum can be set by a local
perturbation of the system [37]. Many thermostat methods are suitable for the purpose of
the temperature perturbation, like the Andersen thermostat [55], the Gaussian thermostat
[56], the Nosé-Hoover thermostat [57], or a thermostat based on velocity scaling [58].

Until now we have given information on the defined interaction potential, periodic
boundary conditions with ’minimum image convention’ and neighborhood lists, and intro-
duced our simulation box. Next, we shall briefly describe some other important features
of NEMD.

In order to determine transport properties, we first need equilibrium properties of the
system. NEMD (BD-NEMD) simulations are very suitable to find both type of data. In
global equilibrium, the boundaries (H and C) are at the same conditions. Out of global
equilibrium the boundaries are not the same. Hafskjold et al. proposed an efficient Heat
EXchange (HEX) algorithm to create a temperature gradient in a MD box [35]. A heat
(energy) flux is imposed by adding and withdrawing energy from boundary layers H and
C respectively. In practice, we do this by perturbing the particle’s momenta in H and
C, while the total energy of the system is conserved. In this way, a heat flux is created
in the force direction (x−coordinate). To model a particle flux from the vapor to the
liquid (condensation), the MEX algorithm [4] is applied to remove a particle from the low
temperature layers in the center and insert it into one of the high temperature layers at the
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end of the cell. The particle maintains its y− and z− coordinates while its x−coordinate
is changed by Lx/2. In order to avoid large perturbations of the energy of the system, the
particle insertion shall be done with a probability given by the Boltzmann factor.

In NEMD, temperature, density, pressure, composition, enthalpy, fluxes, and other
molecular properties of interest, are computed from the mechanical properties of the sys-
tem. In a stationary state of a system, the fluxes of energy and mass are constant in the
driving force direction. Using the symmetry of the system around the center of the box,
the mean of the time averages of the properties (i.e. kinetic energies, potential energies
and the number of particles) in each half can be calculated with a better statistics. All
the variables in NEMD are in reduced units.

Non-equilibrium dynamics (NEMD) simulations as an efficient computation tool allow
us to characterize non-equilibrium systems on the molecular scale. With the framework
offered non-equilibrium thermodynamics (NET), the NEMD method is suitable to measure
equilibrium as well as dynamic properties of nanoscale systems exposed to large gradients.
In NEMD simulations, one does not a priori assume validity of thermodynamic relations, as
thermodynamic properties are derived from a purely mechanical description. Therefore the
NEMD method can serve as an independent verification of thermodynamic relations. The
NEMD simulations have already been used in some studies to verify the assumption of local
equilibrium which is of foundmental importance in NET. Examples of such NEMD studies
can be found for pure component systems, binary fluid mixtures, as well as the bulk phases
and the interface of a one-component system [32]. In these systems, heat and mass were
transport in large gradients. With the NEMD technique, one can apply large temperature
gradients in a magnitude of order of 1011. When the equations of thermodynamics hold
in local volume elements, transport coefficients can be defined from the relevant transport
equations. With NEMD simulations, Onsager’s reciprocal relations have already been
validated for the pure component systems as well as binary fluid mixtures [32].
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We have examined a simple chemical reaction in a temperature gradient; 2F � F2. A me-

chanical model was used, based on Stillinger and Weber’s 2- and 3-body potentials. Equilibrium

and non-equilibrium molecular dynamics simulations showed that the chemical reaction is in local

thermodynamic as well as in local chemical equilibrium (ΔrG=0) in the supercritical fluid, for

temperature gradients up to 1012 K/m. The reaction is thus diffusion-controlled. The velocity dis-

tributions of both components were everywhere close to being Maxwellian. The peak distributions

were shifted slightly up or down from the average velocity of all particles. The shift depended on

the magnitude of the temperature gradient. The results support the assumption that the entropy

production of the reacting mixture can be written as a product sum of fluxes and forces. The tem-

perature gradient promotes interdiffusion of components in the stationary state, a small reaction

rate and an accumulation of the molecule in the cold region and the atom in the hot region.

3.1 Introduction

A chemical reaction that occurs far from global equilibrium, has a rate that is highly
nonlinear in its driving force. Such reactions occur normally, not only in the presence of
concentration gradients, but also in the presence of pressure and temperature gradients,
e.g. in flames, combustors, turbines, reactors, in micro-porous or turbulent flow fields. For
the modelling of these phenomena, it is important to have a well founded non-equilibrium
description of the coupled transport processes. In nonequilibrium thermodynamics [1–3]
it is assumed that, although the total system is not in equilibrium, there exists within
small volume elements a state of ’local equilibrium’, for which all normal thermodynamic
relations hold. We then know that it is possible to write the entropy production of the
system, the quantity that governs the transports, in terms of product sums of fluxes and
forces.

The objective of the present work is to examine conditions for local equilibrium in
a reacting system, to see how far these conditions can be assumed valid. Unless this
assumption holds true, we cannot write the classical flux-force relations. The assumption
is used in practice in all calculations of combustion processes [59]. Local equilibrium does
not imply that the chemical reaction necessarily is in equilibrium. When a system that is
in local thermodynamic equilibrium, is also in chemical equilibrium, the system is said to
be in ’local chemical equilibrium’. There is local thermodynamic equilibrium in a volume
element of the system, when all thermodynamics relations are valid in the volume element.
Local chemical equilibrium means that, in addition, the reaction Gibbs energy is equal
to zero in the volume element. Local chemical equilibrium is thus a subclass of local
thermodynamic equilibrium. This special condition is also frequently used [59].

Local thermodynamic equilibrium was found to hold in systems exposed to large
driving forces for heat and mass transport [4] and at surfaces [5, 6, 60]. For a homo-
geneous phase, non-equilibrium molecular dynamics (NEMD) simulations with Lennard-
Jones spline particles were used to verify that local thermodynamic equilibrium was valid
in a two-component mixture with a temperature gradient up to 108 K/m [4]. It was also
found to apply to a heterogeneous system, a gas-liquid interface in a one-component sys-
tem [5]. Chemical reactions have not been investigated before from this perspective, and
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one may wonder how good the assumption of local equilibrium is in, for instance, flame
composition calculations. The temperature gradient in flames is thought to be around
108 K/m. NEMD simulations are suitable for investigating problems of a thermodynamic
nature, with the purpose of gaining molecular and statistical insight. For instance, one
can find velocity distributions and compare them to a Maxwell distribution, a measure for
thermodynamic equilibrium. This shall be done here. According to Ross and Mazur [61],
the entropy production is bilinear in the fluxes and forces when the law of mass action
holds. This is the case for reactions which do not disturb appreciably the Maxwell velocity
distribution of the chemical components [1].

The purpose of this work is thus to use NEMD to study the precise nature of a chemical
reaction exposed to large temperature gradients, up to 1012 K/m. How far is the reaction
from local chemical equilibrium in the gradient? How can we characterize the behavior in
the volume element, with an enormous energy flux, of about 108 kJ/m2s, across it?

In order to accomplish such a study, we first have to establish NEMD procedures
for a chemical reaction. For studies of the type we are after, quantum effects are not
essential. A mechanical model may then be convenient for computational reasons. In
order to capture the main thermodynamic property of the chemical reaction, namely its
microscopic reversibility, the mechanical model must include not only 2, but also 3-body
potentials [54,62–64]. We chose therefore to use the reversible reaction;

2F � F2 (3.1)

for method developments and first studies, as the 2 and 3-body interaction potential of
fluorine atoms and fluorine molecules are well known and documented at equilibrium
[49–53].

We shall thus report a first computational effort to build an effective reaction model to
be used with NEMD. The impact of the 2 and 3-body potential on the calculation of fluxes
and forces, and the algorithms used, shall first be reported. The state of the reaction shall
next be studied for a fluid with a constant overall density (near 11 kmol/m3) in various
temperature gradients. The largest gradient was 1.1×1012 K/m and the corresponding
total heat flux (or energy flux) was 9.9×108 kJ/m2s. We shall see that the assumption of
local thermodynamic equilibrium is fulfilled, as measured by the velocity distributions of
both components, which were close to being Maxwellian. Local chemical equilibrium was
also found to be valid for this particular reaction for a large range of conditions, within
the accuracy of the calculation, and in spite of the net movement of components between
the hot and the cold regions. The laws of thermodynamics at a local level can thus be
safely applied, in spite of the extreme conditions.
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3.2 Theory

3.2.1 Governing equations

De Groot and Mazur [1] give the expression for the entropy production rate for a two-
component system with transports of heat and mass, and a chemical reaction:

σ = J
′
q · ∇

(
1

T

)
−

1

T

∑
k

Jk · ∇μk,T −
r

T
ΔrG ≥ 0 (3.2)

As is standard in non-equilibrium thermodynamics, σ is the sum of products of flux-force
pairs. Here J

′
q is the measurable heat flux, T the absolute temperature, Jk the molar

component fluxes with respect to the wall (or the net movement of F and F2), ∇μk,T the
gradient in chemical potential at a constant temperature, r the reaction rate, and ΔrG
is the reaction Gibbs energy. The symbol · between two vectors indicates a contraction
of two vectors (a scalar product). The first two flux-force pairs are vectors. The reaction
has one scalar flux-force pair, r and ΔrG/T . Our simple reaction is:

2F � F2 (3.3)

In the molecular dynamics simulations we only considered gradients and fluxes in the
x−direction. In that case the entropy production rate simplifies to

σ = J ′
q

∂

∂x

(
1

T

)
−

1

T

∑
k

Jk
∂

∂x
μk,T −

r

T
ΔrG ≥ 0 (3.4)

The balance equations for the molar densities are thus:

∂cF (x, t)

∂t
= −

∂ JF (x, t)

∂x
− 2r(x, t) = 0

∂cF2
(x, t)

∂t
= −

∂JF2
(x, t)

∂x
+ r(x, t) = 0. (3.5)

Here cF and cF2
are molar densities of component F and F2 respectively. In our analysis

we will focus on stationary states alone. The molar fluxes and the reaction rate are then
only functions of x. No external forces were applied during the simulations, and there was
no mass flux out of the box. Mass conservation gives in a stationary state:

∂JF (x)

∂x
= −2

∂JF2
(x)

∂x
= −2r(x) (3.6)

At every position, the divergence of each flux is therefore balanced by the reaction rate.
From reaction kinetics, we can express the net reaction rate as

r = rf − rb (3.7)

where rf and rb are unidirectional forward and backward reaction rate, respectively. By
integrating Eq.(3.6), we have JF (x) = −2JF2

(x) + C, where C depends on the system
boundaries. In this system, C=0, and as a consequence

JF (x) = −2JF2
(x) (3.8)
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We shall find that the divergences of the fluxes are finite and lead to nonzero molar fluxes
in the system, of atoms to the cold side and molecules to the hot side.

In the stationary state, the measurable heat flux is related to the reaction enthalpy.
This can be seen from the expression for the total heat flux, or energy flux:

Jq = J ′
q + JF HF + JF2

HF2
= J ′

q + JF2
ΔrH (3.9)

Here HF and HF2
are partial molar enthalpies of F and F2, respectively. We have used

Eq.(3.8) and ΔrH = HF2
− 2HF . At the boundaries used, both mass fluxes were zero.

This allows us to use J ′
q=Jq at these locations. The energy flux through the system is

constant.

3.2.2 Defining local equilibrium and local chemical equilibrium

There is local thermodynamic equilibrium in a volume element of a system when:

• All normal thermodynamic relations are valid in the volume element [65].

Criteria for local thermodynamic equilibrium were investigated by Hafskjold and Kjel-
strup [4]. They found that the assumption was valid even when the temperature gradient
was ∇T=108 K/m. On the statistical level, local thermodynamic equilibrium means:

• The probability distribution of particle velocities is close to being Maxwellian every-
where in the system;

The Maxwell distribution of the x−component of the velocity is:

M(vx) =

√
m

2πkBTx
exp

(
−

m(vx − 〈vx〉)
2

2kBTx

)
. (3.10)

Here kB is Boltzmann’s constant, m is the mass of the particle in question, vx is the
x−component of the particle’s velocity, 〈vx〉 is its average and Tx is the temperature in
the volume element calculated from the average kinetic energy in the x-direction. The
distributions in the y and the z direction are similar.

There is local chemical equilibrium in a volume element of a system when:

• In addition to the two criteria above, the reaction Gibbs energy is zero, ΔrG(x)=0.

This is a special case of local thermodynamic equilibrium. The velocity distribution
should be close to Maxwellian for both particles also in this case [61] in order for the law
of mass action to be valid. We can finally state that a system is in global equilibrium
when all volume elements have the same thermodynamic state. This is what we normally
understand as equilibrium.
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3.2.3 The equilibrium constant and the reaction Gibbs energy

The chemical potentials of F and F2 are needed to define the reaction Gibbs energy. For
each of the components, we have:

μk = μ�
k + RT ln fk/p� (3.11)

where fk is the fugacity and k represents F or F2 and the standard state is p�=1 bar.

The fluid that we are dealing with, has a relatively high overall density, 11 kmol/m3.
We are working with temperatures from 400 K and up, but with high pressures. At the
critical point, the molar density of molecular fluorine is for comparison, near 15 kmol/m3,
the critical temperature is 144 K, and the critical pressure is 52 bar. It is thus necessary
to use fugacities rather than partial pressures alone. The fugacity of the component with
partial pressure pk, is:

fk = γkpk = γk

Nk

NF + NF2

p (3.12)

We use particle numbers Nk to calculate the mole fraction xk. The reaction Gibbs energy
is:

ΔrG = ΔrG
� + RT lnQ (3.13)

where ΔrG
�=μ�

F2
− 2μ�

F is the standard reaction Gibbs energy and Q is the reaction
quotient, defined by

Q = γp

NF2
(NF + NF2

)

(NF )2
p�

p
(3.14)

and γp is the activity coefficient ratio γF2
/γ2

F . When ΔrG=0 we obtain

ΔrG
� = −RT lnKeq (3.15)

and

Keq =

[
γp

NF2
(NF + NF2

)

(NF )2
p�

p

]
eq

. (3.16)

The equilibrium constant is only a function of the temperature (with 1 bar standard state).
When the activity coefficient ratio is unity, Keq=Kp :

Kp =

[
NF2

(NF + NF2
)

(NF )2
p�

p

]
eq

. (3.17)

The value of Kp can be found from simulation data; components numbers and the pressure
of the mixture. We can calculate

K ′
p =

NF2
(NF + NF2

)

(NF )2
p�

p
(3.18)

also in simulations of systems which are not in global equilibrium. If K ′
p is the same

function of T as Kp is, one may conclude that the mixture in question is in chemical
equilibrium, without having knowledge of γp (T ).
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3.3 Model and simulation details

3.3.1 The reaction model

The reaction given in Eq.(3.3), is simple. Fluorine atoms and molecules react and form a
mixture. In order to see why 2- and 3-body potential interactions are essential, we write
the reaction mechanism for Eq.(3.3) by:

F + F2 � F2 + F (3.19)

This equation indicates that an atom can constantly hit a molecule, and form a new bond
(a molecule) plus a new single atom. Alternatively, one may write for the same:

F · · ·F − F � F − F · · ·F. (3.20)

Stillinger and Weber [52] gave the potential surface Φ for the reaction as:

Φ(r1, ..., rN ) =
∑

pairs i,j

u2(rij) +
∑

triplets i,j,k

u3(rij , rik, rjk) (3.21)

Here u2 is the two-atom potential, a function of the atom-atom distance rij ≡ |ri − rj |,
and u3 is the three-atom potential determined by three-atom distances rij , rik and rjk.
The subscripts i, j and k indicate different atoms. The pair potential u2 was selected to
give a good representation of isolated diatomic fluorine:

u2(rij) =

{
Aε0

[
(σ0/rij)

8 − (σ0/rij)
4
]
exp [σo/(rij − rc1)] , 0 < rij < rc1

0 , rij ≥ rc1

(3.22)

The value A=6.052463017 causes the reduced pair potential u∗
2=u2/ε0 to have a minimum

with depth −1 at the normal fluorine bond distance 1.18199σ0 (1.435 Å). The function
vanishes at a cutoff distance of rc1=3.6σ0. For the choice of these coefficients and a
discussion of this choice we refer to Stillinger and Weber [52]. The reduced pair potential
is plotted in Fig. 3.1.

Reduced units were used in the calculation. Basic units were the diameter of the
fluorine atom, σ0=1.214 Å, its potential energy depth ε0=2.659×10−19 J and its particle
mass, m0=3.155×10−26 kg. Reduced units are indicated by a star symbol. The variables
in real and reduced form are listed in Table 3.1. Using these reduced units the expression
for the pair potential becomes

u∗
2(rij) =

⎧⎨
⎩A

[(
r∗ij

)−8
−
(
r∗ij

)−4
]

exp
[
1/(r∗ij − r∗c1)

]
, 0 < r∗ij < r∗c1

0 , r∗ij ≥ r∗c1

(3.23)

The three-atom potential u3 is the sum of three h−functions:

u3(rij , rik, rjk) = hi + hj + hk

= h(rij , rik, θi) + h(rij , rjk, θj) + h(rik, rjk, θk). (3.24)
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Figure 3.1: Pair potential used for the fluorine model. This function vanishes when
r∗ij ≥ r∗c1 = 3.6.

Table 3.1: Relations between reduced and real variables for fluorine
Reduced variable, symbol Formula
mass m∗ = m/m0

distance r∗ = r/σ0

energy U∗ = U/ε0
time t∗ = (t/σ0)

√
ε0/m0

temperature T ∗ = kBT/ε0

molar density of k c∗k = NAckσ
3
0

pressure p∗ = pσ3
0/ε0

velocity v∗ = v
√

m0/ε0

The three-atom potential was scaled to fit fluorine, from the well-known potential surface
of H+H2 [52]. The three h−functions are symmetric in their first two variables, while θi

in hi represents the angle between rij and rik, and similarly for θj and θk. Figure 3.2 gives
notations for the triple fluorine configuration. The expression for the reduced h− function
is:

h∗(a∗, b∗, θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

8.4(a∗b∗)−4 exp
[
(a∗ − r∗c1)

−1 + (b∗ − r∗c1)
−1
]

+
(
50 − 25 cos2 θ

)
exp

[
3 (a∗ − r∗c2)

−1 , 0 < a∗, b∗ < r∗c2

+ 3 (b∗ − r∗c2)
−1
]

8.4(a∗b∗)−4 exp
[
(a∗ − r∗c1)

−1 + (b∗ − r∗c1)
−1
]

,either a∗ or b∗ exceeds r∗c2

0 ,either a∗or b∗exceeds r∗c1
(3.25)

Here a (a=a∗σ0) and b (b=b∗σ0) are adjacent sides of the angle θ. The expression for
cos2θ=(a2 + b2 − c2)/(2ab), where c (c=c∗σ0) is the third side of the triangle, was used to
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Figure 3.2: Notations used for a triple configuration.

make the formula for h dependent on positions only. The second cutoff distance rc2=2.8σ0

was obtained from the aforementioned scaling [52].

Using the 2-atom and 3-atom reaction model, we computed first the potential energy
for the linear configuration of three fluorine atoms. The results were compared with those
of Stillinger and Weber [52]. We found the same value as they, −1.04 (in reduced units),
for the two triple potential minima. Figure 3.3 shows the contour plot of the potential
energy for the linear 3-F configuration. Contours are given for reduced values −1.04,
−1.01, and up. In this symmetrical configuration, the transition state for the reaction is
found on the diagonal in the figure that separates the potential minima.

Stillinger and Weber [52] used a distance cutoff criterion to identify chemical bonds,
and by default also identifying unbonded atoms produced by dissociation. The value
was chosen in the low temperature pair correlation function gap, which gave the cutoff
diameter rc=1.7σ0. Any pair of atoms with atom-atom distance less than or equal to rc

were thus defined as molecules, i.e. chemically bonded. Pairs with atom-atom distance
larger than this value were considered as free atoms. An important role of the chosen
three-atom potential is to prevent the formation of more than one covalent bond to each
fluorine atom [52].

3.3.2 Simulation details

The MD box. Algorithms

The system had N=1000 fluorine atoms in a box with dimensions Lx, Ly, Lz, in the x, y
and z direction, respectively. Stillinger and Weber [52] used the same number of fluorine
atoms. The volume of the box was V =LxLyLz=1000/(cNA), where c is the overall molar
density (11270.9 mol/m3), and NA is Avogadro’s number. The molecular dynamics (MD)-
box was non-cubic, with lengths Ly=Lz=Lx/2. It was divided into 128 equal planar
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Figure 3.3: Potential energy contours for a linear arrangement three fluorine atoms.

volume layers in the x−direction, with a symmetry plane between layers 64 and 65. The
volume of each layer is VL=V/128.

When the system was thermostatted, equilibrium MD simulations produced a canon-
ical ensemble (with constant number of particles N , volume V and temperature T ). In
order to test system size dependence, we did some of the equilibrium simulations with
1728 particles and Ly=Lz=Lx/8.

Ikeshoji /Hafskjold [39] periodic boundary conditions were applied to the x-direction
and regular periodic boundary conditions were used in the y- and z-directions. In a
stationary state the system is symmetric. Figure 4.4 shows a 3-dimensional snapshot of
1000 fluorine particles in the MD box. Layers 1-4 and 125-128 (the hot layers) at the
ends of the box were thermostatted to the temperature TH using the HEX algoritm [4].
The layers 61-69 (the cold layers) in the middle of the box were thermostatted to the
temperature , where TC ≤ TH . Thermodynamic properties were found by time averaging
over the instantaneous values in elements that lie symmetric to the central plane in the
box.

The Verlet ’Leap Frog’ algorithm was used. Many particle pairs are out of the range
r∗c1=3.6 of each others pair potential, see Eq.(A.2). To restrict the computation time a
list of pairs was made with a distance from each other smaller than a cut-off distance,
r∗list=4. Pair interactions were calculated when r∗ was equal to or smaller than this value.
A similar algorithm, called NEIGHBOUR3, was made to compute 3-body interactions.
For this, a list of triplets was made by combining pairs from the pair list, which had one
particle in common.

As long as the displacement of the particles was less than half of r∗list − r∗c1=0.4, we
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Figure 3.4: A snapshot of the MD box with 1000 fluorine atoms, partially reacted to
molecules. The box has dimensions Ly/Lx = Lz/Lx = 1/2.

did not need to update the two lists. This procedure avoided unnecessary calculation of
particle interactions. A time step length of 0.01 in reduced units (see Table 2) was used.
This corresponds to 4.1817 ± 10−16 s in real time.

Equilibrium MD simulations

Equilibrium simulations were first done. These results are called EMD results. We used
the NEMD program (see next section) thermostatting the hot and the cold layers to the
same temperature, to find the EMD results. In the EMD simulations, the program gave
the temperatures of each layer within 0.1%. A standard thermostat method (the velocity
scaling algorithm [4]) was applied during the first 1000 time steps.

Thirteen equilibrium cases were studied, all with the same overall density, c∗=0.012147:

• Case 1: This case is identical to one of the cases of Stillinger and Weber [52]. The
triple point of molecular fluorine is T ∗

t =0.002779 and ρ∗t =0.097173 [52], and we chose
a state well above this point, with a temperature T ∗=0.019.

• Cases 2-13 had temperatures varying from T ∗=0.25, in steps by 0.05 to 0.80 in
reduced units.

Case 1 was done to check reproducibility of the earlier EMD [52] results with our
NEMD code. In all cases, we calculated compositions and velocities of atoms and molecules,
temperature and pressure (see section on Calculation details). We also calculated the
velocity distribution of the x -component of the velocity of atoms and molecules in equi-
librium. They are given for Cases 4 and 13 in Fig. 3.9 for a position where the reduced
temperatures were T ∗=0.35 and T ∗=0.8, respectively.
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Non-equilibrium MD simulations

Details of the NEMD program have been described in earlier work [4,5,9,35,38]. Here we
shall only give the main properties as well as the expressions which are modified due to
contributions from the three particle interactions.

The thermostatting algorithm was now used to control the temperatures in the hot and
in the cold layers. All NEMD simulations were performed over 107 time steps. We omitted
the first 2×106 time steps, which showed transient effects. Mean values of properties, such
as temperature and density, were computed for each layer of the box. The average value
was then taken for mirror symmetric layers. Time averages were done every 5×105 time
steps.

Nine NEMD simulations were performed, Cases 14-22. The temperatures in the hot
and the cold layers for these cases, are listed in Table 3.2 . Cases 14, 15 and 16 had the
smallest temperature difference, while Case 22 had the largest temperature difference. In
the last case the temperature gradient was 1.1×1012 K/m and the heat flux through the
system was then 9.9×108 kJ/m2s. For even larger temperature differences the velocity
distribution would no longer relax to a nearly Maxwellian distribution, so that nothing
comparable to local equilibrium developed. In all cases the NEMD simulations were very
far from global equilibrium. The velocity distributions of the x-component of the velocity
of atoms and molecules were studied. They are given for the Cases 19 and 22 in Fig. 3.10
for a position where the reduced temperatures were T ∗=0.488 and T ∗=0.511, respectively.

Table 3.2: NEMD simulation conditions. The temperature is given in reduced

units.
Case no. 14 15 16 17 18 19 20 21 22
T ∗

H 0.30 0.35 0.40 0.40 0.50 0.60 0.80 1.00 0.80
T ∗

L 0.25 0.30 0.35 0.30 0.40 0.40 0.60 0.70 0.30

Calculation details

The same NEMD program was used to calculate all properties, also equilibrium properties.
In EMD simulations, the overall temperature, pressure and densities were determined by
averaging layer properties over all 128 layers in the MD box. In NEMD simulations, local
properties, such as temperature, pressure and densities, were calculated for each layer,
and an average was then taken for pairs of layers that were mirror symmetric around the
center of the box.

The molar density of component k in layer l, with l=1,. . . ,128, is:

ck,l =
Nk,l

NAVL
(3.26)
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where Nk,l is the number of particles of component k (F or F2) in the layer l. All the layers
have the volume V/128. Furthermore NA is Avogadro’s number.

The temperature Tl of layer l was found from the average kinetic energy per degree of
freedom:

Tl =
1

3kBNl

∑
i ∈ l

miv
2
i (3.27)

where Nl=
∑

k Nk,l is the total number of particles in the layer l and v2
i =v2

x,i + v2
y,i + v2

z,i.

From the virial theorem, the expression for the pressure tensor for layer l in the presence
of 2- and 3-body interactions is:

pppl =
kBTNl

VL
1 +

1

VL

∑
i ∈ l

⎛
⎝ ∑

j pair with i

wwwi(j) +
∑

j<k triplet with i

wwwi(j,k)

⎞
⎠ (3.28)

where 1 is the unit tensor. The first contribution on the right hand side is the kinetic
contribution. The second and the third contribution are due to the two and the three
particle interaction respectively. The summands in these terms are given by:

wwwi(j) = −
1

2

∂u2(rij)

∂ rij
r̂̂r̂rijrrrij

wwwi(j,k) = −
∂hi

∂rij
r̂̂r̂rijrrrij −

∂hi

∂rik
r̂̂r̂rikrrrik −

∂hi

∂rjk
r̂̂r̂rjkrrrjk (3.29)

where the hat indicates a unit vector, like r̂̂r̂rij=rrrij/rij . In the expression for the contribu-
tion due to pair interactions we use the convention due to Irving and Kirkwood [66] and
assign half of the force moment due to the pair ij to particle i and the other half to particle
j. The interaction energy due to a triple, cf. Eq.(3.24), is the sum of three terms, hi, hj

and hk. In Eq.(3.28) we have assigned the force moments due to hi to particle i, those
to hj to particle j and those to hk to particle k . Though other choices are possible this
seems like a natural choice. In the simulations we found the pressure to be independent
of the position. A different choice would therefore lead to essentially the same results.
Furthermore the pressure tensor was found to be diagonal and the same in all directions.
Using Eq.(3.29) we find for the hydrostatic pressure in layer l one third of trace of the
tensor given in Eq.(3.28)

pl =
kBTNl

VL
−

1

3VL

∑
i ∈ l

⎡
⎣1

2

∑
j pair with i

∂u2(rij)

∂ rij
rij +

∑
j<k triplet with i

(
∂hi

∂rij
rij +

∂hi

∂rik
rik +

∂hi

∂rjk
rjk

)⎤⎦
(3.30)

The positive direction of the fluxes is from the left to the right hand side of the MD-box.
The molar flux of component k in layer l is:

Jk,l =
1

NAVL

∑
i∈l , i∈ component k

vi (3.31)
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The total molar flux in layer l is given by

Jl =
∑

k

Jk,l (3.32)

The energy flux in layer l is

Jq,l =
1

VL

∑
i∈l

[
vi

(
1

2
miv2

i + Φi

)
+ vi · pppl

]

=
1

VL

∑
i∈l

vi

(
1

2
miv2

i + Φi + pl

)
(3.33)

where the · now indicates a contraction of a vector and a tensor. Furthermore Φi is the
potential energy of particle i

Φi =
1

2

∑
j pair with i

u2(rij) +
∑

j<k triplet with i

h(rij , rik, θi) (3.34)

In the expression for the contribution due to pair interactions we assign half of the force
moment due to the pair ij to particle i and the other half to particle j. The interaction
energy due to a triplet, cf. Eq.(3.24), is the sum of three terms, hi, hj and hk. In Eq.(3.34)
we have assigned hi to particle i, hj to particle j and hk to particle k. All these choices
are analogous to the ones we made in the expression for the pressure, see Eqs.(3.28) and
(3.30). In the expression for the energy flux, Eq.(3.33), it is crucial to use similar choices
as those used in the pressure. This contributes to making the treatment self-consistent.
It should be emphasized that other choices are possible, which should give essentially the
same results.

The measurable heat flux in a volume element is related to the energy flux by

J
′
q,l = Jq,l − JF,lHF ,l − JF2,lHF2,l = Jq,l − JF2,lΔrHl (3.35)

where the reaction enthalpy in layer l is ΔrHl=HF2,l − 2HF,l. It is impossible to calculate
the partial enthalpies HF2,l and HF,l by simulations. We can, however, find the total
enthalpy of F and of F2 in layer l. The total enthalpy in J/mol is given by

Hl = NA

{
1

Nl

∑
i∈l

Φi +
plVL

Nl
+

3

2
kBT

}
(3.36)

By allocating contributions to Hl from F or F2, we found estimates for molar enthalpies.
With this information, we estimated ΔrH for each layer. With knowledge of the particle
flux and total heat flux, we were then able to estimate the measurable heat flux. These
estimates will be reliable when the gas is close to being ideal.

3.4 Results and discussion

3.4.1 An algorithm for a chemical reaction in a temperature gradient

The results of the EMD simulation for Case 1 are shown in Fig. 3.5. The results are
identical to those of Stillinger and Weber [52] up to 70 psec. We continued the simulation
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Figure 3.5: The decline of free fluorine atoms from a start with 1000 particles versus
time (in pico seconds) at T ∗ = 0.019 and c∗ = 0.012147. The number of fluorine atoms
declined rapidly due to the reaction in the first 60 ps. The chemical reaction was limited
by diffusion in the MD box. Two atoms remained at equilibrium at stationary state.
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Figure 3.6: The pair correlation function in the reacting system at T ∗ = 0.019 and c∗ =
0.012147. The peak represents chemically bonded atoms.

up to 4×106 time steps (1672.8 psec), and found a stationary state with only two atoms
left, see Fig. 3.5. The corresponding pair correlation function (pcf) versus distance is
shown for the long runs in Fig. 3.6. The sharp peak of the pcf curve is positioned at a
reduced atom-atom distance of r∗=1.2. This represents the chemically bonded pairs, and
corresponds to the minimum in Fig. 3.1.
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Figure 3.7: The molar fluxes in the NEMD simulation Case 18, at c∗ = 0.012147. Symbols
give values for the layers in MD box.

We have thus confirmed the equilibrium results of Stillinger and Weber [52] and con-
sider our computations to be reliable.

3.4.2 The chemical reaction in the temperature gradient

The system we investigated had no net mass flux. In order to obey mass conservation
(Eq.3.8), the flux of atoms was everywhere minus twice the flux of molecules. The cal-
culations are reported for stationary state. The fluxes in Case 18 are shown in Fig. 4.3.
The flux of atoms was directed to the cold side, while the flux of molecules was directed
to the hot side. It is interesting that they are not constant across the box. This situation
is very unlike the situation in the absence of a chemical reaction, where the fluxes of both
components will be zero at stationary state. The variation is due to the chemical reaction.
The total mass flux is proportional to two times the molar flux of F2 plus the molar flux
of F. This flux is, as expected within the accuracy of the calculation, equal to zero.

A net and varying reaction rate r(x), was observed through the system, see Fig. 3.12
for Case 22. The series of events can be understood as the reaction being controlled by
diffusion. The transport in and out of a volume element is limited by the fluxes. As soon
as a composition is perturbed from its equilibrium value by an incoming flux, the reaction
rate will bring the mixture back to equilibrium.

The largest temperature gradient used in the simulations was around 1.1×1012 K/m
and the corresponding total heat flux was 9.9×108 kJ/m2s. The temperature gradient is
larger by several orders of magnitude from what one may expect in flames. This gradient
drives the chemical reaction by setting up thermal diffusion and interdiffusion of compo-
nents. The distribution of components must be explained by the reaction in combination
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Figure 3.8: The three contributions to the pressure in the NEMD simulation Case 19, at
c∗ = 0.012147.

with a Soret effect [1, 35, 67]. A Soret effect often leads to a preference for the heavy
component on cold side. The effect of the chemical reaction may have an impact on flame
modelling through this. We shall elaborate on this in our next study.

3.4.3 The effect of the 3-body potential on calculation of thermody-

namic properties

The model used to simulate the chemical reaction was described in the theoretical section
3.3.1. Unless a third particle is there to take away excess kinetic energy, a stable pair
cannot be formed. Similarly, a molecule need be hit by a third particle, to break open
and at the same time change its interaction potential. Calculations of system’s properties
are consistent with this. As our NEIGHBOUR3 algorithm and the expressions of the
section reproduced earlier results we believe that it performs satisfactorily. The 3-body
potential interaction had a significant effect on the thermodynamic properties. This is
illustrated for the pressure for one condition in Fig. 3.8. The figure shows the varying
contributions to the pressure; that is the ideal gas-, the 2-body interaction-, and the
3-body interaction-contribution. The different contributions have different temperature
dependencies. The three-body contribution is more sensitive to the temperature than the
two-body contribution is. This is expected, as this potential reflects much of the properties
of the reaction.

3.4.4 Maxwell velocity distributions

The probability distributions for the x−components of the velocities of the atoms, F, and
the molecules, F2 in the system, P (v∗x)=N(v∗x)/N , are shown in Figs. 3.9 and 3.10. Figure
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3.9 presents the equilibrium Cases 4 and 13, while Fig. 3.10 presents the nonequilibrium
Cases 19 and 22, for layer 35 together with its mirror image. The Maxwell velocity
distributions for the two components, M(v∗x), were calculated from Eq.(4.2) using the
average temperatures of the symmetric layers in question. These results are also shown in
Figs. 3.9 and 3.10. These temperatures were found from the average kinetic energy in the
x direction. Temperatures obtained from the average kinetic energies in the y and the z
direction were found to be the same (as they should be).

Figure 3.9 shows results for global equilibrium, at a low and a high temperature,
respectively (T ∗=0.35 and T ∗=0.8). The figure shows that the velocity distribution of
the atoms and molecules have average velocity 0.0000 ±0.0001, and both are Maxwellian
within 1% accuracy. This result is what we expect for equilibrium.

The non-equilibrium studies were done at a small temperature difference, ΔT ∗=0.2,
and the largest possible temperature difference, ΔT ∗=0.5. The temperatures and velocities
of the atoms and the molecules in the layer were calculated (Cases 19 and 22). We observed
that a temperature gradient across the system shifted the velocity distributions. The shift
for F2 gave JF2

as pictured in Fig. 4.3, while the shift for F gave JF in this figure. The
molecules had a sharper distribution than the atoms had in Fig. 3.10, and the molecules
gave a negative average velocity, while the atoms gave a positive average velocity. Each
distribution was still close to a Maxwellian one. The simulations in sub-figures 3.4.4
and 3.4.4 agreed with their respective Maxwell distribution within ±3% (3.4.4) and ±5%
(3.4.4). The shift increased with the temperature gradient. For temperature gradients
larger than 1012 K/m, we found that the velocity distribution did no longer relax to a
nearly Maxwellian distribution.

We can thus conclude that the system is always in local thermodynamic equilibrium.
This is true even for the largest temperature gradient investigated, 1.1×1012 K/m. The
situation fits well with the situation described by Ross and Mazur [61]. We see that the
chemical reaction perturbs the Maxwell distribution of velocities. The reason is removal
(supply) of molecules with high (low) kinetic energy. The perturbation observed here
does not alter the law of mass action (see section below) and must therefore be considered
small enough. The small shift in the velocity distribution up or down, equal to the mean
velocity of the component, does thus not affect the entropy production. It maintains its
bilinear form in the fluxes and driving forces [61]. This is comforting to know for a further
development of the transport properties of the system. We can use the familiar expression
for the entropy production from classical non-equilibrium thermodynamics to define the
fluxes and forces in the system. This shall be done in our next paper, when we discuss
the transport properties of the mixture.

3.4.5 A distance from local chemical equilibrium?

The question is now whether one can speak of local chemical equilibrium in a system that
has internal diffusion as described above. This question was investigated by comparing
Cases 14-22 to Cases 2-13 (see the theoretical section 3.2.3). The ratio Kp was calculated
as a function of T ∗ for all EMD simulations and plotted in Fig. 3.11. It was verified that
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Kp was independent of the size of the system by an extra study with 1728 fluorine atoms
in an elongated box. We found the same results as the EMD results with 1000 fluorine
atoms (Fig. 3.11), within ±1%.

We next calculated the same ratio for Cases 14 (ΔT ∗=0.05), 21 (ΔT ∗=0.3) and 22
(ΔT ∗=0.5), all as a function of the reduced temperature, T ∗, in the box. These results
are also shown as points in Fig. 3.11. We observed then that Kp of the EMD simulations
and K ′

p of the NEMD simulations coincided to a large extent, see Fig. 3.11. There was
reasonable agreement (±5%) between the ratios from NEMD and EMD in the central part
of the half-box, and less agreement (±10%) close to the thermostatted regions. Deviations
were larger for the largest gradient (see Fig. 3.11). We can say on the basis of this, that
the reaction is very close to local chemical equilibrium away from the boudaries.

By counting the formation of molecules over several thousand time steps at stationary
state, we found a forward reaction rate, rf , in case 22 of around 1016 to 1017 mol/m3s,
see Fig. 3.12. Compared to the value of the forward reaction rate rf , a net rate of 1013

mol/m3s is small. The system is therefore also very close to microscopic reversibility, in
spite of having a net reaction rate. We verified this by plotting also the ratio c∗F2

/(c∗F)2

for EMD and NEMD conditions, shown in Fig. 3.13. Also these ratios were very similar.

3.4.6 Comment on the system’s transport properties

The system with the reacting mixture has an enthalpy flux associated with the transport
of each component, and therefore a substantial transfer of enthalpy takes place between
the ends. The local reaction enthalpy was estimated using Eq.(4.45) for the separate
components. The value varied across the box from -340 to -190 kJ/mol. The large enthalpy
change has an effect on the measurable heat flux, estimated to be 5% for the largest heat
flux. We shall return to a quantitative determination of the transport properties in the
future.

3.5 Conclusion

NEMD simulations with various temperature gradients have been done to study the chem-
ical reaction, 2F � F2 using the 2-body and 3-body potentials of Stillinger and Weber [52],
adding for an efficient MD program the NEIGHBOUR3 algorithm. Our NEMD code repro-
duced some of the equilibrium results obtained by others [52], indicating that our results
can be trusted. Temperature gradients up to ∇T=1.1×1012 K/m were investigated.

The non-ideal reacting mixture was always in local thermodynamic as well as in local
chemical equilibrium. This means that the reaction Gibbs energy is zero and all nor-
mal thermodynamic relations hold. Component velocity distributions remained close to
Maxwellian. Statistical and thermodynamic evidence was thus presented that the trans-
port processes are governed by an entropy production which is bilinear in the fluxes and
forces of the system. The stationary state was characterized by nonzero average velocities
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of the components. Thermal diffusion and interdiffusion of components were set up in the
temperature gradient. A net reaction rate was observed much smaller than the forward
and the backward reaction rates. The reaction was diffusion controlled.



(a)

(b)

Figure 3.9: Distribution of the x−component of the velocity in layer number 35 of the MD
box, which is at equilibrium. The dotted lines are Maxwell velocity distributions (eq. 4.2)
in the layer. Symbols denote EMD simulations, Cases 4 and 13. (a) Case 4, 〈T ∗〉 = 0.345.
(b) Case 13, 〈T ∗〉 = 0.792.
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(b)

Figure 3.10: Distribution of the x−component of the velocity in layer number 35 of the
MD box in a temperature gradient. The dotted lines are Maxwell velocity distributions
(eq. 4.2) in the layer. Symbols denote NEMD simulations, Cases 19 and 22. (a) Case 19:
〈T ∗〉 = 0.488. (b) Case 22: 〈T ∗〉 = 0.511.
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We calculate transport properties of a reacting mixture of F and F2 from results of non-

equilibrium molecular dynamics simulations. The reaction investigated is controlled by thermal

diffusion and is close to local chemical equilibrium. The simmulations show that a formulation of

the transport problem in terms of classical non-equilibrium thermodynamics theory is sound. The

chemical reaction has a large effect on the magnitude and temperature dependence of the thermal

conductivity and the interdiffusion coefficient. The increase in the thermal conductivity in the

presence of the chemical reaction, can be understood as a response to an imposed temperature

gradient, which reduces the entropy production. The heat of transfer for the Soret stationary

state was more than 100 kJ/mol, meaning that the Dufour and Soret effects are non-negligible in

reacting mixtures. This sheds new light on the transport properties of reacting mixtures.

4.1 Introduction

Transport properties have been widely studied by computer simulations with the aim to
understand the underlying molecular mechanisms or avoid costly and dangerous experi-
ments [68]. Various computing techniques have been used [56,69,70], and we may now say
that molecular dynamics simulations are not only able to explain and generate trends, but
to a large extent also predict accurate transport properties, at least for pure components
and mixtures. This opens up the perspective, that also more sophisticated mixtures like
those including a chemical reaction, may be better understood by this technique.

We have recently investigated a chemical reaction in a temperature gradient [44] using
boundary driven non-equilibrium molecular dynamics simulations (NEMD). NEMD is
made to mimic an experimental situation. As a model for the chemical reaction we took

2F � F2 (4.1)

which according to Stillinger and Weber [52] can be satisfactorily modeled by a mechanical
analogue (2- and 3-body potentials). In order for the reaction to occur, a collision of three
particles was needed.

The study of such systems is important for at least two reasons. In the first place,
one would like to confirm that there is a sound basis for the relevant transport equations.
In the second place, one would like to learn about the specific transport coefficients, how
they vary, and how they can be used in practical contexts; for instance in chemical reactor
engineering, or in flame modeling. In such modelling, transport properties for reacting
mixtures are central [59]. Also the understanding of dynamic structures may benefit from
such a study. The aim of the present work is thus to calculate transport properties of a
mixture where a chemical reaction takes place in a temperature gradient, and to contribute
to the understanding of the nature of such systems, drawing on NEMD simulation results
obtained already [44].

The outline of the paper is as follows: We describe the system and present the funda-
mental problems that shall be investigated (section 4.2) and give its governing equations
(section 4.3). A full analytical solution can be found for stationary states near chemical
equilibrium (section 4.3.3). This solution is equivalent to the one presented by de Groot
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= 11271 mol m−3. The symbols represent values in the layers in the MD box.
The thickness of the layers is about 0.65 Å

and Mazur [1], but is given in terms of more commonly used variables and fluxes. The
solution can be simplified when the system is everywhere in chemical equilibrium (section
4.3.3). The details of the NEMD simulations were given before [44], and are therefore
only reviewed briefly here (section 4.4), before we present the results in section 4.5. A
discussion (section 4.6) and conclusion (section 4.7) follow.

4.2 A reaction in a temperature gradient

We give first a qualitative description of the system [44], before the governing equations
are derived. A thousand particles, reacting according to Eq. (4.1), were put inside a box,
with an overall density, cF + 2cF2

= 11271 mol m−3. For the temperatures considered the
fluid is supercritical at this relatively high density [52]. An overall temperature gradient
was applied to the x−direction of the box, the maximum value being around 6.6 × 1011

K/m (see Fig. 4.1). The temperature gradient led to variations in density and mole
fractions, see Fig. 4.2. There was no net mass flux through the system in the states
considered. We observed a flux of fluorine atoms to the cold side, while fluorine molecules
were transported to the hot side. Both fluxes were functions of position. An example of
these component fluxes, giving zero mass flux, is shown in Fig. 4.3. The fluxes are in the
direction suggested by the mole-fraction distribution in Fig. 4.2.

The system therefore responds to the imposed boundary conditions by setting up the
component fluxes. This is unlike the situation with two non-reacting components in a
temperature gradient [4, 35, 39] where the component fluxes are zero in the stationary
state. By setting up the varying component fluxes, we shall see that the reacting system
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increases its overall conductance of heat. The total heat flux becomes somewhat larger
than the measurable heat flux. The non-equilibrium system has a dynamic structure,
maintained by energy supply from the outside.

Several questions are of interest. How can we characterise and understand the dynamic
structure? Can it be understood from the system’s entropy production? Is it an example
of Prigogine’s dissipative structures [71]? The reaction is very exothermic, and according
to Le Chatelier’s principle, the equilibrium in such a reaction is shifted to the right (more
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molecules) at low temperatures. One may wonder to which degree the observed distri-
bution in the temperature gradient is a consequence of such a shift alone. We shall see
that the shift of the reaction may offer much, but not all of the explanation for the mole
fraction distributions in Fig. 4.2. The dynamic structure explains the cause of the shift.

In our first study [44], we mentioned that the reaction was diffusion controlled, but
is it controlled by thermal diffusion or interdiffusion? The thermal force is the origin of
all transport processes, but does this force alone explain the non-zero component fluxes?
We shall see in this paper that precise answers can be given also to these questions. The
reaction is controlled by thermal diffusion, and the dynamic structure can be seen as a
response to the boundary conditions.

We shall also add evidence to the hypothesis that the assumption of local equilib-
rium, the basic assumption in non-equilibrium thermodynamics, is reliable [5, 6, 72]. We
have earlier shown [44] that the system was nearly Maxwellian in its component velocity
distributions. In order to have local equilibrium, this is central. We shall see now that
the basis for a thermodynamic analysis can be further strengthened; by showing that the
small shifts in the Maxwellians are directly proportional to the temperature gradient. Ac-
cording to kinetic theory, the Maxwell distribution for the x−component of the velocity
of component k in layer l is:

f0
k,l(vx) =

√
mk

2πkBTl
exp

(
−

mk(vx − 〈vx〉k,l)
2

2kBTl

)
(4.2)

Here kB is Boltzmann’s constant, mk is the mass of the particle in question, vx is the
x−component of the particle’s velocity, 〈vx〉k,l is the average velocity of particles of com-
ponent k in layer l and Tl is the temperature in layer l calculated from the average kinetic
energy. The Maxwell distributions in the y− and the z−directions are similar. With a
temperature gradient in the x−direction, kinetic theory uses a perturbation in this direc-
tion [1], setting:

fk,l(vx) = f0
k,l(vx) (1 + φk,l) (4.3)

where φk,l is a function of (vx − 〈vx〉k,l), the temperature and composition of the layer,
and is proportional to the temperature gradient in the layer:

φk,l = −Ak,l

(
∂T

∂x

)
l

(4.4)

We shall confirm this property. As explained by Ross and Mazur, this gives a sound basis
for a description of the system within the context of classical non-equilibrium thermody-
namics [1,61]. We shall also calculate the transport properties as functions of temperature.
These coefficients are relevant for modelling of chemical reactions in a temperature gradi-
ent, i.e. in a flame [59].

4.3 Governing equations

We reported earlier [44] that the system was in local thermodynamic equilibrium; and
that it was also close to chemical equilibrium. We found that the unidirectional rates of
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the reaction were nearly the same in the center of the box, meaning that the distance
to chemical equilibrium was small there. Away from the center, a larger deviation was
seen. After a presentation of the entropy production (subsection 4.3.1), we shall therefore
proceed to give equations for the system near, but not at chemical equilibrium (subsection
4.3.2). Coefficients that can be related to experiments are then developed (subsections
4.3.3 and 4.3.4).

4.3.1 The entropy production

The system is one-dimensional, since the temperature gradient is in the x-direction only.
We shall describe the system in its stationary state only. The mass balances of the two
components then satisfy

∂

∂x
JF2

= −
1

2

∂

∂x
JF = r (4.5)

Here JF2
and JF are the molar fluxes of the molecules and atoms, respectively, and r is

the reaction rate in Eq. (4.1). With no net mass flux through the system, we obtain

JF = −2JF2
(4.6)

In the absence of external forces, the energy balance is

∂

∂x
Jq = 0 (4.7)

where Jq is the total heat flux. The total heat flux is equal to the measurable heat flux,
J ′

q, plus the enthalpies carried along with the components, HF2
and HF. With Eq. ( 4.6)

we obtain
Jq = J ′

q + JF2
HF2

+ JFHF = J ′
q + JF2

ΔrH (4.8)

where ΔrH is the enthalpy of reaction, ΔrH = HF2
− 2HF. We write the entropy pro-

duction, σ, for transport of heat and two components with a chemical reaction [1] in
different ways depending on the purpose. For calculation purposes it is convenient to use
the constant total heat flux as a variable, giving:

σ = Jq
∂

∂x

(
1

T

)
− JF2

∂

∂x

(
ΔrG

T

)
− r

ΔrG

T
(4.9)

Here T is the temperature. The reaction Gibbs energy is

ΔrG = μF2
− 2μF

This form shall be used to find an analytical solution to the general transport problem.
In order to explain real experiments, one will need the equivalent form of the entropy
production, which uses the measurable heat flux as a variable:

σ = J ′
q

∂

∂x

(
1

T

)
−

1

T
JF2

∂

∂x
(ΔrG)T − r

ΔrG

T
(4.10)
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Subscript T on the central term means that the derivative should be taken at constant
temperature. With local chemical equilibrium, the entropy production reduces to a one
flux - one force expression. We introduce ΔrG = 0 in Eq. (4.9) and obtain:

σ = Jq
∂

∂x

(
1

T

)
(4.11)

We shall use this simplification as a reference for the more general case.

4.3.2 Transport properties near local chemical equilibrium

When the system is close to, but not at chemical equilibrium it is possible to find an ana-
lytical solution to the flux equations given by the entropy production. Such a solution was
also presented by de Groot and Mazur [1]; but not in terms of commonly used variables.
We return therefore to Eq. (4.9). The first two flux-force products are products of vectors,
and the last product contains a scalar flux and force. There is no coupling of the vectorial
forces to the scalar reaction Gibbs energy (the Curie principle). As flux equations in the
system, we thus have the reaction rate which does not couple to any other flux, and the
heat and mass fluxes which are coupled.

The reaction rate was earlier found [44] to obey the law of mass action:

r = kfc
2
F − kbcF2

(4.12)

where ck are molar densities of the components, and kf and kb are rate constants. In equi-
librium we therefore have kfc

2
F,eq = kbcF2,eq, where the subscript eq denotes the equilibrium

value. We assume that the activity coefficients are constant for the range of concentrations
considered in the simulations. This gives

μk = μ0
k + RT ln

ck

c0
k

= μk,eq + RT ln
ck

ck,eq
(4.13)

It follows from Eqs. (4.12) and (4.13) that the reaction rate can be written as

r = kfc
2
F

(
1 − eΔrG/RT

)
(4.14)

In chemical equilibrium we have ΔrGeq = 0.

We introduce δck ≡ ck−ck,eq for both components. When the reaction is near chemical
equilibrium, the reaction rate becomes

r = −kfc
2
F,eq

(
δcF2

cF2,eq
− 2

δcF

cF,eq

)
= −

kfc
2
F,eq

R

ΔrG

T
(4.15)

to linear order.

The coupled fluxes of heat and mass are from Eq. (4.9):

d

dx

1

T
= Rqq Jq + RqμJF2

−
d

dx

ΔrG

T
= Rμq Jq + RμμJF2

(4.16)
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or, in the inverse form:

Jq = Lqq
d

dx

1

T
+ Lqμ

(
−

d

dx

ΔrG

T

)

JF2
= Lμq

d

dx

1

T
+ Lμμ

(
−

d

dx

ΔrG

T

)
(4.17)

The R and L-coefficient matrices are both symmetric according to Onsager. Taking the
derivative of Eq. (4.16) using Eqs. (4.5) and (4.7), we obtain:

d2

dx2

1

T
= Rqμ

∂

∂x
JF2

= Rqμr

−
d2

dx2

ΔrG

T
= Rμμ

∂

∂x
JF2

= Rμμr (4.18)

By substituting Eq. (4.15) valid close to chemical equilibrium into Eq. (4.18), we have

d2

dx2

1

T
= −Rqμ

kfc
2
F,eq

R

ΔrG

T

−
d2

dx2

ΔrG

T
= −Rμμ

kfc
2
F,eq

R

ΔrG

T
(4.19)

When the rate constant and the resistivities are constants, these equations can be solved.
Boundary conditions for the solution are the temperatures and the zero value of the
component fluxes at the ends (x = 0, 2l) and the middle (x = l) of the box. In the
solution it is convenient to introduce the characteristic length d over which an atom can
diffuse relative to other particles before it reacts

d ≡

√
R

Rμμkfc
2
F,eq

(4.20)

This is the socalled penetration depth. The solution is for 0 ≤ x ≤ l:

1

T (x)
= AD + BDx + CD sinh

(
2x − l

2d

)
ΔrG(x)

T (x)
= −

Rμμ

Rqμ
CD sinh

(
2x − l

2d

)
(4.21)

For the fluxes and the reaction rate this gives

Jq = LqqBD

JF2
= LμqBD +

1

Rqμd
CD cosh

(
2x − l

2d

)

r =
1

Rqμd2
CD sinh

(
2x − l

2d

)
(4.22)
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Using T (0) = TH , T (l) = TL and JF2
(0) = JF2

(l) = 0, we find

AD =
1

TH
+ CD sinh

l

2d

BD = −
CD

LμqRqμd
cosh

l

2d

CD =

(
1

TL
−

1

TH

)
LμqRqμ

LμqRqμ sinh l
2d − l

d cosh l
2d

(4.23)

AD, BD and CD depend only on two parameters d and LμqRqμ. The solution for the other
half of the box, l ≤ x ≤ 2l is the mirror image of the solution between 0 ≤ x ≤ l.

In order to see how the reaction contributes to the heat transport across the system,
we calculate Jq in the limit that there is no reaction (d → ∞) and in the limit that the
reaction is in equilibrium ( d → 0)

Jq(d → ∞) =
1

lRqq

(
1

T (l)
−

1

T (0)

)
=

1

l

(
Lqq −

L2
qμ

Lμμ

)(
1

T (l)
−

1

T (0)

)

Jq(d → 0) =
Lqq

l

(
1

T (l)
−

1

T (0)

)
(4.24)

This shows that the effective thermal conductivity of the system increases when the reac-

tion takes place, as Lqq −
L2

qμ

Lμμ
< Lqq. The reason is the coupling coefficient Lqμ. We shall

see below that it can be linked to the reaction enthalpy.

4.3.3 The description using the measurable heat flux

With the alternative choice for the entropy production, Eq. (4.10), the chemical reaction
rate is the same as above, but the set of vectorial force-flux relations changes to:

∂

∂x

(
1

T

)
= rqqJ

′
q + rqμJF2

−
1

T

∂

∂x
(ΔrG)T = rμq J ′

q + rμμJF2
(4.25)

where the reaction Gibbs energy at constant temperature is defined by

∂

∂x
(ΔrG)T = ΔrS

∂

∂x
T =

ΔrH

T

∂

∂x
T = −TΔrH

∂

∂x

(
1

T

)
(4.26)

The r-coefficient matrix of resistivities is also symmetric according to Onsager. We shall
determine these coefficients as well as more convenient combinations of them. In order to
do so, we rewrite the measurable heat flux, using Eq. (4.25)

J ′
q = −

1

T 2rqq

∂

∂x
T −

rqμ

rqq
JF2

= −λJ
∂

∂x
T + q∗JF2

(4.27)
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and define the thermal conductivity λJ at zero component flux:

λJ ≡ −

[
J ′

q

∂T/∂x

]
JF2

=0

=
1

T 2rqq
(4.28)

and the heat of transfer:

q∗ ≡

[
J ′

q

JF2

]
∇T=0

= −
rμq

rqq
(4.29)

The remaining independent coefficient is rμμ.

One cannot speak of a Soret equilibrium in the traditional sense in this system. In the
traditional sense there is a balance of a chemical and a thermal force in Soret equilibrium,
and the component fluxes are zero. Here the component fluxes are non-zero (see figure
4.3) (but the total mass flux is still zero). One must rather speak of a Soret stationary

state.

In the limiting case of local chemical equilibrium matters simplify considerably [73].
When ΔrG(x) = 0 everywhere in the system, there is only one independent flux and force
in the entropy production Eq. (4.11). They are related by

Jq =
1

Rqq

∂

∂x
(
1

T
) = −

1

RqqT 2

∂

∂x
T = −λ

∂

∂x
T (4.30)

where the thermal conductivity is now given by λ = 1/RqqT
2. All other coefficients in the

r-resistivity matrix above, must now be linearly dependent on this coefficient. We can see
this by introducing the measurable heat flux, Eq. (4.8) in Eq. (4.30):

∂

∂x

(
1

T

)
= RqqJq = RqqJ

′
q + RqqΔrHJF2

(4.31)

By comparing with Eq. (4.25a), we find that

rqq = Rqq and rqμ = RqqΔrH (4.32)

It follows that λ = λJ . Using Eqs. (4.26) and (4.31), we furthermore have

−
1

T

∂

∂x
(ΔrG)T = ΔrH

∂

∂x

(
1

T

)
= RqqΔrHJq

= RqqΔrHJ ′
q + Rqq (ΔrH)2 JF2

(4.33)

By comparing with Eq. (4.25b), we find that

rμq = RqqΔrH = rqμ and rμμ = Rqq (ΔrH)2 (4.34)

The heat of transfer is then obtained using Eq. (4.29):

q∗ =

[
J ′

q

JF2

]
∇T=0

= −
rqμ

rqq
= −ΔrH (4.35)

The heat of transfer is now simply equal to minus the reaction enthalpy [73]. The ratio of
fluxes is a ratio of zeros in the limit of a zero temperature gradient. This ratio is finite,
however, as shown. In this paper we will establish that the system is not in local chemical

equilibrium, only near enough to use Eq. (4.15).
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4.3.4 Relations between sets of coefficients

Changing the set of variables leads to changes in the coefficients. One set can be derived
from another, because the entropy production is invariant. Knowing the Rij of Eq. (4.16)
from the preceding section, we can calculate the rij coefficients of Eq. (4.25). The relation
between the two resistivity matrices is

rqq = Rqq , rqμ = rμq = Rqμ + RqqΔrH

rμμ = Rμμ + 2RqμΔrH + Rqq (ΔrH)2 (4.36)

From the values of rij we compute the conductivity matrix lij . Inverting Eq. (4.25) gives
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dx
(ΔrG)T = lqq

d

dx

(
1

T

)
− lqμ

ρ

TρF

∂μF2

∂cF2

d

dx
cF2

JF2
= lμq

d

dx

(
1

T

)
− lμμ

1

T

d

dx
(ΔrG)T = lμq

d

dx

(
1

T

)
− lμμ

ρ

TρF

∂μF2

∂cF2

d

dx
cF2

(4.37)

Here ρ is the total mass density and ρF is the mass density of the F atoms. In the second
equality we have used Gibbs-Duhem’s equation. By comparing these relations to

J ′
q = −λG

dT

dx
− q∗D

d

dx
cF2

JF2
= −

ρFq∗D

ρT

(
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)−1 dT

dx
− D
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dx
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(4.38)

and using Eq. (4.36), we can finally identify the common transport coefficients, the ther-
mal conductivity λG at zero variation in ΔrG, the interdiffusion coefficient in the two-
component mixture, D, and the heat of transfer, in terms of the conductivities lij (or rij)
and Lij (or Rij). We obtain

λG =
lqq

T 2
=

1

T 2

(
Lqq − 2LqμΔrH + Lμμ (ΔrH)2

)
D = lμμ

ρ

TρF
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= Lμμ
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TρF

∂μF2
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lqμ

lμμ
= −

rqμ

rqq
= −

Rqμ

Rqq
− ΔrH =

Lqμ

Lμμ
− ΔrH (4.39)

We see that the thermal conductivity has, in addition to Lqq, contributions from the
reaction via thermal diffusion (−2LqμΔrH) and from diffusion (Lμμ (ΔrH)2). While the
last term is always positive, the first term is found to be negative. According to Eq.
(4.24), the presence of the reaction increases the thermal conductivity, meaning that the
last term dominates the first.

The coefficient for interdiffusion, D, is determined by the mass conductivity lμμ = Lμμ,
cf. Eq. (4.17). The heat of transfer reduces to −ΔrH,in the limit that the reaction is in
chemical equilibrium. This was the value given by Eq. (4.35) [73]. Away from chemical
equilibrium, there is an additional term in the expression for the heat of transfer, which can
be related to the thermal diffusion. Each coefficient can be determined from experiments
or computer simulations according to their definition.
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4.4 NEMD simulations

The details of the system and the NEMD simulations were described earlier [44]. We
repeat the essentials here.

4.4.1 The system

The system had initially 1000 fluorine atoms in a non-cubic box, called the MD box, with
lengths Ly = Lz = Lx/2. The box size (in m3) was determined by the overall density,
LxLyLz = 1000/(cF + 2cF2

)/NA, where NA is Avogadro’s number and the overall density
cF + 2cF2

was 11271 mol/m3. In the x-direction, the MD box was divided into 128 equal
planar layers with a thickness of about 0.65 Å.

The reaction model was given by Stillinger and Weber [52]. The potential is a combined
2- and 3-body potential, see also our previous paper [44]. Basic units were the diameter
of the fluorine atom, σ0 = 1.214 Å, its potential energy depth ε0 = 2.659×10−19 J and its
particle mass, m0 = 3.155× 10−26 kg. A default adjustment for un-bonded atoms was set
using a distance cutoff criterion rc = 1.7σ0 [44]. A pair of atoms was defined as a molecule
when the pair had a separation distance equal or less than rc.

4.4.2 Simulation conditions

Periodic boundary conditions were applied in all directions [39] . The ’heat exchange’
(HEX) algorithm was used to obtain the temperature profile [4]: The ’hot’ layers 1-4 and
125-128, at the ends of the box, were thermostated to a high temperature, TH , and the
’cold’ layers 61-68, in the center of the box, were thermostated to a low temperature, TL.
The layers in the hot and cold regions in the MD box are shown in Fig. 4.4. The figure
also displays a 3-dimensional snapshot of 1000 fluorine particles in the MD box. The
NEIGHBOUR3 algorithm [44], that makes a neighborhood list of 3-body interactions,
gave a saving of more than 50% in the computation time.

Different temperature gradients were applied across the MD box as described earlier [4,
9,35]. Stationary states were obtained after about 106 time steps. All NEMD simulations
were performed over 107 time steps. We omitted the first 2×106 time steps, which showed
transient effects. A time step length of 0.41817 femtoseconds was used.

All NEMD simulations were performed at constant overall density (cF + 2cF2
= 11271

mol/m3), varying the temperature gradient up to 6.6×1011 K/m. The temperatures at the
boundaries are listed in Table 4.1. Case 1 had the smallest imposed temperature gradient,
1.1 × 1011 K/m, while case 8 had the largest imposed temperature gradient, 6.6 × 1011

K/m. Case numbers refer to runs documented earlier [44].

For stationary states the time averaged temperature, pressure and density were found
to be symmetric relative to the center of the box, while the fluxes were antisymmetric.
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Figure 4.4: A snapshot of the MD box with 1000 fluorine atoms, partially reacted to
molecules. The box has dimensions Ly/Lx = Lz/Lx = 1/2.

Table 4.1: Temperatures at the boundaries, TH and TL, and in the center T (l/2), total
heat flux and pressure in the studied cases. The case numbering refer to that of our
previous paper.

Sim. TH TL T (l/2) Jq p

No. (kK) (kK) (kK) (108 kJ
m2s

) (103 bar)
1 5.8 4.8 5.2 0.64 5.03
4 7.7 5.8 6.7 1.59 6.32
5 9.6 7.7 8.6 1.91 8.14
6 11.6 7.7 9.5 4.03 8.91
7 15.4 11.6 13.3 5.03 12.56
8 19.3 13.5 16.2 8.49 15.20

We were therefore able to use the appropriate averages for pairs of layers that were mirror
symmetric around the center of the MD box. The molar flux of component k in layer l is:

Jk,l =
1

NAVL

∑
i∈l ,i∈componentk

vi (4.40)

Here vi is the velocity of particle i. The volume of each layer is VL = V/128. The total
molar flux in layer l is then given by

Jl =
∑

k

Jk,l. (4.41)

The total heat flux in layer l is

Jq,l =
1

VL

∑
i∈l

vi

(
3

2
miv

2
i + Φi + pl −

kBTNl

VL

)
(4.42)

where Φi is the potential energy of particle i, pl is the hydrostatic pressure in layer l and
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Nl =
∑

k Nk,l is the total number of particles in layer l.

Φi =
1

2

∑
j pair with i

u2(rij) +
∑

j<k triplet with i

h(rij , rik, θi). (4.43)

Here u2 is the 2-body potential, assigned half to each atom of the pair ij and the 3-body
potential is composed by the h-functions, i.e. a sum of three terms, hi, hj and hk, which
are assigned to particles i, j and k, respectively [44].

From the virial theorem, the hydrostatic pressure pl in layer l is:

pl =
kBTNl

VL
−

1
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∑
i ∈ l

⎡
⎣1

2
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∂hi

∂rik
rik +

∂hi

∂rjk
rjk

)⎤⎦
(4.44)

In this expression we have used that the hydrostatic pressure is scalar. This made it
possible to replace the usual tensorial expression [5] by its trace divided by 3. The kinetic
contribution then gives kBTNl/VL. Like in Eq. (4.43), we assign half of the force due
to the pair ij to particle i and the other half to particle j in the expression for the pair
interaction. The interaction energy due to a triplet is the sum of three terms, hi , hj and
hk (see ref. [44]). In Eq. (4.44) we have assigned the force due to hi to particle i, those to
hj to particle j and those to hk to particle k.

The molar enthalpy of the mixture of F and F2 in layer l is

Hl = NA

(
1

Nl

∑
i∈l

Φi +
plVL

Nl
+

3

2
kBT

)
(4.45)

By allocating contributions to Hl from F or F2, we found estimates for the partial molar
enthalpies and the reaction enthalpy. We discuss the estimates in Section 5.

4.4.3 Calculation procedures

Six NEMD simulations from our previous paper [44] (Cases 1, 4-8) were used as input
for the calculations. The correctness of these data were discussed earlier [44]. We found,
for instance, that the total heat flux and the pressure, cf. Eqs. (4.42) and (4.44) were
constant. Their values are given in Table 4.1.

We estimated the reaction enthalpy ΔrHl = HF2,l − 2HF,l for each layer (each tem-
perature and pressure) using estimates of the contributions to Hl from F and F2. With
knowledge of the particle flux, the total heat flux and the reaction enthalpy we estimated
the measurable heat flux in all layers using Eq. (4.8).

Examples of temperature profiles, mole fraction profiles, and component fluxes ob-
tained from the NEMD simulations were shown in Figs. 4.1- 4.3. Such profiles were used
to find transport coefficients. In this section we describe the calculation procedure we
used.
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Using Eq. (4.21a) we were able to obtain the coefficients AD, BD, CD and d by fitting
the analytical solution to the computational results. From the values of these coefficients
we next obtained the penetration depth d and LμqRqμ. The fit of the temperature profile
was very good: The value of T (x) differed from the analytical solution only close to x = 0
and x = l, due to the presence of the thermostats. Using the total heat flux, Eq. (4.22a)
and the value of BD, we could furthermore fit Lqq. The results for d, LμqRqμ and Lqq

refer to the average temperature of the system they were derived for. The temperature
dependence of the coefficients was found in this manner.

The reason that the temperature profile between 0 and l is antisymmetric around l/2
is that the RqμJF2

contribution to the inverse temperature gradient in Eq. (4.16) is small
compared to RqqJq. We shall come back to this point below. By comparing Fig. 4.3 for
the F2 flux with the analytical solution given by Eq. (4.22b), we see that the data and
the analytical solution do not agree with each other. These data were therefore not used
in the fitting procedure.

We determined Rμμ using Eq. (4.20), which gives

Rμμ =
R

kfd2c2
F,eq

(4.46)

In this equation d and cF,eq are already known at the temperature in the centre of the half
box, at x = l/2, see our first paper [44] for the values of cF,eq. We determined kf using
the forward reaction rate

rf = kfc
2
F (4.47)

from the NEMD simulations. The NEMD values of rf from layers 15 to 50 were practically
constant with a scatter, in the order of 20%. We obtained the values of rf in x = l/2 by
averaging over all the layers. Using Eq. (4.46) then gave us Rμμ at the temperature in
x = l/2.

It follows from Eqs. (4.14) and (4.47) that

ΔrG(l)

RT (l)
= ln

(
1 −

r(l)

rf

)
(4.48)

For rf we used the constant value obtained above for all the layers and r we found from
the F2 flux using Eq. (4.5). The values of ΔrG(l)/RT (l) make it possible to judge how
close the system is to chemical equilibrium in each layer.

4.5 Results

4.5.1 Local thermodynamic equilibrium and local chemical equilibrium

The velocity distributions in this system are nearly Maxwellian, see also ref. [44]. This
statement is now quantified by the results shown in Fig. 4.5. The figure shows how
the velocity distributions were shifted in temperature gradients. The difference between
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the observed distribution and the Maxwellian distribution, φk,l, as defined by Eq.(4.3)
is shown for two temperature gradients in Fig. 4.5. Subfigure 4.5c gives results for the
atom and subfigure 4.5d gives results for the molecule. The parameter Ak,l of Eq.(4.4)
was determined from these plots. We see in subfigures a and b in Fig. 4.5 that Ak,l is
identical for both gradients for both the atom and the molecule. The value of Ak,l varies
across the box, however; i.e. with the temperature and composition. The system can thus
be regarded as being in local thermodynamic equilibrium; i.e. any layer in the box can be
described by standard thermodynamic equations.

In the previous paper, we argued that the chemical reaction was close to chemical
equilibrium. This statement can now be quantified by Fig. 4.6. The figure shows that
ΔrG/RT << 1 in all layers and in all cases. In the layers that are not thermostated the
value is very small. It rapidly increases in the thermostated layers to an absolute value
of not more than 0.03, which is still much smaller than one. The data are scattered, but
we conclude that they confirm the prediction of Eq. (4.21). The data also confirm that
a linear relation between the rate and the driving force is obeyed in all the layers. The
component fluxes are not symmetric around x = l/2, however, see Fig. 4.3. We shall
return to the reason for this in the discussion.

4.5.2 The total heat flux and its contributions

Figure 4.7 shows the total heat flux and the measurable heat flux for case 8. The measur-
able heat flux was around 5% smaller than the total heat flux, and varied slightly across
the MD box, meaning that net enthalpy is moving to the cold side of the box.

The difference in the total heat flux and the measurable heat flux is due to the reaction
enthalpy. The reaction enthalpy is shown in Fig. 4.8 . A large negative value is found,
which is normal for a strongly exothermic reaction. The value changes with temperature
as expected. The supercritical fluid is non-ideal, so the molar enthalpies will certainly
deviate from the partial molar enthalpies. We consider therefore this figure as an estimate
for the reaction enthalpy. The slope for each set of simulations gives a negative reaction
heat capacity. The value is surprisingly independent of pressure, cf. Table 4.1. In the
calculation of the resistivities rij and the conductivities lij below, we use this estimate of
the reaction enthalpy.

4.5.3 Transport coefficients

The transport properties of the reacting system are shown in Tables 2-4 and Figs. 4.9-4.13.
The results for Rij and rij are given in Table 4.2, while Table 4.3 lists the corresponding
results for the conductivity coefficients Lij and lij . Finally, Table 4.4 shows the common
transport properties λG, λJ , D, q∗, −ΔrH. The quantities which are necessary to deter-
mine the coefficient Rμμ, i.e. cF, cF,eq, kf and the length d, are shown in Table 4.5. The
fitted penetration depth d has been checked to be larger than the mean free path of the
same case, as we expected. All these quantities listed in Tables 4.2-4.5 are referred to the
temperature at x = l/2, T (l/2).
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Figure 4.9 shows the thermal resistivity, Rqq=rqq, from Eq. (4.31) (circles) and from
fitting the analytical solution to the temperature profile (squares). The two methods gave
within a few percent the same results. This shows that the RqμJF2

contribution in Eq.
(4.16) is at most a few percent of the RqqJq contribution. Using the values of Rqμ, Rqq

given in Table 4.2, the heat fluxes from Table 4.1 and the F2 flux (see Fig. 4.3 for case
4) this was verified. The values of the other coefficients were found using the procedure
described in the previous section.

Figure 4.10 shows results for the thermal conductivities λG and λJ . Results from simple
kinetic theory for a mixture are also shown for comparison. In all cases the values of λG

are larger than the values of λJ , within a difference of up to 40% for low temperatures.
The order of magnitude of the results is that predicted by kinetic theory, however. The
results for the diffusion coefficient D are shown in the Fig. 4.11. The value of D varies
around a constant, 0.24 × 10−5 m2/s. We demonstrate that also this coefficient has the
same order of magnitude as that obtained from simple kinetic theory.

4.6 Discussion

4.6.1 Local thermodynamic equilibrium. Nearness to local chemical

equilibrium

In our first article [44], we concluded from the small shift in the Maxwell velocity distri-
butions that the system was always in local thermodynamic equilibrium; meaning that
all normal thermodynamic relations were valid. Figure 4.5 shows that the shift in the
velocity distribution was proportional to the temperature gradient everywhere, with a
proportionality coefficient Ak,l. The coefficient was the same for both particles, and it
varied with composition and temperature. This property is an important characteristic
of the Maxwell distribution for a non-equilibrium state in kinetic theory, and was crucial
in the analysis of transport and chemical reactions by Ross and Mazur [1, 61]. The fact
that we can confirm this property, gives a statistical basis for the use of non-equilibrium
thermodynamics in a reacting mixture.

In the first article we stated that the reaction was near local chemical equilibrium for
many conditions in the MD box. In the present work, we assumed nearness to equilibrium
and found analytical solutions for the temperature gradient, the reaction rate and the
mass fluxes. The shape of the simulated temperature profile in Fig. 4.1 was such that
it fitted well to the analytical solution obtained for the temperature profile under these
conditions. From the values obtained for ΔrG/RT (Fig. 4.6) we were able to conclude that
the reaction rate was linear in the driving force in every layer for all cases considered. The
data also confirmed the prediction of the analytical solutions. The criterion ΔrG << RT
is often used as a criterion for being close to chemical equilibrium, for instance in biology.
We can conclude that our system is very near, but not at chemical equilibrium.

Somewhat surprisingly the component fluxes were not quite as symmetric around x =
l/2 as one would expect on the basis of the analytical solution. One reason for this can
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be the thermostatic procedure. In the thermostated layers the temperature is reset at the
temperature of the thermostat every 10 time steps in the integration of the equations of
motion. This brings the thermostated layers out of local equilibrium. As the reaction is
relatively quick in these layers, it delivers or takes away energy, counteracting the action
of the thermostats. How far the thermostated layers are away from local equilibrium
depends on their temperature. As this temperature is different in the two thermostats,
the strict symmetry suggested by the analytical solution can be broken for ΔrG/RT and
the component fluxes.

4.6.2 A chemical reaction controlled by thermal diffusion

The nearness to chemical equilibrium allowed us to calculate properties of the chemical
reaction, for instance, the penetration depth d. This parameter expresses the average
length a molecule diffuses before it reacts, around 4 Å in the present investigation. It was
obtained from the temperature and the gradient of the temperature in x = l/2. Taking
this distance constant one obtains a satisfactory fit of the whole temperature profile in the
layers between the thermostats. The mean free path can be calculated to be between 3 and
6 Å for the molecule. Uncertainties considered, these lengths are the same, and indicate
that particles can hardly collide with one another before a new molecule is formed. It is
likely, that almost all collisions leads to a reaction in a fast reaction like ours, meaning that
equilibrium is established (almost) immediately, when the reaction mixture is perturbed.
This may then be seen as typical of diffusion controlled reactions. Clearly, also microscopic
reversibility holds.

The non-zero component fluxes that characterize the stationary state of the system
are not constant across the system. This is a true indication that the reaction plays a
role. The divergences of the fluxes give a non-zero value for the reaction rate, the reaction
can thus be seen as a sink or source for components. Is it the reaction that defines the
flux divergence, or is it vice versa, the diffusion that determines the reaction rate? The
two phenomena are not directly coupled, so one should be able to establish a cause-effect
relationship. The value of d compared to the mean free path and the results for ΔrG,
indicates that the latter explanation is most probable.

So, if the reaction is controlled by diffusion, the next question to ask is what kind of
diffusion; normal interdiffusion or thermal diffusion? The question can be answered by
looking at the contributions to the mass flux, JF2

. Clearly, the values of the coefficients,
in combination with the forces, tell that the thermal diffusion term is by far the most
important contribution to the flux. We therefore conclude that the reaction is controlled
by thermal diffusion. Thermal diffusion coefficients are normally at least one order of
magnitude smaller that ordinary diffusion coefficients, but this is nor the case here (see
section 6.4.2).
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4.6.3 A dissipative structure

The system was found to respond to an applied temperature gradient by setting up fluxes
of heat and of components. The nonzero component fluxes shown in Fig. 4.3 appear as
futile cycling of mass. Clearly, energy is needed to maintain the dissipation represented
by this transport. One interesting question is therefore why the transport occurs. What
is governing it, and why is it preferred to other stationary states?

We may speak of a system with a dynamic structure, or a dissipative structure main-
tained by energy supply from the outside. It is then natural to examine the system’s
entropy production.

The dynamic properties of the system are governed by the system’s entropy production.
Prigogine showed that a globally linear system has a stationary state that is characterised
by minimum entropy production [71]. This situation does not apply here, in particular
because the reaction rate is not a linear function of TH − TL. The system is stationary,
but the fluxes are not a linear function of the driving force across the whole box. The flux
is a linear function of the forces in any volume element, however, with a coefficient that
depends on the state variables.

We can, however, conclude from an interesting limiting case. In that case the reaction
is in complete chemical equilibrium, and the temperature gradient becomes constant. The
total heat flux is constant by definition, and the entropy production will then be constant
through the box. We can then show that the entropy production becomes smaller in the
presence of component interdiffusion, than in the absence of such interdiffusion. This is
so because the total heat flux is larger than the measurable heat flux see Fig. 4.7. We are
then in a situation that the dynamic structure of the reacting mixture in a temperature
gradient is compatible with minimum entropy production.

Let us make the hypothesis that this remains true, also when the chemical reaction
deviates from equilibrium, as is the case here. The system sets up thermal interdiffusion
because there is a gain that compensates for the extra energy needed to cycle the compo-
nents. The obvious gain is a facilitated transfer of heat. Equations (4.24) show that the
total heat flux was enhanced in the presence of the chemical reaction. Also de Groot and
Mazur [1] observed this. Equations (4.36) give explicit contributions to the conductivities
from the enthalpy of reaction, meaning that there is an increase in the overall thermal
conductivity of the system. This means that the entropy production of the system with
thermal interdiffusion of components is smaller in the present simulated system than in
a hypothetical system without such movement of components and the corresponding re-
action. In other words, the system responds to the given boundary conditions by seeking
a dynamic state (dissipative structure) with a low entropy production, most probably as
low as possible. The distribution of components is a consequence of this rather than of a
shift in the chemical equilibrium according to Chatelier’s principle.
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4.6.4 Transport properties

All transport coefficients in Tables 2-4 refer to the temperature at x = l/2. The cases
represent different temperatures, so the temperature function could be plotted in Figures
9-13.

Table 4.2: Resistivity coefficients, Rij and rij

Case T (l/2) Rqq = rqq Rqμ = Rμq Rμμ rqμ = rμq rμμ

(kK) (10−8 m
WK) (10−3 ms

molK) (103 Jms
mol2K

) (10−2 ms
molK) (103 Jms

mol2K
)

1 5.2 10.13 0.80 2.96 -1.36 4.78
4 6.7 4.34 2.18 2.34 -0.52 2.84
5 8.6 2.29 1.56 2.93 -0.31 3.26
6 9.5 1.77 1.51 2.75 -0.24 2.96
7 13.3 0.76 0.76 3.84 -0.15 4.06
8 16.2 0.39 0.82 3.61 -0.05 3.51

Table 4.3: Conductivity coefficients, Lij and lij
Case T (l/2) Lqq Lqμ = Lμq Lμμ = lμμ lqq lqμ = lμq

(kK) (107 WK
m ) (molK

ms ) (10−4 mol2K
msJ ) (107 WK

m ) (molK
ms )

1 5.2 0.99 -2.7 3.39 1.60 45.5
4 6.7 2.42 -22.5 4.49 2.94 53.4
5 8.6 4.53 -24.0 3.54 5.03 48.3
6 9.5 5.95 -32.7 3.81 6.39 52.6
7 13.3 13.41 -26.5 2.66 14.15 51.9
8 16.2 26.98 -61.5 2.91 26.25 40.5

Table 4.4: Thermal conductivity λ, interdiffusion coefficient D and heat of transfer q∗

Case T (l/2) λG (Eq. 4.39a) λJ (Eq. 4.28) D (Eq. 4.39b) q∗ (Eq. 4.29) −ΔrH

(kK) ( W
mK) ( W

mK) (10−5 m2

s ) ( kJ
mol) ( kJ

mol)
1 5.2 0.58 0.41 0.20 130 140
4 6.7 0.67 0.50 0.27 120 170
5 8.6 0.68 0.59 0.23 140 210
6 9.5 0.71 0.56 0.25 140 220
7 13.3 0.80 0.75 0.19 200 300
8 16.2 1.01 0.94 0.22 140 350

The thermal conductivity and the interdiffusion coefficient

According to the theoretical sections a thermal conductivity can be defined for two different
conditions. On the one hand Eq. (4.38a) defines the thermal conductivity λG in the
absence of a concentration gradient, but in the presence of a chemical reaction. Definition
4.28, on the other hand, gives λJ = 1/(T 2rqq) = 1/(T 2Rqq) for zero component flow,
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Table 4.5: Molar density of F, forward reaction rate constant and the fitted length d.
Case T (l/2) kf cF cF,eq d

(kK) (107 m3

mols) (mol
m3 ) (mol

m3 ) ()
1 5.2 1.45 5589 5515 2.5
4 6.7 0.49 6488 6517 4.1
5 8.6 0.36 7259 7287 3.8
6 9.5 0.32 7429 7513 4.1
7 13.3 0.27 8052 8104 3.5
8 16.2 0.21 8282 8361 4.0

i.e. also absence of a chemical reaction. The results in Fig. 10 must be seen on this
background.

The thermal conductivities were plotted as a function of T . We see that λJ and λG

both increase with temperature. It is reassuring that kinetic theory gives a value of the
same order of magnitude as we find for λJ (no chemical reaction). Our fluid is like a dense
gas. The most interesting feature is that λG was up to 40% larger than λJ . Clearly the
chemical reaction has a large impact on the thermal conductivity. The system conducts
clearly better, when a chemical reaction is allowed. This may have an impact on how
chemical reactions are now modelled in nonisothermal systems.

The interdiffusion coefficient for the reacting mixture is presented in Fig. 4.11. An
important characteristic of D in the present system is its temperature independence. The
order of magnitude of the coefficient is the same as that predicted by the kinetic theory,
and D was proportional to the pressure (not shown), but other mechanisms are involved
in heat transfer when a reaction is present. In kinetic theory the diffusion coefficient is
proportional to the temperature to the power of 3/2 [74].

The heat of transfer near and at chemical equilibrium

In order to understand the heat of transfer in the system, q∗, it is again useful to consider
the hypothetical case, when the reaction is in complete equilibrium. In this case, we
showed that the heat of transfer is equal to minus of the reaction enthalpy (cf. Eq. 36)
and [73].

The heat of transfer, calculated from Eq. (4.39c) and shown in Table 4.4, was therefore
compared to the enthalpy of the reaction in Fig. 4.13. The heat of transfer, shown by
squares in the figure, varies between 120 and 200 kJ/mol. The negative enthalpy of
reaction, −ΔrH, was always larger in magnitude; varying between 140 and 350 kJ/mol.
The discrepancy between the two numbers was largest at the higher temperatures. The
heat of transfer has not only thermodynamic contributions, there are also contributions
from the transport coefficients, cf. Eq. (4.39c).

The heat of transfer is a very large number, compared to heats of transfers that are
typical for binary mixtures that do not react. This may cast doubt on the assumption
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that is used in flame modeling ( see i.e. [59,75]); that the Dufour effect is negligible. Our
results indicate that neglect of q∗ may lead to errors in the heat as well as the mass flux.

The corresponding results for the coupling coefficient rqμ, plotted in Fig. 4.12, gives
a smoother variation with temperature than q∗. Both values may be useful for improved
thermodynamic modeling of chemical reactions. It is interesting to see that the square of
this coefficient approaches the order of magnitude of the product of the main coefficients
in Table 3, as the temperature decreases. The impact of the chemical reaction the thermal
diffucion, is therefore larger the lower is the temperature, as evident also from Fig. 4.13.

The Onsager coefficients

Two sets of Onsager resistivity coefficients were calculated, one using the total heat flux
and the fluorine flux as variables, the other with the measurable heat flux and the fluorine
flux as variables. The inverse coefficients were also determined, before the more commonly
known transport coefficients were found.

One may question the need to present also the Onsager coefficients. These are used
here as intermediate values, from which we find the more commonly known coefficients. We
claim that they are required for establishing well defined conditions for their measurement
and calculation in this complex system. By starting with the entropy production, unique
definitions can be obtained, and the relations between the coefficients can be given, like
the Onsager relations.

4.7 Conclusions

We have derived transport properties for a chemical reaction in a temperature gradient.
Their values can be explained by a reaction which is limited by thermal diffusion. This
limitation brings the reaction into a regime, where all flux-force relations in a volume
element of the system are linear, while the system on a global scale is far from equilibrium.
The driving forces and fluxes vary largely across the box. The statistical basis for use of
nonequilibrium thermodynanamics theory is found to be everywhere sound, in spite of
the large gradients. When exposed to a temperature gradient, the system responds by
increasing the thermal conductivity and reducing its entropy production. This property
supports the hypothesis that the stationary system, which is far from global equilibrium,
has minimum entropy production. It satisfies Prigogine’s principle of minimum entropy
production, which he was able to prove generally for stationary states close to global
equilibrium [71].

Onsager coefficients are well suited to capture the difference between the presence and
absence of the chemical reaction, and we suggest that these coefficients should be used
systematically to define transport coefficients of reacting mixtures.
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Figure 4.5: The parameter Ak,l (figures a and b) and φk,l (figures c and d) for the atom
and molecule calculated from two ∇T , Case 6 and Case 8, in layer no. 35.
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In this project work, we have used Non-equilibrium molecular dynamic (NEMD) simulations

to study heat and mass transfer across a vapor-liquid interface for a one-component system using

a Lennard-Jones spline potential. It was confirmed that the relation between the surface tension

and the surface temperature in the non-equilibrium system was the same as in equilibrium (local

equilibrium) [5]. Interfacial transfer coefficients were evaluated for the surface, which expressed

the heat and mass fluxes in temperature and chemical potential differences across the interfacial

region (film). In this analysis it was assumed that the Onsager reciprocal relations were valid [9].

In this work we extend the number of simulations such that we can calculate all four interface film

transfer coefficients along the whole liquid-vapor coexistence curve. We do this analysis both for

the case that we use the measurable heat flux on the vapor side and for the case where we use the

measurable heat flux on the liquid side. The most important result we found is that the coupling

coefficients are within the accuracy of the calculation equal. This is the first verification of the

validity of the Onsager relations for transport through a surface using molecular dynamics. The

interfacial film transfer coefficients are found to be a function of the surface temperature alone.

New expressions are given for the kinetic theory values of these coefficients which only depend

on the surface temperature. The NEMD values were found to be in good agreement with these

expressions.

5.1 Introduction

In non-equilibrium thermodynamics, each thermodynamic force Xi is a linear function of
all the conjugate thermodynamic fluxes

Xi =
n∑

j=1

RijJj (5.1)

Following Onsager, the matrix of resistivities Rij is symmetric. These resistivities can
in general be functions of the state variables, like for instance the temperature and the
pressure, but not of the forces. The Onsager relations simplify transport problems by
reducing the number of phenomenological coefficients needed to describe the process. In
the study of the properties of surfaces it is therefore of great importance to verify their
validity.

In homogeneous systems the Onsager relations have been verified both experimen-
tally [1] and by non-equilibrium molecular dynamics (NEMD) [4]. For the surface such
a verification has not yet been given, however. In the present work we will address this
problem. We consider the vapor- liquid interface in a one-component system. We consider
only transport across and not along the surface, so all fluxes and forces are in the direction
normal to the surface.

Non-equilibrium molecular dynamics (NEMD) simulations is a technique to compute
transport properties of classical many-body system. A model for the intermolecular poten-
tial is used. With these simulations, we can directly study variations of the temperature,
pressure and density across the vapor-liquid interface and, important for our present pur-
pose, get the surface tension and the resistivity coefficients for the transfer of heat and
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mass across the surface. In general, NEMD simulations are virtual experiments in which
one can apply, not only normal conditions, but also rather extreme conditions, which can
not be realized in experiments. The computational results can be used to test theoretical
results and the assumptions behind these. Experiments have been done, which confirm
the presence of a temperature difference across the liquid-vapor interface. In experiments
the problem becomes at least two dimensional. Phenomena like convection may occur.
We refer to Ward et al. [76] and references there in. For a detailed analysis of the vari-
ous theoretical descriptions and their application to the experiments we refer to Bond et
al. [77].

Røsjorde et al. [5,9] studied condensation of Lennard-Jones spline particles using molec-
ular dynamics simulations. Simon et al. [6] considered the case of more complicated par-
ticles (octane), while Kjelstrup et al. [8] and Tsuruta et al. [78–80] considered the longer
ranged cut-off Lennard-Jones potentials. In most of these simulations the surface tem-
perature T s was defined using the average kinetic energy of molecules in the interface
area. Both [5] and [6] found good agreement between the surface tension γ (T s) from
non-equilibrium simulations and the surface tension from equilibrium simulations at the
same temperature. This verified that the surface is in local equilibrium. An important
conclusion that can be drawn from this result is that the surface as described by excess
densities is a separate thermodynamic system not only in equilibrium but also in nonequi-
librium systems. This fact is a central assumption in the description of the nonequilibrium
thermodynamics of such surfaces [17,18].

Assuming Onsager’s reciprocal relations, Røsjorde et al. [9] calculated the interface
film transfer coefficients which describe heat and mass transfer across a surface. Along
the coexistence curve the values of these coefficients were found to agree well with the
values predicted by kinetic theory [81–85] for temperatures not too close to the critical
temperature. The agreement with kinetic theory was for a simple fluid with a Lennard
Jones spline potential. For more complicated particles [6] and longer range potentials [8]
such agreement was not found.

Due to the time-consuming nature of the simulations, only a very limited number of
simulations were done by Røsjorde et al. [5, 9] and by Simon et al. [6]. In the analysis
of the data it was therefore not possible to verify the validity of the Onsager relations.
In non-equilibrium thermodynamics the validity of the Onsager reciprocal relation is an
essential point. The fact that these relations were not verified in these simulations was
very unsatisfactory. It is the objective of this work to do so. For this purpose we have
now done more simulations so that we are able to address this issue.

To determine the interface film transfer coefficients, linear force-flux equations derived
from non-equilibrium thermodynamics shall be used. An important result of the work is
that even for temperature gradients that are extremely large, a satisfactory description of
the simulation data is found with these linear relations. There is absolutely no need to
use nonlinear relations, as may be needed for other systems [86].

Another important finding is that we find that all interface film transfer coefficients
for the surface can be given in terms of the temperature of the surface or alternatively as a
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function of the surface tension alone. This simplifies the description and again establishes
that the surface is a separate thermodynamic system with its own transport properties.

The report is organized as follows: In the second section we discuss the derivation of
equations for transport of heat and mass through the surface. In addition to the equations
given in our earlier work [1,2] using the measurable heat flux in the vapor close to the
surface, we now also give equivalent equations using the measurable heat flux in the liquid
close to the surface. New expressions are given for the interface film transfer coefficients
of the surface which are obtained from kinetic theory. These new expressions depend only
on the temperature of the surface, as they should, using the property of local equilibrium,
and are found to be more appropriate than expressions used previously [9]. The details of
our simulations and investigation procedure are presented in the third section. The fourth,
fifth and sixth section contain the results, a discussion and conclusions respectively.

5.2 Transport equations for the surface

5.2.1 The excess entropy production rate for the surface

In the study of stationary states using molecular dynamics simulations we average over
the time. On the molecular scale of Ångstroms these averages vary smoothly through
the surface. In this way we obtain the profiles of, for instance, the temperature and
the density through the surface. On a more macroscopic scale of microns some variables
appear to change discontinuously across a phase boundary. Not only the density but also
the temperature can have a surprisingly large jump across a surface on this scale.

In a macroscopic description not only the homogeneous phases but also the surface are
separate thermodynamic systems. The properties of the surface are found by calculating
excess densities and energies. Bedeaux and Kjelstrup [65,87,88] derived the excess entropy
production rate per unit of surface area in a one component system and they found:

σs = J ′g
q Δ

(
1

T

)
− J

1

T l
ΔμT (T l). (5.2)

Here J ′g
q is the measurable heat flux from the vapor into the surface and J is the mass

flux through the surface. The thermal driving force Δ(1/T ) and chemical driving force
−ΔμT (T l)/T l are respectively

Xq = Δ

(
1

T

)
=

1

T l
−

1

T g

Xg
μ = −

1

T l
ΔμT (T l) = −

1

T l

(
μl(T l) − μg(T l)

)
. (5.3)

The vapor was taken on the left hand side and the liquid on the right hand side in Eqs. 5.2
and 5.3. The notation Δ gives the difference of a variable in the liquid minus the one in
the vapor, both close to the surface. The temperatures T g and T l are the temperatures of
the vapor and the liquid close to the surface. The chemical potential for the liquid and the
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vapor, μl and μg, are both evaluated at the temperature of the liquid close to the surface,
T l. The subscript T indicates that this difference is taken at the same temperature.

Using the energy balance the measurable heat flux on the liquid side of the surface is
given by

J ′l
q = J ′g

q + ΔvapHJ (5.4)

where ΔvapH = Hg−H l is the enthalpy of evaporation and ΔvapH is positive. Substituting
Eq. 5.4 into Eq. 5.2 one obtains for the entropy production rate

σs = J ′l
q Δ

(
1

T

)
− J

1

T g
ΔμT (T g) (5.5)

where we used the thermodynamic identity

HgΔ

(
1

T

)
=

1

T l
μg(T l) −

1

T g
μg(T g) (5.6)

and the same equality for the liquid in order to obtain Eq. 5.5 from 5.2. Equation 5.5
contains the chemical driving force at the temperature of the vapor

X l
μ = −

1

T g
ΔμT (T g) = −

1

T g

(
μl(T g) − μg(T g)

)
. (5.7)

The expressions for the chemical forces Xg
μ and X l

μ are given above to linear order in
the temperature difference across the surface. In view of the rather extreme temperature
differences considered in the simulations, we will also take a contribution along which is
of the second order in this difference. We clarify how we calculated the chemical forces in
the appendix.

In the derivation of the above equations the surface is located following Gibbs [89] by
choosing a so-called dividing surface. The values of the fluxes, the temperatures and the
chemical potentials in the liquid and the vapor close to the surface are the extrapolated
values of these quantities from the liquid and the vapor to this dividing surface [17]. In
the nonequilibrium molecular dynamics simulations we found that one may distinguish
a region with a finite thickness in which the particles are neither in the liquid or in the
vapor. Extrapolation of the various quantities into this layer to for instance the equimolar
surface is found to give values which have a larger computational error than the values
of these quantities taken in positions just outside the interface region. It has been shown
that the above equations are equally valid for the differences across the finite layer and
the fluxes just outside this layer. These quantities are not identical to the extrapolated
values. In practice the differences are usually small. The two descriptions can also be
transformed into each other. We refer to Johannessen et al. [14] for this transformation.
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5.2.2 The linear force-flux relations for the surface

Nonequilibrium thermodynamics gives linear relations between the thermodynamic driving
forces and the heat and mass fluxes. In the vapor they are

∇

(
1

T

)
= rg

qqJ
′g
q + rg

qμJ

−
1

T
∇μT = rg

μqJ
′g
q + rg

μμJ (5.8)

where vectors are indicated by bold symbols. Subscript T indicates that the differentiation
is carried out for a constant temperature. Two main resistivities are rg

qq and rg
μμ and the

cross resistivities are rg
μq and rg

qμ. According to the Onsager relations rg
μq = rg

qμ. We will
consider only fluxes and gradients in the direction normal to the surface. The gradient ∇
can therefore be replaced by d/dx, and only the x-component of the fluxes is unequal to
zero. Similar linear relations, in which all the g’s should be replaced by l’s, are valid for
the liquid.

For the surface it follows from Eq. 5.2 that the linear relations between the thermo-
dynamic forces and the conjugate fluxes is given by

Xq = Δ

(
1

T

)
= rs,g

qq J ′g
q + rs,g

qμJ

Xg
μ = −

1

T l
ΔμT (T l) = rs,g

μq J ′g
q + rs,g

μμJ (5.9)

where rs,g
qq and rs,g

μμ are the two main film resistivities for the surface and rs,g
qμ and rs,g

μq are
the coupling film resistivities for the surface. We use the notation film resistivities for the

surface or interface film resistivities to indicate that they give the inverse temperature
and chemical potential differences across the surface with a finite thickness. When we use
the extrapolated values at the dividing surface we will use the notation excess resistivities

for the surface or interface excess resistivities. If we express the fluxes in terms of the
forces we replace resistivities by conductivities. And when we refer to either resistivities

or conductivities we use coefficients.

In Eq.5.9 we deviate from expressions given earlier [5,9] in two ways. In the first place
there is a sign difference in the film resistivities and in the second place the forces have been
divided by the temperature of the liquid. One sees from this equation that condensation
and evaporation not only gives a difference in chemical potential, but also a difference
in the inverse temperature across the surface. It is therefore not correct to neglect such
differences as is habitually done. According to the Onsager relations rs,g

μq = rs,g
qμ . An

interesting coefficient is the heat of transfer q∗s,g for the vapor side of the surface which is
defined by:

q∗s,g ≡

(
J ′g

q

J

)
ΔT=0

= −
rs,g
μq

rs,g
qq

. (5.10)

From Eq. 5.5 it follows that the linear relation between the thermodynamic forces and
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the conjugate fluxes may alternatively be given by

Xq = Δ

(
1

T

)
= rs,l

qqJ
′l
q + rs,l

qμJ

X l
μ = −

1

T g
ΔμT (T g) = rs,l

μqJ
′l
q + rs,l

μμJ (5.11)

where rs,l
qq and rs,l

μμ are the two main film resistivities for the surface and rs,l
qμ = rs,l

μq are the
coupling film resistivities for the surface. Substitution of Eq. 5.4 into Eq. 5.9, using Eq.
5.6 and comparison with Eq. 5.11 gives the following relations between the interface film
resistivities

rs,l
qq = rs,g

qq

rs,l
qμ = rs,l

μq = rs,g
qμ − ΔvapHrs,g

qq

rs,l
μμ = rs,g

μμ − 2ΔvapHrs,g
μq + (ΔvapH)2 rs,g

qq (5.12)

The heat of transfer q∗s,l for the liquid side of the surface is defined by:

q∗s,l ≡

(
J ′l

q

J

)
ΔT=0

= −
rs,l
μq

rs,l
qq

(5.13)

Using Eq. 5.12 it follows that

q∗s,g − q∗s,l = ΔvapH (5.14)

This equation shows most clearly that one violates thermodynamical laws by assuming
that all the cross coefficients are zero.

In kinetic theory expressions have been derived [81–83] for the thermodynamic forces
in terms of the fluxes in evaporation and condensation. These results can be used to find
the following expressions for the interface film resistivities [84]:

rs,g
qq (T s) =

1.27640

R (T s)2 cg (T s)

√
M

3RT s

rs,g
μq (T s) = rs,g

qμ (T s) =
0.54715

T scg (T s)

√
M

3RT s

rs,g
μμ (T s) =

4.34161R(σ−1
c (T s) − 0.39856)

cg (T s)

√
M

3RT s
(5.15)

where cg (T s) is the density of a vapor in coexistence with a liquid at the temperature
of the surface. We refer to these coefficients as interface film resistivities rather than
interface excess resistivities because they describe the changes across the Knudsen layer,
which is also a layer with a finite thickness. For the condensation coefficient σc (T s) values
between 0.1 to 1.0 have been reported [85]. Furthermore M is the molar mass and R
is the gas constant. In our simulations we evaluate T s. In Eq. 5.15 we deviate from
expressions we gave earlier [5, 9] by replacing all temperatures by the temperature of the
surface. Also, the vapor concentration is now calculated as the value in phase equilibrium,
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at the temperature of the surface. While this only leads to small corrections in the value
of the coefficients, the coefficients are now a function of the temperature of the surface
alone. The advantage of Eq. 5.15 is that we can now calculate the values predicted by
kinetic theory given the temperature of the surface and cg (T s) , as found from equilibrium
simulations, alone. It is no longer necessary to use T l, T g and cg from the non-equilibrium
simulation, as we did in our previous work. We shall find the above expressions to be
useful. The predictions from kinetic theory for the heat of transfer on the vapor side of
the surface is:

q∗s,g (T s) = −0.42867RT s (5.16)

The reason to modify the predictions of kinetic theory for the interface film resistivities
to contain only the temperature of the surface, is to make them dependent only on the
state of the surface. According to the property of local equilibrium these coefficients should
only depend on the state of the surface and this is accomplished in this way. This property
is required in a proper description of the surface using non-equilibrium thermodynamics.
In our analysis of the results of the NEMD simulations, this modification works well and
as such our results support the validity of local equilibrium

5.3 Non-equilibrium molecular dynamics simulations

The basis of our nonequilibrium molecular dynamics simulations was described elsewhere
[4, 35]. Here we shall only give a brief description of this method.

5.3.1 Model and simulation details

We simulated 4096 argon-like particles interacting with the pairwise additive intermolec-
ular Lennard-Jones spline potential in an elongated box with lengths Ly = Lz = Lx/16.
Normally the size of the box was about 10 molecular diameters (10σ) in the direction
along the surface and about 160 molecular diameters (160σ) in the direction normal to
the surface, the x-direction. The NEMD simulations were done with a constant number of
particles N and volume V. In equilibrium the thermostatted regions were thermostatted
to the same temperature. This produced then a canonical ensemble. Different overall
densities of the model system were obtained by varying the size of the box.

A classical (12-6) Lennard-Jones spline potential model is used to describe the particle
interaction. The potential is expressed in terms of the interparticle distance rij between
any pair of particles i and j,

U(rij) =

⎧⎨
⎩

4ε[(σ/rij)
12 − (σ/rij)

6] for 0 < rij < rc

a(rij − rs)
2 − b(rij + rs)

3 for rc < rij < rs

0 for rs < rij

(5.17)

Here the cutoff distance is rc = (26/7)1/6σ ≈ 1.24σ and the switch distance rs =
(67/48)rc ≈ 1.73σ. The two parameters a = −(24192/3211)(ε/r2

c ) and b = −(387072/
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61009)/(ε/r3
c ) were chosen such that the potential and its first derivative are continuous

in rij = rc. The potential and its derivative are also continuous in rij = rs. In our calcula-
tions we use for σ (the particle diameter), ε (the energy) and m1 (the particle mass) values
which are typical for argon; in which case one has ε/kB = 124 K, σ = 3.42× 10−10m and
m1 = 6.64×10−26kg where kB is Boltzmann’s constant. In the simulations all quantities
are expressed in reduced units using σ , ε and m1 as scaling factors.

The molecular dynamics simulation program makes use of dimensionless reduced vari-
ables which are defined in Table 5.1 where NA is Avogrado’s number. The reduced quan-
tities are denoted with a superscript ∗.

The non-equilibrium simulations were done as described previously [5, 9]. The simu-
lation box was divided into 128 equal planar layers parallel to the surface. In order to
give the system a certain temperature gradient, energy was added or withdrawn in certain
layers using the ”heat exchange” (HEX) algorithm HafskjoldB1993. The layer numbers
1-4 and 125-128, named hot layers, were regulated to the temperature T ∗

H while the layer
numbers 61-68 in the middle of the box, named cold layers, were similarly regulated to
the temperature T ∗

L (T ∗
H > T ∗

L). Using periodic boundary conditions HafskjoldB1993 and
the appropriate size of the box, two liquid-vapor interfaces appeared in the box with the
liquid in the middle of the box. A condensation flux was induced using a ”mass exchange”
(MEX) algorithm which removed particles from the cold layers in the liquid phase and
inserted them into the hot layers in the vapor phase [4]. The rate of transfer gives J in
Table 2. As not all particle transfers are accepted by the algorithm, the actual J given
in Table 3 is smaller. In figure 5.1, a 3−dimensional snapshot of 4096 particles is shown
of our simulation box. In stationary simulations the system is symmetric and all proper-
ties are not only time averaged but also averaged with respect to the mirror plane in the
middle of the simulation box.

Table 5.1: Reduced Variables
Variable Reduction formula
mass m∗ = m/m1

distance r∗ = r/σ
energy U∗ = U/ε

time t∗ = (t/σ)
√

ε/m1

temperature T ∗ = kBT/ε
molar density c∗ = cσ3NA

pressure p∗ = pσ3/ε

velocity v∗ = v
√

m1/ε
surface tension γ∗ = γσ2/ε

NEMD simulations were performed for over 10 million time steps using the Verlet
’Leap Frog’ algorithm [90]. A time step length of 5×10−4 in reduced units was used,
which corresponds to about 10−15 s in real time. Properties such as the temperature and
the density in each layer of the box were monitored in intervals of 500,000 time steps
each, in order to detect the stationary state. The first 2 million time steps were discarded
to avoid transient effects. The simulation parameters such as the temperatures T ∗

L and
T ∗

H and the overall densities were chosen using the phase diagram for the Lennard-Jones
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Figure 5.1: A snapshot of MD box with 4096 particles

spline fluid, in which the triple point temperature, the critical temperature and the critical
pressure were found to be Tt = 68.2 K , Tc = 111.2 K and pc = 33.2 × 105 Pa [5]. For
48 simulations we give the simulation conditions in Table 5.2 both in reduced and in real
units. We discarded some further simulations, which were either too close to the critical
point or too close to the triple point, and would not properly go to a stationary state.

5.3.2 Equilibrium properties of the system

For the gas phase in the same Lennard-Jones spline system, Røsjorde et al. [5] found that
the pressure was given in terms of the molar volume v = 1/c and the temperature by the
Soave-Redlich-Kwong (SRK) equation of state:

p =
RT

v − b
−

a

v(v + b)
(5.18)

where the coefficients were given by

b = 0.08664
RTc

pc

a = 0.42748
R2T 2

c

pc

[
1 + 0.4866

(
1 −

√
T

Tc

)]
. (5.19)

The molar density given by the SRK equation of state, which is the inverse of the molar
volume, was used to find the last layer in the vapor phase next to the surface. Figure 2
shows an example of such a determination of the surface extension. The layer next to the
vapor had a substantially larger deviation of the density from the value found using the
SRK equation. This method was formulated in the work by Røsjorde et al. [5]. For the
liquid bulk, an appropriate equation of state has not been found. The last layer of the
liquid was chosen by visual inspection from the density profiles. The layers between the
vapor and the liquid will be referred to as the surface layers. Possible errors were estimated
by changing these layers up or down one layer. For the vapor pressure of the liquid with a
temperature T , Røsjorde et al. found p� = p0 exp (−Δp

vapH/RT ) , with p0 = 9.24 · 108 Pa
and an ”enthalpy of vaporization” Δp

vapH = 5205 J mol−1. It is important to realise that
this enthalpy of evaporation is a temperature independent fit parameter. It should not be
confused with the actual value of ΔvapH = Hg − H l which is found to be temperature
dependent.
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Figure 5.2: The density profile for simulation no. 1. The vertical lines indicate the surface
extension.

The equation of state for the surface is:

γs = γ0

(
Tc − T

Tc

)ν

(5.20)

where the universal critical exponent is given by ν = 1.26. Røsjorde et al. [5] found
γ0 = 2.48×10−2 N/m . The surface tension varied between 1.1×10−3 N/m and 8.0×10−3

N/m in our simulations. We refer to [5] for a figure.

5.3.3 Calculation procedures

The molar density in layer ν, cν , for ν = 1, ..., 128 was given by

cν =
128

V NA

∑
i ∈ layer ν

1 =
128Nν

V NA
(5.21)

where V = LxLyLz is the volume and Nν is the number of particles in layer ν. Using the
symmetry of the system with respect to the surface between layer 64 and 65, we always
used the averages of cν and c129−ν . The molar flux in layer ν, Jν , was given by

Jν = cνvν =
128

V NA

∑
i ∈ layer ν

vi (5.22)

and equals between layers 5 and 60 the layer independent value determined by the MEX
algorithm. Between layers 69 and 124 the molar flux is minus this value. In this formula
and the formulae below, vi is the velocity of particle i and vν is the average velocity in
the layer.
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The temperature of each layer ν , Tν , is found from the kinetic energy of the layer
3

2
NνkBTν =

1

2

∑
i ∈ layer ν

m |vi − vν |
2 . (5.23)

In view of the symmetry we again used the averages of Tν and T129−ν . The temperatures
T g and T l were chosen to be equal to the temperatures of the last layers of the vapor
and the liquid next to the surface layers. These then give the thermal force Xq. For the
temperature of the surface, T s, we used the value which is found from the kinetic energy
of the surface layers. In terms of the temperatures of the layers that are part of the surface
this gives

T s =
∑

ν ∈ surface

NνTν/
∑

κ ∈ surface

Nκ (5.24)

where the sum of Nκ is the total number of particles in the surface. For the calculation
of the chemical forces we refer to the appendix.

The pressure tensor was obtained using the formula

Pαβ,ν =
128

V

∑
i ∈ layer ν

⎛
⎝mvi,αvi,β +

1

2

∑
j �=i

Fij,αrij,β

⎞
⎠ (5.25)

where vi,α is the component of the velocity of particle i in the direction α and Fij,α is the
component of the force exerted on particle i by particle j in the direction α. Furthermore
rij,β is the component of the vector from particle j to particle i in the direction β. The
pressure tensor was found to be diagonal. In view of the symmetry we again use the
averages of Pαβ,ν and Pαβ,129−ν . The surface tension, γ, defined by γ = Lx

128

∑64
ν=1(p‖−p⊥)

, is computed by

γ =
1

A

∑
i<j

(rij − 3xij
2/rij)u

′(rij) (5.26)

where A = LyLz is the surface area of the cross section in the y- and z- direction. The
x direction is the direction normal to the surface. Furthermore xij = |xi − xj |, u′(rij) is
the derivative of the pair potential with respect to the interparticle distance rij , p‖ is the
pressure parallel to the surface, and p⊥ is the pressure normal to the surface. Equation [90]
gives the surface tension of one of the two surfaces by restricting the particles to be either
in layers 5 to 60 or in 69 to 124. If the sum is not restricted in this manner one must
divide by 2A.

The total heat flux Jq is constant while the measurable heat flux J
′
q varies due to the

temperature dependence of the enthalpy per mole H. The total heat flux is

Jq = J
′
q + HJ. (5.27)

The total heat flux in layer ν is calculated from

Jq,ν =
128

V

∑
i ∈ layer ν

⎡
⎣vi

(
1

2
mv2

i + φi

)
+ vi ·

⎛
⎝mvivi +

1

2

∑
j �=i

Fijrij

⎞
⎠
⎤
⎦

=
128

V

∑
i ∈ layer ν

⎡
⎣vi

(
3

2
mv2

i + φi

)
+

1

2

∑
j �=i

vi · Fijrij

⎤
⎦ (5.28)
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where the potential energy of particle i is

φi ≡
1

2

∑
j

u(rij). (5.29)

The enthalpy per mole in layer ν is found from

Hν =
1

NA

⎡
⎣5

2
kBTνNν +

∑
i ∈ layer ν

⎛
⎝φi +

1

6

∑
j

�Fij · �rij

⎞
⎠
⎤
⎦ . (5.30)

5.4 Results

We used 48 NEMD simulations to obtain the film resistivities for the surface. We verified
that our calculations reproduced the results by Røsjorde et al. [5,9] by recalculating some
of their data. In Table 5.3 we give the fluxes and the forces. The molar flux given in
Table 5.2 is larger than the one given in Table 5.3. The reason for this is that Table 5.2
gives the number of particles that the MEX algorithm tries to transfer from the cold to
the hot layer per second, while Table 5.3 gives the number of particles that is not rejected
in this procedure. In Tables 5.4 and 5.5 we list the surface extension, i.e. the first and
the last layer of the surface, the surface tension, the temperatures near and of the surface,
the densities near the surface, the (normal) pressure and the vapor pressures. When we
say near the surface we mean the value in the last layer before or in the first layer after
the surface layers. For typical temperature, density and pressure profiles found in our
simulations we refer to [5, 9]. The normal pressure was always found to be constant.

In a one component system the equilibrium state of the surface is specified by the
surface tension. The corresponding (equilibrium) surface temperature was found using Eq.
5.20 and vice versa. As was done by [5], we verified that also for the NEMD simulations in
this work the relation between the surface tension and the surface temperature was given
by the equilibrium relation, Eq. 5.20. The surface is therefore in local equilibrium. All
properties of the surface, like the film resistivities, were therefore plotted as a function of
the surface tension alone.

Part of the simulations were done for a zero rate of condensation, J = 0. In that
case J ′g

q = J ′l
q , cf. Eq. 5.4. Using Eqs. 5.9 and 5.11 we were then able to determine

rs,l
qq = rs,g

qq ≡ rs
qq, rs,g

μq and rs,l
μq. The results are plotted in Figs. 5.3 and 5.4. In these figures

we also plotted the predictions from kinetic theory, Eqs. 5.15 and 5.12 as well as those
obtained by Røsjorde et al [9] for J = 0 on the vapor side. We see in these figures that our
NEMD results agree well both with those obtained using kinetic theory as well as with
those obtained by Røsjorde et al.

For the NEMD simulations with a finite condensation flux we used Eqs. 5.9 and 5.11
to determine the remaining interface film resistivities. From the NEMD results for zero
condensation flux we know that kinetic theory gives a good prediction for rs,l

qq = rs,g
qq ≡ rs

qq,

rs,g
μq and rs,l

μq. In our analysis of the results for a finite condensation flux we used the
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prediction of kinetic theory to calculate the first terms on the right hand side in Eqs. 5.9
and 5.11. This then made it then possible to calculate rs,g

qμ , rs,l
qμ , rs,g

μμ and rs,l
μμ from the

remainder. This gave an independent determination of the cross coefficients rs,g
qμ and rs,l

qμ.
In figure 5.4 we also plotted these coefficients. From the figure it is clear that the cross
coefficients satisfy, within the accuracy of the simulations, Onsager’s reciprocal relations.
The cross coefficients on the vapor side are rather small. Their accuracy is comparable
with their size. The results for the liquid side gave the symmetry in a more convincing
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manner.

In figure 5.5 we plotted the values obtained for rs,g
μμ and rs,l

μμ. In this case we did not plot
the prediction from kinetic theory as this depends on the condensation coefficient. The
NEMD values of rs,g

μμ and rs,l
μμ made it possible to calculate this condensation coefficient.

The resulting values for σc are plotted in figure 5.6.
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5.5 Discussion

As in our first article [5] our present results for the NEMD simulations confirmed that
the relation between the surface tension and the temperature of the surface is the same
as in equilibrium. One may verify this property from the values given for these properties
in Table 5.4. This verifies that the surface is in local equilibrium also in a temperature
gradient. It confirms that the surface is a separate thermodynamic system.

Using the property of local equilibrium it follows that also the interface film resistivities
should be a function of the surface temperature or alternatively the surface tension alone.
In reporting these resistivities we have therefore chosen to plot them as a function of the
surface tension. In the study of all the properties of these coefficients, like the Onsager
symmetry relations, this procedure gave values within the accuracy of the calculation.

The standard formulae given by kinetic theory to describe the transport of heat and
mass, use coefficients which depend on the temperatures of the vapor and the liquid [14-
16,18]. The formulae which can be derived from their expressions for the interface film
resistivities have the same property [2,17]. Given that the surface was also in the nonequi-
librium simulations in local equilibrium, formulae depending only on the temperature of
the surface are more appropriate. In Eq. 5.15 we proposed new formulae which have that
property. The interface film resistivities rs,g

qq and rs,g
μq found from NEMD simulations for

zero condensation flux were predicted with these new formulae with a good accuracy. A
similar agreement with kinetic theory was also found by [9]. Close to the critical point,
where the surface tension is small, the prediction from kinetic theory is less good. This
is not clearly visible in the figures because the interface film resistivities of the NEMD
simulations, as well as the kinetic theory values, both become small. The fact that the
new kinetic theory formulae based on local equilibrium work so well is further evidence
that the surface is in local equilibrium.

The agreement of the interface film resistivities rs,g
qq and rs,g

μq , found from NEMD simu-
lations with a zero condensation flux, with the predictions from kinetic theory, enabled us
to use the prediction of kinetic theory for rs,g

qq = r s,l
qq to calculate the first term on the right

hand side in Eqs. 5.9 (a) and 5.11(a) for the NEMD simulations with a finite condensation
flux. From the remaining value we then determined the interface film resistivities rs,g

qμ and
rs,l
qμ. In figure 5.4 we plotted the resulting cross coefficients. It is clear from this figure that

rs,g
qμ = rs,g

μq and rs,l
qμ = rs,l

μq within the accuracy of the calculations. As the cross coefficients
were found independently, this is a convincing confirmation of the validity of Onsager’s
reciprocal relations. It also verifies that the new kinetic theory formula for rs,g

qq = rs,l
qq is

correct.

Using that rs,g
μq and rs,l

μq, found from the NEMD simulations with a zero condensation
flux, were also well predicted by kinetic theory we could similarly calculate rs,g

μμ and rs,l
μμ

from the NEMD simulations with a finite condensation flux from Eqs. 5.9 (b) and 5.11(b).
The resulting values were plotted in figure 5.5. Using the kinetic theory prediction for
rs,g
μμ given in Eq. 5.15(c) we can then calculate the condensation coefficient. The resulting

value σc is plotted in figure 5.6. It is found to increase approaching the triple point. The
values reported by [9] are slightly larger. This is probably due to the fact that the new
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expressions for the kinetic theory coefficients were then not yet available. The difference is
not larger than the accuracy of the coefficients. The values of σc were smaller than unity
as is required. They increase from a value of about 0.4 close to the critical point to a value
of about 0.8 close to the triple point. Tsuruta et al. [91] followed individual particle paths
to obtain this coefficient and found a very similar result close to the triple point.

Far from global equilibrium the system becomes nonlinear for a variety of reasons. To
quote from the preface of the second edition of the monograph by de Groot and Mazur [1]
systems described by nonequilibrium thermodynamics are nonlinear for reasons such as
”(i) the presence of convection terms and of (ii) quadratic source terms in,e.g., the energy
equation, (iii) the nonlinear character of the equations of state and (iv) the dependence
of the phenomenological transport coefficients on the state variables”. One possible origin
for nonlinearity is excluded in this list and that is that the thermodynamic forces are
nonlinearly related to their conjugate forces. In the system we consider that would imply,
to be precise, that Δ(1/T ) and Δ(μ/T ) are nonlinear functions of the total heat flux
Jq and the mass flux J ; see the entropy production given in Eq. 5.31 in the appendix.
Even though we went to temperature gradients up to 5×109 K/m we did not need such
nonlinear dependence on the fluxes.

5.6 Conclusions

Using NEMD simulations we have obtained the interface film resistivities for heat and
mass transfer along the liquid-vapor coexistence curve for an argon like fluid using a
Lennard-Jones spline potential. Our results confirm earlier results of [5,6] that also when
the system is not in equilibrium the surface tension is the same function of the surface
temperature as in equilibrium. The surface is in other words in local equilibrium. We
furthermore find that the interface film resistivities are functions of the surface tension or
alternatively the surface temperature alone. This further confirms that the surface is a
separate thermodynamic system with its own properties. We proposed new expressions
for the interface film resistivities obtained using kinetic theory, which only depend on the
temperature of the surface. We find that these new formulae from kinetic theory predict
the results of the NEMD simulations well as long as one is not to close to the critical
point. These results are similar to those obtained by [9] for the same system. We were
able to independently calculate the cross coefficients. The Onsager reciprocal relations
could then be checked and were found to be satisfied. This is the first time that such a
result is obtained for a surface.
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Table 5.2: Simulation Conditions, in Reduced and Real Units

Sim. c∗ T ∗
H T ∗

L J∗ c TH TL J

no. (mol
m3 ) (K) (K) (kmol

m2s
)

1 0.20 1.10 0.75 0.001 8302 136.5 93.0 6.67
2 0.20 1.10 0.70 0.001 8302 136.5 86.8 6.67
3 0.30 1.20 0.65 0.002 12453 148.9 80.6 13.33
4 0.30 1.20 0.65 0.003 12453 148.9 80.6 20.00
5 0.30 1.35 0.65 0.002 12453 167.5 80.6 13.33
6 0.30 1.50 0.65 0.003 12453 186.1 80.6 20.00
7 0.30 1.03 0.57 0.002 12453 127.8 70.7 13.33
8 0.30 1.10 0.63 0.002 12453 136.5 78.2 13.33
9 0.15 1.10 0.65 0.001 6226 136.5 80.6 6.67

10 0.15 1.15 0.65 0.002 6226 142.7 80.6 13.33
11 0.15 1.05 0.75 0.002 6226 130.3 93.0 13.33
12 0.30 1.30 0.70 0.002 12453 161.3 86.8 13.33
13 0.20 1.10 0.65 0.002 8302 136.5 80.6 13.33
14 0.30 1.30 0.60 0.001 12453 161.3 74.4 6.67
15 0.20 1.20 0.70 0.003 8302 148.9 86.8 20.00
16 0.30 1.25 0.60 0.003 12453 155.1 74.4 20.00
17 0.30 1.25 0.62 0.003 12453 155.1 76.9 20.00
18 0.20 1.13 0.72 0.001 8302 140.2 89.3 6.67
19 0.25 1.05 0.70 0.002 10378 130.3 86.8 13.33
20 0.25 1.25 0.72 0.002 10378 155.1 89.3 13.33
21 0.25 1.15 0.75 0.002 10378 142.7 93.0 13.33
22 0.25 1.06 0.70 0.002 10378 131.5 86.8 13.33
23 0.25 1.25 0.70 0.002 10378 155.1 86.8 13.33
24 0.25 1.30 0.68 0.002 10378 161.3 84.4 13.33
25 0.25 1.20 0.70 0.004 10378 148.9 86.8 26.66
26 0.30 1.28 0.62 0.003 12453 158.8 76.9 20.00
27 0.15 1.10 0.60 0 6226 136.5 74.4 0
28 0.20 1.10 0.60 0 8302 136.5 74.4 0
29 0.20 1.10 0.75 0 8302 136.5 93.0 0
30 0.20 1.05 0.70 0 8302 130.3 86.8 0
31 0.20 1.10 0.68 0 8302 136.5 84.4 0
32 0.20 1.15 0.70 0 8302 142.7 86.8 0
33 0.25 1.30 0.80 0 10378 161.3 99.2 0
34 0.30 1.10 0.68 0 12453 136.5 84.4 0
35 0.30 1.00 0.70 0 12453 124.1 86.8 0
36 0.30 1.40 0.70 0 12453 173.7 86.8 0
37 0.30 1.60 0.75 0 12453 198.5 93.0 0
38 0.13 1.20 0.60 0 5189 148.9 74.4 0
39 0.18 1.20 0.60 0 7264 148.9 74.4 0
40 0.23 1.20 0.60 0 9340 148.9 74.4 0
41 0.28 1.20 0.60 0 11415 148.9 74.4 0
42 0.18 1.25 0.60 0 7264 155.1 74.4 0
43 0.18 1.10 0.65 0 7264 136.5 80.6 0
44 0.23 1.10 0.65 0 9340 136.5 80.6 0
45 0.28 1.10 0.65 0 11415 136.5 80.6 0
46 0.18 1.20 0.70 0 7264 148.9 86.8 0
47 0.23 1.20 0.70 0 9340 148.9 86.8 0
48 0.28 1.20 0.70 0 11415 148.9 86.8 0
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Table 5.3: Fluxes and Forces from MD Simulations
Sim. J ′g

q J ′l
q J Xq Xg

μ X l
μ

no. ( MJ
m2s

) ( MJ
m2s

) (kmol
m2s

) ( 1
kK) ( J

molK) ( J
molK)

1 15.06 38.91 5.87 0.955 0.85 -2.80
2 12.65 39.77 6.20 1.169 1.02 -4.12
3 23.28 80.05 12.27 1.771 2.20 -5.68
4 33.07 111.91 17.93 1.990 2.72 -5.62
5 30.46 87.96 12.33 2.208 2.64 -7.28
6 48.00 129.31 17.86 2.453 3.10 -7.19
7 8.57 74.56 12.66 2.728 4.42 -9.72
8 15.83 75.21 12.53 1.802 2.32 -6.15
9 9.64 40.63 6.33 1.668 1.56 -7.19

10 14.04 75.26 12.46 2.157 2.62 -8.79
11 12.73 58.77 11.47 1.041 1.31 -2.87
12 32.75 80.52 11.73 1.550 1.76 -4.16
13 13.10 72.21 12.40 1.781 2.30 -6.15
14 14.17 49.40 6.53 2.959 2.79 -13.47
15 22.21 97.88 17.60 1.868 2.40 -5.26
16 23.00 114.28 18.60 2.624 3.71 -8.69
17 25.64 114.20 18.40 2.460 3.40 -7.74
18 13.68 39.42 6.07 1.119 0.99 -3.78
19 14.37 65.03 11.87 1.211 1.44 -3.50
20 27.11 72.83 11.53 1.435 1.61 -3.78
21 21.16 59.15 11.00 1.053 1.22 -2.31
22 14.08 64.31 11.93 1.225 1.43 -3.54
23 24.48 75.27 11.87 1.708 1.84 -5.10
24 25.33 77.77 12.06 1.773 2.13 -5.35
25 26.43 118.19 22.73 1.761 0.78 -4.26
26 26.88 114.99 18.26 2.506 3.42 -7.91
27 5.11 5.11 0 1.298 0.33 -7.10
28 5.20 5.20 0 1.593 0.40 -7.66
29 12.49 12.49 0 0.809 0.47 -2.68
30 8.08 8.08 0 0.539 0.19 -2.11
31 8.92 8.92 0 0.591 0.31 -2.40
32 11.11 11.11 0 0.887 0.38 -3.63
33 27.02 27.02 0 0.838 0.81 -1.71
34 11.32 11.32 0 1.134 0.32 -4.92
35 9.44 9.44 0 0.646 0.32 -2.46
36 24.38 24.38 0 1.553 1.09 -5.75
37 50.32 50.32 0 1.415 1.53 -3.44
38 5.97 5.97 0 1.546 0.56 -7.25
39 6.45 6.45 0 1.605 0.53 -8.47
40 7.25 7.25 0 1.650 0.47 -8.85
41 7.92 7.92 0 1.879 0.82 -9.00
42 7.01 7.01 0 1.958 0.53 -9.31
43 6.94 6.94 0 0.882 0.18 -4.99
44 7.95 7.95 0 1.004 0.46 -4.49
45 8.15 8.15 0 1.000 0.50 -4.64
46 12.12 12.12 0 1.116 0.44 -4.97
47 13.06 13.06 0 0.834 0.49 -3.24
48 14.70 14.70 0 0.781 0.34 -3.04
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Table 5.4: Surface Extension, Surface Tension and Temperature near and on

the Surface
Sim. Surface γ(10−3) T l T g T s

no. layers (N/m) (K) (K) (K)
1 45-51 1.935 95.5 105.1 96.5
2 45-50 3.239 89.3 99.7 90.1
3 37-41 3.260 88.3 104.7 90.0
4 36-42 2.853 90.9 111.0 93.4
5 36-41 3.352 88.7 110.3 90.8
6 36-42 2.540 92.8 120.2 96.1
7 38-42 5.227 76.1 96.1 77.2
8 37-41 3.750 84.9 100.2 86.2
9 50-54 4.397 82.5 95.6 83.3

10 50-54 4.126 83.8 102.3 85.3
11 50-56 1.912 95.1 105.5 96.9
12 35-41 2.649 95.4 112.0 97.9
13 45-50 3.981 84.8 99.9 86.3
14 37-41 4.700 78.4 102.0 79.2
15 45-51 2.379 92.9 112.4 95.7
16 37-42 3.791 84.2 108.1 86.2
17 36-42 2.862 86.9 110.6 89.4
18 44-50 2.794 91.9 102.4 93.1
19 40-46 2.778 91.9 103.4 93.5
20 40-46 1.938 96.2 111.6 98.6
21 38-47 1.631 98.9 110.4 101.2
22 40-46 2.638 92.3 104.0 93.8
23 40-46 2.681 93.1 110.8 95.1
24 40-46 3.023 90.8 108.3 92.9
25 40-47 2.040 96.8 116.7 100.3
26 36-42 3.166 87.3 111.8 89.8
27 49-54 6.178 74.7 82.7 74.8
28 46-51 6.045 74.7 84.8 74.9
29 42-52 2.169 93.7 101.4 94.3
30 46-51 3.446 87.5 91.8 87.5
31 46-50 3.816 85.2 89.7 85.4
32 45-50 3.503 87.5 94.9 87.8
33 37-48 0.980 101.7 111.2 103.4
34 36-41 4.157 85.4 94.5 85.7
35 35-42 3.665 87.4 92.7 87.8
36 32-41 3.331 89.0 103.3 90.3
37 34-45 1.853 97.7 113.4 99.6
38 52-57 5.871 74.6 84.3 74.7
39 48-52 5.900 74.9 85.1 75.1
40 44-48 5.689 74.9 85.4 75.0
41 40-44 5.442 75.1 87.5 75.3
42 48-52 5.818 74.8 87.6 74.8
43 48-52 4.930 80.9 87.1 81.1
44 43-48 4.445 81.1 88.3 81.4
45 39-43 4.390 81.4 88.7 81.8
46 47-52 3.378 87.4 96.9 87.9
47 43-48 3.427 87.5 94.4 87.9
48 38-43 3.229 88.4 94.9 88.7
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Table 5.5: Concentrations near the Surface and Pressures
Sim. cl cg p p�(T l) p�(T g)

no. (kmol
m3 ) (kmol

m3 ) (bar) (bar) (bar)
1 27.35 2.099 14.91 23.87 13.12
2 29.08 1.312 9.54 17.33 8.34
3 29.36 1.291 10.23 23.34 7.70
4 28.78 1.662 13.63 32.75 9.42
5 29.27 1.294 11.01 31.76 7.97
6 28.32 1.778 16.33 50.57 10.89
7 32.00 0.518 4.11 13.68 2.48
8 30.13 1.001 7.76 17.94 5.81
9 30.68 0.753 5.60 13.27 4.67

10 30.39 0.899 7.17 20.31 5.26
11 27.49 2.256 15.78 24.50 12.77
12 27.40 2.145 17.06 34.54 13.09
13 30.19 1.004 7.67 17.50 5.74
14 31.50 0.485 4.08 20.00 3.14
15 28.21 1.889 15.35 35.25 10.95
16 30.37 0.984 8.42 28.16 5.45
17 29.77 1.220 10.45 32.14 6.89
18 28.36 1.595 11.65 20.48 10.17
19 28.43 1.725 12.51 21.68 10.16
20 27.19 2.265 17.69 33.79 13.76
21 26.28 2.870 20.61 31.89 16.49
22 28.33 1.771 12.85 22.50 10.45
23 28.12 1.787 14.28 32.42 11.13
24 28.76 1.552 12.50 28.46 9.38
25 27.10 2.561 20.59 43.15 14.32
26 29.67 1.246 10.75 34.14 7.11
27 32.24 0.327 2.18 4.77 2.12
28 32.24 0.317 2.18 5.75 2.12
29 27.90 1.750 12.34 19.21 11.58
30 29.56 1.101 7.38 10.09 7.20
31 30.10 0.917 6.16 8.58 5.93
32 29.54 1.063 7.54 12.58 7.22
33 25.13 3.227 23.21 33.12 19.60
34 30.05 0.882 6.21 12.30 6.05
35 29.56 1.102 7.49 10.77 7.19
36 29.18 1.153 9.25 21.58 8.16
37 26.73 2.387 19.71 36.95 15.24
38 32.28 0.320 2.20 5.50 2.09
39 32.21 0.321 2.27 5.92 2.17
40 32.21 0.326 2.24 6.07 2.16
41 32.17 0.345 2.39 7.21 2.22
42 32.23 0.309 2.20 7.27 2.13
43 31.02 0.600 4.09 7.00 4.03
44 30.98 0.629 4.33 7.72 4.12
45 30.90 0.645 4.49 7.93 4.24
46 29.55 1.029 7.50 14.42 7.17
47 29.56 1.084 7.68 12.16 7.21
48 29.31 1.154 8.09 12.65 7.76
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5.7 Appendix

When the excess entropy production is calculated for a stationary state one obtains

σs = JqΔ

(
1

T

)
− JΔ

μ

T
(5.31)

where Jq = J ′g
q + HgJ = J ′l

q + H lJ is the total heat flux, which is independent of the
position in a stationary state. Substituting Jq = J ′g

q + HgJ one obtains

σs = J ′g
q Δ

(
1

T

)
− J

(
Δ

μ

T
− HgΔ

(
1

T

))

= J ′g
q Δ

(
1

T

)
− J

[
μl

T l
−

μg

T g
− H g

(
1

T l
−

1

T g

)]
(5.32)

Next we use that

μg
(
T l
)

T l
=

μg (T g)

T g
+ Hg (T g)

(
1

T l
−

1

T g

)
−

1

2
cg
p (T g)

(
1 −

T g

T l

)2

(5.33)

to second order in the temperature difference. It follows that

Xg
μ = −

μl(T l) − μg(T l)

T l
+

1

2
cg
p (T g)

(
1 −

T g

T l

)2

(5.34)

to second order in the temperature difference. For X l
μ we similarly obtain

X l
μ = −

μl(T g) − μg(T g)

T g
+

1

2
cl
p

(
T l
)(

1 −
T l

T g

)2

(5.35)

Due to the extremely large temperature gradients used we find that the second order term
may contribute up to 25% of the value of the chemical forces.

In order to calculate the first order contribution to the chemical forces we use for the
gas

μg(T1, p) = μ0(T1) + RT1 ln
pφ(T1, p)

p0
(5.36)

where μ0 and p0 are standard values, which are chosen such that φ(T1, p) → 1 in the ideal
gas limit. Eq. 5.36 ) may be considered as a definition of φ(T1, p).

For the liquid at temperature T2 we use a vapor in coexistence with the liquid at this
temperature and write

μl(T2, p
�(T2)) = μg(T2, p

�(T2)) = μ0(T2) + RT2 ln
p�(T2)φ

�(T2)

p0
(5.37)

where φ�(T2) ≡ φ(T2, p
�(T2)). For the chemical force Xg

μ we may then write to first order

Xg
μ = −

μl(T l, p) − μg(T l, p)

T l
= −

μl(T l, p�(T l)) − μg(T l, p)

T l

+
μl(T l, p�(T l)) − μl(T l, p)

T l

+R ln
pφ(T l, p)

p�(T l)φ�(T l)
+

μl(T l, p�(T l)) − μl(T l, p)

T l
(5.38)
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For the second term on the right hand side we use

μl(T l, p�(T l)) − μl(T l, p) =

∫ p�(T l)

p
vl(T l, p′)dp′ (5.39)

Using that the molar volume of the liquid does not depend very much on the pressure one
obtains

μl(T l, p�(T l)) − μl(T l, p) = vl�(T l)
(
p�(T l) − p

)
(5.40)

where vl�(T l) = vl(T l, p�(T l)). Substituting Eqs. 5.38 and 5.40 into Eq. 5.34 we obtain
to second order

Xg
μ = R ln

pφ(T l, p)

p�(T l)φ�
(T l) +

vl�(T l)
(
p�(T l) − p

)
T l

+
1

2
cg
p (T g)

(
1 −

T g

T l

)2

(5.41)

For the chemical force on the liquid side we similarly obtain

X l
μ = R ln

pφ(T g, p)

p�(T g)φ�(T g)
+

vl�(T g) (p�(T g) − p)

T g
+

1

2
cl
p

(
T l
)(

1 −
T l

T g

)2

(5.42)

The last two contributions in Eqs. 5.41 and 5.42 were always found to have an opposite
sign. They therefore partially compensated each other. Their contribution to the final
value was rather substantial in many cases.

In order to calculate φ(T, p) we use that the SRK equation of state is a good approxi-
mation for the gas phase. We will approximate φ(T, v) by φSRK(T, v), where p, v and T
are related by the SRK equation of state, Eq. 5.18. We use

μ(T, v2) − μ(T, v1) =

∫ p2

p1

vdp =

∫ (pv)2

(pv)1

dpv −

∫ v2

v1

pdv

= p(T, v2)v2 − p(T, v1)v1 −

∫ v2

v1

pdv (5.43)

Using the SRK equation of state we have∫ v2

v1

pdv =

∫ v2

v1

(
RT

v − b
−

a

v(v + b)

)
dv = RT ln

v2 − b

v1 − b
−

a

b
ln

v2 (v1 + b)

v1 (v2 + b)
(5.44)

Substitution into Eq. 5.43 gives

μ(T, v2) − μ(T, v1) = p(T, v2)v2 − p(T, v1)v1 − RT ln
v2 − b

v1 − b
+

a

b
ln

v2 (v1 + b)

v1 (v2 + b)

= RT ln
p(T, v2)

p(T, v1)
+ RT ln

φ(T, v2)

φ(T, v1)
(5.45)

In order to find φ(T, v1) we now take v2  b (the ideal gas limit) and use the Eq. 5.18,
which gives an expression in which v2 drops out. Replacing v1 by v, one finds:

RT lnφ(T, v) = RT

[
b

v − b
+ ln

v

v − b
− ln

vp(T, v)

RT

]
−

a

v + b
+

a

b
ln

v

v + b
(5.46)





Chapter 6

Conclusion

In this thesis, the coupled transport phenomena of heat and mass were investigated for
a chemical reaction and a liquid-vapor interface where large temperature gradients were
applied. Non-equilibrium molecular dynamics (NEMD) simulations have been used to
measure thermodynamic and transport properties of the modeling systems at stationary
non-equilibrium states. An overview and basic concepts of the modeling systems and
non-equilibrium thermodynamics (NET) were given in the first Chapter. Some molecular
simulation techniques, and in particular, boundary-driven NEMD, were described next
(Chapter 2). In Chapters 3, 4 and 5 consistent and systematic studies of the two systems
were presented. The purpose of the thesis for a better understanding of the transport
problems in the studied systems has been achieved.

In Chapters 3 and 4, we examined heat and mass transfer in a chemical reaction,
2F � F2. In order to accomplish such a study, our first computational effort has been
made to build an efficient NEMD program with a mechanical reaction model given by
Stillinger and Weber [52]. In this model, not only 2, but also 3-body potentials are in-
cluded to effectively represent the main thermodynamic features of the chemical reaction,
namely its microscopic reversibility. Because of the impact of the 2- and 3-body potentials
on the calculations of forces and fluxes, we created a new MD program, namely NEIGH-
BOUR3, to save the CPU time. The results from our NEMD simulations reproduced
some of the equilibrium results obtained by others [52], indicating that our simulations
are trustable. By NEMD simulations, various temperature gradients up to ∇T=1.1×1012

K/m were investigated. Thermal diffusion and interdiffusion of components were set up
in the temperature gradient. We observed a flux of fluorine atoms to the cold side, while
fluorine molecules were transported to the hot side. There was no net mass flux through
the system in the stationary state, which was characterized by nonzero average velocities
of the components. We have shown how the Soret equilibrium was defined for the station-
ary state. Definitions of ’Local ’ equilibrium and specifically ’local chemical ’ equilibrium
have been discussed in detail. The results from NEMD simulations showed that the sys-
tem was nearly Maxwellian in its component velocity distributions. In order to have local
equilibrium, we see this criterion is central. We also observed that the small shifts in
the Maxwellians were directly proportional to the temperature gradient. Furthermore, we
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found that the unidirectional rates of the reaction were nearly the same in the center of the
box, meaning that the distance to chemical equilibrium was small there. A net reaction
rate was observed much smaller than the forward and the backward reaction rates. For
this study, we concluded that the system was in local thermodynamic equilibrium; and
that it was also close to chemical equilibrium in large temperature gradients, typically
1011 K/m. Statistical and thermodynamic evidence was thus presented that the transport
processes are governed by an entropy production which is bilinear in the fluxes and forces
of the system.

With a sound basis for the relevant transport equations, in Chapter 4, we derived
transport coefficients for the chemical reaction in large temperature gradients. From the
NEMD results, the non-equilibrium reacting system was seen as limited by a thermal
diffusion and its dynamic structure was maintained by energy supply from the outside.
When exposed to a temperature gradient, the system responded to the given boundary
conditions by seeking a dynamic state (dissipative structure) with a low entropy produc-
tion, most probably as low as possible. We stated that the distribution of components
is a consequence of this rather than of a shift in the chemical equilibrium according to
Chatelier’s principle. When the system was close to, but not at chemical equilibrium, we
found an analytical solution to the flux equations given by the entropy production. Using
this analysis, we determined resistivity coefficients (Rij and rij), conductivity coefficients
(Lij and lij) and some common transport properties (λJ , λG, D, q∗, and −ΔrH), in the
chemical reaction. The thermal conductivities λJ and λG were found and increased with
temperature. From kinetic theory, we obtained a value in the same order of magnitude as
in λJ(absence of chemical reaction). We also pointed out that λG was up to 40% larger
than λJ . This most interesting feature leads us to clearly see that a reacting system can
conduct better than a non-reacting system. For the heat of transfer, we found this trans-
port property is equal to the negative enthalpy of reaction, −ΔrH, in the limiting case of
local chemical equilibrium. Away from chemical equilibrium, the heat of transfer was com-
puted not only by the thermodynamic contributions, but also by the contributions from
the transport coefficients which can be related to the thermal diffusion. For the chemical
reaction, we found the heat of transfers were much larger (varying between 120 and 200
kJ/mol), compared to the ones typical for non-reacting binary mixtures. Our results indi-
cate that the Dufour and Soret effects are non-negligible in the reacting system. Onsager
coefficients were discussed as their important role on systematically defining transport
coefficients of reacting mixtures. The values of the transport coefficients derived from this
Chapter may be useful for improved thermodynamic modeling of chemical reactions.

In Chapter 5, we studied simultaneous transfer of heat and mass across a surface.
NEMD simulations with a Lennard-Jones spline potential have been performed to model
a liquid-vapor phase transition in a one-component argon like fluid, exposed to a tempera-
ture gradient or/and a concentration gradient. We first established the surface boundaries,
the proper equation of state, and the equilibrium properties of the surface. A comparison
between non-equilibrium and equilibrium results showed that the surface was in local equi-
librium also under temperature gradients of the order of 108 K/m. Our results confirmed
earlier results of Røsjord et al. that also when the system is not in global equilibrium the
surface tension is the same function of the surface temperature as in equilibrium [5]. Next,
in the description of the transfer coefficients, we used non-equilibrium thermodynamics



95

theory as developed by Kjelstrup and Bedeaux for the surface [3]. This work aimed to
give information about the coefficient that describes coupling of heat and mass and add a
proof on the validity of ORR at surfaces. The coupling coefficient influences the value of
the heat fluxes into the homogeneous phases. It is important to know its value and under-
stand its origin. With available NEMD results, all four interfacial film transfer coefficients
were independently determined along the whole liquid-vapor coexistence curve for the
first time. We derived two sets of the interface film resistivities by using the measurable
heat flux on the vapor side as well as on the liquid side. Moreover, we found that these
coefficients are functions of the surface tension or alternatively the surface temperature
alone. Large resistivities of the surface to heat and mass transfer were reported. We gave
evidence in the important coupling of heat and mass at the surface. Most importantly,
we found that the coupling coefficients are within the accuracy of the calculation equal.
This is the first verification of the validity of the Onsager relations for transport through
a surface using molecular dynamics. Furthermore, we proposed new expressions for the
interface film resistivities obtained using kinetic theory, which only depend on the surface
temperature. We found that these new formulae from kinetic theory predict the results of
the NEMD simulations well as long as one is not to close to the critical point.

According to the purpose of this thesis, we have reached all sub goals. We succeeded in
developing new NEMD algorithms with the combined 2- and 3-body potentials to model
the chemical reaction (Chapter 3). With suitable NEMD techniques we were able to
generate large temperature gradients, as high as 6.6 × 1011 K/m (Chapter 3), and use
large mass fluxes about 26.7 kmol/m2s (Chapter 5). We have verified the assumption of
local equilibrium in both the chemical reacting system and the surface where heat and
mass were transported (Chps. 3 and 5). Transport coefficients of the irreversible systems
were derived in the framework offered by non-equilibrium thermodynamics (Chps. 4 and
5). A dissipative structure of the chemical reaction was displayed and transport properties
of the reacting mixture were derived by assuming Onsager relations (Chapter 4). It was
also tested that transport properties did not depend on the values of the flux, i.e. that the
force-flux relation was linear (Chapter 4). Onsager’s reciprocal relations were validated at
the surface for the first time (Chapter 5). With the best knowledge from this thesis, we can
further study another chemical reaction with the same type, 2H � H2, in a direction of
general interest and investigate particular wall effects on the chemical reaction. Moreover,
we are now able to study coupled transport of heat and mass with a chemical reaction at
a surface.
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Appendix A

2- and 3-body potential

implementation in NEMD for

fluorine reaction.

According to the purposes of the thesis, we shall establish NEMD procedures for the
chemical reaction, F�F2. In this appendix, we first summarize expressions of the 2- and
3-body potential that we used in NEMD for the fluorine reaction. We then show how
to implement the 2- and 3-body potential (Weber and Stillinger potential) in our NEMD
programs. Finally, we simply illustrate our algorithms using pseudo codes for the two and
three body force routine.

A.1 The 2- and 3-body potential

Stillinger and Weber gave a general expression of the potential surface Φ for the type of
fluorine reaction as a linear combination of two and three-atom interactions:

Φ(r1, ..., rN ) =
∑

pairs i,j

u2(rij) +
∑

triplets i,j,k

u3(rij , rik, rjk). (A.1)

Here the two-atom potential u2 is a function of the atom-atom distance (rij ≡ |ri − rj |)
with constant A = 6.052463017 and the first cut-off distance rc1 = 3.6σ,

u2(rij) =

{
Aε
[
(σ/rij)

8 − (σ/rij)
4
]
exp [σ/(rij − rc1)] , 0 < rij < rc1

0 , rij ≥ rc1

(A.2)

The three-atom potential u3 determined by three-atom distances rij , rik and rjk is
given as the sum of three h−functions,

u3(rij , rik, rjk) = hi + hj + hk (A.3)
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The general expression for the h−function is:

h(a, b, cos θ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

8.4ε
(

σ2

ab

)4
exp

[(
σ

a−rc1

)
+
(

σ
b−rc1

)]
+(50 − 25 cos θ2) exp

[
3
(

σ
a−rc2

)
+ 3

(
σ

b−rc2

)]
, 0 < a, b < rc2

8.4ε
(

σ2

ab

)4
exp

[(
σ

a−rc1

)
+
(

σ
b−rc1

)]
, either a or b exceeds rc2

0 , either a or b exceeds rc1

(A.4)
, where a and b are adjacent sides of the angle θ. In the right side of the Eq. A.4, the first
expression is called as two terms h−function and the second as one term h−function.

A.2 2-body and 3-body contributions

A.2.1 2-body contributions

Expressing the 2-body force (due to atom j) on atom i in the x direction

f2xi = −
du2

dxi

= −
∂u2

∂rij

∂rij

∂xi
(A.5)

, and the 2-body force (due to atom i) on atom j in the x direction

f2xj = −
du2

dxj

= −
∂u2

∂rij

∂rij

∂xj
, (A.6)

we derive
f2xi = −f2xj (A.7)

The relation between the derivatives of rij in the coordinates is:

∂rij

∂xi
= −

∂rij

∂xj
=

rxij

rij
(A.8)

here rij =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 and rxij = xi − xj .

Similarly, we have expressions in the y and z directions,

f2yj = −f2yj
∂rij

∂yi
= −

∂rij

∂yj
ryij = yi − yj (A.9)

f2zj = −f2zj
∂rij

∂zi
= −

∂rij

∂zj
rzij = zi − zj (A.10)
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When the intermolecular distance satisfies rij < rc1, the partial derivative of u2 is,

−
∂u2

∂rij
= 4Aε

1

rij
exp

(
σ

rij − rc1

)[
2

(
σ

rij

)8

−

(
σ

rij

)4
]

+Aε
σ

(rij − rc1)
2 exp

(
σ

rij − rc1

)[(
σ

rij

)8

−

(
σ

rij

)4
]

(A.11)

A.2.2 3-body contributions

From Eq. A.3, we write the total 3-body force (due to atoms j and k) on atom i in the x
direction:

f3xi = −
∂u3

∂xi

= −
∂hi

∂xi
−

∂hj

∂xi
−

∂hk

∂xi
(A.12)

With the two terms h−function in Eq. A.4, we have

∂hi

∂xi
=

∂hi

∂rij

∂rij

∂xi
+

∂hi

∂rik

∂rik

∂xi
+

∂hi

∂ cos θi

∂ cos θi

∂xi
(A.13)

∂hj

∂xi
=

∂hj

∂rij

∂rij

∂xi
+

∂hj

∂rjk

∂rjk

∂xi
+

∂hj

∂ cos θj

∂ cos θj

∂xi

=
∂hj

∂rij

∂rij

∂xi
+

∂hj

∂ cos θj

∂ cos θj

∂xi
(A.14)

∂hk

∂xi
=

∂hk

∂rik

∂rik

∂xi
+

∂hk

∂rjk

∂rjk

∂xi
+

∂hk

∂ cos θk

∂ cos θk

∂xi

=
∂hk

∂rik

∂rik

∂xi
+

∂hk

∂ cos θk

∂ cos θk

∂xi
(A.15)

We derive the partial derivatives of the two terms hi over rij and rik, respectively,

∂hi

∂rij
= −8.4ε exp

[(
σ

rij − rc1

)
+

(
σ

rik − rc1

)](
σ2

rijrik

)4(
4

rij
+

σ

(rij − rc1)2

)

−3(50 − 25 cos θ2
i ) exp

[
3

(
σ

rij − rc2

)
+ 3

(
σ

rik − rc2

)]
σ

(rij − rc2)2
(A.16)

∂hi

∂rik
= −8.4ε exp

[(
σ

rij − rc1

)
+

(
σ

rik − rc1

)](
σ2

rijrik

)4(
4

rik
+

σ

(rik − rc1)2

)

−3(50 − 25 cos θ2
i ) exp

[
3

(
σ

rij − rc2

)
+ 3

(
σ

rik − rc2

)]
σ

(rik − rc2)2
(A.17)
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Similar expressions for the other partial derivatives of the two terms hj and the two
terms hk are

∂hj

∂rij
= −8.4ε exp

[(
σ

−rij − rc1

)
+

(
σ

rjk − rc1

)](
σ2

−rijrjk

)4(
4

−rij
−

σ

(−rij − rc1)2

)

+3(50 − 25 cos θ2
j ) exp

[
3

(
σ

−rij − rc2

)
+ 3

(
σ

rjk − rc2

)]
σ

(−rij − rc2)2
(A.18)

∂hj

∂rjk
= −8.4ε exp

[(
σ

−rij − rc1

)
+

(
σ

rjk − rc1

)](
σ2

−rijrjk

)4(
4

rjk
+

σ

(rjk − rc1)2

)

−3(50 − 25 cos θ2
j ) exp

[
3

(
σ

−rij − rc2

)
+ 3

(
σ

rjk − rc2

)]
σ

(rjk − rc2)2
(A.19)

∂hk

∂rik
= −8.4ε exp

[(
σ

−rik − rc1

)
+

(
σ

−rjk − rc1

)](
σ2

rikrjk

)4(
4

−rik
−

σ

(−rik − rc1)2

)

+3(50 − 25 cos θ2
k) exp

[
3

(
σ

−rik − rc2

)
+ 3

(
σ

−rjk − rc2

)]
σ

(−rik − rc2)2
(A.20)

∂hk

∂rjk
= −8.4ε exp

[(
σ

−rik − rc1

)
+

(
σ

−rjk − rc1

)](
σ2

rikrjk

)4(
4

−rjk
−

σ

(−rjk − rc1)2

)

+3(50 − 25 cos θ2
k) exp

[
3

(
σ

−rik − rc2

)
+ 3

(
σ

−rjk − rc2

)]
σ

(−rjk − rc2)2
(A.21)

The partial derivertives of the two terms h−functions over the corresponding angles
are

∂hi

∂ cos θi
= −50 exp

[
3

(
σ

rij − rc2

)
+ 3

(
σ

rik − rc2

)]
cos θi

∂hj

∂ cos θj
= −50 exp

[
3

(
σ

−rij − rc2

)
+ 3

(
σ

rjk − rc2

)]
cos θj

∂hk

∂ cos θk
= −50 exp

[
3

(
σ

−rik − rc2

)
+ 3

(
σ

−rjk − rc2

)]
cos θk

With the cosin law,

cos θi =
rij + rik − rjk

2rijrik

cos θj =
rij + rjk − rik

−2rijrjk

cos θk =
rik + rjk − rij

2rikrjk
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Then we derive:

∂ cos θi

∂xi
=

rxij + rxik

rijrik
−

rij + rik − rjk

2(rijrik)3
(rikrxij + rijrxik) (A.22)

∂ cos θj

∂xi
=

rxij − rxjk

−rijrjk
+

rij + rjk − rik

2(rijrjk)3
rjkrxij (A.23)

∂ cos θk

∂xi
=

rxik − rxij

rikrjk
−

rik + rjk − rij

2(rikrjk)3
rjkrxik (A.24)

With the one term h−function in Eq. A.4, we have simple expressions:

∂hi

∂xi
=

∂hi

∂rij

∂rij

∂xi
+

∂hi

∂rik

∂rik

∂xi
(A.25)

∂hj

∂xi
=

∂hj

∂rij

∂rij

∂xi
+

∂hj

∂rjk

∂rjk

∂xi

=
∂hj

∂rij

∂rij

∂xi
(A.26)

∂hk

∂xi
=

∂hk

∂rik

∂rik

∂xi
+

∂hk

∂rjk

∂rjk

∂xi

=
∂hk

∂rik

∂rik

∂xi
(A.27)

The partial deriverties of the one term h−functions can be easily get by taking the first
term in equations A.16-A.21. Substituting proper equations for the partial derivatives into
Eq. A.12, we can find the 3-body force acting on atom i as a function of the coordinates.
In the same way, we can find the 3-body force (due to atom i and k) acting on atom j,
f3xj , and the 3-body force (due to atom i and j) acting on atom k, f3xk. The algorithm
for implementing these equations into the reaction NEMD program is reported in the
following section.

A.3 Algorithm

To compute energy, forces and pressure tensor, we shall optimize ’loops’ over the number
of all accepted pairs and triplets of atoms in a n body system. In the force routine of our
NEMD program, neighborhood lists for inner loops j and k are used to avoid expensive
simulations. Below are the pseudo codes for the force routine.

% before the triple loop, some variables are initialized.
total energy ← 0
do loop i = 1, n

total acceleration x(i)← 0
total acceleration y(i)← 0
total acceleration z(i)← 0

end loop i
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% outer loop over natoms
do loop i = 1, n − 1

% inner loop for j starts
% loop over all possible pairs between atom i and its neighborhood atom j
do loop j = first neighborhood of atom i, last neighborhood of atom i

% use minimum image conversion to calculate the distance square r2
ij

r2
ij ← formula for r2

ij

if r2
ij < first cut off distance square (3.62) then

2-body energy ← formula for u2
total energy ← total energy + 2-body energy
% calculate 2-body force for atom i and j in x, y and z directions
total acceleration x(i)← total acceleration x(i)+f2xi/mass (i)
total acceleration y(i)← total acceleration y(i)+f2yi/mass (i)
total acceleration z(i)← total acceleration z(i)+f2zi/mass (i)
total acceleration x(j)← total acceleration x(j)+f2xj/mass (j)
total acceleration y(j)← total acceleration y(j)+f2yj/mass (j)
total acceleration z(j)← total acceleration z(j)+f2zj/mass (j)

end if

if j < the last neighborhood atom then
% inner loop for k starts
% loop over all possible triples among atom i and its neighborhood atoms
% j and k (k > j)
do loop k = j+1, last neighborhood of atom i

% use minimum image conversion to calculate the distance squares
% r2

ik and r2
jk

r2
ik ← formula for r2

ik

r2
jk ← formula for r2

jk

if r2
ij < second cut off distance square (2.82) then

if r2
ik < second cut off distance square (2.82) then

hi ← two terms hi function
−∂hi

∂xi
, −∂hi

∂yi
,−∂hi

∂zi
,− ∂hi

∂xj
,−∂hi

∂yj
,−∂hi

∂zj
,− ∂hi

∂xk
,− ∂hi

∂yk
,− ∂hi

∂zk

← formula of partial derivatives of two terms hi function for atoms i,j and
k in 3 directions.

if r2
jk < second cut off distance square (2.82) then

hj ← two terms hj function
hk ← two terms hk function
−

∂hj

∂xi
, −∂hj

∂yi
,−∂hj

∂zi
,−∂hj

∂xj
,−∂hj

∂yj
,−∂hj

∂zj
,− ∂hj

∂xk
,−∂hj

∂yk
,−∂hj

∂zk

← formula of partial derivatives of two terms hj function for atoms
i,j and k in 3 directions.

−∂hk

∂xi
, −∂hk

∂yi
,−∂hk

∂zi
,−∂hk

∂xj
,−∂hk

∂yj
,−∂hk

∂zj
,−∂hk

∂xk
,−∂hk

∂yk
,−∂hk

∂zk

← formula of partial derivatives of two terms hk function for atoms
i,j and k in 3 directions.
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elseif r2
jk < first cut off distance square (3.62) then

hj ← one term hj function
hk ← one term hk function
−

∂hj

∂xi
, −∂hj

∂yi
,−∂hj

∂zi
,−∂hj

∂xj
,−∂hj

∂yj
,−∂hj

∂zj
,− ∂hj

∂xk
,−∂hj

∂yk
,−∂hj

∂zk

← formula of partial derivatives of one term hj function for atoms
i,j and k in 3 directions.

−∂hk

∂xi
, −∂hk

∂yi
,−∂hk

∂zi
,−∂hk

∂xj
,−∂hk

∂yj
,−∂hk

∂zj
,−∂hk

∂xk
,−∂hk

∂yk
,−∂hk

∂zk

← formula of partial derivatives of one term hk function for atoms
i,j and k in 3 directions.

else

hj ← 0
hk ← 0
−∂hi

∂xi
, −∂hi

∂yi
,−∂hi

∂zi
,− ∂hi

∂xj
,−∂hi

∂yj
,−∂hi

∂zj
,− ∂hi

∂xk
,− ∂hi

∂yk
,− ∂hi

∂zk
← 0

−∂hk

∂xi
, −∂hk

∂yi
,−∂hk

∂zi
,−∂hk

∂xj
,−∂hk

∂yj
,−∂hk

∂zj
,−∂hk

∂xk
,−∂hk

∂yk
,−∂hk

∂zk
← 0

endif

elseif r2
ik < first cut off distance square (3.62) then

hi ← one term hi function
−∂hi

∂xi
, −∂hi

∂yi
,−∂hi

∂zi
,− ∂hi

∂xj
,−∂hi

∂yj
,−∂hi

∂zj
,− ∂hi

∂xk
,− ∂hi

∂yk
,− ∂hi

∂zk

← formula of partial derivatives of one term hi function for atoms i,j and
k in 3 directions.

if r2
jk < second cut off distance square (2.82) then

hj ← two terms hj function
hk ← one term hk function
−

∂hj

∂xi
, −∂hj

∂yi
,−∂hj

∂zi
,−∂hj

∂xj
,−∂hj

∂yj
,−∂hj

∂zj
,− ∂hj

∂xk
,−∂hj

∂yk
,−∂hj

∂zk

← formula of partial derivatives of two terms hj function for atoms
i,j and k in 3 directions.

−∂hk

∂xi
, −∂hk

∂yi
,−∂hk

∂zi
,−∂hk

∂xj
,−∂hk

∂yj
,−∂hk

∂zj
,−∂hk

∂xk
,−∂hk

∂yk
,−∂hk

∂zk

← formula of partial derivatives of one term hk function for atoms
i,j and k in 3 directions.

elseif r2
jk < first cut off distance square (3.62) then

hj ← one term hj function
hk ← one term hk function
−

∂hj

∂xi
, −∂hj

∂yi
,−∂hj

∂zi
,−∂hj

∂xj
,−∂hj

∂yj
,−∂hj

∂zj
,− ∂hj

∂xk
,−∂hj

∂yk
,−∂hj

∂zk

← formula of partial derivatives of one term hj function for atoms
i,j and k in 3 directions.

−∂hk

∂xi
, −∂hk

∂yi
,−∂hk

∂zi
,−∂hk

∂xj
,−∂hk

∂yj
,−∂hk

∂zj
,−∂hk

∂xk
,−∂hk

∂yk
,−∂hk

∂zk

← formula of partial derivatives of one term hk function for atoms
i,j and k in 3 directions.

else

hj ← 0
hk ← 0
−

∂hj

∂xi
, −∂hj

∂yi
,−∂hj

∂zi
,−∂hj

∂xj
,−∂hj

∂yj
,−∂hj

∂zj
,− ∂hj

∂xk
,−∂hj

∂yk
,−∂hj

∂zk
← 0

−∂hk

∂xi
, −∂hk

∂yi
,−∂hk

∂zi
,−∂hk

∂xj
,−∂hk

∂yj
,−∂hk

∂zj
,−∂hk

∂xk
,−∂hk

∂yk
,−∂hk

∂zk
← 0

endif

else
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hi ← 0
hj ← 0
−∂hi

∂xi
, −∂hi

∂yi
,−∂hi

∂zi
,− ∂hi

∂xj
,−∂hi

∂yj
,−∂hi

∂zj
,− ∂hi

∂xk
,− ∂hi

∂yk
,− ∂hi

∂zk
← 0

−
∂hj

∂xi
, −∂hj

∂yi
,−∂hj

∂zi
,−∂hj

∂xj
,−∂hj

∂yj
,−∂hj

∂zj
,− ∂hj

∂xk
,−∂hj

∂yk
,−∂hj

∂zk
← 0

if r2
jk < second cut off distance square (2.82) then

hj ← one term hj function
−

∂hj

∂xi
, −∂hj

∂yi
,−∂hj

∂zi
,−∂hj

∂xj
,−∂hj

∂yj
,−∂hj

∂zj
,− ∂hj

∂xk
,−∂hj

∂yk
,−∂hj

∂zk

← formula of partial derivatives of two terms hj function for atoms
i,j and k in 3 directions.

elseif r2
jk < first cut off distance square (3.62) then

hj ← one term hj function
−

∂hj

∂xi
, −∂hj

∂yi
,−∂hj

∂zi
,−∂hj

∂xj
,−∂hj

∂yj
,−∂hj

∂zj
,− ∂hj

∂xk
,−∂hj

∂yk
,−∂hj

∂zk

← formula of partial derivatives of one term hj function for atoms
i,j and k in 3 directions.

else

hj ← 0

−
∂hj

∂xi
, −∂hj

∂yi
,−∂hj

∂zi
,−∂hj

∂xj
,−∂hj

∂yj
,−∂hj

∂zj
,− ∂hj

∂xk
,−∂hj

∂yk
,−∂hj

∂zk
← 0

endif

endif

elseif r1
ij < first cut off distance square (3.62) then

if r2
ik < second cut off distance square (2.82) then

hi ← one term hi function
−hi

xi
, −hi

yi
,−hi

zi
,− hi

xj
,−hi

yj
,−hi

zj
,− hi

xk
,− hi

yk
,−hi

zk

← formula of partial derivatives of one term hi function for atoms i,j and
k in 3 directions.

if r2
jk < second cut off distance square (2.82) then

hj ← one term hj function
hk ← two terms hk function
−

∂hj

∂xi
, −∂hj

∂yi
,−∂hj

∂zi
,−∂hj

∂xj
,−∂hj

∂yj
,−∂hj

∂zj
,− ∂hj

∂xk
,−∂hj

∂yk
,−∂hj

∂zk

← formula of partial derivatives of one term hj function for atoms
i,j and k in 3 directions.

−∂hk

∂xi
, −∂hk

∂yi
,−∂hk

∂zi
,−∂hk

∂xj
,−∂hk

∂yj
,−∂hk

∂zj
,−∂hk

∂xk
,−∂hk

∂yk
,−∂hk

∂zk

← formula of partial derivatives of two terms hk function for atoms
i,j and k in 3 directions.

elseif r2
jk < first cut off distance square (3.62) then

hj ← one term hj function
hk ← one term hk function
−

∂hj

∂xi
, −∂hj

∂yi
,−∂hj

∂zi
,−∂hj

∂xj
,−∂hj

∂yj
,−∂hj

∂zj
,− ∂hj

∂xk
,−∂hj

∂yk
,−∂hj

∂zk

← formula of partial derivatives of one term hj function for atoms
i,j and k in 3 directions.

−∂hk

∂xi
, −∂hk

∂yi
,−∂hk

∂zi
,−∂hk

∂xj
,−∂hk

∂yj
,−∂hk

∂zj
,−∂hk

∂xk
,−∂hk

∂yk
,−∂hk

∂zk

← formula of partial derivatives of one term hk function for atoms
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i,j and k in 3 directions.
else

hj ← 0
hk ← 0
−

∂hj

∂xi
, −∂hj

∂yi
,−∂hj

∂zi
,−∂hj

∂xj
,−∂hj

∂yj
,−∂hj

∂zj
,− ∂hj

∂xk
,−∂hj

∂yk
,−∂hj

∂zk
← 0

−∂hk

∂xi
, −∂hk

∂yi
,−∂hk

∂zi
,−∂hk

∂xj
,−∂hk

∂yj
,−∂hk

∂zj
,−∂hk

∂xk
,−∂hk

∂yk
,−∂hk

∂zk
← 0

endif

elseif r2
ik < first cut off distance square (3.62) then

hi ← one term hi function
−∂hi

∂xi
, −∂hi

∂yi
,−∂hi

∂zi
,− ∂hi

∂xj
,−∂hi

∂yj
,−∂hi

∂zj
,− ∂hi

∂xk
,− ∂hi

∂yk
,− ∂hi

∂zk

← formula of partial derivatives of one term hi function for atoms i,j and
k in 3 directions.

if r2
jk < second cut off distance square (2.82) then

hj ← one term hj function
hk ← one term hk function
−

∂hj

∂xi
, −∂hj

∂yi
,−∂hj

∂zi
,−∂hj

∂xj
,−∂hj

∂yj
,−∂hj

∂zj
,− ∂hj

∂xk
,−∂hj

∂yk
,−∂hj

∂zk

← formula of partial derivatives of one term hj function for atoms
i,j and k in 3 directions.

−∂hk

∂xi
, −∂hk

∂yi
,−∂hk

∂zi
,−∂hk

∂xj
,−∂hk

∂yj
,−∂hk

∂zj
,−∂hk

∂xk
,−∂hk

∂yk
,−∂hk

∂zk

← formula of partial derivatives of one term hk function for atoms
i,j and k in 3 directions.

else

−
∂hj

∂xi
, −∂hj

∂yi
,−∂hj

∂zi
,−∂hj

∂xj
,−∂hj

∂yj
,−∂hj

∂zj
,− ∂hj

∂xk
,−∂hj

∂yk
,−∂hj

∂zk
← 0

−∂hk

∂xi
, −∂hk

∂yi
,−∂hk

∂zi
,−∂hk

∂xj
,−∂hk

∂yj
,−∂hk

∂zj
,−∂hk

∂xk
,−∂hk

∂yk
,−∂hk

∂zk
← 0

endif

else

hi ← 0
hk ← 0
−∂hi

∂xi
, −∂hi

∂yi
,−∂hi

∂zi
,− ∂hi

∂xj
,−∂hi

∂yj
,−∂hi

∂zj
,− ∂hi

∂xk
,− ∂hi

∂yk
,− ∂hi

∂zk
← 0

−∂hk

∂xi
, −∂hk

∂yi
,−∂hk

∂zi
,−∂hk

∂xj
,−∂hk

∂yj
,−∂hk

∂zj
,−∂hk

∂xk
,−∂hk

∂yk
,−∂hk

∂zk
← 0

if r2
jk < first cut off distance square (3.62) then

hj ← one term hj function
−

∂hj

∂xi
, −∂hj

∂yi
,−∂hj

∂zi
,−∂hj

∂xj
,−∂hj

∂yj
,−∂hj

∂zj
,− ∂hj

∂xk
,−∂hj

∂yk
,−∂hj

∂zk

← formula of partial derivatives of one term hj function for atoms
i,j and k in 3 directions.

else

hj ← 0
−

∂hj

∂xi
, −∂hj

∂yi
,−∂hj

∂zi
,−∂hj

∂xj
,−∂hj

∂yj
,−∂hj

∂zj
,− ∂hj

∂xk
,−∂hj

∂yk
,−∂hj

∂zk
← 0

endif

endif i
else

hi ← 0
hj ← 0
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−∂hi

∂xi
, −∂hi

∂yi
,−∂hi

∂zi
,− ∂hi

∂xj
,−∂hi

∂yj
,−∂hi

∂zj
,− ∂hi

∂xk
,− ∂hi

∂yk
,− ∂hi

∂zk
← 0

−
∂hj

∂xi
, −∂hj

∂yi
,−∂hj

∂zi
,−∂hj

∂xj
,−∂hj

∂yj
,−∂hj

∂zj
,− ∂hj

∂xk
,−∂hj

∂yk
,−∂hj

∂zk
← 0

if r2
ik < second cut off distance square (2.82) then

if r2
jk < second cut off distance square (2.82) then

hk ← two terms hk function
−∂hk

∂xi
, −∂hk

∂yi
,−∂hk

∂zi
,−∂hk

∂xj
,−∂hk

∂yj
,−∂hk

∂zj
,−∂hk

∂xk
,−∂hk

∂yk
,−∂hk

∂zk

← formula of partial derivatives of two terms hk function for atoms
i,j and k in 3 directions.

elseif r2
jk < first cut off distance square (3.62) then

hk ← one term hk function
−∂hk

∂xi
, −∂hk

∂yi
,−∂hk

∂zi
,−∂hk

∂xj
,−∂hk

∂yj
,−∂hk

∂zj
,−∂hk

∂xk
,−∂hk

∂yk
,−∂hk

∂zk

← formula of partial derivatives of one term hk function for atoms
i,j and k in 3 directions.

else

hk ← 0
−∂hk

∂xi
, −∂hk

∂yi
,−∂hk

∂zi
,−∂hk

∂xj
,−∂hk

∂yj
,−∂hk

∂zj
,−∂hk

∂xk
,−∂hk

∂yk
,−∂hk

∂zk
← 0

endif

elseif r2
ik < first cut off distance square (3.62) then

if r2
jk < first cut off distance square (3.62) then

hk ← one term hk function
−∂hk

∂xi
, −∂hk

∂yi
,−∂hk

∂zi
,−∂hk

∂xj
,−∂hk

∂yj
,−∂hk

∂zj
,−∂hk

∂xk
,−∂hk

∂yk
,−∂hk

∂zk

← formula of partial derivatives of one term hk function for atoms
i,j and k in 3 directions.

else

hk ← 0
−∂hk

∂xi
, −∂hk

∂yi
,−∂hk

∂zi
,−∂hk

∂xj
,−∂hk

∂yj
,−∂hk

∂zj
,−∂hk

∂xk
,−∂hk

∂yk
,−∂hk

∂zk
← 0

endif

else

hk ← 0
−∂hk

∂xi
, −∂hk

∂yi
,−∂hk

∂zi
,−∂hk

∂xj
,−∂hk

∂yj
,−∂hk

∂zj
,−∂hk

∂xk
,−∂hk

∂yk
,−∂hk

∂zk
← 0

endif

endif

3-body potential ← hi + hj + hk

total energy ← total energy + 3-body energy

% calculate 3-body force for triplets in x, y and z directions
total acceleration x(i)← total acceleration x(i)+f3xi/mass (i)
total acceleration y(i)← total acceleration y(i)+f3yi/mass (i)
total acceleration z(i)← total acceleration z(i)+f3zi/mass (i)
total acceleration x(j)← total acceleration x(j)+f3xj/mass (j)
total acceleration y(j)← total acceleration y(j)+f3yj/mass (j)
total acceleration z(j)← total acceleration z(j)+f3zj/mass (j)
total acceleration x(k)← total acceleration x(k)+f3xk/mass (k)
total acceleration y(k)← total acceleration y(k)+f3yk/mass (k)



A.3 Algorithm 113

total acceleration z(k)← total acceleration z(k)+f3zk/mass (k)

% end inner loop for k
enddo loop k

endif

% end inner loop for j
enddo loop j

% end outer loop for i
enddo loop i

A.3.1 Neighborhood lists: NEIGHBOUR3

This subroutine NEIGHBOUR3 constructs a list of triplets by combining pairs from the
pair list, which had one particle in common. To save CPU time a list of pairs was made
with a distance from each other smaller than a limited cut off distance, r∗list=4. Pair
interactions were calculated when r∗ was equal to or smaller than this value. Within
a limited time interval, the lists for 2-body and 3-body neighborhoods are required to
update.

subroutine construct(update)

use constants % define constants

use posvel

implicit none

integer(long) i,np,j,ipf,ipl,k

integer neibj,neibk

real (8) rxij,ryij,rzij,rijsq

logical update

open(88,file=’nblist.dat’,status=’unknown’) % The file stores neighborhoods for possible pairs

open(888,file=’ntlist.dat’,status=’unknown’)% The file stores neighborhoods for possible triplets

do 2100 i=1,n

pntr(i)=0

nlist(i)=0

qx(i)=0.00

qy(i)=0.00

qz(i)=0.00

2100 continue

do 2200 i=1,nbmax

nblist(i)=0

2200 continue

np=1

do 2400 i=1,n-1

do 2300 j=i+1,n

rxij=rx(i)-rx(j)

if (rxij.gt.0.5d0) then

rxij=rxij-1.0d0

else if (rxij.lt.-0.5d0) then

rxij=rxij+1.0d0
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endif

if (dabs(rxij).gt.rls) go to 2300

ryij=ry(i)-ry(j)

if (ryij.gt.yxrat2) then

ryij=ryij-yxrat

else if (ryij.lt.-yxrat2) then

ryij=ryij+yxrat

endif

rijsq=rxij**2+ryij**2

if (rijsq.gt.rls2) go to 2300

rzij=rz(i)-rz(j)

if (rzij.gt.yxrat2) then

rzij=rzij-yxrat

else if (rzij.lt.-yxrat2) then

rzij=rzij+yxrat

endif

rijsq=rijsq+rzij**2

if (rijsq.gt.rls2) go to 2300 % rls2 is the square of the rlist

nlist(i)=nlist(i)+1

nlist(j)=nlist(j)+1

ntlist(i,nlist(i))=j

ntlist(j,nlist(j))=i

nblist(np)=j

np=np+1

if (np.gt.nbmax) then

write (*,*) ’ Not enough room in nblist’

stop

endif

2300 continue

pntr(i)=np-1

2400 continue

update=.false.

ipf=1

do i=1,n-1

ipl=pntr(i)

if(ipf.le.ipl) then

do neibj=ipf,ipl

j=nblist(neibj)

write(88,’(2i5)’) i,j

enddo

endif

ipf=ipl+1

enddo

do i=1,n

do neibj=1,nlist(i)-1

j=ntlist(i,neibj)

do neibk=neibj+1,nlist(i)

k=ntlist(i,neibk)

write(888,’(3i5)’) i,j,k

enddo

enddo

enddo

close(88)

close(888)

return

end
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