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In this paper we study some decay estimates in nonlinear hyperbolic system of conser-
vation laws. This research is not only interesting in itself but also crucial in studying the
large time behavior problem. By introducing a proper Glimm functional, we obtain some
useful decay estimates which are proved helpful in obtaining decay rates of the admissible
solutions to nonlinear hyperbolic conservation laws as t → ∞.
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1. Introduction

We consider the Cauchy problem{
ut + f (u)x = 0,

u(x,0) = u0(x),
(1.1)

with the additional assumptions:

(A) The total variation of u0(x) is small.
(B) For each characteristic field, ∇λi(u) · ri(u) vanishes at a single manifold of codimension one, which is transversal to the

characteristic vector ri(u). We denote the linear degeneracy manifold by LDi ≡ {u: ∇λi(u) · ri(u) = 0, u ∈ R
n}. Assume

(∇uuλi(u) · ri(u)) · ri(u) �= 0 and 0 ∈ LDi .

The initial data of (1.1) satisfies u0(x) = 0 for |x| � N . Here u ∈ R
n , f :Ω 	→ R

n is a smooth vector function with Ω ⊂ R
n

being an open set. Denote A(u) as D f (u) the n × n Jacobian matrix of the flux function f . The system (1.1) is assumed to
be strictly hyperbolic, that is, for every u ∈ Ω , the matrix A(u) has n real distinct eigenvalues, denoted by

λ1(u) < λ2(u) < · · · < λn(u).

Corresponding to these eigenvalues, there are n linearly independent right eigenvectors ri(u) and left eigenvectors li(u). We
normalize ri(u) by ‖ri(u)‖ = 1 and li(u) · ri(u) = 1.

For the same problem with the assumptions (A) and

(C) each characteristic field is genuinely nonlinear,

we can use a similar argument to obtain similar conclusion, see Remarks 2.1 and 4.4.
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Let us introduce some basic concepts of weak solutions to the hyperbolic conservation laws, which will be used in later
discussion. The weak solution considered is defined as follows:

Definition 1.1. A function u : [0, T ] × R 	→ R is a weak solution of the problem (1.1), if u is a bounded measurable function
and ∫ ∫

t�0

[
uφt + f (u)φx

]
dx dt +

∫
t=0

u0(x)φ(x,0)dx = 0, (1.2)

holds for any smooth function φ with compact support in {(x, t) | (x, t) ∈ R
2}.

Under the assumptions (A) and (B), the global existence of weak solutions to (1.1) is demonstrated by introducing the
Glimm scheme or wavefront tracking algorithm and using the solutions to the Riemann problems solved by Lax as building
blocks, cf. [1,3,6,15,16,18–22] and references therein. There are two main elements to consider in proving the existence
theory of the Cauchy problem. One is to prove the decreasing of Glimm functional and the other one is to approximate the
initial data by piecewise constant functions and solve the Riemann problems locally in space and time. Here, the Riemann
problem is (1.1) with the initial data given by

u0(x) =
{

u− if x < 0,

u+ if x > 0,
(1.3)

where u± are constants. In the Riemann problem it is well known that corresponding to the n characteristic fields of the
system, there are n Hugoniot curves. Since the weak solution is not unique we need the following Liu’s entropy condition
to choose the physical shock.

Definition 1.2. (See [19].) A discontinuity (u−, u+) is admissible if

σi(u−, u+) � σi(u−, u), (1.4)

for any state u on the Hugoniot curve Si(u−) between u− and u+ , where Si(u−) ≡ {u: σi(u−, u)(u− − u) = f (u−) − f (u)}.

Any state u on the i-th Hugoniot curve Si(u0) is connected to u0 by an i-th shock wave, if the above entropy condition
is satisfied. We denote Si(α)(u0) as the state which can be connected to u0 by an i-th shock wave of strength α. Note that
the shock wave described here includes the case of contact discontinuity.

Another basic wave pattern used to solve Riemann problem is called the rarefaction wave. The state Ri(α)(u0)

(i = 1,2, . . . ,n) is connected to u0 by an i-th rarefaction wave of strength α, if⎧⎨
⎩

d

dα
Ri(α)(u0) = ri

(
Ri(α)(u0)

)
, for λi

(
Ri(α)(u0)

)
> λi(u0),

Ri(0)(u0) = u0.

By implicit function theorem, the Riemann problem for general systems is solved by piecing together waves in different
families. Moreover, with Liu’s entropy condition, each wave in the i-th family, called an i-wave, may be the composition of
several i-th admissible shocks and rarefaction waves.

In [20] the authors construct the wave curve W i(α)(u0) as the curve consisting of all the end states that can be con-
nected to u0 by admissible shocks, rarefaction waves or their combination of the i-th family. Here α is a non-degenerate
parameter along the curve. Up to a linear transformation, this parameter can be chosen as the i-th component of u, i.e. ui .
The wave curve has the following regularity result:

Lemma 1.1. (See [2].) With the assumptions (A) and (B), the admissible i-th curve W i(s)(u0) has Lipschitz continuous first order
derivatives.

Let us introduce the notations to be used later. The backward and forward generalized characteristics are defined in [14].
We shall take the point of view that a left characteristic does not terminate at a contact shock, but crosses the shock
curve and continues with altered speed and value as a right characteristic. We shall call the resulting piecewise linear,
convex curve a backward generalized characteristic, noting that we regain the property that any point is connected by a
backward generalized characteristic to the initial axis, see Fig. 4. We define a forward generalized characteristic to follow a
characteristic line until it terminates at a shock, and to follow the shock curve thereafter. Define

N+(t)
.= inf

{
y: u(x, t) = 0, ∀x > y

}
, N+(0) = N, (1.5)

N−(t)
.= sup

{
y: u(x, t) = 0, ∀x < y

}
, N−(0) = −N. (1.6)
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It is well known that∣∣N±(t)
∣∣ � C1t + N, (1.7)

where C1 is a constant independent of t . As in [17] for any given t0 large enough, we denote by Y i
L(t), Y i

R(t), i = 1, . . . ,n,
the i-th forward characteristics issuing from the point (N+(t0), t0) and (N−(t0), t0), respectively. It follows from the strict
hyperbolicity of (1.1) that there exists t1 such that Y i

L(t) intersects Y j
R(t), i, j = 1, . . . ,n, i > j, before time t1. Similarly

from t1 we can obtain t2. Therefore, if we choose t0 large enough we can obtain

t2 � Kt0. (1.8)

Here K is a constant independent of t . Without any ambiguity we use Y i
L(t), Y i

R(t), i = 1, . . . ,n, to denote the forward i-th
characteristics issuing from any t0. ξi(t; t0) denotes the interval [Y i

L(t), Y i
R(t)], while ςi(t; t0) denotes the horizontal interval

outside Y i
L(t) and Y i

R(t) issuing from t0.
We set Xi(t)

.= T .V .{λi(u(x, t)): x ∈ R}, X(t)
.= ∑

i Xi(t). Let X+
i (t) and X−

i (t) denote the increasing and decreasing
variation of λi respectively at the fixed time t . It is clear that Xi(t) = X+

i (t) + X−
i (t). In this paper we use X±

i (ξi(t;τ )) to

denote the increasing and decreasing variation of λi in ξi(t;τ ), using X±
i (ςi(t;τ )) to denote the increasing and decreasing

variation of λi outside ξi(t;τ ). We use the symbols α, β , etc. to represent both waves (in symbolic sense) and their strengths
(in numerical sense) in this paper.

The main result of this paper can be stated as follows.

Theorem 1.1. For any time t � t2

X±
i

(
ςi(t; t1)

)
� O (1)Q 2(t0), (1.9)

X+
i (t) � |ξi(t; t0)|

t − t′ +
[

1

4
+ O (1)V (0)

]
X+

i

(
ξi

(
t′; t0

)) + O (1)
[

Q 2(t0) + Q
(
t′)], (1.10)

Q (t2) � V (t2)X
3
2 (t2) + O (1)Q (t0)V (t2), (1.11)

provided the total variation of the initial data u(x,0) is small enough. Here t1 < t′ < t, |A| denotes the Lebesgue measure of set A,
Q (t) and V (t) will be defined in the next section.

The remainder of the paper will be organized as follows. In the next section, we review some basic properties of the
system (1.1) under assumptions (A) and (B), and the new wave potential in Glimm functional is introduced, together with
some preliminaries of the wave interaction estimates in the wave tracing argument. In Section 3 we give some useful decay
estimates and the proof of the main Theorem 1.1. In the last section we give an application of the estimation in Section 3.

2. Basic properties and Glimm functional

Without ambiguity we will use W i(u0) to denote the composite wave curve through the state u0. As in [11,13], in the
following discussion, we will assume that a rarefaction wave is divided into several small rarefaction shocks with strength
as a pre-chosen small constant in the wave front tracking method. In this way, the shock waves and rarefaction waves can
be treated in the same way and the error thus caused tends to zero as the small constant approaches zero.

Definition 2.1. (See [20].) Let ur ∈ W i(ul) so that ul is connected to ur by i-discontinuities (u j−1, u j), and i-rarefaction
waves (u j, u j+1), j odd, 1 � j � m − 1, u0 = ul and um = ur . A set of vectors {v0, v1, . . . , v p} is a partition of (ul, ur) if

(i) v0 = ul , v p = ur , vi
k−1 � vi

k , k = 1,2, . . . , p,
(ii) {u0, u1, . . . , um} ⊂ {v0, v1, . . . , v p},

(iii) vk ∈ Ri(u j), j odd, if ui
j < vi

k < ui
j+1,

(iv) vk ∈ Di(u j−1, u j), j odd, if ui
j−1 < vi

k < ui
j . Here

Di(ul, ur) ≡ {
u: (u − ul)σ (ul, ur) − (

f (u) − f (ul)
) = c(u)ri(u) for some scalar c(u)

}
.

Then set

(1) yk ≡ vk − vk−1,
(2) λi,k ≡ λi(vk−1) and [λi]k ≡ [λi](vk−1, vk) ≡ λi(vk) − λi(vk−1) > 0 if (iii) holds,
(3) λi,k ≡ σ(u j−1, u j) and [λi]k ≡ [λi](vk−1, vk) ≡ 0 if (iv) holds.
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The partition is stable under the perturbation in the following sense.

Lemma 2.1. (See [20].) Suppose that ur ∈ W i(ul), ūr ∈ W i(ūl), with ui
r − ui

l = ūi
r − ūi

l ≡ α > 0, and |ul − ūl| ≡ β . Then there

exist partitions {v0, v1, . . . , v p} and {v̄0, v̄1, . . . , v̄ p} for the i-waves (ul, ur) and (ūl, ūr) respectively such that v̄i
k − v̄ i

0 = vi
k − vi

0 ,
k = 1,2, . . . , p, and the following hold:

(i)
∑p

k=1 |yk − ȳk| = O (1)αβ .
(ii) |λi,k − λ̄i,k| = O (1)β , k = 1,2, . . . , p.

(iii) Let Θ+(ul, ur) represent the value of λi at the right state ur minus the wave speed of the right-most i-wave in (ul, ur). Similar
definition holds for Θ−(ul, ur).
Then ∣∣Θ−(ul, ur) − Θ−(ūl, ūr)

∣∣ + ∣∣Θ+(ul, ur) − Θ+(ūl, ūr)
∣∣ = O (1)αβ.

Moreover, the index set {1,2, . . . , p} can be written as a disjointed union of subsets I, II and III such that
(iv) for k ∈ I corresponding to rarefaction waves, both vk and v̄k are of type (iii) of Definition 2.1 and∑

k∈I

∣∣[λi]k − [λ̄i]k
∣∣ = O (1)αβ,

(v) for k ∈ II corresponding to discontinuities, both vk and v̄k are of the type (iv) of Definition 2.1,
(vi) for k ∈ III corresponding to mixed types, vk and v̄k are of different types and∑

k∈III

∣∣[λi]k + [λ̄i]k
∣∣ = O (1)αβ.

Defining a proper Glimm functional is crucial in obtaining some decay estimates which are useful in studying the large
time behavior problem and N-waves, cf. [4,5,7–11,13,14,17], etc. For instance, in paper [17] the author gives the decay rates

of total variation of the wave speed as t− 1
2 . The scalar case of this problem in genuinely nonlinear conservation laws dates

back to 1975 [8] and 1965 [9].
In the problem (1.1), with initial data compactly supported, for t large enough, we know the main interaction comes from

the same family, so the proper definition of the same family wave potential Q s is crucial in the study of decay estimation.
We define the following Glimm type functional:

F (t) ≡ V (t) + M0 Q (t).

In the above definition,

V (t) =
∑{|α|: α is any wave in u(t, x)

}
, Q (t) = Q d(t) + Q s(t),

Q d(t) =
∑{|α||β|: α and β are strengths of i-th and j-th waves of u(t, x), respectively, i > j,

and α lies to the right of β
}
,

Q s(t) =
n∑

i=1

Q i
s,

Q i
s =

∑{
X

1
2 (t)

(|α|∣∣�λi(β)
∣∣ + |β|∣∣�λi(α)

∣∣): α and β are two i-waves in u(t, x)
}
. (2.1)

Here M0 is a suitably large constant and |�λi(α)| is the total variation of λi across the wave α.

Remark 2.1. In the genuinely nonlinear case, Q i
s is defined as

Q i
s =

∑{|α||β|V (t): α and β are two i-waves in u(t, x)
}
. (2.2)

Theorem 2.2. F (t) is non-increasing at the times of interaction provided that M0 is chosen large enough and the total variation of
u(x,0) is suitably small.

The theorem will be proved in next section.
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3. Some decay estimates

The purpose of this section is to formulate our main estimation. We show that X+(t) and Q (t) can be estimated step
by step. Without loss of generality we assume (∇uuλi(u) · ri(u)) · ri(u) < 0 for u ∈ LDi .

We review some known results for later use. The following lemma estimates the speed variations.

Lemma 3.1. (See [12].) There exists a constant η0 > 0 such that any i-wave α = (ul, ur) with |α| < η0 satisfies∣∣�λi(α)
∣∣ ≈ (∣∣ui

m − ui∗
∣∣ + |α|)|α|,

where um is any state on W i(ul) and lies between ul and ur .

Lemma 3.2. (See [12].) u∗ ∈ LDi ∩ W i(ul), we write u∗ = u∗(ul). Then for any u ∈ R+
i (ul) ∪ S−

i (ul) and any ur ∈ Si(ul), we have

λi(u) − λi(u∗) = c(u∗)
2

(
ui − ui∗

)2 + O
[(∣∣ui − ui∗

∣∣2 + ∣∣ui
l − ui∗

∣∣2)∣∣ui − ui∗
∣∣], (3.1)

σi(ur, ul) − λi(u∗) = c(u∗)
6

((
ui

r − ui∗
)2 + (

ui
r − ui∗

)(
ui

l − ui∗
) + (

ui
l − ui∗

)2) + O
(∣∣ui

l − ui∗
∣∣3 + ∣∣ui

r − ui
l

∣∣3)
, (3.2)

where c(u∗) = (∇uuλi(u∗) · ri(u∗)) · ri(u∗) �= 0.

Lemma 3.3. (See [13].) Suppose that (ul, ur) is a left contact i-shock, and u∗ ∈ LDi ∩ Si(ul), then ui∗ − ui
l → 0 as ui

r − ui∗ → 0.

Lemma 3.4. (See [13].) Suppose that (ul, ur) is a composite i-wave. Furthermore, ul is related to ur by an i-th rarefaction (ul, um) and
a left contact i-shock (um, ur). We set ur = W i(α)(ul) = Si(α − αl) ◦ Ri(αl)(ul), where αl = ui

m − ui
l , αr = ui

r − ui
m, α = ui

r − ui
l .

Take u∗ ∈ LDi ∩ W i(ul). Then dαl
dα |W i(α)=u∗ = − 1

2 .

Lemma 3.5. With the same assumption as in Lemma 3.4 we can obtain

dλi(Ri(αl))

dα

∣∣∣∣
W i(α)=u∗

= 1

4

dλi(W i(α))

dα

∣∣∣∣
W i(α)=u∗

. (3.3)

Proof. In the following, for simplicity of notation, we omit the dependency of Si , Ri , W i on ul . The left contact shock
satisfies the following equality:

λi(um)(um − ur) − (
f (um) − f (ur)

) = 0. (3.4)

Simple calculation shows that

∇ f
(
W i(α)

)
Ẇ i(α) − dαl

dα
∇ f

(
Ri(αl)

)
Ṙ i(αl)

= ∇λi · ri
(

Ri(αl)
)dαl

dα

(
W i(α) − Ri(αl)

) + λi
(

Ri(αl)
)(

Ẇ i(α) − dαl

dα
Ṙ i(αl)

)
.

Using the above equality we can deduce

dλi(Ri(αl))

dα
= [λi(W i(α)) − λi(Ri(αl))]li(W i(α)) · Ẇ i(α)

∇uλi(W i(α)) · Ẇ i(α)li(W i(α)) · (W i(α) − Ri(αl))

dλi(W i(α))

dα
. (3.5)

Using a similar calculation as that of [13] and Lemma 3.3 we obtain

[λi(W i(α)) − λi(Ri(αl))]li(W i(α)) · Ẇ i(α)

∇uλi(W i(α)) · Ẇ i(α)li(W i(α)) · (W i(α) − Ri(αl))

∣∣∣∣
W i(α)=u∗

= 1

4
. �

Now we are ready to give the proof of Theorem 2.2.

Proof of Theorem 2.2. As we know the difference between our definition of Glimm functional and the original definition
in [12] is Q s . We only need to estimate the change of F (t) at times of the interaction of the same family.

Suppose that there are i-waves α, β , εi and k-waves εk . α interacts with β at time t yielding i-wave γ and k-waves δk ,
k �= i, as shown in Fig. 1:

α + β → γ +
∑

δk.
k �=i
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Fig. 1. Wave interaction of the same family.

Case 1: α,β > 0 or α,β < 0, that is, α, β are in the same direction. From estimates of wave interaction in [12], we know
that

|γ − α − β| +
∑
k �=i

|δk| = O (1)|α||β|(∣∣�λi(α)
∣∣ + ∣∣�λi(β)

∣∣) (3.6)

and ∣∣�λi(γ )
∣∣ − ∣∣�λi(α)

∣∣ − ∣∣�λi(β)
∣∣ = O (1)|α||β|(∣∣�λi(α)

∣∣ + ∣∣�λi(β)
∣∣). (3.7)

Then,

�Q (t) = Q (t+) − Q (t−)

= −X
1
2 (t−)

(|α|∣∣�λi(β)
∣∣ + |β|∣∣�λi(α)

∣∣) +
∑
εk

|εk|
[|γ | − |α| − |β|] +

∑
εi

|εi|
[∣∣�λi(γ )

∣∣X
1
2 (t+)

− (∣∣�λi(α)
∣∣ + ∣∣�λi(β)

∣∣)X
1
2 (t−) + ∣∣�λi(εi)

∣∣(|γ |X
1
2 (t+) − (|α| + |β|)X

1
2 (t−)

)]
� −1

2
X

1
2 (t−)

(|α|∣∣�λi(β)
∣∣ + |β|∣∣�λi(α)

∣∣).
Case 2: α > 0, β < 0 and γ = ∑m−1

k=1 γik + γim > 0, here
∑m−1

k=1 γik
.= γ r , γim

.= γ s .

�Q (t) = Q (t+) − Q (t−)

� −X
1
2 (t−)

(|α|∣∣�λi(β)
∣∣ + |β|∣∣�λi(α)

∣∣) + X
1
2 (t+)

m−1∑
k, j=1

[|γik|
∣∣�λi(γi j)

∣∣ + |γi j|
∣∣�λi(γik)

∣∣]

+ X
1
2 (t+)

m−1∑
k=1

[|γik|
∣∣�λi(γim)

∣∣ + |γim|∣∣�λi(γik)
∣∣]

� −X
1
2 (t−)

(|α|∣∣�λi(β)
∣∣ + |β|∣∣�λi(α)

∣∣) + 3

4
X

1
2 (t+)|β|∣∣�λi(α)

∣∣ + 1

2
X

1
2 (t+)|α|∣∣�λi(β)

∣∣
� 0.

In the above estimation we have used the results in Lemmas 3.4 and 3.5.
Finally, if M0 is chosen large enough and the total variation of u0 is suitably small, we obtain

�F (t) = F (t+) − F (t−) � 0.

This ends the proof. �
Remark 3.1. From the proof of Theorem 2.2, it is clear that Q (t) is strictly decreasing with respect to t .

With the help of the Glimm functional and the above lemmas, we can obtain the following lemma, which will be used
in the proof of Theorem 1.1.

Lemma 3.6. For any t � t1 , we have

X±
i

(
ςi(t; t0)

)
� O (1)Q 2(t0), (3.8)

X+
i (t) � X+

i

(
ξi

(
t′; t0

)) + O (1)O (1)
[

Q 2(t0) + Q
(
t′)], (3.9)

Q (t1) � Q s(t1) + O (1)Q (t0)V (t1). (3.10)

Here t0 < t′ < t.
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Fig. 2. Wave interaction of different families.

Fig. 3. Estimate for rarefaction waves.

Proof. Clearly for t � t1 the total amount of i-waves in ςi(t; t0) is Q (t0). With the help of Lemma 3.1 we can easily
obtain (3.8). From the definition of Q (t) and (3.8), we can deduce (3.10) directly. Now we demonstrate the proof of (3.9).
From (3.8) we have

X+
i (t) � X+

i

(
ξi(t; t0)

) + O (1)Q 2(t0). (3.11)

Lemma 3.5 shows that X+
i (ξi(t; t0)) � X+

i (ξi(t′; t0)) provided that there is no wave interaction of different families. Other-
wise, as in paper [13], assume that αi = (ul, um) is the wave of the i-th family, on the left of α j = (um, ur) (i > j) and the
interaction

αi + α j → α̃i + α̃ j +
∑

k �=i, j

δk

takes place at time t with the location x, see Fig. 2. Use the notation α̃ j
.= (̃ul, ũm), α̃i

.= ( ûm, ũr).
Take ûr ∈ W i( ûm) such that αi = û i

r − û i
m . We know that |̂ur − ũr | = O (1)|αi ||α j|. Then using Lemma 2.1 to (ul, um) and

( ûm, ûr) we obtain

X+
i

(
ξi(t; t0)

)
� X+

i

(
ξi

(
t′; t0

)) + O (1)Q
(
t′) � X+

i

(
t′) + O (1)Q

(
t′). (3.12)

Hence, the combination of (3.11) and (3.12) yields (3.10). �
Proof of Theorem 1.1. With the help of strict decreasing of Q (t) the proof of (1.9) and (1.11) is similar to Lemma 3.6.
We will not give it here. Now we prove the estimation (1.10). Let D(t) be the distance between any backward generalized
characteristic yi

L(t) and yi
R(t) at time t . Divide D(t) into intervals Di(t) where λi is increasing.

For every D j , if the characteristics extend from t′ to t without crossing any waves, refer to D1 in Fig. 3. Clearly

X+
i

(
D j(t)

)
� |D j(t)|

t − t′ . (3.13)

If the backward characteristics do encounter waves of other families, refer to D2 in Fig. 3. Lemma 2.1 shows that

X+
i

(
D j(t)

)
� |D j(t)|

′ + O (1)Q
(
t′). (3.14)
t − t
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For the case of an i-rarefaction crossing an i-shock, refer to D3(t) in Fig. 3. From the result of Lemma 3.5 we know that

X+
i

(
D3(t)

)
�

[
1

4
+ O (1)V (0)

]
X+

i

(
D3

(
t′)). (3.15)

Combining (3.13), (3.14), and (3.15) and given that rarefaction waves arising from interaction can be bounded by O (1)Q (t′),
the proof of the lemma is completed. �
Remark 3.2. In scalar conservation laws, for any t′ < t , we have

X+(t) = X+(
ξ(t)

)
� |ξ(t)|

t − t′ +
[

1

4
+ O (1)V (0)

]
X+(

ξ
(
t′)). (3.16)

Here ξ(t) = [Y L(t), Y R(t)], Y L(t), Y R(t) are the forward characteristics issuing from (−N,0) and (N,0) respectively.

4. Application

Applying the estimation in Section 3 and the following lemma we obtain the decay rates of X(t) and Q (t). The rates of
decay can be stated as follows.

Theorem 4.1. For total variation of the initial data u(x,0) sufficiently small, and t > 0, we have

X(t) = O (1)t−1+�, (4.1)

Q (t) = O (1)t− 3
2 + 3

2 �. (4.2)

Here � = 4+3θ−
√

9θ2−24θ+4
6 , θ > 0 is a small fixed constant.

In order to obtain Theorem 4.1 we first give the following lemma.

Lemma 4.1. Suppose that for all t � T and T large enough, we have

max
{∣∣λi

(
u(·, t)

) − λi(0)
∣∣} � Ct−1+�, (4.3)

X+(t) � HCt−1+�, (4.4)

Q (t) � (HC)
3
2 t− 3

2 + 3
2 �, (4.5)

where C < 1 and H is sufficiently large. Then for t � 2T we have

max
{∣∣λi

(
u(·, t)

) − λi(0)
∣∣} � C ′t−1+�, (4.6)

X+(t) � HC ′t−1+�, (4.7)

Q (t) �
(

HC ′) 3
2 t− 3

2 + 3
2 �, (4.8)

for C ′ = (1 + H2T −θ )C + H2T −θ , where � = 4+3θ−
√

9θ2−24θ+4
6 , θ > 0 is a small constant.

Proof. We prove the lemma by three steps.
Step 1. Since u(x, t) is of compact support,

X−(T ) = X+(T ) + O (1)Q (φT ), (4.9)

so

X(T ) = 2X+(T ) + O (1)Q (φT ). (4.10)

Here and in the following φ = 1
K is independent of t . Using Theorem 1.1 and the definition of Q (t), for T large enough, we

have

Q (T ) � O (1)V (T )
[

X
3
2 (T ) + Q (φT )

]
. (4.11)

From Remark 3.1, for T � t � 2T , we obtain

Q (t) � Q (T ) � (HC)
3
2 (2T )−

3
2 + 3

2 �
[

O (1)V (0)2
3(1−�)

2
(
1 + φ− 3

2 + 3
2 �

)]
.

Choose V (0) small enough, such that O (1)V (0)2
3(1−�)

2 (1 + φ− 3
2 + 3

2 �) � 1. Now we complete the proof of (4.8).
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Step 2. Let T∗ = T � · T −θ , Y i
L = (uL

l , uL
r ), Y i

R = (uR
l , uR

r ), and for t ∈ [T∗, T ].
By direct calculation, it is clear that

dY i
R

dt
− λi(0) � O (1)Q 2(φT∗). (4.12)

Using (1.9), Lemmas 3.1 and 3.2 we have

dY i
L

dt
− λi(0) � 1

3

(
λi

(
uL

r

) − λi(0)
) − O (1)X

3
2 (t) − O (1)Q 2(φT∗). (4.13)

Thus we obtain

Y i
R(T ) − Y i

L(T ) =
T∫

T∗

[
dY i

R

dt
− dY i

L

dt

]
dt + Y i

R(T∗) − Y i
L(T∗) (4.14)

� 1

3�
C T � + K T �T −θ + O (1)(HC)3T �T −θ .

From (1.10) for T ′ � T

X+
i (T ) �

Y i
R(T ) − Y i

L(T )

T − T ′ + 1

4

(
1 + O (1)V (0)

)
X+

i

(
ξi

(
T ′;φT∗

)) + O (1)
[

Q 2(φT∗) + Q
(
T ′)]. (4.15)

Taking T ′ = ξ T in (4.15) we obtain

X+
i (T ) � 1

3�
C(1 − ξ)−1T −1+� + K (1 − ξ)−1T −1+�T −θ

+
(

1

4
+ O (1)V (0)

)
HC(ξ T )−1+� + O (1)(HC)3T −1+�(1 − ξ)−1T −θ

= C(2T )−1+�

[
21−�

(
1

3�
(1 − ξ)−1 + T −θ K

C
(1 − ξ)−1 + O (1)H3(1 − ξ)−1T −θ

)

+
(

1

4
+ O (1)V (0)

)
H

(
2

ξ

)1−�]
.

We choose T large enough, V (0) small enough and ξ suitably close to 1 such that ( 1
4 + O (1)V (0))( 2

ξ
)1−� < 2

3 , then,

there exists H satisfying 36[ 1
3� (1 − ξ)−1 + T −θ K

C (1 − ξ)−1] � H �
√

(1−ξ)T θ

36O (1)
, so H � 18[ 1

3� (1 − ξ)−1 + T −θ K
C (1 − ξ)−1 +

O (1)H3(1 − ξ)−1T −θ ].
From the above calculation for t ∈ [T ,2T ] we can deduce

X+
i (t) � X+

i (T ) + O (1)Q (T ) � HC(2T )−1+�. (4.16)

So far, we may take C ′ = C .

Step 3. Let T0 = T
1
�∗ = T · T − θ

� . With the help of Lemmas 3.1 and 3.2, by direct calculation we have

dY i
L(t)

dt
− λi(0) � 1

3

[
λi

(
u
(
Y i

L(t)+, t
)) − λi(0)

] − O (1)
(

X
3
2 (t) + Q 2(φT∗)

)
� 1

3

[
λi

(
u
(
Y i

L(t)+, t
)) − λi(0)

] − O (1)
[
(HC)3T −1+�−θ + (HC)

3
2 t− 3

2 + 3
2 �

]
.

Denote Y (t) as Y i
L(t) − Y i

R(T0) − λi(0)(t − T0). Then, from the above calculation we have

dY (t)

dt
� 1

3

Y (t)

t − T0
− O (1)

[
(HC)3T −1+�−θ + (HC)

3
2 t− 3

2 + 3
2 �

]
. (4.17)

Solving, we obtain for t � T

Y (t) � Y (T )

(
t − T0

T − T

) 1
3

+ O (1)T −1+�−θ (t − T0). (4.18)

0
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Fig. 4. Y i
L(t).

From Fig. 4 and combining (4.12), (4.13), (4.14), (4.18) we have for T � t � 2T

λi
(
u(x, t)

) − λi(0) �
Y i

L(t) − Y i
R(T0) − λi(0)(t − T0)

t − T0
− O (1)Q 2(φT∗)

� −C
(
1 + O (1)T −θ

)
t−1+� + O (1)T −1+�−θ

� −t−1+�
[
1 + H2T −θ C + H2T −θ

]
.

Similarly

λi
(
u(x, t)

) − λi(0) �
Y i

R(t) − Y i
L(T0) − λi(0)(t − T0)

t − T0
+ O (1)Q (φT∗)

� t−1+�
[

H2T −θ C + H2T −θ
]
.

For T and H2 large enough, let C ′ = (1 + H2T −θ )C + H2T −θ , we complete the proof of (4.6). �
Remark 4.2. In the proof of Lemma 4.1 we omit some lower order items as they are absorbed into higher order ones.

Proof of Theorem 4.1. The proof of this theorem is the same to the paper [14], we only give an outline of the proof here.
Use Lemma 4.1, and let Tn = 2n T , C0 = C . We need to prove Cn+1 = (1 + H2T −θ

n )Cn + H2T −θ
n < 1. In fact,

Cn+1 + 1 = (
1 + H2T −θ

n

)
(Cn + 1). (4.19)

The above equality gives Cn � C0 + O (1)(C0 + 1)T −θ . Choosing T large enough and C0 < 1, we obtain Cn < 1 for all n. �
Remark 4.3. From the proof of Lemma 4.1 and Theorem 4.1 we can see for scalar cubic nonlinear conservation laws the

decay rates can be X(t) = O (1)t− 1
3 , which is consistent with the result in [14].

Remark 4.4. For the genuinely nonlinear system of conservation laws, using the Q defined in Remark 2.1 and similar
argument as in the main theorems we can deduce

X±
i

(
ςi(t; t1)

)
� O (1)Q (t1) � O (1)Q (t0), (4.20)

X+
i (t) � |ξi(t; t0)|

t − t′ + O (1)Q (t0), (4.21)

Q (t2) � X3(t2) + O (1)Q (t0)X(t2), (4.22)

for any t � t2 and sufficiently small V (0). Here t1 < t′ < t .
Using the above estimation and a similar argument as in Theorem 4.1 the following decay rates can be established.
For t > 0, we have the following estimations

X(t) = O (1)t−1+ε, (4.23)

Q (t) = O (1)t−3+3ε, (4.24)

provided the total variation of the initial data u(x,0) is small enough. Here ε = 1
2 , which is consistent with the result

in [17].
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