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tions and perform the energy estimation. Then, we construct a special solution operator
to a linearized equation without source term and use Fourier analysis to obtain the opti-

gf,{:;:;g;n equation mal decay rate to this solution operator. Finally, combining the decay rate with the energy
Frictional force estimation for nonlinear terms, the optimal decay rate to the Boltzmann equation with
Energy method frictional force is established.
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1. Introduction

In this paper we consider the Boltzmann equation with frictional force:

Of+&-Vxf —au-Vef=Q(f. f), (11)

with the initial data

f0,%,8) = fox,§). (1.2)

Here, f = f(x,t,&) € R represents the probability (mass, number) density of gas particles around position x = (x1, X2, X3) €
R3 with velocity & = (£1, &, £3) € R? at time t € Rt. Q is the nonlinear collision operator for hard-sphere model which is
defined by

1
Q.0 =5 [ [(FE€)eE) + FEDele) - F©8E) - FE8@)|E - &) - 2]ds.d2. (13)

R3 52

Here $2 :={2 € S?| (£ — &) -2 >0} and

£=£-[¢E-&) 2], (14)
L =6+[E-8) 2], (1.5)
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&, & are the velocities before collision while &', &, are the velocities after collision. In the damping term —ocu - Vg f, the

frictional force —ou (o > 0) is proportional to the macroscopic velocity u = u(x,t) = f]f*"‘z’fff dd;.
R

Without loss of generality,

we take o =1 throughout this paper.
It is well known that {1, &1, &2, &3, %|§|2} are the five collision invariants satisfying

/¢(§)Q(f,h)dé‘=0- (1.6)
R3
Clearly, the following global Maxwellian M is a stationary solution to (1.1),
M= exp(—I£/2) (17)
(2m)3/2 ’ ’

We decompose f as

f=M++Mg. (1.8)
Then the Boltzmann equation (1.1) can be reformulated into

1

g +& Vig—u-Veg+u-EVM+ou-ég=1g+ (g9, (19)

where L is the linearized collision operator and I" is the corresponding nonlinear collision operator, given by
1
Lg=—=(Qm. VMg) + Q (vVMg, M)),
1
rg. g =-——=QMg VMg). (110)
g8 N g g
Now we consider the Cauchy problem of (1.9) with the corresponding initial data
1
200,%,6) =g0(x.&) = —=(fox, &) = M), (x,§) eR*> xR>. (111)
7t )

It can be mathematically derived that, from (1.1) we can obtain a fluid-type system for the macroscopic components
whose leading term is the Euler system with frictional force which models the compressible flow through porous media.
Since Euler system with frictional force has been extensively studied in [13], etc., we thought it would be interesting to
consider our model.

Before starting our own discussion, let’s mention some of the recent work related to our work.

In the fundamental work [10] and [11,12], the energy method for the Boltzmann equation in the whole space was
independently developed. Later in [8] a new energy method for the Boltzmann equation was introduced. Based on a refined
energy method, in [2] the author proved the global existence and uniform-in-time stability of the solution in the space
Lé(H,’(\’ ) to the Cauchy problem for the Boltzmann equation around a global Maxwellian, in that paper the author introduced
a free energy functional to control the macroscopic part of the solution, which was of the same spirit with Kawashima'’s
compensation function in the Fourier space [9].

As for the decay rates problem, the first breakthrough was made by Ukai in [14], where the author used the spectral
analysis to obtain a exponential rates for the Boltzmann equation with hard potentials on torus. In [15] the method was im-
proved to cope with the existence of time-periodic states with time-periodic sources. In [16] convergence rate to stationary
solutions for Boltzmann equation with external force was given by combining the dissipation from the viscosity and heat
conductivity on the fluid components and the dissipation on the non-fluid component through the celebrated H-theorem.
Recently in [6], a new approach is introduced by combining the energy method and spectral analysis to study the optimal
convergence rates of several gas motions. Later in [1] the author combine the energy method and Fourier analysis to obtain
the optimal time decay of the Vlasov-Poisson-Boltzmann system in R3. In addition, the optimal convergence rates of the
Navier-Stokes equation is studied in [3,4] and references therein.

As for the Boltzmann equation with frictional force (1.1), it is firstly investigated in [7] where the existence near the
global Maxwellian is proved by using the nonlinear energy method developed in [11,12]. In this paper we use the different
energy method given in [10] to prove the global existence and the uniform stability. Then, combining with the Fourier
analysis we obtain the convergence rate of the solution to (1.1) towards the stationary solution M.

Before giving our main results, we list some notations that will be used in our paper. (-, -) denotes the inner product in
the Hilbert space L2(R3 x R?) or L2(R?) without any ambiguity. And in the following we use | - || to denote the correspond-
ing L? norm. When the norms need to be distinguished from each other, we write || - ||L2(R§), I - ||L2(R§) and || - ”LZ(Ring)

respectively. Set

(g.h)y =(v(&)g. h),
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for any functions g = g(x,&) and h = h(x,£) to be the weighted inner product in L%(R3 x R3), and use || - ||, for the
corresponding weighted L2 norm. We use HN to denote the Sobolev space H¥(R? x R3), and HY to denote the space
HN(R3 x R3; v(&)dxdg). For the multi-index o = (o1, @2, a3), we denote

3

o A1 902 403

of = ogtox2oyy, and Ja|=) .
i=1

For simplicity, we use 9; to denote dy, for eachi=1,2,3.
In order to state our main results later, we need to define the energy functional:

[e®]]) = |a%af g0)?, (112)
&
la|+IBI<N
and the dissipation rate
[eo]l= Y Jaofem|i+ 3 [a%ei®] + bl (113)
la|+IBI<N O<|a|<N

where N >4 is an integer. Functionals g1, g2 and b will be defined in the next section. In addition, C denotes a generic
positive (generally large) constant and A denotes a generic positive (generally small) constant. They may be different from
line to line. _

We also use g to denote the Fourier transform of g, (a|b) =a - b denotes the complex inner product of complex vectors
a and b.

The main results of this paper can be stated as follows:

Theorem 1.1. There exist 5o > 0, Lo > 0 and Co > 0 such that if go(x, &) satisfies [[go]] < o, then there exists a unique global solution
g(x,t, &) to the Cauchy problem (1.9) and (1.11) such that

t
[[e®]]° + 2o /[[g(S)]]ids < Col[goll®, Vt>0.
0

Theorem 1.2. Suppose all the conditions in Theorem 1.1 hold. Let g = g(x,t, &) and h = h(x, t, &) be two solutions to the Boltzmann
equation (1.9) corresponding to given initial data go(x, &) and ho(x, &), then there exist §1 (0 < 81 < 8g), A1 > 0 and Cy > 0 such
that, if

max{[[g@]]. [[hO]]} <51
then g(x,t, &), h(x, t, &) satisfy
t
[[z© ~ O] + 11 [ [[e6) - ho]Tds < [0 ~hO]F veo0.
0

Theorem 1.3. Suppose go(x, £) satisfies ||go|lyn and || golly small enough, then, g enjoys the estimate with algebraic decay rate in
time:

3
||g(t) ||HN < Cllgollgnnz, A+ 674,
2
Here Zq = LZ(LY), lIgliz, = (/ ([ 1g17dx) de)?.

Remark 1. The proof of the global existence is based on the energy method by combining the local existence and the closure
of the a priori estimate. The uniform-in-time stability of the global solutions is proved in the completely same way. Here
we only need to close the a priori estimate. That is, under the a priori assumption that [[g(t)]] is very small, say,

[[g®]] <5, (114)

where § is a sufficiently small positive constant, we want to prove that there exist functionals £(g(t)) and D(g(t)) which
are equivalent to [[g(t)]]* and [[g(t)]]lz, respectively, such that

d
Eg(g(t)) +AD(g(1)) <0, (1.15)

The rest of the paper is organized as follows. In the next section, we review some basic properties of the linearized op-
erator L and nonlinear operator I", and give the macro-micro decomposition in Section 2. We perform the energy estimates
and prove Theorem 1.1 and 1.2 in Section 3. The optimal convergence rate in Theorem 1.3 is given in the last section.
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2. Some basic properties and macro-micro decomposition

We know that the properties of L and I" are very crucial in energy estimation for the Boltzmann equation. We list them
here for later use.

(1) L=—v(&) + K, where v(§) is a nonnegative measurable function called the collision frequency, while K is a self-adjoint
compact operator on L2(R3) with a real symmetric integral kernel.

(2) There exists a constant vy > 0 such that for V&, vo’l(l +1E]) < v(E) <vo(1+[&)).

(3) The null space of the operator L is the 5-dimensional space of collision invariants:

N =KerL =span{vM; §vM, i=1,2,3; |§>*VM}.

(4) Following from the Boltzmann's H-theorem, L is self-adjoint and non-positive in L%(R3). Furthermore, there exists a
constant A > 0 such that:

—/ngds >Afv<s)({l—l’}g)2ds, Vg e D(L), 1)
]R3 R3

where P denotes the projection operator from L2(R3) to A/ and D(L) is the domain of L given by D(L) = {g € L2(R?) |
v(§)g e L*(R?)).

(5)

(P (g, w) «[ 10 2l imig o 2wl dx [ [01720] gl [0 2w dx},
R3 R3

I(r(g. by, w)| 2 + (I (h. &), w)| 2 < CH‘)BWHLoc gl iz lIR1l- (2.2)
X X X,E X g

Now we give the macro-micro decomposition to prepare for the later energy estimates

g(t,x, &) = g1+ g2,
g1=PgeWN,

3
2.3
g1= {a(t,x)+Zb,-(t,x)a~+c(t,x)|s|2]W, 23)
i=1
S=g-gs1=0-P)geN".
Then Eq. (1.9) can be rewritten as
1
0g1+E Vg1 —u- Vegi +u-EVMtSu-gg=r+l+h, (24)
with
r=—0:82,
1
12—5-ngz-i-u-Vggz—iu-Egz-i-ng,

h=r(g, g).

Next we derive the evolution equations for (a, b, ¢). In fact, by putting (2.3)3 into (2.4) and collecting the coefficients
w.r.t. the basis {ey, k =13} consisting of

VM, EVM)i<iss. (|§i|2m)]<,~<3, &iEiVM)1<icj<s, (|€|2§im)1<i<37 (2.5)
we have the following macroscopic equations on the coefficients (a, b, c) of gi:

da—u-b=y,

debi + dia + uja — 2uic + u; =y,

dcc + dibi + uib; =y,

0ibj + 8jbi + uibj + ujb; =y,

dic +cuj = V,-G),

b
herei +# j, withu = ———. 2.6
where i # j, withu Traiac (2.6)
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All terms on the right are the coefficients of r + 1+ h w.r.t. the corresponding elements in the basis {e{3} are given by:

y© = _37® 4 [© 4 p©

v =0 +1 + D,
y@ = 37 ® +1® +h®,
v = oD +17 +h
y® = —a7® 412 +h®,
where i # j, withr = —o,r. (2.7)

We cite the following lemma for later use, it says that the coefficients of the separated part r, the linear part [ and the
nonlinear part h can be bounded by the microscopic dissipation rate.

Lemma 2.1. (See [5].) It holds that

> Yo PP <c Y ral’

l|<N—-1 ij | <N-1

Z ZHag (0) l(l) l(2) 11(12)’1(3) <C Z Haagz i
le|<N—1 ij loe| <N

> Y lag (@ nP . nP n ) < c[[so ] [[s0]];-
le] <N ij

Based on (2.6)3 and (2.6)4, the macroscopic component b = (by, by, b3) satisfies an elliptic-type equation

2 2 2
—Axbj—ajajbj:—ZE), )/l_(’ ) (u,-bj+ujbi))+zaj(yi( )—uib,-)—zaj(yj( )—u]'bj). (2.8)
i#] i#]
Also, (a,b,c) satisfies the local macroscopic balance laws. In fact, multiplying Eq. (1.1) by the collision invariants
1,¢&, %|§|2 and integrating the products on & over R3 we have

o [ £de+ 9, [erde=o.
o [erde+ v [s@erde=—u [ rae.
at/%mzfdswx-/%|s|2efds=—u~/5fds.

By using the perturbation (1.8) and the decomposition (2.3), direct calculation gives the macroscopic balance laws on
the coefficients (a, b, c) of g:

or(a+3c)+Vy-b=0,
atb+Vx(a~|—5c)+Vx-/§®§\/Mg2d§:—b,
at(3a+156)+5Vx-b+Vx~/|§|2.§«/Mg2d$:—2u-b.

These can be easily rewritten as

1

0 — Vy - f JI6PexMgyd =u- b, (29)

atbi+a,-(a+5c)+vx-fggimg2dg:—bi, (2.10)
1 1 1 ., 1

atc+§Vx-b+§Vx-/§|$| smgzdéz—gu-b. (211)

It is straightforward to calculate that, those terms containing the microscopic part g can be bounded by the microscopic
dissipation rate:
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Lemma 2.2. (See [5].) It holds that

Y o [(EPEVIM. g2). € @ EVM. ][ <€ Y [oea|’.

le|<N-1 O<la|<N
3. Energy estimates
Part 1. First we estimate the microscopic component g, by proving the following lemma.
Lemma 3.1.

(1) Estimates on the zero-th order:

3 dt D2 + civi? + 1|20 < c[[go]][go ] (3.1)
(2) Estimates on the spatial derivatives:
1d 2 2 2
i 2 sl e X e en Y [atel
1<]a|SN 1<alSN 1<alSN
clsol]l[s®],+cs Y [og@bof +cs Y Ve . (32)
I<la|<N I<]a|<N-1

(3) Estimates on the mixed derivatives:

1d B 12 B 12
D DR [ /7 D S T
Bl=k 1Bl=k
loe]+IBISN le|+[BISN
2 2 B 12
Cleolls®l, +C > el +Cues D 56 e],
loe| <N—k+1 1<IB1<k—1
loe|+IBI<N
2
+C Y fgva@b.o| +c > |og (33)
l|<N—k 0<ler| SKN—k
where the integer 1 <k < N and x>2) is the characteristic function of the set {k > 2}.
Proof. In the proof we use the a priori assumption (1.14) and the equivalent relationship between u and b
b
_ ) (3.4)
14+a+3c

Also, the following Sobolev inequality is frequently used in performing our energy estimates

1 1
gl < CIIVElz Vg2 < CIVEly-
(1) To prove (3.1), we multiply (1.9) by g and take the integration over R x R3:

2dt//g dsdx+ S //%’ Vg dEdX——//u Veg dédx+//u e/ MgdEdx + — //u £g?de dx
://glgdfdx—i—//gl“(g,g)dex. (3.5)

First we notice ([ & - Vyg?dé dx = ([ u- Ve g?d& dx =0. Then we use (2.1) and (2.2) to obtain the estimates involving Lg and
I'(g, g). Terms involving the frictional force u are estimated as follows:

2
//u.gmgdsdx:/u-bdx:/%dx’vCllbllz,
1//u-§g2dsdx=1//u~5g%déd><+/fu-sglgzdédw%//wég%dédxv

using (1.14) and (3.4), direct calculation gives

//u tgldedx= /(a—i—Sc)u bdx——f%w dx < C8|1b|1%.
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using the Cauchy inequality and again the a priori assumption (1.14) together with (3.4) we have
[ u-eergads dx< conga? + oo

at last use (3.4) to obtain
5 [ [u-ebdean< conean?

Combining estimates of all terms we obtain (3.1).
(2) To prove (3.2), we take derivatives 3¢ (1 < |o| < N) of (1.9) and multiply the resulting equation by 8% g, then integrate
over R? x R3:

1d
§E||3§‘g||2+// 33g§~Vx(3fg)dxdé—// 3% gd% (u - Ve g)dxdg
1
+// aggagu.gmdxdg+§// 3% gd% (u - £g)dxds

:// ag‘gLa,?gdxdg+// 0%g Y chr(sfg. oy Pg)dxde. (3.6)
BI< Il

The right-hand side can be estimated using (2.1) and (2.2) easily as before. The second term on the left-hand side equals
to 0. The rest terms we give the detailed estimation as follows:

()
//8,‘3‘g8,‘j‘(u~V;g)dxd$ = f/a,‘j‘gu~Vg(8,‘j‘g)dxd§+// 0% g Z Cga,‘?ng(af’_ﬂg)dxds

I<IBIL e

4
= ZI,‘.
i=1

Using the explicit expression of g; in (2.3)3 we have Vg g = (b+2c&)v'M — %$g1, this together with the a priori assumption
(1.14), (3.4) and the Cauchy inequality, we do the calculation as follows:

Iq: //85‘& Z Cga,’fu-Vg(a,f’_ﬂg])dxdé

1<IBI e

:/ > cgafu.a,‘j“ﬂbaf(a+3c)dx+zf > chafu-agboy Pedx

1<IBI<Ial 1<IBI<le|
1 _ _
——f > chafu [y ba @+ 50) + a¢bay  (a+5¢)] dx
1<IBI<al
<cs Y |fabo+cs > Jafb|’
1<IBI<le| 1<IBI<le|
Iy: //8,?‘g1 Z Cgafu'V‘;(a,f’_ﬁgz)dxdé
1<IBI<le|
=f/8§‘g1a,‘j‘u-Vggzdxdij—i-f/af‘g Z Cgawaga,f‘_ﬁgzdxdg
1<181<lerl -1
B 2 B 2
<Cs Y @b +cs D o Veg]”
1<IBI< Il 1<IBI<lel—1
I3: //afgz Z Cgafu-Vg(affﬁgl)dxdé
1<IBI<le|
_ 1
=//a;}g2 > chofu-ay ﬁ((b+2cs)m—isg1>dxdg
1<BI<le|

2

<cs > |afb)P+csadea]l+cs > [of@b.o)
1<ipI<al 1<ipI<lal
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I4: //a;g‘gz > chofu- Vi (oY g2) dxde

1I<IBIS e

= [[#eatu Vegaande + [[orer S clafu-a P Vegadnae

1<IBI e -1

<csogp|? +cs|ase|i+cs Y [ofvega|P+cs Y [of@b.o)’
1<IBI<]af -1 1<IBI1< o]

Combining I;, i=1, 2, 3,4 we have

[[gmw e <algalve Y j@val’ta Y [dabol 37
1<l al—1 1< |81 ]
(i)
// B?gaf‘u'éx/ﬁdxdh// 8%g10%u - /M dxde
ap . aa a
:/de+/|:agu_ 3Xb i|8,‘("bdx
14+a+3c 14a+3c
=I5+ Ig, (3.8)
ls~[aeb?  mel<cs Y Jof@b ol
1<IBI< ]
(iif)

1 1 1 .
Effaggaf(u-ég)dxdsziffu-é(a,?‘g)zdxds+foafgé- Y chofuay P gdxde

I<IBIS et

<cs Y |abolPrcs Y (ol (3.9)
1<iBI<lel 1<iI<lel

In fact, in the above inequality we have used

1 1 !
5//u~§(8,?‘g)2dxd$<§/ |u-§|(agg1)2dxd‘5+§/ Iu-EI(Bfgz)zdxdE
< Cs)a¢ @ b,o)|* +cs]al gz’

The estimates of the other partitions are similar to those on [;,i =1, 2, 3, 4, only much simpler.
Put (3.7), (3.8), (3.9) into (3.6) and take the summation w.r.t. || from 1 to N thus we have (3.2) proved.
(3) To prove (3.3), first we rewrite (1.9) into
3tg2+§-ngz—u'vég2+u-§m+%u'$g2
=Llg2+1(g.8)—0g —§ - Vxg1+u-Veg1 — %u 581, (3.10)

to (3.10), we take 3f with |Bl=k (1 <k< N) and then 3%, multiply the resulting equation by 3"8’3g2 and take integrations
& X Lt

over R3 x R3. Following the same argument as the proof to (3.1) and (3.2), that is, using the a priori assumption (1.14) and
(3.4), together with the Cauchy inequality, (3.3) can be proved easily. But one thing we would like to point out is that, we
need to use the macroscopic balance laws (2.9), (2.10) and (2.11), then with the help of Lemma 2.2, we could remove the
time derivative d;g1. This completes the proof of Lemma 3.1. O

Now the dissipation rate of the microscopic component can be obtained by a suitable linear combination of (3.1), (3.2)
and (3.3). In fact, the summation of (3.1) and (3.2) gives
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2O Jagal? e X ol Y It
le] <N le|<N le| <N

cleol[e®]Z+cs > Jof@b.of>+cs Y osves . (3.11)

1lalN 1l |<N=1

The linear combination of (3.3) with k taking values from 1 to N gives

1d
LS el Y lgelel?

loe]+|BISN le|+|BISN
18121 18121
<c[[s@))[[e®]], +C X |ogel;+C Y [avx@b.o| +c Y [agb|* (3:12)
loe| <N le] <N—-1 le|<N—-1

where the energy functional is actually

N
Sone Y. [aele|’
k=1

181=k
la|+IBISN
for some properly chosen Cy k > 0, in order to eliminate the term

CX(k}Z) Z ” a;(x 8§g2 le)

1<|BIsk-1
la|+IBISN

on the right-hand side of (3.3).
At last, the linear combination of (3.11) and (3.12) gives

s Sleel e > pelel)+r X Jwalallvc X ol

la|<N ||+ BI<N la|+BI<N la|<N
1BI>1
c[lsoNl[s0],+¢ Y logvxab.of’. (313)
| <N—1

Part 2. Now we turn to the estimation on the macroscopic dissipation rate, the main result of this part is the following
lemma:

Lemma 3.2.
d
G0+ ¥ Javabolf<c| ¥ ja#al +lsolflsoll+ ¥ il e
lo|<N-1 la|<N lo|<N-1

Here,

G(g®)= Y Zg:;l (20) + G5 () + G5 ;(g0) + G2 (20)],

le|<N-1i=1

with

Ga.i(8®) = (7. 019,

b i(gO) ==Y (0eF? o) + Y (00T 9;08bi) + 2(08 >, 8idgbi).

J# J#i

Ge.i(g®) = (357 aiofc),

G5 (g(®) = (95 bi, iy a).
gg’,.(g(t)), gg’i(g(t)), and g;,i(g(t)) stand for the interactive energy functionals between the microscopic part g, with the macro-
scopic part a, b and c separately, while gg{’i (g(t)) stands for the interactive energy functional between a and b.
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Proof. Estimates on b. Applying a7 with |o| < N —1 to (2.8), multiplying it by d¢b; and then integrating it over R3, simply
integrating by parts we can have

d
[xge | + 050851 + 6% ;(8(®)

< Ce{ laja¢@b.o?+cs 3 o @b o)|® +1bI? + |85 Vx - (556 VM, gz)HZ}

1<k I<lal
+C{Z||V R (RS ES el N h(z)]Hz}, (3.15)

then we take the summation of (3.15) w.r.t. o over || < N —1 and j over {1, 2, 3}, and using Lemma 2.1 and Lemma 2.2
we have

3
> Yk gm)+ Y [ Vasn]?

jl<N-1j=1 ol <N-1
<Ce Y |Vid¥@.b.o)| +Celbl? + c{ 3 [agee|’ + [[g(t)]]z[[g(t)]]i}. (3.16)
jal<N-1 <N

Estimates on c. We use the macroscopic equations about c, (2.6)5 and (2.11), through direct calculation can obtain:

3
3G g@)+ Y [ Veae|?

lo|<N—-1 j=1 la|<N-1
<ce 3 [vaaof+cs 3 ol +cf Xl +[lsol o]:) (317
le]<N-1 la|<N-1 la|<N

Estimates on a. Similar to the estimation on ¢, using the macroscopic equations about a, (2.6); and (2.9), we can obtain

> i[gg,xg(r))+g:;l?j(g<r>)]+ > [Vadgal®

le|<N-1 j=1 le|<N-1
<ce 3 |vag@vof+c ¥ ol +c| ¥ el + [[eol o)) (318)
le|<N-1 le|<N-1 le|<N

The lemma is proved by combining (3.16), (3.17) and (3.18). O
Now we are fully prepared to prove our first two main theorems.

Proof of Theorem 1.1. We only need to close the a priori estimate (1.15). The linear combination of (3.11) and (3.14) gives

4[5 T ol +oeo)] < X ool +a( T latml+ ¥ Iwaas.ol)

l|<N lo| <N lo|<N lo| <N—1

C(ls@]1+ [[e@]P)[sO]; +5 3 [ Vegal” (3.19)

1<]a|<N-1

where A > 0 is large enough so that the energy functional in (3.19) is equivalent to its first part Z‘ <N ||3°‘g(t)\|2 Finally,

\

recall the definitions of the norms [[g(t)]] and [[g(t)]]y, the linear combination of (3.13) and (3.19) gives the Lyapunov
inequality:

d
af:(g(t)) + 1D (g(t)) < C,/E(g))D(g(1)). (3.20)

where the energy functions satisfy

A
ee0)~ Y logel’+ Y ovelel’+5 Y laeo]* +(s0)

lo|<N lo|+IBISN le]SN

BI=1
~[[e®]]".
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D(g0)~ Y |ofel,+ Y [Var@bol*+ca Y o) + Y [orolsl;
j@l<N I <N-1 j@l<N jal+1BIN
2
~[[g®]];-

Thus the a priori estimate (1.15) is closed. Take integration over [0, t] to (1.15) gives

E(g®) +A/D(g(s)) ds < £(g(0)). (3.21)
0

We now complete the proof of Theorem 1.1. O

Proof of Theorem 1.2. To prove Theorem 1.2, we set

W(X7 t7 5) = g(x7 t! ;;1) - h(Xs ta E)

Then w = w(x, t, §) satisfies
1
Iw+E-Vyw —u-Vew + Eu Ew=Lw+ TI'(w, g)+ I'th,w). (3.22)

Perform the same procedure as in the proof of Theorem 1.1, we can easily obtain the similar Lyapunov-type inequality of w:

& e(wn) +p(wo) < c{[[s0O] + [AO]12 (W),

use the result of Theorem 1.1 to g and h, then Gronwall’s inequality implies that

t
E(w(t) +A/D w(s))ds < CE(w(0)).
0

Thus Theorem 1.2 is proved. 0O

4. Optimal convergence rate

In order to obtain the convergence rate, we define e‘? as the solution operator to the Cauchy problem (4.1) with h = 0.
Now, we consider the Cauchy problem

iatg+$~vxg+b~5x/M=Lg+h, (4.1)
g(x,0,8) =go(x,§),
with the additional assumption Ph = 0.
Similar procedure as in Section 2 we can rewrite (4.1) into the form:
or(a+3c)+ Vy-b=0,
dbj+0j(a+3c)+20jc+ Y InAjm({I—P)g) +b; =0, (4.3)
m
8t6+1Vx-b+EZBJBJ({I—P}g):O, (4.4)
3 6 &~
J

and

d[Ajj({(1—P}g) +2c] +23jbj = Ajj(R +h),

[Ajm((1—P}g)] + 3jbm + dmbj = Ajm(R+h), j#m

%[Bj({1—P}g)] +10djc=B;(R +h), 4.7)
here 1 < j,m<3,

Ajm(8) = ((Ej&Em — DVM, g),
Bj(g) :=((1&1* — 5)&v'M. g).
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and

R=—&-Vy{I—P}g+L{I-P}g.

It is initially observed in [10] and later in [1] that, with direct calculation we can obtain

[Z djAm({1-P}g) + = BmAmm({l P}g)} — Axbm — 9mdmbm
ZamA]](R +h)— Za]A]m(R +h), (4.8)
2 i

for some fixed m.
First let's prove the following two lemmas, Lemma 4.1 and Lemma 4.2, they will later be used in the proof of Lemma 4.3,
which is crucial in obtaining the decay rate in Theorem 1.3.

Lemma 4.1. If E(g) takes the form

R 1 iknm .
E(g)-mZ(ZHIkIZA,m({ P}g)+5WAmm({I—P}g) -

. . - ikm
—i—/qZ(B]({I ) —C)+;<b 1+|k|2(a+3c)> (4.9)

for some k1 > 0, then forany t > 0 and k € R3

i» we obtain

k|

0trReE(g) + A
t (€] 1+ kP

(|b| + €[> + |a + 3¢%) H{I—P}g”Lz—i—Hv 2{[—P}hHL2 )+ Clb%. (4.10)

Proof. Estimate on b, for 0 < 81 <1 we claim

atRe[Z(Zik,-A,-m({l—P}g) fzkmAmm({ })|—bm)}+(l—a1)|k|2|13|2

m J

C . . S ard s
<5 (k) ([u-Pig et P}h||f§) +Co1 kI3 (1a + 322 + [812). (411)

In fact, perform the Fourier transform to (4.8) and take the complex inner product with Bm, we obtain

<—at|:21k]A]m({l— P)g) + —lkmAmm({l—P}g)} + [k 2bm 4 k2, bm|bm>
j
:<5ZlkmAjj(RJrh)—szjAjm(RJrh)‘bm),
j#Fm J

then rearranging the equation we have

at<[2i1<jAjm({1 —P}g) + zkmAmm({I —P) )]‘ bm> + [kI%bZ, + k2 b2,
j
1. - , I . Ny X -
= (5 > iknAj(R+h) = ikjAm(R + h)‘bm> + ([szj/\jm({l —-P}g) + 5zkmAmm({l - P}g)]’ - 8tbm>.
Jj#m j J
We use the Fourier transform of (4.3) to eliminate the time derivative ath, and notice the following estimates on A jp:
A\ (2
|Ajm({1-P}3)

[Am(®)[* < =2 (1= )|,

<Cl

[Am (R < C(1+ k) [0 =PI .

then through the Cauchy inequality we complete the estimation on b.
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Estimate on ¢, for 0 < 83 < 1 we obtain

3 Re[Z(Bj({l - P}g)‘ik,-e)] + (1= &) k)
i
< £(1 + k) ([{1-P)g
X 82

In fact, Fourier transformation of (4.7) gives

fg + ”v_%{I—P}fl”ig) + 821kl (b1 (412)

3[B;({1—P}2)] + 10ik;¢ = B;(R + h),
then, taking complex inner product with ik;¢ we obtain
3 (Bj({1—P}g)|ik;¢) + 10k3|¢|* = (Bj(R +h)|ik;¢) + (B; ({1 — P)g)

Using the Fourier transformation of (4.4) to eliminate 9;¢, taking summation over 1 < j < 3 and using Cauchy inequality we
can obtain (4.12). Here we used the following estimates on Bj:

|B;(11-P)2)* <c|1-P)g

ik0;C).

2
g
B[ < v (1= Pl .

IB;(R)[* < (1 + k)| {1- P}2

2
2.
Lg

Estimate on G + 3¢, similarly, for 0 < 83 <1 we have

TN N A A C . C . C - N
0Re Y (bmlikm(@+ 38)) + (1 — 83) kIZ|a + 3812 < — kI [ 11— PI&| [ + — k1218 + —Ib12 + kPP, (413)
p 83 3 83 83
We complete the proof by combining (4.11), (4.12) and (4.13). O
Lemma 4.2.

~ 1 A
atugnig +A[vi{I—Pig

2 - _1 ~ 2

12 H b2 <ClvTz =P, (414)
3

foranyt>0andk e R;.

Proof. The Fourier transform of (4.1) gives
*E+if-k§+b-EVM=Lg+h.

Taking the complex inner product with g and taking the real part we obtain
1. .. A A N A
PR +Re/(b -EV/M|g) dt = Re/(Lg|g) d& +Re/(h|g)d§-
R3 R3 R3
Then we can deduce the result immediately. O
Lemma4.3.let1<qg<2.

(i) Forany o, o’ with o’ < «, and for any go satisfying o5 go € L? and ag’go € Zg, one has

Joget® o] < € + 0705 go] , + 25 50]). (415)
(ii) Similarly for any «, o’ with &’ < «, and for any h satisfying v(&)‘% %h e L% and v(é)‘% 8,‘3‘/11 € Zg fort >0, one has
t 2
3% / e =981 — P}h(s)ds
0
t
<C /(1 + =972 (@) 770 (1= P, + |v©) "2 oga - Phh[), (416)
0

Herem = |a — o', o[q, m] = 3(

Q=
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Proof. Set
E@® =18l +w2ReE@),

here k7 is a suitably small positive constant.
Combining the results of Lemmas 4.2 and 4.1 for some suitable » > 0 we obtain

kI
1+ k|2
<Clvra-pi.
&

*E@) + 1 (1B + 122 + Ja+3¢P) + A o2 {1 - P}gnig + Al

Notice that

2
. J|f||k|2 (1B + (22 + la +3¢) + 1 v 2 (1 - P)g ig + AlbJ?
Ll (|B|2+|€|2+|&+36|2)+)LHU’%{I—P}§ 2,
T Lg
> L [[(0=P}g|% + 1b% + ¢ + 1a + 3¢]
T 4 (k2 Lg
K2 E )
T4 k27
Then, we obtain
= A k1> - _1 "2
8tE(g)+Al+|k|zE(g)<CHv 2{I—P}h”L§,

which implies

- . o ,Mt ,M(tfs) 1 A2
E(&(t, k) <E(8(0,k))e 1+ 4+ C / e 1+k? [v=2{1—P}h| Lg(s)ds.
0

We now prove (4.15), let h =0, so g(t) = eBlgg is the solution to (4.1), then we have

Jage™ gl = [ [ |E(Ee. )| dk

3
Rk

_ K2 2
< [e=te” 5 ot 7, d
R}

/ —M / A
< / |k2(“—“)|e 1+”‘|2t|k2aH|§o(k)||i§dk+ / e_7t|k2°‘|“§0(k)||i§dk

lk12<1 k12>1

3-2|a—0a’|

<Ca+n7it 7 9 g |5, +Ce 3" g s>

The proof of (4.16) is similar to that of (4.15), we set go =0, so
t
g(t) = / eBE=( — PYh(s)ds
0
is the solution to (4.1), then, we obtain
t 2
o / eBE=( — PYh(s)ds
0

k
Now, we complete the proof of the lemma. O

t
_ k2 .
<C//|k2a|e A s)”p%{l—P}h(s)”ig dkds.
0 R3

(4.17)

(4.18)

(4.19)
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Lemma 4.4. g, g are as defined in Section 2, then we have

1d 1 2 2

Sqlviel +alvel? <c[1+/e(z®) Ip(g®). (4.20)
Proof. From (1.9) we have

1
0r82+6& - Vx82 —u- Vg — FU 682
1
=18+ 1'(g,8) — | dg1+& Vxg1 —u- Vg1 — Su-Eg+u-EVM |,

Multiplying the last equation by vg, and taking integration over R? x R3 gives

1d 1 2 1

iallvzng + / (é~ngz—u~ngz+Eufgz)vgzdxdé
R3xR3

=—|vgl*+ / [Kg2+ I'(g, ) |vgdxds
R3xR3

1
- / [3tg1+$-vxg1—u'vsg1—iu";'gl-i-u'ém]lfgzd?(d%'-
R3xR3

Then we obtain the result of the lemma. In fact,
/ u-Veg2(vg) dxdé <,/E(g(®))D(g(t)),
R3xR3
| te v Vavednde <cp(ew). o
R3xR3
Now we are ready to prove the last main theorem on the decay rate.

Proof of Theorem 1.3. 1. Let g be the solution to the Cauchy problem (1.9) and (1.11). Denote 8y, Ko and g, by
1
80 =[Lgo]]. Ko=lgollz, Sov=|v2go].
2. From the earlier energy estimates one can obtain

d
ag(g(t)) +AD(g(t)) <0.

Direct calculation gives

d
aé‘(g(t)) +2E(g(0) < ClIPg|.

Integrating it over [0, t] we have

t
E(gt) <e™e(go) +C / e | Pg|(s) ds. (4.21)
0
3. We rewrite (1.9) as

d
dg+E-Vxg+b-EV/M=1g+S(g) = S &=Bg+S@),

where

1
S(g)=r(g,g)+u'vgg—EU'Eg-i‘(b—U)’E\/M,
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then the solution to the Cauchy problem (1.9) and (1.11) can be written as

t
gt)y=ePgo+ / e85 (g(s)) ds.
0

4. We rewrite the solution g as
t t
g=eBgy+ / e 9B —P}[S1(2(5)) + S2(g(5))] ds + / e™9BPs, (g(s)) ds,
0 0
here S1(g(s)) =1I"(g.8), S2(8(s)) =u-Veg — Ju-£g+(b—u) - £J/M.

Define

Eno(t) = sup (1+5)3E(g(s).
0<s<t

Using Lemmas 4.3 and 4.4 we have
_3
IPglI(®) < CA+0)~2[lgoll3, + llgol*]

2 t
+ CZ/(l +t—5)73 (v U= P)Sj (@) |5, + v 21— PIS;(g() ) ds

=1

t 2
ce( fareo e, + Ipsiso)
0

t
<CO+0)77 (824 K2) +C(62, + 62) /(1 +t—s5)"2E(g(s))ds
0

t 2
+C</(1 +t—s)_%£(g(s))ds>
0

<CA+072[02+ K2+ (62, +62)En(D) + EL ()],
in which we have used the following estimations:
[v=21=P)si() |7, + v 2= PIs1(2)[* < C[vig|ece).
v 1= PISy ()5 + [v 2 PISh(g®)|* < C(|v2go|” +Een)E(®)
1
[v=2(P)S2(89) [, + [v2 (PIS2(2(9) |* < Cllull 2 gl
[ —w-&vM |, +|(b—u VM| <Cllullzq lla+ 3],

t
/(1 Tt—5)2(145) 3ds<C(+6)3,
0

t
/(1 Ft—$)"3(1+s) 2ds<C(1+10)3.
0
Here S} (g(s)) =u-Veg — %u -Eg.
Now from (4.21) we have
£(2(1) < CA+0)72[82 + K2 + (52, + 82)Enc(t) + EXL. (0]
This implies

Eoo(t) < C[83 + K3 + (83, +83)Exo() + E2(D)]. (4.22)
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So we get

| |, < Cligollnaz, (1 +0)74. (4.23)

Till now the proof of Theorem 1.3 ends. O

Remark 2. Using (4.22) to obtain our result (4.23) is a standard argument which can be proved rigorously. In fact, this
inequality is to say that if £, (t) is priorily small uniformly in time, then it will be smaller than what is expected. Now, as
long as it is initially small, it must be uniformly bounded in all time due to the continuity argument.
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