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Abstract

For the assessment of extreme load effects needed in design of marine structures,
a full long-term analysis is recognized as the most accurate approach. However,
due to the very large number of structural response analyses traditionally needed
for this approach, the computational effort is usually considered to increase
above acceptable levels for complex structures such as floating bridges. In this
paper, a framework for full long-term extreme response analysis is demonstrated
for a long-span pontoon bridge subjected to wave loads. This framework utilizes
some recently developed approaches which are based on the inverse first- and
second-order reliability methods (IFORM and ISORM). Using the IFORM and
ISORM approaches, characteristic values of the long-term extreme response are
calculated in an efficient manner. By comparing with results obtained by full
numerical integration, the accuracy of the methods is investigated. Particularly
the ISORM method is seen to provide high accuracy. The full long-term analysis
is also compared with the environmental contour method.

Keywords: marine structures, pontoon, floating bridge, extreme response,
long-term response, IFORM, ISORM

1. Introduction

Fjord crossing technology is currently a research topic of high interest in
Norway. Due to the width and depth of the fjords considered, floating bridges
represent very relevant concepts as they utilize bouyancy for vertical support.
The design of more extreme yet reliable fjord crossing structures motivates de-5

velopment of the methods for long-term stochastic extreme response analysis.
For the evaluation of extreme response of marine structures due to envi-

ronmental loads, a full long-term analysis is recognized as the most accurate
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design approach [1]. In principle, the full long-term approach takes into ac-
count all possible combinations of environmental parameters. This means that10

for straightforward methods such as full numerical integration and crude Monte
Carlo simulation, a very large number of short-term response calculations have
to be conducted. For complex structures like floating bridges, each short-term
calculation is usually very time consuming, and the full long-term approach is
often considered infeasible.15

As an alternative to performing full long-term analyses, the environmental
contour method [2, 3] is a widely used simplified approach. First, environmental
contours corresponding to specified annual exceedance probabilities are deter-
mined without any consideration of the structural response. Traditionally the
contours are determined using an inverse first-order reliability method (IFORM)20

approach [4], but alternative methods do exist [5, 6, 7]. The most critical point
along the contour is then determined, and an estimate for the long-term ex-
treme response is finally obtained. Only a few short-term response calculations
are used, making the environmental contour method highly efficient. However,
some sort of calibration against full long-term analysis is required [1]. Also,25

due to simplified modelling of response variability, the environmental contour
method may perform poorly for certain types of structures [8, 9].

In recent years, efforts have been made to reduce the number of short-term
calculations required for full long-term extreme response evaluation. These are
based on the observation that many combinations of environmental parameters30

contribute little or nothing to the long-term extreme response. A copula based
environmental modelling approach is proposed in [10], and the copula concept is
further utilized in an adaptive refinement algorithm for more efficient long-term
integration. In [11] an IFORM approach [4] is used to provide an estimate of
the long-term extreme response. The IFORM method also indicates where the35

largest contribution to the long-term response is located, and this information
is used in an importance sampling Monte Carlo simulation approach, improving
the accuracy of the extreme response estimate. Further investigation of IFORM
as a method for long-term extreme response estimation is carried out in [12],
and in [13] an inverse second-order reliability method (ISORM) approach is40

proposed. These developments provide methods for carrying out full long-term
analyses with a limited amount of short-term response calculations.

IFORM and ISORM are efficient and easily implemented methods, which is
important for their practical application to long-term extreme response analysis.
Still, it should be noted that having the long-term extreme response analysis45

formulated in terms of a reliability problem, as described in [12], a variety of
methods from the field of structural reliability can also be applied. In particular,
efficient simulation methods such as importance sampling [14, 15] and subset
simulation [16, 17] could be used iteratively to calculate characteristic response
values. Alternatively, efficient methods for reliability-based design optimization50

(RBDO), e.g. [18], could be used for direct calculation.
The long-term analysis can also be made more efficient by improving the

efficiency of each short-term response calculation. One example is the method
described in [19], which is demonstrated in [20] for pontoon bridges.
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In the present paper it is shown how these recent developments can be used55

to perform full long-term extreme response analyses for a pontoon floating
bridge subjected to first-order wave loads. Specifically, the inverse reliability
approaches IFORM and ISORM [12, 13] are applied. It is demonstrated that
the efficiency of these methods make full long-term extreme response analyses
feasible, also for complex structures such as floating bridges. Furthermore, the60

framework proposed in this paper can be used for calibration of the environ-
mental contour method.

2. Modelling the stochastic dynamic response of pontoon bridges

2.1. Stochastic modelling of waves

For a short-term period of duration T̃ , the sea elevation is modelled as a ho-
mogeneous and stationary stochastic process with zero mean. The sea elevation
process is denoted η(x, y, t), where x, y are the spatial variables and t is the time
variable. Assuming linear wave theory, the wave number κ(ω) is a function of
angular frequency defined by the dispersion relation ω2 = κg tanh(κd), and the
cross-spectral density between the wave elevation at two points (xm, ym) and
(xn, yn) can be expressed in terms of a one-dimensional wave spectrum Sη(ω)
and a spreading function Ψ(θ, ω) as

Smn(ω) = Sη(ω)

∫ π

−π
Ψ (θ, ω) e−iκ(ω)(∆x cos θ+∆y sin θ)dθ.

Here ∆x = xm−xn and ∆y = ym−yn are the spatial separations of the points.65

For details we refer to [19].
The sea elevation is further assumed to be a Gaussian process which means

that the cross-spectral densities provide a complete description of the process.
Hence the wave situation is completely described by the wave spectrum Sη(ω)
and the spreading function Ψ(θ, ω). Various theoretical models given in terms
of environmental parameters exist in the literature [21, 22]. In this paper we
use the generalized Pierson-Moskowitz spectrum [22] given by

Sη (ω) =
Hs

2Tz
8π2

(
ωTz
2π

)−5

exp

{
− 1

π

(
ωTz
2π

)−4
}
,

where Hs is the significant wave height and Tz is the zero-crossing period. The
spreading function is of the cos-2s type, defined by a mean wave direction Θ̄
relative to the x-axis and an ω-dependent spreading parameter s(ω) as

Ψ(θ, ω) =
22s(ω)Γ2 (s(ω) + 1)

2πΓ (2s(ω) + 1)

(
cos2 θ − Θ̄

2

)s(ω)

,

where Γ(·) is the gamma function. Figure 1 shows the wave spectrum Sη(ω)
plotted in the nondimensional scale ωTz/2π, and the spreading function is shown
for different values of s(ω). In this paper we have used a constant spreading
s(ω) = 10, but it could equally well be defined as ω-dependent.70
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(a) The generalized Pierson-Moskowitz spectrum.

(b) The cos-2s spreading function.

Figure 1: Definition of the directional spectrum.

2.2. Stochastic modelling of first-order wave excitation loads

For pontoon floating bridges the structure will experience wave loads only
where the pontoons are located. Considering the pontoons as rigid bodies, the
bridge will experience loads in six degrees of freedom (DOFs) from each pontoon,
three translational DOFs and three rotational DOFs. Thus, for a bridge with75

N pontoons we have loading in 6N DOFs, and we can define a wave excitation
load vector q(t) = [q1(t), q2(t), . . . , qN (t)], where qm(t) denotes the 6-element
load vector of pontoon number m. The individual components of the load vector
q(t) can be denoted by qµ(t), assigning a global index µ ∈ {1, 2, . . . , 6N} to each
DOF.80

Consider pontoon m with a local coordinate system (x̃, ỹ), which is located
with its origin at the point (xm, ym) and rotated counterclockwise with an angle
αm relative to the global coordinate system (x, y) as shown in Fig. 2. The wave
excitation loads due to a regular wave with angular frequency ω in the direction
β̃ relative to the x̃-axis of the pontoon can be computed using linear potential85

theory software such as Wadam [23]. The loads are then reported in terms
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of the 6-element complex transfer function vector fm(β̃, ω). Considering only
first-order wave loads, the wave excitation load process qm(t) corresponding to
the wave elevation process η(x, y, t) can be obtained by superposition of loads
from regular waves. This results in a stationary Gaussian load process q(t) with90

zero mean and a 6N -by-6N cross-spectral density matrix Sq(ω) whose elements
are given by

Sqµqν (ω) = Sη(ω)

∫ π

−π
Ψ(θ, ω)fµ(θ−αm, ω)fν(θ − αn, ω)e−iκ(ω)(∆x cos θ+∆y sin θ)dθ,

(1)
where the overline denotes complex conjugation. Here fµ(β̃, ω) is the µ-th com-

ponent of the total transfer function vector f(β̃, ω) = [f1(β̃, ω),f2(β̃, ω), · · · ,fN (β̃, ω)],
i.e. the complex transfer function of the DOF µ.95

A method for efficient calculation of the cross-spectral density matrix Sq(ω)
based on the expression Eqn. (1) is given in [19, 20]. In [19] the derivation of
the cross-spectral densities is also explained in more detail.

Figure 2: The local coordinate system of a pontoon.

2.3. Equations of motion

By employing the framework of the finite element method (FEM), the equa-
tions of motion describing the linear behaviour of a floating bridge can be written
as

M sü(t) + Csu̇(t) + Ksu(t) = qh(t),

where M s, Cs and Ks are the structural system matrices, excluding all fluid-
structure interaction contributions; u(t) is the displacement vector; qh(t) is the
total hydrodynamic action, including both wave excitation and fluid-structure
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interaction contributions; t is the time variable; and u̇ ≡ ∂u
∂t . The total hydro-

dynamic action may be decomposed as follows:

qh(t) = −
(∫ ∞
−∞

Mh(t− τ)ü(t)dτ +

∫ ∞
−∞

Ch(t− τ)u̇(t)dτ + Khu(t)

)
+ q(t).

Here the first term represents the fluid-structure interaction, with Mh(t) and
Ch(t) being the time-domain representations of added mass and added damping
respectively, and Kh being the hydrostatic stiffness. The second term, q(t), is
the wave excitation load. Convolution integrals in the time domain are equiva-
lent to multiplication in the frequency domain, such that the total hydrodynamic
action may be written as follows by enforcing frequency domain notation:

q̂h(ω) = −
(
−ω2M̂h(ω) + iωĈh(ω) + Kh

)
û(ω) + q̂(ω).

Here hats denote the frequency domain counterparts of the different quantities.
Finally, the equation of motion of the system may be written on the following
compact form, in the frequency domain:(

−ω2M(ω) + iωC(ω) + K
)
û(ω) = q̂(ω)

where M(ω) = M s + M̂h(ω), C(ω) = Cs + Ĉh(ω) and K = Ks + Kh.100

The second-order probabilistic properties of zero-mean response and wave
excitation processes are fully described by cross-spectral densities. The stochas-
tic frequency domain problem is easily solved by applying the power spectral
density method. The cross-spectral density matrix of the response is then cal-
culated as105

Su(ω) = H(ω)Sq(ω)H(ω)H , (2)

where H(ω) =
(
−ω2M(ω) + iωC(ω) + K

)−1
and [·]H denotes the conjugate

transpose. The cross-spectral density matrix Sq(ω) of the wave excitation load
is found as explained in Section 2.2. More details on the subject may be found
in e.g. [1, 24, 25, 26, 27].

3. Short-term response model for the case study bridge110

The case study bridge consists of an S-shaped continuous girder box, which
is supported on 20 pontoons. Figure 3 depicts the most important geometri-
cal properties of the bridge. 16 symmetrically positioned cables provide side-
support by fixation to the sea bed, cf. Fig. 4. The cross section of the girder
is illustrated in Fig. 5. It is highlighted that the modelled bridge is considered115

merely as a useful example for the application of the methodology, and does not
necessarily represent a feasible design.
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3.1. Numerical response model set-up

The study carried out is performed using the approach presented in [27], and
the reader is referred to that paper for a detailed description of the methodology120

for the numerical model set-up. The most important details are repeated here,
for the convenience of the reader.

Two different sub-structures are used to create the full bridge model:

(I) A structural sub-structure, based on an Abaqus model incorporating all
structural components and also including pontoon inertia and buoyancy.125

(II) A hydrodynamic sub-structure, based on a Wadam model providing fluid-
structure interaction terms, but excluding the buoyancy and pontoon
inertia which are both included in (I).

To combine the two sub-structures, a modal decomposition is carried out in
Abaqus [28]. The resulting mode shapes are referred to as the dry mode shapes,130

and are used as a new coordinate basis. The mode shapes are defined by the
DOFs characterizing the rigid body motion of all pontoons. The frequency-
dependent mass and damping contributions originating from the hydrodynamic
model (II) are transformed to the coordinate basis defined by the dry mode
shapes, before they are added to the modal system matrices from the structural135

model (I). It is noted that the results from the single pontoon analysis is du-
plicated and used for all pontoons, but necessary transformations and matrix
book keeping are applied such that the orientation and additions are correct.
The wave excitation cross-spectral density matrix Sq(ω), given by Eqn. (1), is
transformed to the coordinate basis given by the dry mode shapes, before the140

power spectral density method, cf. Eqn (2), is applied to calculate the spec-
tral density of the response. In the final step, the response spectral density is
transformed back to the physical DOFs of the pontoons. The main reason for
carrying out this basis transformation is to avoid the extraction of all the free
DOFs of the finite element model, as static condensation is not appropriate for145

dynamic problems. It should be noted that although a reduced order model
is obtained, this is not a mode by mode approach because the modes will be
coupled due to the hydrodynamic contributions.

3.2. Structural model

The continuous girder box is modelled in Abaqus with beam elements, with150

a generalized cross section characterized by the parameters shown in Tab. 1.
The cables are modelled as beam elements, with circular cross sections.

In an initial static step, pre-tensioning of cables, cable bouyancy, global
gravity, and static uplift forces are applied to the structure. The cables are
pre-tensioned by assuming a constant negative temperature, which corresponds155

to a pre-tension of approximately 5000 kN. Fluid inertial effects are included
for the cables; however, no drag damping is considered.
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L = 4000 m

R = 1250 m

Δ = 500 mPinned support

Pinned support

(a) Top view of main geometry.

Generalized beam cross-section

Cable

Pontoon

500 m

1500 m

Fixed connection

Pinned connection

(b) Cable geometry.

Figure 3: Geometry of the bridge model.

Table 1: Parameters used for the generalized cross section.

Parameter Value Description

A 1.026 m2 Cross-sectional area
Iy 10.79 m4 Second moment of area about axis y
Iz 29.34 m4 Second moment of area about axis z
J 24.92 m4 Polar moment of area
zc 3736 mm Distance from bottom to neutral axis
yc 0 mm Distance from center to neutral axis
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8 equidistant cables

0.45 L
0.05 L

8 equidistant cables

Figure 4: Position of cables. L refers to the horizontal distance, as defined in Fig. 3.

15 m

7 m

z

y

Figure 5: Main dimensions of cross section.

75 m

20 m

12 m

x

y
z

Figure 6: Main dimensions of pontoon and local coordinate system.
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Table 2: Modal parameters from the numerical eigenvalue solution, corresponding to mode
shapes illustrated in Fig. 7. The undamped natural frequency is denoted ωn, and ξ is the
corresponding critical damping ratio.

Mode number ωn [rad/s] ξ [%]

Mode 1 (Fig. 7a) 0.11 1.53
Mode 2 (Fig. 7b) 0.15 1.28
Mode 3 (Fig. 7c) 0.16 1.18
Mode 4 (Fig. 7d) 0.18 1.02
Mode 5 (Fig. 7e) 0.20 0.88
Mode 6 (Fig. 7f) 0.24 0.79
Mode 7 (Fig. 7g) 0.28 0.75
Mode 8 (Fig. 7h) 0.33 0.81
Mode 9 (Fig. 7i) 0.38 1.06
Mode 10 (Fig. 7j) 0.45 1.87

3.3. Hydrodynamic pontoon model

A single hydrodynamic analysis, carried out in Wadam, is used to establish
all system matrix contributions from the fluid-structure interaction. The ge-160

ometry of the pontoon is depicted in Fig. 6. In the model set-up, buoyancy
and inertia of the pontoon itself were added as local contributions to the bridge
at the locations of the pontoons. The added hydrodynamic mass and damping
coefficients, referring to the local coordinate system of the pontoon, are plotted
in Figs. 8 and 9.165

3.4. Modal parameters and shapes

Due to the frequency dependency of the hydrodynamic contributions, the
eigenvalue problem is solved by iteration, as described in [27]. The resulting
10 first undamped natural frequencies and critical damping ratios are shown in
Tab. 2, and the real part of the corresponding mode shapes are depicted in170

Fig. 7. Figure 7 reveals that the first 10 modes all have lateral motion patterns.
From frequencies above the natural frequency of mode 10 and up, numerous
cable modes are present.
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(a)(a)

(d)

(g)

(j)

(b)

(e)

(h)

(c)

(f)

(i)

Figure 7: Mode shapes from numerical eigenvalue solution, corresponding to natural frequen-
cies and damping ratios presented in Tab. 2. Note that the eigenvectors are complex, and
their mode shape representation is therefore a snapshot. (a) Mode 1; (b) mode 2; (c) mode
3; (d) mode 4; (e) mode 5; (f) mode 6; (g) mode 7; (h) mode 8; (i) mode 9; (j) mode 10.
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Figure 8: Translational (a) and rotational (b) damping coefficients of a single pontoon. Dots
indicate the original data from Wadam, whilst lines represent interpolated data. The coordi-
nates refer to the local coordinate system of the pontoon, as shown in Fig. 6.
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Figure 9: Translational (a) and rotational (b) mass coefficients of a single pontoon. Dots indi-
cate the original data from Wadam, whilst lines represent interpolated data. The coordinates
refer to the local coordinate system of the pontoon, as shown in Fig. 6.
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4. Long-term extreme response

For the modelling of long-term extreme response of marine structures, the175

long-term situation can be considered as a collection of Ñ short-term states,
each of duration T̃ . During each short-term state the environmental processes
are assumed stationary and defined by a set of n environmental parameters
W = [W1,W2, . . . ,Wn]. In this paper, we only consider the sea elevation,
which is defined in terms of the environmental parameters W = [Hs, Tz, Θ̄], cf.180

Section 2.1. We will assume that the joint probability density function (PDF)
of the environmental parameters, denoted fW (w), is given. This PDF can be
estimated by fitting a probabilistic model to a scatter diagram of recorded sea
states [1].

The methodology presented in this paper for the calculation of extreme185

response is illustrated for a single response process. Specifically, we consider
the horizontal transverse displacement of pontoon number five from the left in
Fig. 3. This is the displacement along the local x̃-axis of this pontoon (see Fig.
2), and will henceforth simply be referred to as the response process, denoted
R(t). Being the response of a linear and time-invariant dynamical system, R(t)190

will be a stationary Gaussian process with zero mean because the load process
is. Hence, the response R(t) is fully characterized by its spectral density SR(ω),
which is obtained as a diagonal element of the cross-spectral density matrix
Su(ω) given by Eqn. (2). Figure 10 shows an example of the response spectrum
SR(ω) for a short-term situation where the environmental variables are given195

by W = [Hs, Tz, Θ̄] = [1 m, 6 s,−π/2].

Figure 10: The response spectrum SR(ω) when W = [Hs, Tz , Θ̄] = [1 m, 6 s,−π/2].

4.1. Short-term extreme value distribution

The maximal value of the response process R(t) during a short-term pe-
riod with given environmental variables W will be a random variable. This
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short-term extreme response is denoted by R̃|W and its cumulative distribu-200

tion function (CDF) is FR̃|W (r|w) = Prob[R̃ ≤ r|W = w] = Prob[R̃ ≤ r|Hs =

hs, Tz = tz, Θ̄ = θ̄]. As explained in detail in [1], the short-term extreme value
distribution FR̃|W (r|w) can be found by assuming independent upcrossings of
high levels r as

FR̃|W (r|w) = exp

{
− T̃

2π

√
m2(w)

m0(w)
exp

{
− r2

2m0(w)

}}
, (3)

which holds for reasonably large values of r. Here the i-th moment mi(w) of
the response spectrum SR(ω) is defined as

mi(w) =

∫ ∞
0

ωiSR(ω)dω.

Note that SR(ω) is dependent on the environmental parameters w, though not205

written explicitly.
It should be noted that although Eqn. (1) and thereby Eqn. (3) are based on

the assumption of homogeneity, which may be questioned for floating bridge ap-
plications, the general method presented in this paper is readily used along with
other ways of calculating the short-term CDF FR̃|W (r|w). The only required210

assumption is that the response process can be approximated as stationary for
some short-term period T̃ .

4.2. Long-term extreme response models

The long-term CDF of the short-term extreme value is denoted FR̃(r), and

gives the distribution of the largest response value R̃ during an arbitrarily cho-215

sen short-term condition. This can be obtained as an average of all short-term
CDFs FR̃|W (r|w) weighted by the distribution fW (w) of the environmental

parameters. In order to estimate fW (w) in the first place, an ergodicity as-
sumption is required for the environmental parameters [29], and hence FR̃(r)
should be expressed as an ergodic average [1, 29]. This yields the long-term220

extreme response formulation

FR̃ (r) = exp

{∫
w

(
lnFR̃|W (r|w)

)
fW (w) dw

}
. (4)

A very common approximate formulation, is given by the population mean

FR̃ (r) ≈
∫
w

FR̃|W (r|w)fW (w) dw. (5)

The formulations Eqns. (4) and (5) are discussed in more detail in [11, 12].
The long-term CDF FR̃(r) can be evaluated by solving the integrals in Eqns.

(4) and (5) numerically. Unfortunately, full numerical integration requires a very225

large amount of short-term response calculations, since the short-term CDF
FR̃|W (r|w) must be calculated for a very large number of environmental con-
ditions. This motivates the use of inverse reliability methods for calculation of
long-term extreme response.
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4.3. Writing the long-term CDF in terms of a reliability problem230

In order to use reliability methods for evaluating the long-term CDF FR̃(r),
it must be rewritten in terms of a reliability problem. A reliability problem in
the general sense [30] is an integral of the form∫

G(v)≤0

fV (v)dv,

where V is a random vector with joint PDF fV (v) and G(v) is a function
referred to as the limit state function.

For the approximate formulation Eqn. (5), it is well known that the long-
term CDF can be expressed in terms of a reliability problem by rewriting∫

w

FR̃|W (r|w) fW (w) dw =

∫
w

∫
r̃≤r

fR̃|W (r̃|w) dr̃fW (w) dw.

Introducing the random vector V̄ = [W , R̃], whose joint PDF is given by
fV̄ (v̄) = fR̃|W (r̃|w) fW (w), Eqn. (5) yields

FR̃ (r) ≈
∫
r̃≤r

fV̄ (v̄) dv̄ = 1−
∫
r≤r̃

fV̄ (v̄) dv̄.

Finally, we obtain

FR̃ (r) ≈ 1−
∫

Gr(v̄)≤0

fV̄ (v̄) dv̄, (6)

where Gr(v̄) = r − r̃ = r − v̄n+1, with v̄n+1 being the (n+ 1)-th component of
the vector v̄.235

The exact formulation Eqn. (4) can be used directly to obtain a better
approximation for the long-term CDF in terms of a reliability problem [12, 13,
31]. Equation (4) is rewritten by multiplying and dividing the integral by some
freely chosen constant C ≥ 1. Then unity is added and subtracted, keeping in
mind that

∫
w
fW (w) dw = 1. Specifically, we obtain

FR̃ (r) = exp

{
−C

(
1−

∫
w

(
1 +

1

C
lnFR̃|W (r|w)

)
fW (w) dw

)}
.

Introducing the random variable Y defined by the CDF FY |W (y|w) = max
{

1 + 1
C lnFR̃|W (y|w), 0

}
,

the factor 1+ 1
C lnFR̃|W (r|w) in the above integral can be replaced by FY |W (r|w).

This yields the approximation

FR̃ (r) ≈ exp

{
−C

(
1−

∫
w

FY |W (r|w) fW (w) dw

)}
. (7)

Here the domain where 1 + 1
C lnFR̃|W (r|w) < 0 is disregarded. This is a very

good approximation for large values of r, since FR̃|W (r|w) will be close to unity.240
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Furthermore, by increasing the value of C, the approximation will improve. Now
the approximation Eqn. (7) obtained directly from the exact formulation Eqn.
(4) can be written in terms of a reliability problem using the same approach as
for the approximate formulation. Finally, the long-term CDF is expressed as

FR̃ (r) ≈ exp

−C
∫

Gr(v)≤0

fV (v) dv

 , (8)

where V = [W , Y ] and Gr(v) = r − y = r − vn+1.245

4.4. Calculation of extreme response using inverse reliability methods

When long-term extreme responses are calculated for design purposes, we
usually seek the characteristic response value rq which has a specified annual
exceedance probability q. This may also be referred to as the response value with
a return period of 1/q years, or simply the 1/q-year response. The characteristic
response rq is found by requiring

1− FR̃ (rq) =
q

Ñ
,

where Ñ = 1 yr/T̃ is the number of short-term periods in one year. In this
paper we have used T̃ = 3 h, which gives Ñ = 365 · 8 = 2920. If we denote
by r̃q the long-term extreme response obtained when using the approximate
formulation Eqn. (5) for the long-term CDF, we have from Eqn. (6) that r̃q250

must satisfy ∫
Gr̃q (v̄)≤0

fV̄ (v̄) dv̄ =
q

Ñ
. (9)

Similarly, using Eqn. (8), which corresponds to the exact formulation Eqn. (4),
yields the following equation for rq:∫

Grq (v)≤0

fV (v) dv = − 1

C
ln

(
1− q

Ñ

)
. (10)

Now the problem of finding r̃q and rq that satisfies Eqns. (9) and (10) can be
solved in an approximate manner using inverse reliability methods. Taking Eqn.255

(9) as an example, the random vector V̄ is transformed into a vector U of in-
dependent standard normal random variables by the Rosenblatt transformation
U = T (V̄ ), and Eqn. (9) becomes∫

gr̃q (u)≤0

fU (u) du =
q

Ñ
, (11)
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where gr̃q (u) = Gr̃q (T
−1(u)) = r̃q− r̃(u) is the transformed limit state function

and fU (u) is the multivariate standard normal PDF. Using the first-order reli-260

ability method (FORM) to approximate the integral in Eqn. (11), the inverse
FORM (IFORM) problem can be derived as

r̃F
q = max r̃(u); subject to |u| = β, (12)

where β = −Φ−1(q/Ñ) with Φ(·) being the standard normal CDF. Thus, solving
the IFORM problem Eqn. (12) provides an estimate r̃F

q for the characteristic
extreme response value r̃q. In this work we have used the solution algorithm265

proposed in [12]. For details on the transformation to standard normal variables
and the derivation of the IFORM problem the reader is referred to [4, 12, 30].

If, on the other hand, the second-order reliability method (SORM) is used to
approximate the integral in Eqn. (11), an inverse SORM (ISORM) method can
be derived. In [13] an ISORM approach is proposed where the IFORM problem270

Eqn. (12) is solved repeatedly, updating the value of β which is unknown in
this case. The characteristic extreme response estimate provided by the ISORM
method is denoted r̃S

q .
The inverse reliability methods IFORM and ISORM can be applied to Eqn.

(10) using the same approach as described above, providing long-term extreme275

response estimates that approximate rq. We denote these estimates by rF
q and

rS
q respectively. The only differences will be that V is transformed instead of

V̄ , and that β = −Φ−1
(
− 1
C ln

(
1− q

Ñ

))
.

It is reported in [12, 13] that the use of reliability methods appears to give
good accuracy for the calculated long-term extreme response while keeping the280

number of required short-term response calculations within reasonable levels.

4.5. Environmental contour method

Even though IFORM and ISORM represent efficient methods for extreme
response evaluation, some cases may still call for a more simplified approach.
The environmental contour method has been proposed as such a simplified ap-285

proach for estimating characteristic long-term extreme response values [3]. It is
developed in [4] based on the approximate formulation Eqn. (5) and the IFORM
approximation. In fact, the method can be considered as a special case of the
IFORM problem Eqn. (12) where the short-term extreme response is regarded
as deterministic [4].290

The environmental contour corresponding to a given annual exceedance
probability q is found from the joint environmental PDF fW (w) without any
consideration of the structural response. Then, the most unfavourable combi-
nation of environmental parameters along this q-probability contour, referred to
as the design point, is identified. In this paper the design point, denoted by ŵ,295

is taken as the point along the contour where the median, i.e. the 0.5-fractile,
of the short-term distribution FR̃|W (r|w) attains its maximal value. This max-

imization problem is the same as the IFORM problem Eqn. (12), but since
the extreme response is regarded deterministic the dimension is reduced by one.
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Nevertheless, the same solution algorithm can be applied to obtain the design300

point ŵ. In order to account for the randomness of the short-term extreme
value, the characteristic response value is chosen as the p-fractile, p > 0.5, of
the short-term extreme value distribution FR̃|W (r|ŵ) at the design point. The

appropriate value for p must be validated by a full long-term analysis [1].
It is worth mentioning that it is possible to derive an environmental con-305

tour method based on the IFORM solution of the exact formulation Eqn. (4).
In that case, we would use the short-term distribution FY |W (y|w) instead of
FR̃|W (r|w), and the q-probability contour would be defined in the standard nor-

mal space by a radius β = −Φ−1
(
− 1
C ln

(
1− q

Ñ

))
instead of β = −Φ−1(q/Ñ).

This would, however, introduce contours dependent on the parameter C, and310

the appealing simplicity of the contour method would be undermined.

5. Numerical results

5.1. Environmental models

The environmental parameters defining the short-term wave situation ac-
cording to Section 2.1 are the significant wave height Hs, the zero-crossing315

period Tz and the mean wave direction Θ̄. Using the conditional modelling ap-
proach described in [32, 33], the CDF of the significant wave height Hs is given
by a 2-parameter Weibull distribution

FHs (h) = 1− exp

{
−
(
h

α

)β}
, (13)

and the zero-crossing period Tz has a conditional lognormal distribution

FTz|Hs (t|h) = Φ

(
ln t− µ (h)

σ (h)

)
, (14)

where µ (h) = a0+a1h
a2 and σ (h) = b0+b1e

b2h. Here α, β and a0, a1, a2, b0, b1, b2320

are the parameters of the distributions. For the mean wave direction Θ̄, we use
a distribution independent of Hs and Tz, given by the CDF

FΘ̄(θ) =


0, for θ < −π,
2
(
1 + θ

π

)2
, for − π ≤ θ < −π2 ,

1− 2
(
θ
π

)2
, for − π

2 ≤ θ < 0,

1, for θ ≥ 0.

(15)

This means that the PDF fΘ̄(θ), obtained by differentiating Eqn. (15) with
respect to θ, is piecewise linear between −π and 0 with a peak at −π2 . Simi-
larly, the PDFs fHs(h) and fTz|Hs(t|h) can be obtained by differentiating Eqns.325

(13) and (14) with respect to h and t respectively, and the joint PDF of the
environmental parameters is given as

fW (w) = fHs,Tz,Θ̄ (h, t, θ) = fHs (h) fTz|Hs (t|h) fΘ̄(θ). (16)
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Table 3: Overview of the considered environmental models.

Hs Tz Θ̄

Name Joint PDF Value/CDF α β Value/CDF a0 a1 a2 b0 b1 b2 Value/CDF

EM1 Eqn. (16) Eqn. (13) 0.587 1.59 Eqn. (14) 0.151 0.339 0.167 0.07 0.3449 −0.6219 Eqn. (15)
EM2 Eqn. (17) Eqn. (13) ” ” exp{µ(Hs)} ” ” ” n/a n/a n/a Eqn. (15)
EM3 Eqn. (18) Eqn. (13) ” ” Eqn. (14) ” ” ” 0.07 0.3449 −0.6219 −π/2
EM4 Eqn. (18) Eqn. (13) 0.550 1.53 Eqn. (14) −0.120 1.439 0.150 0.07 0.0978 −0.0382 −π/2

The environmental model Eqn. (16) where all three environmental parame-
ters are random variables will be referred to as EM1. Different environmental
models can be obtained by considering some of the environmental parameters as330

deterministic. If for instance the zero-crossing period is taken as the conditional
median obtained from the CDF Eqn. (14), i.e. Tz = exp{µ(Hs)}, we obtain the
environmental model

fW (w) = fHs,Θ̄ (h, θ) = fHs (h) fΘ̄(θ). (17)

This will be referred to as EM2. We also consider an environmental model
where the mean wave direction is given as Θ̄ = −π/2. This yields335

fW (w) = fHs,Tz (h, t) = fHs (h) fTz|Hs (t|h) , (18)

which will be referred to as EM3. The environmental models EM1, EM2 and
EM3 will all have the same values for the distribution parameters. We also con-
sider a model EM4, which is given by Eqn. (18) with different parameter values.
An overview of the environmental models and their distribution parameters is
provided in Tab. 3.340

The environmental models are illustrated in Fig. 11 by displaying the envi-
ronmental contours corresponding to annual exceedance probabilities q = 10−2

and q = 10−4, i.e. the 100-year and 10 000-year contours. For the two-
dimensional models EM2, EM3 and EM4, the isoprobability contours obtained
from the PDFs Eqns. (17) and (18) are also shown. Note that EM2 and EM3345

are obtained from EM1 by regarding as deterministic Tz and Θ̄ respectively.
EM4 represent a different model entirely. However, for all the models consid-
ered, the significant wave heights Hs with return periods of 100 and 10 000 years
are approximately 2.9 m and 3.5 m respectively.
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(a) EM1 (b) EM2

(c) EM3 (d) EM4

Figure 11: The contours corresponding to annual exceedance probabilities q = 10−2 and
q = 10−4 for the different environmental models. For the two-dimensional models EM2, EM3
and EM4 the PDFs are illustrated by displaying the isoprobability contours. EM2 and EM3
are obtained from EM1 by regarding as deterministic Tz and Θ̄ respectively.
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5.2. Characteristic extreme response values350

5.2.1. Inverse reliability methods

Estimates for the characteristic response value rq were calculated using the
methods described in Section 4.4. The value r̃q was obtained by numerically
solving the integral in the approximate formulation Eqn. (5), and r̃F

q and r̃S
q

denote the IFORM and ISORM approximations of r̃q. Similarly, rq was found355

by applying numerical integration to the formulation Eqn. (4) and the reliability
method approximations are denoted rF

q and rS
q . For rF

q and rS
q , different values

of the constant C in Eqns. (8) and (10) could be used. In this paper, C = 1 is
used for rF

q , while the values C = 1, C = 104 and C = 106 are used for rS
q .

For the calculation of r̃q and rq by numerical integration, the ranges of the360

integration variables were Hs ∈ [0, 10] m, Tz ∈ [0.4, 20] s, and Θ̄ ∈ [−π, 0].
The applied bin sizes were ∆Hs = 0.1 m, ∆Tz = 0.2 s, ∆Θ̄ = π/39 for EM1,
∆Hs = 0.05 m, ∆Θ̄ = π/39 for EM2 and ∆Hs = 0.05 m, ∆Tz = 0.05 s for EM3
and EM4. It should be noted that these ranges and bin sizes are chosen such
that r̃q and rq can be regarded as exact values, and the number of integration365

points may therefore be excessive.
The obtained values for the characteristic extreme response estimates are

presented in Tabs. 4 and 5 for annual exceedance probabilities q = 10−2 and
q = 10−4, respectively. When compared to the values r̃q and rq, it is seen
that the reliability method approximations provide reasonable estimates for the370

characteristic response value. Especially the ISORM method with C chosen as
104 or 106 yields very good estimates.

In Tabs. 4 and 5, the characteristic response values are seen to vary quite a
lot between the different environmental models. This is a result of the response
being very sensitive to the zero-crossing period Tz. In Fig. 11 it is seen that375

large values of Tz have a larger probability of occurrence for EM4 than for EM3,
resulting in a significantly larger extreme response. For EM2, Tz is fixed at its
median value, disregarding large values of Tz. This results in a smaller extreme
response for EM2. EM1 and EM3, on the other hand, have the same model for
Tz and give quite similar results.380

For each of the extreme response estimates in Tabs. 4 and 5, the corre-
sponding number of executed short-term response calculations, denoted by nst

or similar, is reported in Tabs. 6 and 7. It is clear that IFORM and ISORM
represent efficient methods for full long-term extreme response analysis. ISORM
roughly doubles the computational effort compared to IFORM.385

5.2.2. Environmental contour method

Using some common choices for the fractile level p, characteristic extreme
response estimates denoted rpq were obtained for the environmental contour
method. These estimates are presented in Tabs. 8 and 9 for annual exceedance
probabilities q = 10−2 and q = 10−4 respectively. Comparing these results to390

the exact long-term extreme response rq in Tabs. 4 and 5, we observe that all
the considered choices of p give reasonable rough estimates for the long-term
response.
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Table 4: The characteristic extreme response values as calculated by the different methods
for an annual exceedance probability q = 10−2.

Approximate formulation Exact formulation

rSq [cm]

r̃Fq [cm] r̃Sq [cm] r̃q [cm] rFq [cm] C = 1 C = 104 C = 106 rq [cm]

EM1 56.4 48.7 54.4 56.8 49.6 58.7 58.5 61.8
EM2 2.52 2.39 2.42 2.54 2.42 2.55 2.55 2.58
EM3 53.3 49.7 51.6 53.7 50.6 61.0 60.8 62.1
EM4 246.8 243.4 243.4 249.2 248.3 284.9 284.6 284.6

Table 5: The characteristic extreme response values as calculated by the different methods
for an annual exceedance probability q = 10−4.

Approximate formulation Exact formulation

rSq [cm]

r̃Fq [cm] r̃Sq [cm] r̃q [cm] rFq [cm] C = 1 C = 104 C = 106 rq [cm]

EM1 97.0 83.5 85.2 97.7 85.2 92.8 92.4 92.6
EM2 3.47 3.30 3.33 3.47 3.33 3.39 3.39 3.41
EM3 97.0 87.5 87.8 97.8 89.1 96.8 96.7 97.2
EM4 406.3 398.5 398.0 408.2 403.9 420.3 420.1 420.1

Table 6: The number of short-term response calculations performed for each of the long-term
extreme response estimates in Tab. 4.

Approximate formulation Exact formulation

nS
st

ñF
st ñS

st ñst nF
st C = 1 C = 104 C = 106 nst

EM1 19 87 399960 23 111 111 113 399960
EM2 43 81 8040 43 81 71 67 8040
EM3 61 113 78993 60 117 225 147 78993
EM4 33 67 78993 33 67 81 177 78993

Table 7: The number of short-term response calculations performed for each of the long-term
extreme response estimates in Tab. 5.

Approximate formulation Exact formulation

nS
st

ñF
st ñS

st ñst nF
st C = 1 C = 104 C = 106 nst

EM1 13 104 399960 18 110 109 126 399960
EM2 57 95 8040 57 94 89 85 8040
EM3 160 276 78993 256 384 167 155 78993
EM4 101 159 78993 105 151 82 190 78993
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Table 8: The characteristic extreme response values as calculated by the environmental con-
tour method using different quantile levels p for an annual exceedance probability q = 10−2.
The corresponding design points are illustrated by diamond markers in Figs. 12 and 13.

rpq [cm]

p = 0.80 p = 0.85 p = 0.90 p = 0.95

EM1 58.6 59.6 61.0 63.3
EM2 2.60 2.64 2.69 2.79
EM3 55.3 56.2 57.6 59.7
EM4 258.5 263.3 269.7 280.1

Table 9: The characteristic extreme response values as calculated by the environmental con-
tour method using different quantile levels p for an annual exceedance probability q = 10−4.
The corresponding design points are illustrated by diamond markers in Figs. 12 and 13.

rpq [cm]

p = 0.80 p = 0.85 p = 0.90 p = 0.95

EM1 101.0 102.9 105.4 109.5
EM2 3.50 3.56 3.63 3.76
EM3 100.9 102.8 105.4 109.5
EM4 418.1 425.9 436.5 453.4

The exact fractile levels corresponding to the full long-term estimates can
also be calculated. For the exact extreme response value rq, the corresponding
fractile level is given as

pq = FR̃|W (rq|ŵ).

Table 10 shows the fractile levels corresponding to the exact extreme response
values rq in Tabs. 4 and 5. We see that there is a large variation in the obtained395

fractiles, indicating that one single fractile level does not give accurate estimates
for all the considered cases. However, as seen in Tabs. 8 and 9, rough estimates
can still be obtained. When regarded as rough approximations, Tabs. 8 and 9
show that the extreme response estimates are generally not overly sensitive to
changing fractile levels. Still, if the fractile level should be much larger than 0.9,400

which is the case for EM3 and EM4 when q = 10−2, the environmental contour
method may underestimate the extreme response quite severely.

Considering Tabs. 8–10, reasonable choices for the fractile values are perhaps
p = 0.95 for q = 10−2 and p = 0.80 for q = 10−4. Thus, p has a larger value
for the highest annual exceedance probability. This is in contrast to the choices405

of p = 0.90 for q = 10−2 and p = 0.95 for q = 10−4, which are common for
offshore structures [3]. It should also be noted that instead of using rq, which is
obtained by full numerical integration, the IFORM and ISORM estimates can
be used to determine appropriate values for the fractile levels.
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Table 10: The fractile levels pq corresponding to the exact extreme response values rq in Tabs.
4 and 5.

EM1 EM2 EM3 EM4

pq, q = 10−2 0.92 0.77 0.98 0.96
pq, q = 10−4 0.43 0.69 0.66 0.81

5.3. Design points410

In addition to giving an estimate for the characteristic extreme response,
the inverse reliability methods will produce a design point which represents
the most critical combination of environmental parameters for the specified
annual exceedance probability q. The design point corresponding to the ISORM
estimate rS

q (C = 106) is shown in Fig. 12 for EM1. In Fig. 13 the design415

points are shown for the two-dimensional environmental models EM2, EM3 and
EM4, also including the IFORM design points corresponding to the estimates
rF
q (C = 1). In addition, the contour method design points are shown in Figs.

12 and 13. As explained in Section 4.5, these have been obtained by maximizing
the median value of the short-term CDF FR̃|W (r|w) on the respective contours.420

The relative contribution of different sea states to the long-term integral in
Eqn. (4) is illustrated in Figs. 12 and 13 by the function g(w). This function
is defined as a normalized version of the integrand in Eqn. (4) for r = rq.
Specifically,

g(w) = − 1

M
ln
(
FR̃|W (rq|w)

)
fW (w),

where M is chosen such that the maximal value of g(w) equals unity.
By considering Figs. 12 and 13, we observe that the main contribution to the

long-term integral is located within a rather concentrated region. Furthermore,
the design points quite successfully locate this region. The ISORM design point
(C = 106) almost exactly pinpoints the location of the largest contribution.425

However, local maxima other than the main contribution might occur. This
can be observed in the left part of Fig. 12, corresponding to q = 102 for EM1.
If such a local maximum represent a significant contribution, this may result in
an underestimation of the long-term extreme response as seen in the first row
of Tab. 4. This is a known shortcoming of the inverse reliability methods, and430

they should therefore be used with some caution.

6. Concluding remarks

A framework for full long-term extreme response analysis has been demon-
strated for a long-span case study bridge. Using recently developed IFORM and
ISORM approaches, the extreme response was calculated in an efficient man-435

ner. Comparison with full numerical integration revealed that especially the
ISORM method gives high accuracy. It has thus been shown that the proposed
framework can be applied successfully for complex structures. Still, limitations
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Figure 12: The design points corresponding to the characteristic extreme response value rSq
(ISORM, C = 106) and the environmental contour method for annual exceedance probabilities
q = 10−2 (left) and q = 10−4 (right). The contribution g(w) to the long-term integral is also
illustrated by displaying isosurfaces for the values 0.9, 0.5 and 0.1.

do exist, e.g. in the presence of multiple local maxima for the contribution
to the long-term integral. Therefore, future work should focus on comparison440

with alternative approaches and further verification of the IFORM and ISORM
methods, especially for nonlinear response.

The full long-term analysis was also compared with the environmental con-
tour method. The results show that the contour method can be used to obtain
rough estimates of the long-term extreme response. Furthermore, a proper frac-445

tile level p could be determined by comparison with the IFORM and ISORM
results.
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(a) EM2

(b) EM3

(c) EM4

Figure 13: The design points corresponding to the characteristic extreme response values rFq
(IFORM, C = 1), rSq (ISORM, C = 106) and the environmental contour method for annual

exceedance probabilities q = 10−2 (left) and q = 10−4 (right). The contribution g(w) to the
long-term integral is also illustrated in each case.
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