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Non-linear Observers for GNSS- and Camera-Aided
Inertial Navigation of a Fixed-Wing UAV

Lorenzo Fusini, Thor I. Fossen, Fellow, IEEE, and Tor Arne Johansen, Senior Member, IEEE

Abstract—In this paper, exponentially stable non-linear ob-
servers for estimation of position, velocity, specific force, attitude
and gyro bias of a fixed-wing unmanned aerial vehicle (UAV) are
proposed. The sensor suite consists of an Inertial Measurement
Unit (IMU), a global navigation satellite system (GNSS) receiver,
a camera, an altimeter, and, possibly, auxiliary roll and pitch
measurements. A first observer is designed making use of all the
named sensors and is proven to be globally exponentially stable
(GES). Subsequently, the auxiliary roll and pitch measurements
are removed and replaced by an additional feedback loop from
the estimated attitude, and the new observer is analysed and
proven to be uniformly locally exponentially stable (ULES). An
optical flow algorithm is used to calculate the UAV velocity based
on the camera images, which is used as a measurement of the
body-fixed velocity in the attitude observer. The performance
of the observers is tested offline on simulated and experimental
data.

Index Terms—navigation, nonlinear filters, unmanned aerial
vehicles, optical flow.

I. INTRODUCTION

THE most used algorithm in navigation has been the
Extended Kalman Filter (EKF), but in the last decades

researchers have started to investigate alternatives to the
EKF, namely by developing non-linear observers with stability
proofs and experimental validation. Non-linear observers have
the advantage, over the EKF, of featuring a smaller compu-
tational footprint and often being proven exponentially stable
with a large region of attraction, a result that renders the ob-
servers robust to disturbances and initialization uncertainties.
The problem of attitude estimation has received significant
attention as a stand-alone problem [1]–[13]. In addition to this,
researchers have integrated Inertial Navigation System (INS),
magnetometer/compass, and GNSS to estimate the navigation
states of a vehicle.

In [14] the author expanded the vector-based observer pro-
posed by [8] and [9] to include GNSS velocity measurements.
[1] and [2] built GES attitude estimators based on multiple
time-varying reference vectors or a single persistently exiting
vector. A similar observer was developed in [15] and [16] to
include also gyro bias and GNSS integration. A variation of
this [17] replaced the rotation matrix with the unit quaternion
for representing attitude, considered Earth rotation and curva-
ture, a non-constant gravity vector, and included accelerometer
bias estimation.

Another sensor commonly used in navigation is the camera.
Low weight, low power consumption, and a wide range of
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machine vision software make it a viable choice for navigation
purposes. Some drawbacks are its dependence on light and
weather conditions and the difficulty in separating camera
motion from moving objects in complex non-stationary en-
vironments.

Optical flow (OF) is the motion of features in the image
plane between two consecutive images. Several methods exist
for determining the OF of a series of images, e.g. [18]–[21].
A comparison of the performance of different methods of
estimating the attitude of UAV based on machine vision is
presented in [22], and different OF algorithms are evaluated
in [23], [24] by estimating the UAV velocity.

The authors of the present paper have previously used OF
vectors from a single camera to calculate the normalized
body-fixed velocity of the UAV, which was fed into the non-
linear observer as a reference vector [25]; the observer was
then successfully tested on experimental data in [26]. In [27],
OF was used in combination with epipolar geometry and
compared with the results of [26].

A. Contributions

This paper is built on the authors’ previous works [25]–
[27], [28], [16], and proposes exponentially stable non-linear
observers for the estimation of position, velocity, specific
force, attitude, and gyro bias of a fixed-wing UAV. Expo-
nential stability is important for systems that are exposed
to environmental disturbances, measurement noise, and un-
certain initialization, since it guarantees strong convergence
and robustness properties [29]. Moreover, a globally stable
observer has the advantage of not requiring assumptions on
the characteristics of the process and measurement noise. This,
together with the fact that non-linear observers have a small
computational footprint, constitutes an advantage over other
popular algorithms, such as the EKF.

A first observer uses a GNSS receiver, an IMU, a camera,
an altimeter, and auxiliary roll and pitch measurements, with
a structure that reflects the one in [15] but without using
magnetometers, and is proven to be GES. Subsequently, the
roll and pitch measurements are replaced by the feedback from
the estimated attitude: the modified observer is then proven to
be ULES. Not having to rely on roll and pitch measurements
is an advantage: the sensors typically employed to obtain such
angles suffer from inaccuracies in systems with fast dynamics,
like fixed-wing UAVs, therefore the solution presented here
has a wider range of applicability, for it obtains the roll and
pitch angles from the estimated attitude.

Machine vision is implemented in order to provide the OF
to the observers. The idea behind this is to find a replacement
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for magnetometers: even though they are commonly used on
payloads, they suffer from high and variable levels of distur-
bances and require an often complicated calibration procedure
before use. To the best of the authors’ knowledge, [25] was
the first time that OF was used in a non-linear observer for
navigation purposes.

The observers are tested on experimental data to corroborate
the theoretical results. A computer simulation is also run to
compare the observers during sharper turns of the UAV, and
to demonstrate that in such cases the version with feedback
from the estimated attitude performs better than the version
with roll and pitch measurements.

II. NOTATION AND PRELIMINARIES

Vectors and matrices are represented by lowercase and
uppercase letters, respectively. X−1, X+, and tr(X) denote the
inverse, pseudo-inverse, and trace of a matrix, respectively, and
XT the transpose of a matrix or vector. An estimated value
of x is represented as x̂ and the estimation error is defined
as x̃ = x − x̂; similarly, for a matrix, X̃ = X − X̂ . The
operator ‖ · ‖ denotes the Euclidean norm for vectors and
the Frobenius norm for matrices, In is the identity matrix
of order n, and 0m×n is the m × n matrix of zeros. A
vector x = [x1, x2, x3]T is represented in homogeneous coor-
dinates as x = [x1, x2, x3, 1]T . The function sat(·) performs a
component-wise saturation of its vector or matrix argument to
the interval [−1, 1]. The operator S(x) transforms the vector
x into the corresponding skew-symmetric matrix, such that
S(x)y = x × y. The inverse operation is denoted as vex(·),
such that vex(S(x)) = x. For a square matrix A, its skew-
symmetric part is represented by Pa(A) = 1

2 (A−AT ).
The reference frames considered in the paper are the body-

fixed frame {B}, the North-East-Down (NED) frame {N}
(Earth-fixed, considered inertial) and the camera frame {C}.
The rotation from frame {B} to {N} is represented by the
matrix Rnb ≡ R ∈ SO(3), where SO(3) represents the Special
Orthogonal group. The camera is assumed to be fixed to the
body and perfectly aligned to its axes, so the camera-frame and
body-frame represent the same coordinate system and can be
identified by {B} alone.

A vector decomposed in {B} and {N} has superscript b

and n respectively. The body (camera) location w.r.t. {N} is
described by cn = [cnx , c

n
y , c

n
z ]T . A point in the environment

expressed w.r.t. {N} is tn = [xn, yn, zn]T : note that a point
located at the mean sea level corresponds to zn = 0, and
such it will be considered throughout the paper. The same
point expressed w.r.t. {B} is tb = [xb, yb, zb]T . It will also
be assumed that every point is fixed w.r.t. {N}. The gravity
vector is defined as gn = [0, 0, g], with g the local gravitational
acceleration. The greek letters φ, θ, and ψ represent the roll,
pitch, and yaw angles respectively, defined according to the
zyx convention for principal rotations [30]. A 2-D camera
image has coordinates [r, s]T , aligned with the yb- and zb-axis
respectively. The derivative [ṙ, ṡ]T of the image coordinates
is the optical flow (OF). Subscript F indicates a quantity
evaluated by means of the OF.

A. Measurements and Observed System

The sensor suite consists of the following units:
• GNSS receiver: NED position pn and velocity vn;
• IMU: biased angular velocity ωbm = ωb + bb, where bb

represent the bias, and specific force f b;
• camera: 2-D projections [r, s]T onto the image plane of

points [xn, yn, zn]T from the 3-D world;
• altimeter: height over ground cnz ;
• roll φ and pitch θ angles measurements.
All measurements are affected by noise and errors, but only

the gyro bias is explicitly reported here, for it is estimated by
the proposed observer. The measured specific force f b is also
affected by a bias; although not explicitly considered when
designing the observer, its effect is mitigated by pre-filtering
the IMU readings, as explained in Sec. V-A.

The system to observe is described by [15]

Ṙ = RS(ωbm − bb) ṗn = vn

ḃb = 0 v̇n = fn + gn

with fn = Rf b. Despite having direct access to vn and
pn, they are also estimated by the observer, so that they
become smoother signals and the observer preserves a par-
ticular structure that allows to exploit known theorems from
[16]. Although the gyro bias is considered constant in the
model, the proposed estimator can estimate its low-frequency
components, as it will be evident in Sec. V.

The observer presented in Section III depends on velocity-
over-ground measurements from the on-board camera decom-
posed in the body-fixed frame. It is necessary to compute
the OF vectors from consecutive images before these vectors
are transformed to velocity measurements. The method was
already presented in [26].

All features tracked by the camera are assumed to be
stationary with respect to {N}, hence the UAV’s linear and
angular velocities, vbF and ωbF , relative to a feature tracked by
the OF algorithm, will be equal for every tracked feature at
a given instant in time. Furthermore, it is assumed that the
terrain is flat, such that every feature is located at the same
altitude: this assumption can be restrictive for applications that
cover an uneven surface, but it can be satisfactory for localized
flights, depending on the elevation profile over which the UAV
operates; it does, however, greatly simplify the analysis and
calculations, such that it is worth to keep it and evaluate the
performance in experiments, in Sec. V.

The angular and linear velocities can be computed by[
vbF
ωbF

]
= −M+ [ṙ1, ṡ1, · · · ṙk, ṡk]T (1)

where each pair [ṙj , ṡj ], j = 1...k, represents the OF for an
image feature, and M ∈ R2k×6 is a rectangular matrix built
by stacking k sub-matrices Mj , j = 1...k. See [26] for more
details on the method and the structure of M .

III. OBSERVER DESIGN

A. Assumptions

When designing the non-linear observer, the following as-
sumptions are made:
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Fig. 1. Block diagram of the observer. Σ1 represents the attitude observer,
and Σ2 the translational motion observer.

Assumption 1: A sufficient number of distinct image features
are selected such that M has full rank and its pseudo-inverse
can be calculated as M+ = (MTM)−1MT . Moreover,
σ(M) ≥ σm > 0, where σ(M) is the smallest singular value
of M , and σm a constant.

Assumption 2: The gyro bias bb is constant, and there exists
a known constant Lb > 0 such that ‖bb‖ ≤ Lb.

Assumption 3: There exists a constant cobs > 0 such that,
∀t ≥ 0, ‖f b × vbF ‖ ≥ cobs.

Assumption 3 imposes that vectors vbF and f b are non-
collinear, i.e. the angle between them is non-zero and none
of them can be identically zero (see, e.g., [14], [8]). This
condition restricts the types of manoeuvres that ensure a
correct functioning of the proposed observer. This is not an
issue for fixed-wing UAVs: the specific force f b includes the
effect of gravity, implying that, for a vehicle at rest or moving
at constant speed, the IMU will measure the gravitational
acceleration, not zero; in addition, fixed-wing UAVs always
have a positive forward velocity during flight and typically
never accelerate just opposite to gravity, so that Assumption
3 is always satisfied.

B. Observer Equations

The observer is chosen as

Σ1

{
˙̂
R = R̂S(ωbm − b̂b) + σKP Ĵ
˙̂
bb = Proj(b̂b,−kIvex(Pa(R̂Ts KP Ĵ)))

(2)

Σ2


˙̂pn = v̂n +Kpp(p

n−p̂n) +Kpv(v
n−v̂n)

˙̂vn = f̂n + gn+Kvp(p
n−p̂n) +Kvv(v

n−v̂n)

ξ̇ = −σKP Ĵf
b +Kξp(p

n−p̂n) +Kξv(v
n−v̂n)

f̂n = R̂f b + ξ

(3)

It is similar to the one in [16], but the matrix Ĵ is defined
differently. The subsystem Σ1 is the attitude observer, in which
KP is a symmetric positive definite gain matrix, R̂s = sat(R̂),
σ ≥ 1 is a scaling factor tuned to achieve stability, kI > 0 is
a scalar gain, Proj(·, ·) represents a parameter projection that
ensures that ‖b̂b‖ not exceed a design constant Lb̂ > Lb (see
[15] for the definition). Ĵ is the output injection representing
the attitude error, whose design is inspired by the TRIAD
algorithm [31]. It is defined as

Ĵ(f b, f̂n, vbF , v̂
n, R̂) := ÂnA

T
b − R̂AbATb (4a)

Ab :=
[
f b, f b × vbF , f b × (f b × vbF )

]
(4b)

Ân :=
[
f̂n, f̂n × vn, f̂n × (f̂n × vn)

]
(4c)

The body-fixed velocity vector vbF is calculated by means of
the OF, according to[

vbF
ωbF

]
= −M+

[
ṙ
ṡ

]
(5)

The subsystem Σ2 is the translational motion observer,
where Kpp,Kpv,Kvp,Kvv,Kξp, and Kξv are tunable ob-
servers gains. The estimate f̂n is necessary, as it is a compo-
nent of the injection term Ĵ ; the term ξ captures unmodelled
dynamics of the specific force, and ensures the linearity of
(7). The system Σ1–Σ2 has a feedback interconnection, as
illustrated by Fig. 1.

C. Stability Analysis

The error dynamics of the attitude observer Σ1 is

˙̃R = RS(ωb)− R̂S(ωbm − b̂b)− σKP Ĵ (6a)
˙̃
bb = −Proj(b̂b, τ(Ĵ)) (6b)

where τ(Ĵ) = −kIvex(Pa(R̂Ts KP Ĵ)). The origin of (6) was
proven to be GES in [28], using magnetometers instead of
optical flow, assuming that all arguments of Ĵ were perfect
measurements and not estimates.

The error dynamics of Σ2 is

˙̃pn = ṽn −Kppp̃
n −Kpv ṽ

n (7a)
˙̃vn = f̃n −Kvpp̃

n −Kvv ṽ
n (7b)

˙̃
fn = −Kξpp̃

n −Kξv ṽ
n + d̃ (7c)

where d̃ = (RS(ωb) − R̂S(ωbm − b̂b))f b + (R − R̂)ḟ b. By
defining the error state w̃ = [(p̃n)T , (ṽn)T , (f̃n)T ]T , the error
dynamics (7) can be written in a more compact form as

˙̃w = (A−KC)w̃ +Bd̃ (8)

where

A =

[
06×3 I6
03×3 03×6

]
, B =

[
06×3
I3

]
,

C =
[
I6 06×3

]
, K =

 Kpp Kpv

Kvp Kvv

Kξp Kξv

 .
Theorem 1: Let σ be chosen sufficiently large and define

HK(s) = (Is−A+KC)−1B. There exists a γ > 0 such that,
if K is chosen such that A−KC is Hurwitz and ‖HK(s)‖∞ <
γ, then the origin of (6), (8) is GES. Moreover, K can always
be chosen to satisfy these conditions.

Proof: The vectors f b, vbF , and vn in (4) are all measured
or calculated using only measured quantities, whereas f̂n is
estimated by Σ2. The theorem is then analogous to Theorem
3 in [16], and proof and conclusions are the same.

The matrix M requires that auxiliary measurements of the
roll φ and pitch θ angles be always available [23]. They can be
measured, for example, with computations from accelerometer
measurements, with inclinometers, or with a camera by using
the horizon as reference [32].
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Fig. 2. Observer modified such that the roll and pitch measurements are
replaced by the estimated attitude R̂.

Roll and pitch estimates from accelerometers are often
obtained statically due to the simplicity of the method, but
it does not take into account the Coriolis and centripetal
accelerations, leading to inaccuracies if applied to systems
with fast dynamics, like UAVs. Improved performance could
be obtained using a dynamic, more accurate model [30], [33].

For these reasons, it would make sense to employ the
existing attitude estimate R̂ instead of measurements.

IV. NO AUXILIARY ROLL AND PITCH MEASUREMENTS

The observer presented in Sec. III estimates, among other
things, the attitude of the vehicle, i.e. roll, pitch, and yaw,
so it is natural to investigate whether the estimated roll and
pitch can be used as an alternative to the roll and pitch
measurements, as illustrated by Fig. 2.

These angles appear in M , but in the new observer they
are replaced by φ̂ and θ̂, respectively, and the matrix M and
its pseudo-inverse are denoted M̂ and M̂+, respectively. A
modified observer is presented here and proven to be ULES.
In practice, local stability is not a limitation in the present case,
since the global approach of Sec. III can be used, if necessary,
in an initial phase until the estimation error is small, to monitor
the performance of the ULES algorithm.

A. Attitude Observer with Feedback from R̂

The analysis in Sec. III-C investigated first the stability
of Σ1 independent of Σ2, considering all inputs measured
signals. The introduction of the feedback from R̂ makes it
not possible any more to consider one of the inputs, vbF , a
direct measurement, as it depends on R̂ itself and is therefore
renamed v̂bF . It is in fact possible that the value of R̂ be
far from the actual R, for example at initialization, yielding
a wrong v̂bF . This means that the stability of Σ1 has to be
investigated again for this case.

In Σ1, Ĵ now depends on R̂ via M̂+, and is denoted J̄
to avoid confusion. Assuming for the moment that all inputs
except vbF are measurements, J̄ is then defined as

J̄(f b, fn, v̂bF , v
n, R̂) := AnĀ

T
b − R̂ĀbĀTb (9a)

Āb :=
[
f b, f b × v̂bF , f b × (f b × v̂bF )

]
(9b)

An := [fn, fn × vn, fn × (fn × vn)] (9c)

so the observer equations are written as

Σ′1

{
˙̂
R = R̂S(ωbm − b̂b) + σKP J̄
˙̂
bb = Proj(b̂b,−kIvex(Pa(R̂Ts KP J̄)))

(10)

The error dynamics is then

˙̃R = RS(ωb)− R̂S(ωbm − b̂b)− σKP J̄ (11a)
˙̃
bb = −Proj(b̂b, τ(J̄)) (11b)

Lemma 1: Assume that 0 < c ≤ ‖f b‖2 ≤ ka, for positive
ka and c. For any given choice of KP and kI , there exists a
σ∗ > 0 such that, for all σ ≥ σ∗, the origin of (11) is ULES.

Proof: M̂ can be written as M̂ = M̂1 +M2, where

M̂1 =− 1

cnz
r̂31

[
0 −s rs

l 0 0 0

s 0 s2

l 0 0 0

]
+

1

cnz
r̂32

[
0 −r r2

l 0 0 0
r 0 rs

l 0 0 0

]
+

1

cnz
r̂33

[
0 −l r 0 0 0
l 0 s 0 0 0

]

M2 =

[
0 0 0 − l

2+r2

l − rsl −s
0 0 0 − rsl − l

2+s2

l r

]
(12)

It is evident that M̂ is linear in R̂, and since r̂ij = rij − r̃ij ,
M̂ is linear in R̃ as well.

A linear approximation for M̂+ is used, in order to render
the pseudo-inverse treatable. Replacing r̂ij with rij−r̃ij in M̂1

allows to separate the part that depends on R, called m(R),
from the part that depends on R̃, called m(R̃), such that M̂ =
m(R) −m(R̃) + M2 = M + E, where E = −m(R̃) is the
error introduced with the feedback of R̂. Since E is linear in
R̃, a small perturbation around the origin of (6) will result in
a small E. Following [34], the pseudo-inverse M̂+ can then
be expressed using the Neumann expansion of (M̂T M̂)−1 as

M̂+ = M+ −M+EM+ + (MTM)−1ET (I −MM+)

+O(E) (13)

where O(E) contains higher-order components, and

‖M̂+‖ ≤ kM + kE‖R̃‖+O(‖R̃‖2) (14)

where kM and kE depend solely on physical quantities,
hence they are bounded by Assumption 1, and O(‖R̃‖2) is
a remainder term containing all the powers of ‖R̃‖ above one.

Following [28], choose the Lyapunov function candidate

V (R̃, b̃b) =
1

2
‖R̃‖2 − `tr(S(b̃b)RT R̃) +

`σ

kI
‖b̃b‖2

which satisfies α1(‖R̃‖2 + ‖b̃b‖2) ≤ V ≤ α2(‖R̃‖2 + ‖b̃b‖2).
Hence,

V̇ = tr(R̃T (R̃S(ωb + b̃)−RS(b̃))− σtr(R̃TKP J̄)

+ `tr(S(Proj(b̂,−kIvex(P(R̂Ts KP J̄))))RT R̃)

− `tr(S(b̃)ST (ωb)RT R̃)− `tr(S(b̃)RT R̃S(ωb + b̃))

+ `tr(S(b̃)RTRS(b̃)) + `σtr(S(b̃)RTKP J̄)

− 2`σ

kI
b̃TProj(b̂,−kIvex(P(R̂Ts KP J̄)))

Considering that An = RAb and R̂ = R− R̃, it is possible to
write J̄ = R(Ab − Āb)ĀTb − R̃ĀbĀTb , whose norm is ‖J̄‖ ≤
‖Ab− Āb‖‖Āb‖+ ‖R̃‖‖Āb‖2. Defining ε := [0, f b× ṽbF , f b×
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(f b × ṽbF )], it is Ab − Āb = ε. Since ṽ depends linearly on R̃
and when R̃ = 0 it is ṽbF = 0 and ε = 0, it results that ‖ε‖ ≤
‖f b‖‖R̃‖k. The norm of J̄ is then ‖J̄‖ ≤ ‖R̃‖(k‖f b‖‖Āb‖+
‖Āb‖2). The matrix Āb has norm ‖Āb‖2=‖f b‖2+‖f b×v̂bF ‖2+
‖f b × (f b × v̂bF )‖2. Considering (5) and (14), v̂bF is bounded
by ‖v̂bF ‖2 ≤ kv(kM + kE‖R̃‖+O(‖R̃‖2))2 for some positive
kv . The matrix Āb can then be bounded by

‖Āb‖2 ≤ k1 + k2‖R̃‖+ k3‖R̃‖2 +O(‖R̃‖3) (15)

for positive k1, k2, and k3. Finally, J̄ is bounded by

‖J̄‖ ≤ β1‖R̃‖+ β2‖R̃‖2 +O(‖R̃‖3) (16)

for some positive β1 and β2. V̇ is bounded by

V̇ ≤+
√

6‖R̃‖‖b̃‖ − σλm(KP )c‖R̃‖2 − 2`‖b̃‖2

+ (3
√

3`kI +
√

6`σLb̃)‖KP ‖(β1‖R̃‖2 +O(‖R̃‖3))

+ 2
√

3`Lω‖R̃‖‖b̃‖+ 2
√

3`(Lω + Lb̃)‖R̃‖‖b̃‖

For small ‖R̃‖ and ‖b̃‖, the terms of order higher than two
can be dominated to yield

V̇ ≤ −
[
‖R̃‖ ‖b̃‖

] [σq1 − `q2 − σ`q3 −q4 − `q5
−q4 − `q5 2`

] [
‖R̃‖
‖b̃‖

]
where Lω and Lb̃ are bounds on ω and b̃, respectively, and
the different q1, q2, q3, q4, and q5 are constant positive values
independent of σ and `. Choose ` independent of σ and
sufficiently small such that q1 − `q3 ≥ r1, for some r1 > 0.

The first-order principal minor of the above matrix is
positive if σ is chosen to satisfy σ > `q2/r1. The second-
order principal minor is positive if σ is chosen to satisfy σ >
((q4 + `q5)2 + 2`2q2)/(2`r1). Hence, for a sufficiently large
σ there exists an α3 > 0 such that V̇ ≤ −α3(‖R̃‖2 + ‖b̃‖2),
which implies local exponential stability.

B. Integration of the Translational Motion Observer

When connecting Σ′1 to the translational motion observer,
fn has to be replaced by f̂n, and it gives rise to a new matrix
ˆ̄J that substitutes J̄ . The complete observer equations are

Σ′1

{
˙̂
R = R̂S(ωbm − b̂b) + σKP

ˆ̄J
˙̂
bb = Proj(b̂b,−kIvex(Pa(R̂Ts KP

ˆ̄J)))
(17)

Σ′2


˙̂pn = v̂n +Kpp(p

n−p̂n) +Kpv(v
n−v̂n)

˙̂vn = f̂n + gn+Kvp(p
n−p̂n) +Kvv(v

n−v̂n)

ξ̇ = −σKP
ˆ̄Jf b +Kξp(p

n−p̂n)+Kξv(v
n−v̂n)

f̂n = R̂f b + ξ

(18)

and the error dynamics is

Σ′1

{
˙̃R = RS(ωb)− R̂S(ωbm − b̂b)− σKP

ˆ̄J
˙̃
bb = −Proj(b̂b, τ( ˆ̄J))

(19)

Σ′2

{
˙̃w = (A−KC)w̃ +Bd̃ (20)

with (20) defined as in (8).
Theorem 2: Let σ be chosen to ensure stability according

to Lemma 1 and define HK(s) = (Is−A+KC)−1B. There
exists a γ > 0 such that, if K is chosen such that A −KC

is Hurwitz and ‖HK(s)‖∞ < γ, then the origin of the error
dynamics (20)–(19) is ULES. Moreover, a K that satisfies
these conditions can always be found.

Proof: The proof proceeds in a fashion similar to Theo-
rem 1. As (20) and (8) are identical, K can always be chosen
to satisfy the conditions of the theorem. By choosing the same
Lyapunov function candidate V , the same V̇ is obtained, only
with J̄ instead of J

V̇ ≤− α3(‖R̃‖2 + ‖b̃b‖2) + tr(R̃TσKP
˜̄J)

− `tr(S(Proj(b̂b, τ(J̄))− Proj(b̂b, τ( ˆ̄J)))RT R̃)

− `tr(S(b̃b)RTσKP
˜̄J)

+
2σ`

kI
b̃bT (Proj(b̂b, τ(J̄))− Proj(b̂b, τ( ˆ̄J)))

J̄ is bounded as (16), and a bound for ˜̄J = (An − Ân)ĀTb =
ÃnĀ

T
b has to be found. Ãn is bounded, as already seen in

the proof of Theorem 1, as ‖Ãn‖ ≤ h1‖w̃‖ for some positive
h1. The bound on ĀTb is derived from the proof of Lemma
1: given (15), it is also ‖Āb‖ ≤

∑∞
i=0 δi‖R̃‖i = L(‖R̃‖),

for some positive δi. The combination of these results yields
‖ ˜̄J‖ ≤ h1‖w̃‖L(‖R̃‖). Neglecting the terms of order greater
than two due to linearization about the origin, V̇ becomes

V̇ ≤− α3(‖R̃‖2 + ‖b̃b‖2)

+ (
√

3s1 +
√

6`s3)h1‖R̃‖‖w̃‖L(‖R̃‖)

+ (+
√

6`s1 +
2σ`s3
kI

)h1‖b̃b‖‖w̃‖L(‖R̃‖)

≤− α3ζ
2 + (

√
3s1 +

√
6`s3)h1δ0‖R̃‖‖w̃‖

+ (
√

6`s1 +
2σ`s3
kI

)h1δ0‖b̃‖‖w̃‖

≤ − α3ζ
2 + nζ‖w̃‖

for some n > 0 and ζ := (‖R̃‖2 + ‖b̃b‖2)1/2. Considering
again the Lyapunov function U = W + γV from Theorem 1,
the system results to be ULES.

V. EXPERIMENTAL RESULTS

A. Setup

The UAV used is a UAV Factory Penguin-B with a custom-
made payload that includes all the necessary sensors. The IMU
is a Sensonor STIM300, a low-weight, tactical grade, high-
performance sensor that includes gyroscopes, accelerometers,
and inclinometers, all recorded at 300 Hz. The GPS receiver
is a uBlox LEA-6T, which gives measurements at 5 Hz. The
video camera is an IDS GigE uEye 5250CP provided with an
8mm lens. The camera is configured for a hardware-triggered
capture at 10 Hz: the uBlox sends a digital pulse-per-second
signal whose rising edge is accurately synchronized with the
time of validity of the recorded GPS position, ensuring that the
image capture is synchronized with the position measurement.
The experiment has been carried out on 6 February 2015 at the
Eggemoen Aviation and Technology Park, Norway, in a sunny
day with good visibility, very little wind, an air temperature of
about -8◦C. The terrain is covered with snow and flat enough
to let all features be considered lying at zero altitude.
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All the images are captured with a resolution of 1600×1200
pixels and without any filtering or correction of distortion.
SIFT is implemented with the open source computer vision
library (OpenCV) [35] with default settings. Each match is
tagged with a value indicating the accuracy of the match, and
the smallest of these values is considered to be the best match.
To increase the reliability of the OF vectors, each match is
compared to the best one: every match with an uncertainty
more than double the uncertainty of the best match is removed.
Also the template matching algorithm is implemented with
OpenCV. The size of the templates is chosen to be 120×90
pixels, and a correlation of 99% is required to consider a
template match reliable.

The observers are implemented using forward Euler dis-
cretization with a time-varying step depending on the interval
of data acquisition of the fastest sensor, namely the STIM300,
typically around 0.003 seconds. All the tunable gains are
obtained by running the observers several times and correcting
the gains until a satisfactory performance was achieved. For
all the different case studies, the parameters and gains are
chosen as Lbb = 2◦/s, Lb̂b = 2.1◦/s, σ = 1, KP =
diag[0.08, 0.04, 0.06], kI = 0.02, Kpp = 30I3, Kpv = 2I3,
Kvp = 0.01I3, Kvv = 20I3, Kξp = I3, and Kξv = 50I3.

The reference for the position, velocity, and attitude is the
output of the EKF of the autopilot mounted on the Penguin-
B. An exact reference for the gyro bias is not available, but
an approximation of it is calculated by averaging the gyro
measurements at standstill before the flight. The accelerometer
bias is not estimated, but it is computed the same way as the
gyro bias and subtracted from the accelerometers measure-
ments before they are used in the observer.

The results presented here refer to a complete flight of
the Penguin-B, from take-off to landing, corresponding to
a travelled distance of approximately 9 km in around 5
min. The time on the x-axes is the elapsed time since the
data logging begins, and only the significant part involving
the flight is represented. The manoeuvres performed include
flights on a straight line and turns with a large and small
radius of curvature, namely approximately 200 m and 100 m;
the trajectory described is depicted in Fig. 3. The UAV was
operated manually during take-off and landing, while it flew
automatically otherwise, following predetermined waypoints.

B. Results

Three different case studies are considered here, depending
on how the roll and pitch angles are obtained: from accelerom-
eters, from inclinometers, and from R̂. The estimation errors
are presented in Fig. 4–7. The position and velocity errors all
reach zero and present no significant differences, as expected
when the GPS is always available. The attitude errors have
instead different behaviours: when using roll and pitch from
accelerometers, the performance is clearly worse than the other
two cases. The roll and pitch estimates are slightly better
when using feedback from R̂ than when using inclinometers,
whereas the yaw estimate often has the opposite outcome. The
gyro bias error is more erratic: around the x-axis, the estimates
are best with accelerometers and worst with inclinometers;
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Fig. 3. Position on the N-E plane and altitude, as output by the EKF, used
as reference. The blue and red stars indicate the start and end of the data set,
respectively.
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Fig. 4. A comparison of the attitude error from the three methods.

around the y-axis, the case with R̂ is the best one, with
inclinometers behaving slightly worse and the accelerometers
quite bad; around the z-axis, all three cases present similar
results, but the case with R̂ looks more precise and accurate.
The most probable reason for this is that an exact reference
for the gyro bias is not available; what is used is the value
measured at standstill before the flight, but it would certainly
vary during the flight. As the reference is not very accurate–but
it is the best avaialble–the estimation error for the gyro bias
is the least significant term of comparison to decide which
method performs best. The estimated gyro bias has, however,
a significant impact on the estimated attitude: as this is worse
with accelerometers than with inclinometers or R̂, it can be
stated that R̂ yields the most accurate overall results.

A key assumption is that all image features have zero
altitude: this can be too strict and unrealistic in many cases,
but the results presented here indicate that the estimation errors
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Fig. 5. A comparison of the NED position error from the three methods.
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Fig. 6. A comparison of the NED velocity error from the three methods.

are not large enough to require a more accurate terrain model
for this experiment.

VI. SIMULATION RESULTS

The solution with inclinometers is supposed to provide
less accurate estimates than the case with R̂ in manoeuvres
characterized by high accelerations, like sharp turns, so it is
worth checking the behaviour of the attitude observer in such
occasions. The estimation error in Fig. 4 is always very small,
so it is reasonable to wonder whether the reference values used
here, i.e. the EKF of the autopilot, are really the closest to the
real values. The solution is to test the observer on simulated
data, for which the reference values are perfectly known.

The simulator is similar to the one in [27], with the
following differences. The UAV path is composed of a straight
line, a sharp turn by 180◦ with radius of curvature 40 m, and
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Fig. 7. A comparison of the gyro bias deviation from reference from the
three methods.
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Fig. 8. Attitude errors resulting from the simulation. The flight path features a
straight line, a sharp turn by 180◦ with radius of curvature 40 m, and another
straight line. The turn begins at time 24 s.

a final straight line. The flight is simulated over flat terrain,
white noise is added to all measurements and it is assumed that
the UAV has flown long enough to let the gyro bias estimation
error be zero. A model for the inclinometer is taken from [36],
where the authors proposed a model of the U.S. Digital T2-
7200-T optical inclinometer and identified its parameters.

Fig. 8 shows the Euler angles estimation errors for the simu-
lation. The sharp turn begins at time 24 s, and it is evident that
the case with feedback from R̂ performs better than the ones
with inclinometers or accelerometers. This is not a surprise:
as explained in Sec. III-C, roll and pitch measurements based
on inclinometers or accelerometers are solutions that suffer
from known problems in the presence of large accelerations.
Inclinometers perform worse than accelerometers, but this
depends on what type of models are considered.
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VII. CONCLUSIONS

In this paper two non-linear observers for navigation of a
UAV were analysed and tested. The sensors used were an
altimeter, a GNSS receiver, an IMU, and a camera. Also
roll and pitch were necessary, and the difference between the
two observers was in how such angles were obtained. The
first observer made use of roll and pitch measurements from
sensors, i.e. inclinometers or accelerometers, in the machine
vision system in order to provide the body-fixed velocity of
the UAV, and it was proven to be GES. The replacement of
the roll and pitch measurements with the feedback from R̂
gave rise to a slightly different observer, which required a new
analysis and was proven to be ULES. The paper also provided
a description of the machine vision system employed, how
the OF was calculated, and how it could be used to obtain
the body-fixed velocity. Both observers were then tested on
experimental data, which confirmed the theoretical results.
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