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Abstract

This study investigates the global slamming forces due to plunging breaking

waves on a jacket structure, based on the statistical analysis of the experimental

data from the WaveSlam project. Hammer tests and wave tests were conducted

in the project, and the data are used to reconstruct the time series of the global

slamming force by employing a method based on linear regression. The used

wave test data were acquired under one wave condition. A total of 3910 force

time series are reconstructed and analyzed statistically to reveal the charac-

teristics of the slamming force. For each force time series, six parameters are

introduced to describe it, including the peak force, duration, impulse and rising

time, etc. The variability and correlation of these parameters are investigated.

The distribution of these parameters is modeled with various probability dis-

tributions. The results show the high variability of the slamming force and the

importance of statistical analyses. Based on these statistical analyses, the slam-

ming coefficient is estimated from the peak force. For a curling factor of 0.4,

the mean slamming coefficient is about 1.30. When considering one standard

deviation around the mean, the slamming coefficient varies from 0.74 to 6.74 for

a curling factor ranging from 0.1 to 0.5. A representative time series of wave

slamming force is obtained by averaging the individual force time series. Ac-
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cordingly, a 3-parameter triangular force model and a 5-parameter exponential

force model are proposed to describe the development of the slamming force in

time.

Keywords: wave slamming force, jacket structure, experimental study,

statistical analysis, slamming coefficient, force model, plunging breaking wave

1. Introduction

Currently, the substructures supporting offshore wind turbines are usually

bottom-fixed structures, such as monopiles, tripods, jackets, gravity based struc-

tures, etc. In certain sea environments, they are exposed to plunging breaking

waves at some locations, which leads to slamming forces. Such kind of slamming5

forces have been identified based on the recorded sea state conditions and as-

sociated structural responses for a 2 MW wind turbine mounted on a monopile

at the Blyth wind farm off the coast of England [1]. Slamming forces can affect

the performance and fatigue life of the substructures for offshore wind turbines.

They should therefore be considered in the design of offshore wind turbines, as10

recommended by various standards and guidelines [2, 3, 4].

Slamming is a strongly nonlinear phenomenon that usually causes an ex-

tremely high impact force within a very short time [5, 6]. In the past decades, a

large amount of efforts have been devoted to investigate slamming forces theoret-

ically, numerically and experimentally. Theoretical analysis is usually based on15

the von Karman or the Wagner impact model together with several reasonable

assumptions [5, 7], and numerical studies on slamming forces use Computational

Fluid Dynamics (CFD), considering either inviscid or viscid flows [8, 6]. Due

to the strong nonlinearities of slamming forces, small-scale experiments or full-

scale field measurements seem to be the most reliable method to quantify them.20

To date, several experimental studies of slamming forces on vertical or inclined

slender cylindrical structures have been carried out [9, 10, 11]. An on-site mea-

surement regarding the slamming loads has also been conducted for a monopile

wind turbine at the Blyth wind farm [1].
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Most of the aforementioned studies on slamming forces are with respect25

to slender cylindrical structures, and the results can be used for the design

of monopiles. Truss structures, such as jackets, are also a promising support

structure concept for offshore wind turbines, especially in intermediate water.

Because of the presence of several legs and braces, the waves approaching the

hind legs and braces are affected by the front ones. This will result in a more30

complicated slamming scenario than that of the monopiles. Nevertheless, inves-

tigations of the slamming forces on jacket structures are still limited in number

to date. The WaveSlam project1 was initiated to bridge this knowledge gap.

Using a 1:8 model of a jacket structure typical for offshore wind applications,

the project is the first one at this scale and for this kind of structures.35

Several other studies have been conducted to investigate the slamming forces

on jacket structures based on the experimental data from the WaveSlam project.

Rausa et al. [12] studied breaking wave forces on the front bracings of the jacket

structure with a finite element model by assuming a triangular time history

of wave slamming forces. A fitting procedure was then applied to match the40

result from the finite element model with the experimental data. Tu et al. [13]

investigated the slamming loads on the bracings of the jacket structure based on

local force data. An optimization-based deconvolution (ODC) method, which

used the linearity of the structure, was proposed for the estimation. However,

the methods used in these studies are only able to calculate the peak forces45

based on additional assumptions (e.g. assuming a triangular shape force model,

which is not validated) or the impulses of the loads. The time series of the

forces, which are necessary for the force analysis, were not resolved.

To obtain the time series of wave slamming forces, Jose et al. [14] applied

Empirical Mode Decomposition (EMD) to analyze the total slamming force and50

the Frequency Response Function method to analyze the local slamming force on

the jacket structure. Tu et al. [15] employed the regularization method, which

is a classical inverse method, to develop two approaches for the reconstruction

1http://hydralab.eu/research--results/ta-projects/project/19/ ; December 2016
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of the local slamming force time series. The method by Tu et al. [15] takes

the structure property into consideration and can provide an easily applicable55

solution for the inverse estimation of slamming loads.

In this study, the slamming force estimation method proposed by Tu et al.

[15] was further applied to reconstruct the global slamming force time series us-

ing the data set from the WaveSlam project. Six parameters were introduced to

describe the global slamming force time series, such as the peak force, duration,60

total impulse, etc. The variation, correlation and distribution features of these

parameters were investigated to reveal the characteristics of the global slamming

force under one wave condition. A representative slamming force time history

and the slamming coefficient were then estimated. Based on the representative

time history, two slamming force models are proposed, which provide potential65

means to properly account for slamming forces in the future design of jacket

structures.

2. Experiment and data

WaveSlam is a research project that aims to improve the method for calcu-

lating forces from plunging breaking waves on jacket structures through model70

tests on a large scale [16]. The project was conducted by a consortium headed by

the University of Stavanger (UiS) and the Norwegian University of Science and

Technology (NTNU) in 2012-2013. The jacket model used in the experiment

was similar to the structure designed by Reinertsen AS for the Thornton Bank

offshore wind farm [17]. Following the earlier small scale (1:50) model tests75

at NTNU [18], a 1:8 scale model of the jacket structure was constructed, and

the experiment was carried out in summer 2013 using the Large Wave Flume

facilities at the Coastal Research Centre (Forschungszentrum Küste, FZK) 2 ,

Hannover, Germany. The data is now publicly available.

2https://www.fzk.uni-hannover.de/ ; December 2016
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2.1. Experimental Setup80

The setup of the experiment is demonstrated in Fig. 1. The wave flume is

approximately 300m long, 5m wide and 7m deep. The waves were generated

by the wave board at the left end of the flume, went over a 1:10 slope, then

reached the jacket model on a 2.3m high plateau. A water depth of 16m was

simulated, but the water depth at the jacket model was adjusted slightly to be85

1.8m (instead of 2.0m) for some test cases. The legs and braces of the jacket

model were both 0.14m in diameter.

1.8 - 2.0 m
4.1 – 4.3 m

slope 1:10
x

z

wave propagation

Figure 1: Experimental setup and global coordinates.

A global coordinate system is defined as following: The origin is at the center

of the wave board and at the bottom of the wave flume. The x-axis is positive

in the wave direction. The z-axis is positive upwards. The y-axis forms a right90

hand system with the other axes.

Wave gauges were installed at 15 different locations. Three Acoustic Doppler

Velocity meters (ADVs) were installed in the plane of the legs. The motion of

the wave paddle was also recorded. The jacket was equipped with four total force

transducers, ten local force transducers on the legs, twelve XY force transducers95

on the braces, and four one-directional accelerometers.

The measurements taken by the total force transducers are essential in this

study to investigate the global slamming forces. As shown in Fig. 2, there were

two total force transducers installed at the top of the jacket model and two

installed at the bottom of the jacket model. The structure was hung from the100

top and did not touch the ground during the tests. The measured forces are

in global x direction (wave direction) and have a sampling frequency of 10kHz.

The details of the transducers are illustrated in the figure as well. The names
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Figure 2: Jacket structure, hammer hitting locations and total force transducers. Figures

reprinted with permission from the WaveSlam project.
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and locations of the transducers are introduced in Table 1. The local force

measurements are not used in this study, so the locations of those transducers105

are not shown in the figure.

Table 1: Total force transducers and their locations in global coordinates.

Transducer Description x [m] y [m] z [m]

FTTF01 Total force bottom south 200.961 1.405 2.465

FTTF02 Total force top south 200.265 1.405 6.935

FTTF03 Total force bottom north 200.961 3.655 2.465

FTTF04 Total force top north 200.265 3.655 6.935

2.2. Wave test cases

Five wave cases repeated with exactly the same preset condition were se-

lected for the investigation. The cases and the test condition are shown in

Table 2. The waves are regular shallow water plunging breaking waves. The110

break points of the waves are approximately in the plane of the front legs of the

jacket. The wave heights at the structure were taken from the measurement, so

the values are slightly different from case to case.

2.3. Hammer test cases

Apart from the wave test data, hammer test data are also essential to re-115

construct the slamming forces. During the hammer tests, the structure was

hit by a 1.5kg impulse hammer in the wave direction. The impulse hammer

recorded the time series of the forces exerted on the structure with a sampling

frequency of 9600Hz, in addition to the measurements mentioned in Section 2.1.

The selected hammer test cases shown in Table 3 were all carried out in water.120

The water depth was 2m to match the wave cases. The hammer hit at twelve

locations in the front side of the structure, both on the braces and on the legs.

These locations (see Fig.2) are in or close to the expected wave slamming zone

for the wave tests. Since the hammer impacts were exerted manually, the loca-
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Table 2: Wave test cases.

Condition Value

ID of test run 20130617.15 ∼ 19

Number of runs 5

Number of waves per run 20

Wave height 1.5 m

Wave height at structure 1.809 ∼ 1.833 m

Wave period 4.9 s

Depth 4.3 m

Depth at structure 2.0 m

Run type Regular

Breaking location At front legs

tions shown in the figure are approximate. Data for different number of hits are125

available for different locations as shown in Table 3.

3. Calculation of wave slamming forces

3.1. Pre-processing of the data

Given the raw measurement data, some pre-processing is necessary before

they can be used to calculate the slamming forces. A bandpass filter was used130

to eliminate the high frequency noise in the measurements and to only preserve

the signal from 0 to 300Hz. The effect of the filtering in shown in Fig. 3. Since

the transducers were not always precisely calibrated to zero before each test,

the measured forces were subtracted by the mean values of the measurement

over some seconds at calm status in the same run. The forces measured by the135

four transducers were summed up to obtain the total forces as shown in Fig. 4.

The first natural frequency of the jacket structure in water is determined by

spectral analysis of the hammer response data, the value of which is 25.2 Hz.

The impulse hammer measurements were resampled to 10kHz to match the total

force measurements.140
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Table 3: Hammer test cases.

Hit location number Total hammer hits ID of test run

1 6 24062013.14 ∼ 16

2 4 24062013.17 ∼ 18

3 4 24062013.22 ∼ 23

4 6 24062013.31 ∼ 33

5 8 24062013.34 ∼ 37

6 6 24062013.38 ∼ 40

7 2 24062013.24

8 2 24062013.25

9 2 24062013.26

10 2 24062013.27

11 2 24062013.28

12 2 24062013.30
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Figure 3: Comparison of unfiltered and filtered forces measured by one transducer.
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Figure 4: Summation of the forces measured by four transducers.

The force exerted by a breaking wave on a structure is composed of two

parts: a quasi-static force fqs(t) and an impact force by the breaker, namely

the slamming force fs(t). Therefore, a measured response force due to this

wave also has two parts: a quasi-static part caused by fqs(t) and a dynamic

part caused by fs(t). The dynamic part should be extracted, so that it can be145

used to reconstruct the slamming force.

Two common methods to achieve this goal are frequency domain filtering and

Empirical Mode Decomposition (EMD) combined with filtering [10]. However,

these methods overestimate the quasi-static part in the region of the maximum

load [10], thus leading to underestimation of the dynamic part.150

A time domain robust LOESS smoother [19] is used in this study to estimate

the quasi-static part. The dynamic part equals the total response force minus

the quasi-static part. The smoothing method is realized by local regression

using weighted linear least squares and a 2nd degree polynomial model. The

method assigns zero weight to the data outside six mean absolute deviations.155

The smoothing span is set to be 5% of the total number of data points.

Fig. 5 shows one example where the method is applied. The response force

has two peaks, because the wave hit the structure first on the front side and

then again on the back side in the experiment. Only the first peak is used in

10
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Figure 5: Separation of quasi-static and dynamic parts in a total response force.

this study, since the waves broke at the front legs. The general trend of the160

quasi-static part is captured very well by the method. There is no significant

overestimation of the quasi-static part around the first peak, because the data

points in this region are considered as outliers, and zero weight is assigned to

them. For the second peak, the response force is caused by a mixture of two

impacts and the separation may be inaccurate, but since we only focus on the165

first peak, it is not very important to have a precise separation after that.

3.2. Reconstruction of wave slamming forces

The idea of reconstructing wave slamming forces is to use the available re-

sponse forces of the structure measured in the wave tests, and both the impact

forces and response forces measured in the hammer tests to calculate the wave170

impact forces. This is an inverse problem and in general ill-defined. Therefore,

additional assumptions must be made.

Ideally, a reference impact test that covers the whole wave slamming area

would be most helpful for the reconstruction. In practice, the hammer tests

could only be done for twelve discrete locations. Therefore, each response force175

from the wave test is combined with hammer test data from different hits at

different locations for the reconstruction. The reconstructed forces are “effec-

tive forces”, which means that the wave slam is assumed to occur only on the

11



corresponding hammer impact location. The result obtained by using all such

“wave-hammer data pairs” is analyzed further in later sections.180

The hammer test data used for force reconstruction were acquired from the

experiment with the structure in water. However, the change of water depth

due to the existence of waves is not taken into account, due to the limitation

of the data. The reconstruction inherently includes hydroelastic effects, since

it employs experimental data that includes such effects. Loads on an ideal,185

rigid jacket structure are expected to be somewhat different. The structure

model in the experiment has a high first eigenfrequency, which is not far from

the frequency of typical slamming excitations. The hydroelastic effect caused

thereby is expected to be stronger than that for a normal full-scale wind turbine

jacket under slamming loads.190

The wave test and hammer test data used for reconstruction have all been

pre-processed according to Section 3.1. The reconstructed slamming forces are

only in the wave direction due to the data properties.

For each wave-hammer data pair, the force reconstruction method proposed

in Tu et al. [15] is used. It makes use of the linearity of the structure as discussed195

in Tu et al. [13].

The basic principle of the method is demonstrated in Fig. 6.

A wave slam on the structure is imagined as a hammer hitting one location

on the structure with different amplitudes for multiple times.

Step 1. Knowing the response forces from one wave slam and from one hammer200

impact, the wave response force is decomposed into multiple hammer response

forces scaled by corresponding coefficients.

Step 2. Each hammer response force corresponds to one hammer impact force.

So, the hammer impact forces, corresponding to the hammer response forces

obtained from Step 1, are determined by using the same coefficients.205

Step 3. Summing up the multiple hammer impact forces, the impact force from

one wave slam is acquired.

12
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Figure 6: Illustration of the force reconstruction method.

For more detailed explanation, the wave slamming force is written as a vector

fW =
(
fW1

fW2
fW3

· · · fWn

)T
(1)

It can be expressed as210

fW = FH βββ (2)

where

FH =



fH1
0 · · · 0

...
...

. . .
...

fHδ 0
. . . 0

fHδ+1
fH1

. . . 0
...

...
. . .

...

fH(p−1)δ
fH(p−2)δ

. . . 0

fH(p−1)δ+1
fH(p−2)δ+1

. . . fH1

...
...

. . .
...

fHn fHn−δ · · · fHn−(p−1)δ



(3)
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is composed of column vectors representing repeated and shifted hammer impact

forces. The symbol p denotes the total number of hypothetical hammer hits.

The symbol δ denotes the interval between every two hammer hits, and is named

step factor. The step factor is set to be 5 for most cases, according to Tu et al.215

[15].

The coefficients

βββ =
(
β1 β2 β3 · · · βp

)T
(4)

are given as a parameter vector for scaling the hammer hits.

The wave response force is written as

rW =
(
rW1

rW2
rW3

· · · rWn

)T
(5)

It can be expressed as220

rW = RH βββ + e (6)

where

RH =



rH1
0 · · · 0

...
...

. . .
...

rHδ 0
. . . 0

rHδ+1
rH1

. . . 0
...

...
. . .

...

rH(p−1)δ
rH(p−2)δ

. . . 0

rH(p−1)δ+1
rH(p−2)δ+1

. . . rH1

...
...

. . .
...

rHn rHn−δ · · · rHn−(p−1)δ



(7)

is composed of column vectors representing repeated and shifted hammer re-

sponse forces, and

e =
(
e1 e2 e3 · · · en

)T
(8)

is an error term due to the noise in the measurements.

An ordinary least squares regression technique is used to solve for the pa-225

rameter vector βββ based on Eq. 6, so the estimated parameter vector is

β̂ββ = (RH
TRH)−1 RH

T rW (9)
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Applying β̂ββ to Eq. 2, the wave slamming force is estimated as

ˆfW = FH β̂ββ (10)

Applying β̂ββ to Eq. 6, the wave response force can be recalculated as

ˆrW = RH β̂ββ (11)

A exemplary comparison between an original wave response force and the

corresponding recalculated wave response force is shown in Fig. 7. Since the230

response forces match well, the estimated β̂ββ is deemed to be an appropriate

representation of the slamming event. Using this β̂ββ, the corresponding wave

slamming force is estimated and shown in Fig. 8.
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Figure 7: Comparison of original and recalculated response forces.

4. Statistical analysis of wave slamming forces

Using different combinations of the wave test data and the hammer test data235

described in Section 2, the wave slamming forces were reconstructed following

the methods described in Section 3.

As stated in Section 2.2, the used wave test data were acquired from 5 runs

with 20 waves in each run under the same preset conditions. Even under the

same conditions, the waves in the tests were not exactly the same. Figure 9 and240
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Figure 8: Estimated wave slamming force.

Figure 10 illustrate how the wave height and the wave period vary in the tests.

The difference in the slammming forces is expected to be partially caused by

the difference in the waves, as shown in the figures.
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Figure 9: Wave height variation over different runs and waves.

The difference in the waves is also reflected in the measured response forces.

The 1st waves in each run led to very low dynamic response forces, which implies245

that the waves were not broken at the structure as expected. The 2nd and 20th

waves led to very unstable results due to the transient status of the starting and
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Figure 10: Wave period variation over different runs and waves.

the ending of the test runs. Although the wave periods of the 18th wave and the

19th wave are higher than those of the other waves, there is no obvious effect

on the response forces.250

As long as the wave response forces are valid, more data points lead to a more

informative statistical analysis, so the response forces from the 3rd to 19th waves

in each run were used for the slamming force reconstruction. The data from

each of the 46 hammer hits (see Table 3) were combined with the response force

from each used wave for reconstructing the slamming force independently – the255

resulting forces are then averaged, as explained in Section 4.1.2. All together

46 (hits)×5 (runs)×17 (waves) = 3910 time series of the slamming forces were

reconstructed. Statistical analysis is conducted for these slamming forces in this

section, to better understand the variability of the estimated forces.

4.1. Analysis methods260

Two basic methods used for the analysis are introduced, namely parameter-

ization and multi-level analysis. Parameterization enables a statistical analysis

of the slamming forces by using representative parameters that describe the

main features of the force time series. Multi-level analysis is then used to av-
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erage the results at various steps in the analysis, depending on which source of265

variability is investigated.

4.1.1. Parametrization

Since a large number of time series cannot be compared and analyzed di-

rectly, six parameters are assigned to each time series to describe the slamming

forces, as illustrated in Fig. 11.

Tr

T

Fp

IL IR

I=IR+IL

Time

F
o
rc

e

Figure 11: Parameters to describe one wave slamming force time series. The variation of the

time series has been exaggerated for visualization purposes.

270

• Fp: Peak force, the maximum force in the time series.

• T : Duration, the time between the last zero-up-crossing before the peak

and the first zero-down-crossing after the peak.

• Tr: Rising time, the time between the last zero-up-crossing before the

peak and the peak itself.275

• I: Impulse, the integral of the force over the duration.

• IL: Left impulse, the integral of the force over the rising time.

• IR: Right impulse, the integral of the force over the time between the

peak and the first zero-down-crossing after the peak.

18



4.1.2. Multi-level analysis280

The reconstructed slamming forces are organized according to the data hier-

archy, as shown in Fig. 12. The total result is composed of the result calculated

from 5 × 17 wave response forces. The result from each wave response force is

composed of the results from hammer test data at 12 locations. The result from

each hammer test location is composed of the results from different hits.285

Run 1, Wave 3 Run 1, Wave 4 … Run 1, Wave 19

… … … …

Run 5, Wave 3 Run 5, Wave 4 … Run 5, Wave 19

Loc. 1 Loc. 2 … Loc.12

Hit 1 … Hit Nh(l) Average 1

Average 2

Average 3.2

Average 3.1

P
o

s
t-

a
n

a
ly

s
is

le
v
e

l

Figure 12: Illustration of multi-level analysis.

For the analysis in Section 4.2, averaging at three levels is introduced. The

symbol X represents an arbitrary parameter describing the slamming force.

The subscripts h, l, w, r, represent the indices of hit, location, wave and run,

respectively.

• Average 1: Averaging the result from different hits for one location.290

Xr,w,l =
1

Nh(l)

Nh(l)∑
h=1

Xr,w,l,h (12)

The number of hits Nh(l) depends on the location (see Table 3).
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• Average 2: Averaging the result from different locations for one wave.

Xr,w =
1

12

12∑
l=1

Xr,w,l (13)

• Average 3.1: Averaging the result from the same waves but over different

runs.

Xw =
1

5

5∑
r=1

Xr,w (14)

• Average 3.2: Averaging the result from the same runs but for different295

waves.

Xr =
1

17

19∑
w=3

Xr,w (15)

Since the number of hammer hits is different depending on the location, a

post-analysis level (see Fig. 12) is further defined to eliminate the difference due

to unequal weights. The time series of the reconstructed force are averaged over

different hits at each location. The peaks of the time series are aligned for the300

averaging. In the post-analysis level, these averaged time series are used, so

that the forces at different locations carry the same statistical weight. A total

of 12 × 17 × 5 = 1020 averaged time series are available for analysis in this

level. The discussions in Section 4.3 onward are all based on the results in the

post-analysis level.305

4.2. Variation features

Ideally, the slamming forces under the same wave condition should be iden-

tical. However, each wave in the experiment is different even under the same

preset condition. Also, each group of hammer test data used for the force recon-

struction is different, from hit to hit, and from location to location. Therefore,310

the variation features of the reconstructed slamming forces at different levels

need to be checked.

The variation at the hit level is represented by the mean calculated us-

ing Average 1 (see Section 4.1.2) and the corresponding standard error of the
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mean. The values are calculated for the six representative parameters (see Sec-315

tion 4.1.1), and for all locations and all waves. In Fig. 13, an exemplary result,

which shows the hit variation for twelve locations using the 16th wave of the 4th

run, is demonstrated by the blue error bars. The hit variation shows no signs

of systematic biases (such as dependence on hammer hit location or significant

asymmetry), and the results from Average 1 are considered to be appropriate320

estimates of the slamming forces at this level. In addition, no special pattern

among the locations is observed if all the waves are checked.

The variation at the location level is represented by the mean calculated

using Average 2 and the corresponding standard error of the mean. The location

variation for the same wave is demonstrated by the red and orange lines in325

Fig. 13.

The variation at the wave level is represented by the mean calculated using

Average 3.1 and the corresponding standard error of the mean. As shown in

Fig. 14, the peak force, impulse and right impulse increase as the wave ID

increases, i.e. for the later waves in each run. In contrary, the duration and330

rising time decrease slightly. The left impulse is almost constant. The difference

among the waves may be caused by the accumulated diffraction and refraction

in each run, which is observed in the video record of the experiment. As these

effects, including also a potentially shifting breaking point, cannot be quantified

easily, we consider these unknown effects as part of the uncertainties reported.335

The variation at the run level is represented by the mean calculated using

Average 3.2 and the corresponding standard error of the mean. As shown in

Fig. 15, the result only varies slight among different runs, which means the test

runs have a good repeatability.

4.3. Correlation features340

The correlation matrix of the six parameters is calculated and shown in Ta-

ble 4. For the purposes here, we assume correlations above 0.8 to be strong,

and correlations between 0.4-0.8 to be moderate. According to the correlation

matrix, the peak force Fp has negative linear relationships with the duration T
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Figure 13: Hit variation of the six parameters representing the slamming force (blue error

bars indicate the standard error of the mean), and location variation of the six parameters

representing the slamming force (red line indicates the mean, and orange lines indicate the

standard error of the mean). The result shown is for the 16th wave of the 4th run, as a typical

example.
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Figure 14: Wave variation of the six parameters representing the slamming force.
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Figure 15: Run variation of the six parameters representing the slamming force.
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and with the rising time Tr. This is in accordance with the trend observed for345

example in Fig. 14. The impulse I has moderate positive linear relationships

both with Fp and with T . The rising time Tr has a stronger linear relation-

ship with the left impulse IL than with I. The left impulse IL and the right

impulse IR have very low correlation, which suggests that these two parts of

the impulse are independent and can be treated separately. In summary, these350

results indicate that the chosen parameters are not independent, which could

lead to identification issues. However, the only strong correlation is between I

and IR. Therefore, they will not be used together in the proposed force models

(see Section 6).

Table 4: Correlation matrix of the six parameters representing the slamming force..

Fp T Tr I IL IR

Fp 1.00 -0.42 -0.42 0.40 0.18 0.36

T -0.42 1.00 0.53 0.53 0.10 0.55

Tr -0.42 0.53 1.00 0.23 0.64 -0.07

I 0.40 0.53 0.23 1.00 0.46 0.89

IL 0.18 0.10 0.64 0.46 1.00 0.01

IR 0.36 0.55 -0.07 0.89 0.01 1.00

4.4. Distribution features355

To illustrate the data distribution features of the six parameters, histograms

are plotted in Fig. 16. The number of bins is set as 30 for all histograms. The

data are further fit by various distributions. The names and parameters of the

distributions that seem to result in the best match, as well as the log-likelihood

of the fitting are shown in Table 5. The means and 95% bootstrap confidence360

intervals [20] of the means based on 2000 bootstrap samples are marked in

Fig. 16 and listed in Table 5.
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Figure 16: Statistical properties of the six parameters representing the slamming force. His-

togram, distribution, mean and confidence interval of mean are shown.
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Table 5: Mean, confidence interval of mean and distribution of the six parameters representing the slamming force.

Fp [N] T [s] Tr [s] I [Ns] IL [Ns] IR [Ns]

Mean 9425.2 0.177 0.056 649.4 189.0 460.3

Confidence interval of

the mean (lower limit)
9273.9 0.174 0.054 638.5 184.1 449.8

Confidence interval of

the mean (upper limit)
9618.3 0.180 0.057 661.6 194.9 470.7

Fit distribution Gumbel Normal Logistic Log-normal Log-normal Log-normal

Distribution parameters*

σ = 2395.7 σ = 0.048 σ = 0.010 σL = 0.29 σL = 0.37 σL = 0.37

µ = 8196.9 µ = 0.177 µ = 0.055 µL = 6.44 µL = 5.17 µL = 6.07

k = −0.072

Log-likelihood of fitting -9505.8 1659.5 2666.6 -6734.9 -5696.2 -6622.2

* σ=scale factor, µ=location factor, k=shape factor, σL=log scale factor, µL=log location factor.
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4.5. Representative wave slamming force time series

Although the statistical properties of the representative parameters have

been discussed thoroughly in the previous sections, a representative time series365

of the slamming force is still necessary to describe the force development in time.

Therefore, a mean force time series is calculated according to Eq. 16 and shown

in Fig. 17. The standard deviation of the data points at each time instance is

also shown in the figure.

frep(t) =
1

12 × 17 × 5

5∑
r=1

19∑
w=3

12∑
l=1

fr,w,l(t) (16)
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Figure 17: Representative mean wave slamming force time series and its standard deviation.

370

5. Estimation of slamming coefficient

The slamming coefficient is an important factor to connect wave kinematics

and slamming forces in engineering practice. It is essential for the calculation of

the maximum slamming forces on a structure, given a certain wave condition.

According to Goda et al. [21], the maximum wave slamming force on a cylinder375

is written as

Fs =
1

2
ρwCsλDηbC

2
b (17)
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where ρw is the water density, Cs the slamming coefficient, λ the curling factor,

D the diameter of the cylinder, ηb the wave elevation and Cb the breaking wave

celerity. When applying Eq. 17 on a jacket structure, D is interpreted as the

width of the part that is exposed to the breaking wave. For the jacket structure380

considered in the WaveSlam project, D is estimated according to the geometry

of the structure, as an expression of the diameter of the braces and the legs,

D = 2×(1+2.15)×0.14m = 0.88m. Each inclined brace contributes 2.15×0.14m

to D, due to an inclined angle of 62◦with respect to the vertical. The peak forces

of the slamming force time series in the post-analysis level (see Section 4.1.2)385

are used as Fs for estimating the coefficient. The wave elevation ηb is taken as

the highest measured elevation of the corresponding wave. The breaking wave

celerity is approximated by [22] [23]

Cb =
√
g(d+ ηb) (18)

where g is the gravitational acceleration and d is the water depth. The curling

factor λ is highly dependent on the wave properties and the type of structure,390

and it cannot be identified independently of Cs without further assumptions.

Therefore, the slamming coefficient Cs is first estimated together with the curl-

ing factor, by using Eq. 17 with the estimated slamming forces.

For all used Fs, the product Csλ is estimated and its distribution is plotted

in Fig. 18. The distribution is fit by a Gumbel distribution. The mean value of395

Csλ is about 0.521, and the corresponding 95% bootstrap confidence interval of

the mean is [0.512, 0.530], as indicated in Fig. 18. Taking the mean value of Csλ

and a range plus or minus one standard deviation, the variation of slamming

coefficient is plotted against the curling factor ranging from 0.1 to 0.5 in Fig. 19.

At the maximum curling factor proposed by Goda et al.[21] for plunging break-400

ing waves, λ = 0.4, the mean slamming coefficient is approximately Cs = 1.30.

Taking one standard deviation around the mean into account due to the data

uncertainties, the slamming coefficient Cs ranges from around 0.74 to 6.74 for

the range of curling factor from 0.1 to 0.5.

It should be noted that in the above estimation of slamming coefficient, the405
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Figure 18: Statistical properties of Csλ, represented by histogram, Gumbel distribution fit,

mean and confidence interval of the mean.
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assumption on the width D may cause some uncertainty in the estimation of

slamming coefficient Cs. Depending on the wave impact location, the actual

effective diameter D may be slightly smaller than the used one due to the local

geometry at the joints. The geometry of the jacket is very different from that

of a cylinder, so the effective impact area is also somewhat different.410

6. Wave slamming force models

When performing a dynamic analysis of a structure subjected to slamming

forces, the time history of the slamming forces is usually required as an input.

Proper wave slamming force models, which can simulate the time history of wave

slamming force, are thus desirable. Two models are proposed in this section,415

based on the representative time series of wave slamming force shown in Fig. 17

and the values of the six parameters.

6.1. Simplified model

A three-parameter triangular force model, denoted as simplified model, is

proposed, considering the correlation among the studied parameters (see Sec-420

tion 4.3):

f(t) =


Fp

(
t−(tp−Tr)

)
Tr

tp − Tr < t ≤ tp

Fp
(tp−Tr+T−t)

T−Tr
tp < t ≤ tp − Tr + T

0 Otherwise

(19)

where tp denotes the instant of peak force; Fp, Tr and T are the peak force,

rising time and duration of the slamming force, respectively. By applying the

mean values of these parameters estimated in Section 4.4, the simplified model is

obtained, as plotted in Fig. 20 by a red line. For a more conservative estimation,425

the mean plus one standard deviation values of the parameters are used in the

model. The result is shown in the same figure by a yellow line.

To verify the simplified model, the left impulse, IL, and the right impulse,

IR, are calculated for the representative time series and the simplified model.

Here the IL and IR are calculated over the range of [tp − Tr, tp] and [tp, tp −430
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Tr +T ], respectively. The results are given in Table 6. It can be found that the

simplified model greatly overestimates the IL and IR by approximately 50.02%

and 36.61%, respectively. Hence, a more refined model is desirable to describe

the time series of wave slamming force.
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Figure 20: Simplified force model for the representative wave slamming force time series.

Table 6: The estimated impulse IL and IR by using the representative time series, simplified

model and refined model

Rep. time series Simplified model Refined model

Value [Ns] Value [Ns] Error [%] Value [Ns] Error [%]

IL 174.48 261.76 50.02 176.04 0.89

IR 417.68 570.63 36.61 436.48 4.50

6.2. Refined model435

As observed in Fig. 17, the wave slamming force seemingly ascends expo-

nentially until it reaches the peak; after that, it descends also exponentially.

Therefore, two exponential curves are used to model the data at both sides of
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the peak more precisely. This refined model is thus proposed as follows:

f(t) =


Fp exp

(
α1

t−tp
Tr

)
tp − Tr < t ≤ tp

Fp exp
(
α2

t−tp
T−Tr

)
tp < t ≤ tp − Tr + T

0 Otherwise

(20)

In addition to the three parameters, Fp, Tr and T , used in the simplified model,440

two coefficients α1 and α2 are introduced to indicate the rate of exponential

decay on both sides of the peak. By using the mean values of the three parame-

ters estimated in Section 4.4, the refined model is fit to the representative time

series by employing a nonlinear least square curve fitting method. The results

are demonstrated in Fig. 21 by a red line, and the fit coefficients are α1 = 2.79445

and α2 = −2.36. The curve on the left side of the peak has a higher rate of

decay than the curve on the right side, which is reflected by a higher absolute

value of α1 than α2. For a more conservative estimation, the mean plus one

standard deviation values of the three parameters are used, while α1 and α2 are

kept the same. The result is shown in the same figure by a yellow line.450
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Figure 21: Refined force model for the representative wave slamming force time series.

Similarly, the left impulse, IL, and the right impulse, IR, are estimated to

verify this refined model, as given in Table 6. The relative errors of IL and
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IR between the representative time series and the refined model are 0.89% and

4.50%, respectively, which implies that this refined model represents the wave

slamming force time series fairly well.455

The refined model has a more accurate match with the representative time

series, while the simplified model leads to a more conservative estimation of the

impulse. On the other hand, the simplified model only requires three parame-

ters. It is easier to be applied in practice, compared to the refined model, which

requires two more parameters that are sensitive to the data.460

7. Conclusions and outlook

This study aimed at investigating the global slamming forces due to plunging

breaking waves on jacket structures, based on the statistical analysis of the

experimental data from the WaveSlam project.

A total of 3910 time series of slamming forces were reconstructed based465

on the hammer test data and wave test data. To reveal the characteristics of

the slamming force, six parameters were introduced to describe each force time

series, including the peak force, duration, impulse, rising time, left impulse,

and right impulse. The variation, correlation and distribution features of these

parameters were investigated. High variability of these parameters is observed.470

Strong correlation is only found between the impulse and right impulse. A

representative wave slamming time series was obtained by averaging all the

reconstructed time series with respect to location, wave and run.

The statistical analysis serves as a basis for the estimation of slamming

coefficient and the setup of force models. Taking one standard deviation around475

the mean into account due to the data uncertainties, the slamming coefficient

Cs ranges from around 0.74 to 6.74 for the range of curling factor from 0.1 to

0.5. If the curling factor is set to 0.4, the mean Cs is approximately 1.30. Based

on the representative slamming force time series, a 3-parameter triangular force

model and a 5-parameter exponential force model were proposed to represent480

the time series of wave slamming force.
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It should be noted that this paper statistically studied the global slamming

forces on a jacket structure under one exemplary wave condition, more wave con-

ditions should be investigated in the future to verify the slamming coefficient

and the proposed wave models. The results in this study can also be verified485

by using an finite element model of the jacket structure, with careful considera-

tion of the modeling strategies for various measurement devices and joints. For

cylindrical structures, the slamming coefficient estimated from the Von Karman

or Wagner theory is π or 2π and is not related to the curling factor. For the

jacket structure considered in this paper, the slamming coefficient is dependent490

on the curling factor, because only the product Csλ is identified. The result-

ing slamming coefficient is therefore given as a range and different from that

of cylindrical structures. Given a commonly used curling factor, λ = 0.4, the

resulting Cs is significantly lower than the corresponding values for cylinders,

because the breaking waves do not hit different parts of the jacket simultane-495

ously. This result is important for the design of the structures, since it leads

potentially to more economical jackets. Although only one jacket structure is

considered in this paper, it is a typical jacket structure for offshore wind appli-

cations. The results are therefore valuable for slamming load considerations in

the design of similar jacket structures.500

For safe design of structures, the uncertainties of the external loads should be

taken into account properly. The uncertainties of slamming loads not only result

from the long term and short term wave statistics, but also arise from statistical

variations under each wave condition. This study reveals the uncertainties of

the slamming loads under one controlled wave condition in the laboratory. So505

far, this contribution to the uncertainties has mostly been neglected in the

literature. Yet, as the present work shows, these variations are important.

Using the slamming load distribution under one wave condition, together with

the long term and short term distributions of wave conditions, it will be possible

to determine a probability distribution of slamming loads. This could then be510

used to evaluate structural reliability and thereby serve as basis for probabilistic

design of structures.
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The challenges, of course, are the determination of the statistics of breaking

wave conditions and slamming loads that occur in irregular wave conditions.

The substructure geometry and bathymetry may also be different. Address-515

ing the statistics of the slamming loads in such generality is very challenging,

especially given the limitations of experimental data, where only a few of all

possible parameters can be varied. Of course, the change from a single cylinder

to a multi-element jacket structure – the topic of our study – results in effects

that are also relevant for other multi-element structures. We therefore expect520

that the proposed model could also, with slight modifications, be used with

other multi-element structures. Without further knowledge of the slamming

loads under different wave conditions, one might use Eq. 17 with the identified

Csλ values to obtain a first estimate of these loads. However, the suitability and

accuracy of this approach still needs to be investigated. The biggest uncertainty525

when designing for breaking waves, however, still seems to be determining the

long-term distribution of irregular breaking waves, i.e. which breaking waves

are expected under a given irregular sea state, for a certain site and bathymetry.

We hope that these issues will be addressed in the future.
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slamming forces for a truss structure within the framework of the WaveSlam

project. Energy Procedia 2015;80:276–83. doi:10.1016/j.egypro.2015.570

11.431.

[13] Tu Y, Muskulus M, Arntsen ØA. Experimental analysis of slamming load

characteristics for truss structures in offshore wind applications. Journal

of Ocean and Wind Energy 2015;2(3):138–145. doi:10.17736/jowe.2015.

jcr32.575

[14] Jose J, Podrazka O, Obhrai C, Gudmestad OT, Cieslikiewicz W. Methods

for analysing wave slamming loads on truss structures used in offshore

wind applications based on experimental data. International Journal of

Offshore and Polar Engineering 2016;26(2):100–8. doi:10.17736/ijope.

2016.mkr05.580

[15] Tu Y, Muskulus M, Grindstad TC. Two methods for the inverse estimation

of local slamming loads on a jacket structure. In: Proceedings of 35th In-

ternational Conference on Ocean, Offshore and Arctic Engineering. Busan,

South Korea; 2016,.

[16] Arntsen Ø, Obhrai C, Gudmestad O. Data storage report: wave slamming585

forces on truss structures in shallow water. Technical Report, WaveSlam

(HylV-FZK-05); Norwegian University of Science and Technology; 2013.

[17] Tørum A. Wave slamming forces on truss structures in shallow water.

Technical Report, Version 2011-10-03; Norwegian University of Science and

Technology; 2011.590

[18] Aune L. Forces from plunging breaking waves on a truss structure. Master

thesis; Norwegian University of Science and Technology; 2011.

[19] Cleveland WS. Robust locally weighted regression and smoothing scatter-

plots. Journal of the American Statistical Association 1979;74(368):829–36.

doi:10.1080/01621459.1979.10481038.595

38

http://dx.doi.org/10.1016/j.egypro.2015.11.431
http://dx.doi.org/10.1016/j.egypro.2015.11.431
http://dx.doi.org/10.1016/j.egypro.2015.11.431
http://dx.doi.org/10.17736/jowe.2015.jcr32
http://dx.doi.org/10.17736/jowe.2015.jcr32
http://dx.doi.org/10.17736/jowe.2015.jcr32
http://dx.doi.org/10.17736/ijope.2016.mkr05
http://dx.doi.org/10.17736/ijope.2016.mkr05
http://dx.doi.org/10.17736/ijope.2016.mkr05
http://dx.doi.org/10.1080/01621459.1979.10481038


[20] Efron B. Bootstrap methods: another look at the jackknife. The Annals

of Statistics 1979;7(1):1–26. doi:10.1214/aos/1176344552.

[21] Goda Y, Haranaka S, Kitahata M. Study of impulsive breaking wave

forces on piles. Report Port and Harbour Technical Research Institute

1966;6(5):1–30.600

[22] Tanimoto K, Takahashi S, Kaneko T, Shiota K. Impulsive breaking wave

forces on an inclined pile exerted by random waves. Coastal Engineering

Proceedings 1986;1(20):2288–302. doi:10.1061/9780872626003.168.

[23] Mei CC, Stiassnie M, Yue DK. Theory and applications of ocean surface

waves: nonlinear aspects. World Scientific; 2005.605

39

http://dx.doi.org/10.1214/aos/1176344552
http://dx.doi.org/10.1061/9780872626003.168

	Introduction
	Experiment and data
	Experimental Setup
	Wave test cases
	Hammer test cases

	Calculation of wave slamming forces
	Pre-processing of the data
	Reconstruction of wave slamming forces

	Statistical analysis of wave slamming forces
	Analysis methods
	Parametrization
	Multi-level analysis

	Variation features
	Correlation features
	Distribution features
	Representative wave slamming force time series

	Estimation of slamming coefficient
	Wave slamming force models
	Simplified model
	Refined model

	Conclusions and outlook

