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with the inventories at the ports, the underlying planning problem is a maritime inven-
tory routing problem. Such problems are very complex. Usually modest improvements
in the supply chain planning can translate into significant cost savings.

In this paper we consider a real maritime Short Sea Inventory Routing Problem
(SSIRP) occurring in the archipelago of Cape Verde. An oil company is responsible for
the inventory management of different oil products in several tanks located in the main
islands. Fuel oil products are imported and delivered to specific islands and stored in
large supply storage tanks, so the inventory management does not need to be considered
in these tanks. From these islands, fuel oil products are distributed among all the
inhabited islands using a small heterogeneous fleet of ships with dedicated tanks. These
products are stored in consumption storage tanks with limited capacity. Consumption
rates are assumed to be given and constant over a time horizon of several months.
Some ports have both supply tanks for some products and consumption tanks of other
products.

We have witnessed an increased interest in studying optimization problems within
maritime transportation [14, 15, 16| and, in particular, in the last fifteen years, prob-
lems combining routing and inventory management [8, 12|. These problems are often
called Maritime Inventory Routing Problems (MIRPs). Most of the published MIRP
contributions are based on real cases from the industry, see for the single product case
[11, 21, 22, 24] and for the multiple products case |7, 13, 28, 30, 33, 35|.

This SSIRP is addressed in a companion paper [4] where different mathematical for-
mulations are discussed and compared for the SSIRP considering a shorter time horizon.
There, two main approaches to model the problem are considered. One uses a continuous
time model where an index indicating the visit number to a particular port is added to
most of the variables. This approach was used in [7], [11] and [33]| for MIRPs where the
production and/or consumption rates are considered given and fixed during the plan-
ning horizon. The other approach consists of using a model that combines a discrete and
continuous time where the discrete time corresponds to an artificial discretization of the
continuous time. Discrete time models have been developed in |2, 22, 23, 24, 28, 30, 34|
to overcome the complicating factors with time varying production and consumption
rates. In addition, for each approach two new extended formulations are tested in [4].

In [3], the SSIRP for short-term planning is considered. For the short-term plans
demand orders are considered, that is, fixed amounts of oil products that must be
delivered at each port within a fixed period of time. These orders are determined
from the initial stock levels and the consumption rates and lead to a problem with
varying demands (corresponding to the demand orders). Several key issues taken into
account in the short-term problem are relaxed here or incorporated indirectly in the
data. For instance, port operating time windows that are essential in the short-term
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plan are ignored here. Otherwise, the problems considered originate from the same
company in the same region. These problems are solved using the same commercial
solver we use here, considering a formulation which is improved by the strengthening
of defining inequalities and the inclusion (through separation) of valid inequalities. In
[7] a problem similar to the SSIRP is considered with constant consumption rates and
dedicated compartments in the ships.

In this paper we develop and compare different hybrid heuristics for the SSIRP.
As discussed in [8, 34|, most combined maritime routing and inventory management
problems described in the literature have particular features and characteristics, and
tailor-made methods are developed to solve the problems [12]. These methods are often
based on heuristics or decomposition techniques. Recent hybrid heuristics that use MIP
solvers as a black-box tool have been proposed. Here we consider and combine three
hybrid heuristics: Rolling Horizon (RH), Local Branching (LB) and Feasibility Pump
(FP). In RH heuristics the planning horizon is split into smaller sub-horizons. Then, each
limited and tractable mixed integer problem is solved to optimality. Within maritime
transportation RH heuristics have been used in [25, 28, 32, 33, 34|. Local Branching (LB)
was introduced by Fichetti and Lodi [19] to improve feasible solutions. LB heuristics
search for local optimal solutions by restricting the number of binary variables that
are allowed to change their value in the current solution. Feasibility Pump (FP) was
introduced by Fischetti, Glover and Lodi [18| to find initial feasible solutions for MIP
problems.

Computational experiments reported in Section 6 show that a combined heuristic
using the three approaches outperformed the other tested heuristics and, in particular,
outperformed the most used approach within MIRPs, the RH heuristic.

To solve each subproblem we consider the arc-load flow (ALF) formulation intro-
duced in [4], since this was the model with the best performance among all the tested
models for this problem with short time horizons. The ALF formulation is improved by
a pre-computation of estimates for the number of visits to each port, and with the inclu-
sion of valid inequalities. In particular, we introduce a new family of clique inequalities
for MIRPs when continuous time models are used.

The main contributions of this paper, the heuristic strategies and the valid inequal-
ities, can easily be used in other MIRPs.

The remainder of this paper is organized as follows. In Section 2, we describe the
real problem. The arc-load flow formulation is presented in Section 3 and strategies
to tighten the formulation are discussed in Section 4. In Section 5 we describe several
hybrid heuristics. The computational experimentations are reported in Section 6. Final
conclusions are given in Section 7.
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2. Problem description

In Cape Verde, fuel oil products are imported and delivered to specific islands and
stored in large supply storage tanks. From these islands, fuel oil products are distributed
among all the inhabited islands using a small heterogeneous fleet of ships. The products
are stored in consumption storage tanks. Two ports have both supply tanks for some
products and consumption tanks for other products, while the remaining ports have only
consumption tanks. Not all islands consume all products. The consumptions (which
are usually forecasted) are assumed to be constant over the time horizon. It is assumed
that each port can receive at most one ship at a time and a minimum interval between
the departure of a ship and the arrival of the next one must be considered. Waiting
times are allowed.

Each ship has a specified load capacity, fixed speed and cost structure. The cargo
hold of each ship is separated into several cargo tanks. The products can not be mixed,
so we assume that the ships have dedicated tanks to particular products.

The traveling times between two consecutive ship visits are an estimation based
on practical experience. Additionally, we consider set-up times for the coupling and
decoupling of pipes, and operating times.

To prevent a ship from delivering small quantities, minimum delivery quantities
are considered. The maximum delivered quantity is imposed by the capacity of the
consumption storage tank. Safety stocks are considered at consumption tanks. As the
capacity of the supply tanks is very large when compared to the total demand over the
horizon, we omit the inventory aspects for these tanks.

In each problem instance we are given the initial stock levels at the consumption
tanks, initial ship positions (which can be a point at sea) and quantities on board each
ship. The inter-island distribution plan consists of designing routes and schedules for the
fleet of ships including determining the number of visits to each port and the (un)loading
quantity of each product at each port visit. The plan must satisfy the safety stocks of
each product at each island and the capacities of the ship tanks. The transportation
and operation costs of the distribution plan must be minimized over a finite planning
horizon.

3. Mathematical Model

In [4] a comparison of six different formulations for the SSIRP for a shorter time
horizon is given. Three of those formulations consider a time discretization and the
other three consider continuous time. For each time option the following formulations
are considered: an arc-load formulation, where the model keeps only track of the infor-
mation of the load on board each ship compartment in each port visit; an arc-load flow
formulation, where new variables are used to keep the information about the quantity
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of each product in each compartment when a ship leaves a port en route to the next
one; and a multi-commodity formulation, where the flow on each arc is disaggregated
accordingly to its destination. That comparison led to the choice of the continuous time
arc-load flow formulation. In this section we present that arc-load flow formulation.

Routing constraints

Let V' denote the set of ships. Each ship v € V must depart from its initial position
in the beginning of the planning horizon. The set of ports is denoted by N. For each
port we consider an ordering of the visits accordingly to the time of the visit. The ship
paths are defined on a network where the nodes are represented by a pair (i, m), where ¢
is the port and m represents the m!"* visit to port i. Direct ship movements (arcs) from
port arrival (i,m) to port arrival (j,n) are represented by (i, m, j,n).

We define S4 as the set of possible port arrivals (i,m), S as the set of ports that
may be visited by ship v, and set S as the set of all possible movements (i, m, j,n) of
ship v.

For the routing we define the following binary variables: i jn, is 1 if ship v sails
from port arrival (i, m) directly to port arrival (j,n), and 0 otherwise; i, indicates
whether ship v sails directly from its initial position to port arrival (i, m) or not; Wi,
is 1 if ship v visits port i at arrival (i,m), and 0 otherwise; z;,,, is equal to 1 if ship v
ends its route at port arrival (i,m), and 0 otherwise; z,, is equal to 1 if ship v is not
used and 0 otherwise; y;,, indicates whether a ship is visiting port arrival (i, m) or not.

Z ZToimv T Zov = 1> Vo € ‘/a (1)

(i,m)eSA

Wimy — Z Ljnimv — Loimv = 07 Vo € ‘/7 (va) S 511147 (2)
(Gm)esy

Wimy — Z Iimjm) — Zimv = Oa \V/'U € ‘/a (Zam) € S;LX’ (3)
(Gm)esg

Z Wimv = Yim, V(Zu m) S SA7 (4)

veV

Yitm—1) — Yim > 0, V(i,m) € S4:m >1, 5)

Toimuvs Wimus Zimo € {0, 1}, Yo €V, (i,m) € SZ,
Timjno € {0,1}, Yo €V, (i,m,j,n) € SX, 7)
2w €{0,1},  WweV, 8)
yim € {0,1},  V(i,m) € S (9)
Equations (1) ensure that each ship either departs from its initial position and sails

towards another port or the ship is not used. Equations (2) and (3) are the flow conser-
vation constraints, ensuring that a ship arriving at a port also leaves that port or ends

6)
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its route. Constraints (4) ensure that one ship only visits port (i, m) if y;, is equal to
one. Constraints (5) state that if port ¢ is visited m times, then it must also have been
visited m — 1 times. Constraints (6)-(9) define the variables as binary.

Load and unload constraints

Let K represent the set of products and K, represent the set of products that ship
v can transport. Not all ports consume all products. Parameter J; is 1 if port ¢ is
a supplier of product k; —1 if port ¢ is a consumer of product k, and 0 if 7 is neither
a consumer nor a supplier of product k. The quantity of product k£ on board ship v
at the beginning of the planning horizon is given by Q.x, and C, is the capacity of
the compartment of ship v dedicated for product k. The minimum and the maximum
discharge quantities of product k at port ¢ are given by sz and Q;;, respectively.

In order to model the loading and unloading constraints, we define the following
binary variables: 0;,.,x is equal to 1 if product k is loaded onto or unloaded from ship
v at port visit (¢, m), and 0 otherwise. In addition, we define the following continuous
variables: @ i the amount of product k loaded onto or unloaded from ship v at port
visit (i,m), fimjnor denotes the amount of product k£ that ship v transports from port
visit (i,m) to port visit (j,n), and fyumer gives the amount of product k that ship v
transports from its initial position to port visit (i, m).

The loading and unloading constraints are given by:

foimvk +§ ;}jnimvk + Jikq:'mvk :Zfimjnvka Vo € ‘/7 (7’7 m) € 511)47 ke Kv (10)

(jn)esg (n)esz

foimok = QuiToime, Vv €V, (i,m) € Sk € K,, (11)
Fimjnok < CokTimgjno, YoveV,(i,m,jn) €S keckK,, (12)
0 < Gimok < CokOimoks, Yo €V, (i,m) € S ke K, : Jy, =1, (13)
Q, Oimvk < Gimvk < QirOimuks Yo eV, (i,m) €St keK,: Jp=—1, (14)
Z Oimuve > Wi Yo eV, (i,m) € 5;4, (15)
ke K,

Oimok < Wimy, Y €V, (i,m) € SA k € K,, (16)
fimjnok >0, Yo €V, (i,m,j,n) € SA k€ K, (17)
Soimok> Qimuvk > 0, Yo eV, (i,m) € Sf, ke K,, (18)
oo € 10,1}, Yo €V, (i,m) € S k€ K,. (19)

Equations (10) are the flow conservation constraints. Equations (11) determine the
quantity on board when ship v sails from its initial port position to port arrival (i, m).
Constraints (12) require that the vehicle capacity is obeyed. Constraints (13) impose
an upper bound on the quantity loaded at a supply port. Constraints (14) impose lower

6
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and upper limits on the unloaded quantities. Constraints (15) ensure that if ship v
visits port arrival (i,m), then at least one product must be (un)loaded. Constraints
(16) ensure that if ship v (un)loads one product at visit (i, m), then w;,, must be one.
Constraints (17)-(19) are the non-negativity and integrality constraints.

Time constraints

In order to keep track of the inventory level it is necessary to determine the start and
the end times at each port arrival. We define the following parameters: Tﬁj is the time
required to load/unload one unit of product k at port i; T is the set-up time required
to operate product k at port . Tj;, is the traveling time between port ¢ and j by ship v;
T2 indicates the traveling time required by ship v to sail from its initial position to port
i; TP is the minimum interval between the departure of one ship and the next arrival at
port i. T is the length of the time horizon. Given the start time ¢;,, and end time tZ
variables for port arrival (i, m), the time constraints can be written as:

thy Ztim+ > > TRGmor + > Y TaOmuk,  V(i,m) € S4, (20)

veV keK, veV keK,
tim — tﬁm_l) — TPy > 0, V(i,m) € S :m > 1, (21)
th + Tijo — tjin < T(1 = Timjmn), Yo €V, (i,m, j,n) € S, (22)
> T%ime < tim,  V(i,m) € S7, (23)
veV
tim, 12 >0, V(i,m) € S™. (24)

Constraints (20) define the end time of service at port visit (i,m). Constraints (21)
impose a minimum interval between two consecutive visits at port i. Constraints (22)
relate the end time of port visit (i,m) to the start time of port visit (j,n) when ship
v sails directly from port visit (¢,m) to (j,n). Constraints (23) ensure that if ship v
travels from its initial position directly to port visit (i, m), then the start time is at least
the traveling time between the two positions. Constraints (24) define the continuous
time variables.

Inventory constraints

The inventory constraints are considered for each unloading port. They ensure that
the stock levels are within the corresponding bounds and link the stock levels to the
(un)loaded quantities.

For each consumption port ¢, and for each product k, the consumption rate, R,
the minimum S;;,, the maximum Sj; and the initial stock S9 levels, are given. The
parameter fz; denotes the maximum number of visits at port <.

We define the nonnegative continuous variables s;,,, and sgnk indicating the stock
levels at the start and at the end of port visit (i,m) for product k, respectively. The

7
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inventory constraints are as follows:

sik = Sy, — Rtin, Vi€e N ke K:Jy=—1, (25)

Simk — Simk + qumvk — Rzk(tgn — tim)a V(z,m) c SA, ke K: Jzk‘ = —1, (26)
veV

Simk = Sim-1yk — Rik(tim — tiim_1y),  V(i,m)€ St im>1 ke K: Jyp=—1, (27)

Sip < Simky 52 < S, V(i,m) € SN ke K- Jy = —1, (28)

S <spp— Ru(T—t7) < Sy, VieNkeK:Jy=-1 (29)

Equations (25) calculate the stock level of each product at the first visit. Equations
(26) calculate the stock level of each product when the service ends at port visit (i, m).
Equations (27) relate the stock level at the start of port visit (i,m) to the stock level
at the end of port visit (i,7m — 1). The upper and lower bounds on the stock levels are
ensured by constraints (28)-(29).

Objective function

The objective is to minimize the total routing costs including traveling, operating
and set-up costs. The traveling cost of ship v from port i to port j is denoted by CZU,
while CL  represents the traveling cost of ship v from its initial port positions to port
i. The set-up cost of product k at port i is denoted by C9. The objective function is as

follow:

Z Z Cljvzlmjnv + Z Z owxozmv + Z Z Z kozmvk (30)

veV (i,m,j,n)€SK vEV (i,m)eSA VvEV (i,m)eSA kEK,

The formulation defined by (1)-(30) is denoted by F-SSIRP, and the feasible set will
be denoted by X.

4. Tightening the formulation

Tightening the formulation provided in the previous section is essential to speed
up the solution approaches (Branch and Bound and hybrid heuristics), and to provide
tighter bounds that will be used in Section 6 to evaluate the quality of the tested
heuristics. The tightening is done by including new inequalities. Many families of
inequalities were tested. Here we present only the ones that provided best results from
a preliminary study.
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4.1. Tightening time constraints

Time constraints (22) linking the time variables with the routing variables are very
weak. Parameter T works as a big M constant. An approach to tighten such constraints
is to establish time windows to the time events.

Aim S tim S Bima V(Z,m) € SA> (31)
AP <P < BF V(i,m) € S4. (32)

m?

Then, constraints (22) can be replaced by the stronger inequalities
th —tin+ (BE + Tijo — Ajn)Timjnw < Bl — Ajn.

These inequalities can be further strengthened as follows (see Proposition 1 in [5]):

t —tin + Z max{0, BE, + Tijo — Ajn}Timjme < BE, — A, ¥(i,m), (j,n) € SA.

veV|(i,m,j,n)€SX

(33)

One can take A;, = AZ =0 and B,,, = BZ, = T. However, by reducing the widths of
the time windows we strengthen inequalities (33). In this SSIRP we are dealing with
multiple ships, multiple products, and all supply ports also act as demand ports of other
products. Because of this characteristics it is hard to derive tight time windows.

For simplicity, we provide only those time windows formulas that proved to be most
effective for our case. Other rules can be derived adapting the ones given in [10] for
the single item case. Since inventory aspects are only relevant for consumption tanks,
and since all the loading ports of certain products are also consumption ports of other
products, time windows are established based on the unloading products only.

The start of time windows are computed as follows:

Aim = minyer AT} + (m = 1)+ (TP + miner g1 {T3Q, + T} )

Al =minyey {T0} + (m — 1)« TP +m s mingeg|1,—1 {Tfiggzk + Tﬁq@} ’
and the end of time windows are computed as follows:

By = min {T, mingex|j=—1 { (Si + (m — 1) * Sy, — Sy) /Rix — Ti}} ,

B, = min {T, minger|jy=—1 { (S, + m* Sy, — Syy,) /R — T} — TP}

The end of time windows can be further strengthened. Let p; denote a lower bound
on the number of visits to port i, ¢ € N (see in Section 4.2 how to compute these
parameters). If m < p;, then T in the B, formula given above can be replaced by

T — (= m) + TE = (= m o+ 1)+ mingerys, =1 {THQ, + Ti}

9
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and, if m < y;, then T in the BE formula can be replaced by

T — (s — )+ { TP+ minkers=1 {Q, T8 + TH}

4.2. Lower bounds on the number of visits

A common approach to tighten formulations for routing problems is to include con-
straints imposing a minimum number of visits to each node. The impact on the reduction
of the integrality gap is usually high. Equations

Vi = LV €N (34)

can be added to each model. These parameters p; can be computed from the inventory
information and traveling times. However, since the traveling times between islands are
small, the number of visits is better estimated through the inventory information and
storage capacities (at ships and ports).

For each port ¢+ € N where product £ is unloaded, J;; = —1, let

Dy = maz{T x Ry, — Sy, + Sy, Q,}

denote the net consumption over the time horizon. The minimum number of visits to
port ¢ for unloading product & is given by

DN
Aik — ’V_zk—‘ )
Qik

In the real problem, each product has a single origin. As inventory management at
supply tanks is disregarded, the minimum number of visits to load a product can be
estimated using the total consumption supplied by that origin. The consumption of that
product must be satisfied either from that port or from the quantity in the ship tanks
at the beginning of the planning horizon.

For each product k € K, loaded at port i € N (Jy, = 1) let

Dyl = Z (T x Rjr — S;')k + 851,

JEN|Jj==1

denote the net consumption of this product over the time horizon. The minimum number
of loadings of product k at port ¢ is given by

)\‘ — Di\]g - Z’UEV ka
=ik maz{Cy, v €V}|’

10
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A lower bound on the total number of visits to port ¢ € N can be given by the following
equation:

p, =maz{)y + k € K}. (35)

Better bounds can be obtained by solving subproblems for each port. A subproblem
is solved for the consumption products at the port and, if the port is also a supplier of
other products, another subproblem is solved for the supply products.

Although the subproblems are NP-hard, they can be solved very quickly using a
commercial software.

First we state the subproblem for consumption products. All the routing constraints
are ignored in the subproblems. For these subproblems associated to each port the
inventory and time constraints are the same as for the original model. The ship capac-
ity for each product is overestimated by the maximum of the ship capacities for that
product.

Let Cy = max{Cy : v € V,k € K,}. For each port i let M; = {1,2,--- 7,}. The
subproblem is defined as follows:

NVP(@i) : min Z Yim (36)
meM;
s.t.
it < CkOimp, Vm € My, k € K, Jy, = —1 (37)
Qikaimk < Gor < QuirOimps, Ym € M k€ K @ Jy, = —1, (38)
Oimk < Yim, Ym € M;Vk € K : Jy = —1, (39)

Constraints (25) — (29) for node i
Constraints (20), (21), (24) for node 4

yim € {0,1}, VYm € M,, (40)
Oimk € {0, 1}, Vm € MZ,]{? e K Jzk = —1, (41)

where 0y, = ZUGV Oimkvs Qimk = ZUGV Qimkv-

The objective function (36) minimizes the number of visits at port i. Constraints
(37) - (39) have a similar meaning as constraints (13), (14), (16), only now the ship is
ignored and an overestimation of the ship capacities is used.

If port i is also a supplier, we define the following subproblem, NV*(i), where only
the ship tank capacities are considered.

mm{z Uiy chkuw > Z D%—Z Qui,Vk € K : Jy, =1L, u; € 2., Nv €V},

veV veV JEN:Jjp=-1 veV

11
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where u;, indicates the number of visits of ship v to port 7.

If port ¢ is simultaneously a consumption and a supply port, the minimum number
of visits is the maximum between NV (i) and NV*(i). These two subproblems will be
called port subproblems.

4.3. Integer knapsack inequalities

Inequalities from knapsack relaxations have previously been used for MIRPs, see for
instance [24, 27, 34].

Let Dy(S) denote the total demand of product k, from ports in S during the planning
horizon, where S C N and Jy, = —1 for all i € S. Hence, Dy(S) = > .cs T % Rjj. Let
NDy(S) denote the amount of demand Dy (S) that must be transported from ports in
N\ S. That is, NDy(S) = Di(S) = > pcy Que — D_ses(Sik — Sir). Then, the following

integer set is a relaxation of X :

RX = {x ez Cuxo > NDk(S)} .

veV

where

Xv = Z Z Limjnv,

(i,m)eSHIEN\S (jn)eSH|jes
denotes the number of times ship v visits a port in S coming from a port not in S during
the planning horizon 7.

Valid inequalities for RX are valid for X. A particular case of these inequalities is
the following Gomory cut

Z Z {%w Timgjnv = {%(S)—‘ , (43)

vEV (i,m)eSAiEN\S (j,n)eSA|j€S

where ) can be any positive number. We take Q = C},.

However, when | V' |= 2 the convex hull of RX can be completely described in
polynomial time, see [6]. When | V' |> 2 facet defining inequalities for restrictions of
RX to two variables x, can be lifted using the lifting function ws presented in [6]. This
approach was used in [3|. Here we provide an example.

Example 4.1. Let N ={1,2,--- 7}, V. ={1,2,3,4}, K ={1,2,3,4}. Fiz port i =6,
and consider the capacities of the compartments dedicated to product k =1 : Cy; = 900,
Cs1 = 600, C3; = 920, and Cy; = 700. Suppose that for i =6 and k =1 with Jg = —1,
we have N Dg; = 3675. The following relaxation is derived

RX = {xy € Z : 900x; + 600x2 + 920x3 + 700y, > 3675} .

12
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Inequality 3x1 + 2x2 > 13 is a facet-defining inequality for RX restricted to xs =
X1 = 0. The lifting function associated with this inequality is:

o(z) =max 13 —3x1; —2xe
st 900x; + 600ys > 3675 — 2,
X1; X2 € L.

In order to lift simultaneously the coefficients of x3 and x4, the lifting function ¢(z) can
be overestimated by the subadditive lifting function ws described in [6]. Both functions are
depicted in Figure 1. Then the lifted inequality 3x1 + 2x2 + w3(920)x3 4+ w3(700)x4 > 13
< 3x1 + 2x2 + 3.26667x3 + 3x4 > 13 is valid for RX.

Notice that if only three variables are considered then one can use ¢(z) instead of ws
which gives a better coefficient for xs since v(920) = 3.

4 T SO -_— '_l;o
W3 - - - o
3 T '_l'_o
2T ) A
1 + '_l'_o
L g : : : : >
75 375 675 975 1275

Figure 1: Lifting function ¢ and subadditive function ws.

Similar knapsack inequalities can be derived for loading ports and for relaxations
using the operating variables 0, instead of the traveling variables. For brevity we
omit those inequalities.

4.4. Clique inequalities
The name clique inequalities has been used for different families of valid inequalities

for vehicle routing problems. Here we introduce a family of clique inequalities which
can be regarded as a generalization of the subtour elimination constraints (SEC):
Iimjm) + Ijmmv S 1

13
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Although subtour elimination constraints including more than two variables can be
useful to improve the integrality gap, our experience showed that good computational
results can be obtained using SEC including only two variables. These inequalities can
be regarded a particular case of clique inequalities on a given conflict graph. Consider the
conflict graph G = (N, E), where each node in AV, denoted by (i, m, j, n, v), corresponds
to a variable X;pjn,, and there is an edge in F between two nodes if the corresponding
variables cannot be set simultaneously to one (the two nodes are in conflict).

Definition 4.2. Let G = (N, E) be a conflict graph. Then we define the following pairs
of incompatible variables:

(1) Timjny and Tjnimy, YU € V., (i,m, j,n) € Sx,.
(11) Timjne, 0NA Timpwyy, V01,02 € V, (i,m, j,n) € SXy, s (i,m,l,w) € SXy -
(111) Tiwjnw, AN Timjney, V01,02 € V, (L, w, j,n) € Sx, , (i, m, j,n) € Sx,, .
(1) Tiwjne, 0N Tjnimu,, V01,02 € V 20y # v, (L, w, j,n) € Sx, , (j,n,1,m) € Sx,, -
As consequence of the above discussion we have the following result:

Proposition 4.1. If C C N is a clique in the conflict graph G, then the inequality

(Z,m,‘]7n,/u)€c

is valid for X.

Remark 4.3. An inequality based on a pair of incompatible inequalities of type (i) is a
SEC.

In order to separate clique inequalities we need to consider weights on the nodes.
The weight of node (7, m, j, n,v) is given by the value of the variable z;,jn, in the linear
solution. Finding the most violated clique inequality implies to solve the maximum
weight clique problem, which is known to be strongly NP-hard. Here we use a simple
greedy separation heuristic. First, find the maximum weight clique with two nodes
and update C accordingly. Then augment set C' in a greedy fashion. In each iteration
add to C' the maximum weight node that forms a clique with the nodes in C, that is,
C <+ CU{v*} where

v* = argmaz{w, : Yu € C,{u,v} € E}.

14
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and w, is the weight of node v. The process stops when a maximal clique is found. If
the resulting clique inequality (44) is violated then it is added as a cut, otherwise no
new inequality is added.

Figure 2 shows an example of a linear relaxation solution and the respective conflict
graph. Starting with the maximum weight clique with two nodes

C={(1,1,2,1,2),(1,1,2,2,2)}.

C' is further expanded. First with (2,2,1,1,2) and then with (3,1,1,1,1). Hence, C' =
{(1,1,2,1,2),(1,1,2,2,2),(2,2,1,1,2),(3,1,1,1,1) }. The (violated) maximal clique in-
equality is

T11212 + T11222 + T31111 + T2o112 < 1

0.2

Figure 2: Example of a partial linear relaxation on the left. The two types of arcs represent different
ships. The corresponding conflict graph is given on the right.

5. Hybrid heuristics

The formulation F-SSIRP tightened with the strategies discussed in the previous
section can hardly be used to solve real instances using a generic MIP solver. However,

15
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recent hybrid heuristics have been proposed that use MIP solvers as a black-box tool.
Here we consider and combine three such heuristic procedures: rolling horizon, local
branching and feasibility pump.

5.1. Rolling Horizon heuristic

When considering a planning horizon of several months, the tested instances become
too large to be handled by commercial software. To provide feasible solutions we have
developed a Rolling Horizon (RH) heuristic. The main idea of the RH heuristic is to
split the planning horizon into smaller sub-horizons, and then repeatedly solve limited
and tractable mixed integer problem for the shorter sub-horizons. In transportation
problems, RH heuristics have been used in several related works [9, 31, 28, 32|.

In each iteration k of the RH heuristic (except the first and last one), the sub-
horizon considered is divided into three parts: (i) a frozen part where binary variables
are fixed; (ii) a central part (C'Py) where no restriction or relaxation is considered, and
(iii) a forecasting period (F'Py) where binary variables are relaxed. The central period
in iteration k£ becomes a frozen period in iteration k+ 1, and the forecasting period from
iteration k becomes the central period in iteration k 4 1, see Figure 3. The process is
repeated until the whole planning horizon is covered. In each iteration the limited mixed
integer problem is solved. When moving from iteration & to iteration k+1 we (a) fix the
values of the binary variables, (b) update the initial stock level of each product at each
port, (c) calculate the quantity of each product on board each ship, and (d) update, for
each ship, the initial position and the travel time and cost from that position to every
port, see Algorithm 1. Based on preliminary tests we set C P, = F'P, = 5 days.

Algorithm 1 Rolling Horizon heuristic

It k+ 1

2: U <= number of iterations to cover the planning horizon [1,--- T

3: while £ < U do

4:  Relax binary variables in forecasting period F Py

5. Solve a limited mixed integer problem defined by C'P, and F Py

6:  Freeze the variables Zinjny, Toimvs Oimoks Wimw, Zime a0d Y, in C' Py,

7. if k < U then

8: Update the initial stock level of product £k at port ¢

9: Calculate the quantity of each product on board each ship v

10: Update, for each ship v, the initial position and the travel time and cost from

that position to every port ¢
11:  end if
12: k+—k+1
13: end while
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Figure 3: The rolling horizon heuristic

5.2. Local Branching heuristic

Local Branching (LB) was introduced in [19] to improve a given feasible solution.
The LB heuristic searches for a local optimum by restricting the number of variables
that can change their value in the current feasible solution.

More formally, consider a feasible set of the form {(u,v) € {0,1}" x R™ N P} where
P is a polyhedron. Given a feasible solution (7,v), let S = {j € {1,--- ,n} : w; = 1}
denote the set of indices of the binary variables that are set to 1. The extra constraint

> (1—uy) <A, (45)

jeS

is considered, where A is a given positive integer parameter, indicating the number of
variables u;, j € S that are allowed to flip from one to zero.

Many strategies were tested to combine the two heuristic approaches RH and LB.
Here we present only three such strategies. In the RH, the problem is decomposed into
subproblems. In each iteration the subproblem is solved to optimality. For the combined
heuristics we used the same decomposition as for the RH. For all three combined strate-
gies, for each subproblem, a constraint (45) with A = 0 is added on the variables of the
frozen period. Doing so, we allow the continuous variables to change their value within
the frozen period. The strategies differ in the solution approach for each subproblem,
and on whether they perform a local search in the neighborhood of the final solution or
not.
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LB1: For each subproblem, the solver is interrupted when the first feasible solution
is reached.

LB2: Solve each subproblem twice. First the solver is run until either an integrality
gap (gap = 100 x (UB — LR)/LR where UB is the best known upper bound and LR is
the best known lower bound) less than or equal to 10% is achieved or a maximum time
limit is reached. Then a constraint (45) with A = 2 is added over the variables in the
central period, and the subproblem is solved again until a gap of 5% is reached or the
time limit is attained.

LB3: Obtain a feasible solution with LB2. For a t, 0 <t < T, impose a constraint
(45) with A = 0 for the period [0,7' —t], and a constraint (45) with A = 6 for the period
[T — t,T]. Solve the new problem. Using the new solution impose new constraints on
periods [0,7 — 2t], with A = 0, and [T — 2¢,T], with A = 6, and solve the problem
again. This procedure is repeated until at least one of the following stopping criterion is
reached: (i) time limit; (ii) maximum number of iterations without improvement; (iii)
a maximum number of iterations. This algorithm is detailed in Algorithm 2. In our
experiments we used ¢t = 5 days, and a maximum number of 5 iterations.

5.8. Feasibility Pump heuristic

Feasibility Pump (FP) was introduced by Fischetti, Glover and Lodi [18] as a heuris-
tic scheme to find a feasible solution for a given mixed integer program. Such a procedure
can be useful for those problems where finding an initial solution can be an hard task.
FP is a rounding scheme that generates a sequence of fractional solutions from the linear
relaxation which are rounded. The heuristic stops when a feasible solution is found or
other stopping criteria is reached.

Here we use FP to speed-up the finding of an initial feasible solution. Although we
followed the underlying ideas of FP, it was necessary to adjust this heuristic scheme to
our MIRP. We focus on the problem at hand and not on the general FP scheme.

In this section, and for simplicity, we denote the points in the space of variables of
F-SSIRP by x. First the linear relaxation of F-SSIRP is solved and a linear solution x* is
obtained. Then the binary variables with fractional values are rounded, and a solution
T is obtained. If 7 is feasible (z € X) we stop. Otherwise, a new fractional solution
is derived by finding the linear solution in the linear relaxation of X that minimizes a
distance function to T. The process is repeated until a feasible solution is found or a
predefined maximal number of iterations is reached. If the rounding procedure stops
without a feasible solution, then we run the solver.

Next we address the main steps of the FP algorithm in more detail.

Rounding scheme
For the rounding scheme we first consider the routing variables, ;.. We set
Timjno = 1 whenever jmjn, > 0.5 and Zipjny = 0 whenever @jn,jn, < €, for small e.
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Algorithm 2 LB3 heuristic

// first part (obtain a feasible solution for a planning horizon T, Zimjny)
1:

,_.
e

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

24:
25:
26:
27:
28:
29:
30:

T < length of the planning horizon
T < length of the sub-horizon

Solve the problem for a time horizon of T; = 2¢ periods
Save the feasible solution, Zi;,jny, and compute S

T+ Ti+t
Al%O
AQ%G
Bin < 0
while T} < 7T do

Using the port subproblem NV (i),

each port ¢ for time horizon [0, 71]
Add constraints ) s(1 —7;) < Ay
if Bin =0 then

Solve the problem until gap < 10% or time limit is reached

Bin «+ 1
else

Add constraints ) s(1 — ;) < Ay for time horizon [T7 — 3t; 1]
Solve the problem until gap < 5% or time limit is reached

Bin < 0
T1<—T1+t

Remove all added constraints and update the model

end if
Update the solution, @iy, jn, and S
end while

// second part (improve the feasible solution , Timjny)

number of iterations < 1

while number of iterations < max number of iterations and solution improves do
with t days: T} <17 —t

Reduce the fixed period of variables
Add constraints ) (1 —T;) < Ay
Update the solution, @iy, jn, and S

number of iterations <— number of iterations+1

end while

determine the minimum number of visits at

for time horizon [0; 77 — 3¢]
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Using the routing flow conservation constraints we fix the value of the remaining rout-
ing variables. Then the remaining binary variables Zoimu, Wimv, Zimws Yim Oim are trivially
fixed. This guided rounding scheme provided better results than rounding all binary
variables simultaneously or rounding all the routing variables simultaneously first. So-
phisticated rounding schemes are discussed in [20]. In our experiments we use € = 0.1.

The distance function
Given a 0-1 MIP solution obtained by rounding T we define the following distance
function

(b(ximjnvvfimjnU) = Z Z |ximjnv - Eimjnv‘

= Z Z (1 = Zimgjnw)

VeV (i,m,j,n) €S [Timjno=1

+> > Limjno (46)

veV (i7m7j7n)es1€{ |E’L’mjn'u =0

If ¢(Zimjnvs Timjno) = 0, then a feasible solution can be derived. Otherwise a new
linear solution z* is obtained by solving the problem:

mzn{qﬁ(xlm]nvvflm‘]nv> T E XL}
where X; denotes the linear relaxation of the feasible set X of ' — SSIRP.

Random perturbation

During the execution of the procedure two problems may arise: (i) the algorithm
can be caught in a cycle, i.e., the same sequence is visited consecutively; and (ii) the
convergence to a feasible solution is very slow.

Both problems (i) and (ii) are solved by performing a restart, that is, a new 0-1 MIP
solution is derived by performing a random perturbation step. This step is similar to
the one given in [1| and it is applied to the routing variables on the rounding scheme,
that is, Tinjne = 7500 + p(2)] where 2 € [0,1] is a uniform random variable and
p(z) =22(1—2)if 2<05and p(z) =1—22(1 — z) if 2 > 0.5.

To measure the convergence speed we compute the difference between the value of
the distance function in two consecutive solutions. When this difference is very small
(smaller than a given ¢) we perform the random perturbation.

Algorithm 3 describes the FP heuristic. In the computational results we set § = 0.1
and a maximum number of 50 iterations.
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Algorithm 3 Feasibility Pump heuristic

Relax binary variables
Solve LP-relaxation of F-SSIRP. Let x* denote its optimal solution
Obtain T by rounding =*
number of iterations < 1
while number of iterations < maz number of iterations and ¢(Timjnes Timjnw) > 0
do

Solve the LP: z* < argmin{¢(zimjnv; Timjnv) : © € X1}

Obtain = by rounding x*

if O(Timjnu, Tipmine) < 0 then

Apply the random perturbation step

10:  end if
11:  number of iterations <— number of iterations+1
12: end while

6. Computational experimentation

In this section we report the computational results when testing different hybrid
heuristic approaches.

All computations were performed using the optimization software Xpress Optimizer
Version 20.00.05 with Xpress Mosel Version 3.0.0, on a computer with processor Intel
Core 2 Duo 2.2GHz and with 4GB of RAM.

We tested 12 real instances from a company in Cape Verde with 2 different ships, 7
ports and 4 products.

First we report a summary of results that testify the model choices. These tests
were run for periods of 15 days. Then we report the results from the tests conducted to
compare several hybrid strategies for periods of 2 and 6 months.

6.1. Model tuning

First we consider the use of port subproblems to estimate the minimum number
of port visits. Figure 4, on the left, shows the minimum number of visits calculated
using the formula (35), calculated using the subproblems, and the number of visits
in the optimal solution for the 12 instances tested. On the right, the figure depicts
the integrality gap (GAP), given by GAP = 100 x (OPT — LR)/OPT where OPT
is the optimal value, obtained using the Xpress optimizer, and LR is the value of the
linear relaxation. We consider the cases: “initial” when no minimum number of visits
is imposed, “formula” when the minimum is obtained using (35), “subproblem” when
the minimum is obtained using port subproblems and “exact” when we consider the
minimum equal to the number of visits in the optimal solution.
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Figure 4: Estimation of the minimum number of visits (on the left) and its impact on the integrality
gap (on the right).

In average, the initial integrality gap is 26.7%, drops to 24.1% using equations (35),
and drops to 17.7% using subproblems. If the exact value in the optimal solution is
used, the average gap is 13.2%.

Table 1 summarizes the integrality gaps when model F-SSIRP is used. TT means
that the time constraints were tightened, SP means that the minimum number of visits
was estimated using the port subproblem. IK indicates that the Integer Knapsack
inequalities are added, and C means that the clique inequalities are added.

Table 1: Evolution of the average integrality gap with model tightening.

F-SSIRP + TT | F-SSIRP + TT + SP | F-SSIRP + TT + SP + IK | F-SSIRP+TTHSP+IK+C
26.7 17.7 10.9 10.9

In Table 2 we present the average solutions times, the number of B&B nodes, and
the number of cuts added in each case. We can see that although the clique inequalities
do not improve the integrality gap significantly, they are important with regard to the
reduction in number of B&B nodes and running time.

6.2. Hybrid heuristics

In this section we report experiments carried out for comparing the hybrid heuristics
in terms of running time, integrality gap and number of B&B nodes over two planning
horizons: 2 and 6 months. Since the optimal solutions could not be obtained for these
time horizons, the integrality gap (GAP) is computed as GAP = 100 x (UB — LR)/LR
where UB is the value obtained by the heuristic and LR is the value of the linear
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Table 2: Comparison of time (in seconds), and B&B nodes using valid inequalities.

F-SSIRP+TT | F-SSIRP+TT+SP+IK | F-SSIRP+TT+SP+IK+C

Inst. Time Nodes | Time Nodes Cuts | Time Node Cuts
1 288 23788 38 1017 12 36 1015 16
2 11 19 25 1491 5 9 7 6

3 31 1377 51 3451 9 55 5678 16
4 63 3970 26 919 9 17 575 10
5 19 2777 15 2307 7 16 533 11
6 69 6188 23 2433 9 23 2433 9
7 15 754 8 379 5 6 327 6
8 20 8785 18 2917 10 10 622 11
9 40 8071 23 1423 7 24 603 9
10 40 1551 23 3535 9 9 3 13
11 58 16729 | 111 5383 9 73 2509 11
12 71 9299 41 8003 8 41 8003 8

Average | 60.4 6942.3 | 33.5 2771.5 8.3 26.6 1859.0 10.5

relaxation. The value LR is obtained using the port subproblems to estimate the number
of visits, and including IK and C inequalities. These model strengthening techniques are
used whenever the optimization of the model F-SSIRP occurs as a subproblem embedded

in a hybrid heuristic. The valid inequalities are added only at the root node.

For a time horizon of 2 months, Table 3 shows the performance of the RH heuristic,
LB1 and LB1 combined with FP. It reports the time in seconds, the number of B&B
and the integrality gap for each heuristic. The performance of LB2 and LLB2 combined
with FP is given in Table 4, and the performance of LB3 and LB3 combined with FP is

given in Table 5.
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Table 3: Computational results using RH, LB1 and LB1+FP for T'= 2 months.

RH LB1 LB1+FP
Inst. | Time Nodes Gap | Time Nodes Gap | Time Nodes Gap
1 1409 141380 37,1 45 1631 24,8 62 1753 27,7
2 951 148330 26,0 31 692 18,1 88 3229 31,2
3 1421 119833 12,4 365 30027 30,2 401 12420 16,8
4 4908 349909 41,1 o1 2118 22,0 110 1700 28,2
5) 649 105135 33,5 81 2829 30,8 126 2744 36,2
6 711 106265 33,0 298 53813 38,3 | 405 29366 30,9
7 362 47432 29,5 384 24356 28,2 321 22785 18,7
8 1285 160392 28,0 225 17487 29,1 256 16439 234
9 1107 122907 31,5 684 60289 33,6 322 13265 22,1
10 865 105245 25,8 97 3706 27,0 108 11027 27,1
11 985 143251 28,5 97 3706 28,1 64 2023 26,9
12 1106 167755 30,2 3 13 24,3 74 2838 32,9
Av. | 1313,3 143152,8 29,7 |221,8 16722,3 27,9 | 194,8 9965,8 26,8
Table 4: Computational results for LB2 and LB2+FP for T" = 2 months.
LB2 LB2+FP

Instance | Time (sec.) Nodes Gap | Time (sec.) Nodes Gap

1 277 19887 23,2 106 4014 16,1

2 104 7982 11,8 72 3859 12,4

3 817 54236 21,8 780 48717 20,7

4 155 10214 22,6 192 12692 18,6

) 952 31737 15,2 252 10013 17,8

6 1755 122197 20,4 940 78983 20,4

7 1066 79101 21,3 481 26912 16,2

8 734 63262 20,0 672 28244 25,4

9 846 54919 16,7 1083 41811 21,7

10 1047 52706 17,5 397 7660 141

11 285 10004 20,6 423 11650 18,4

12 744 27989 11,2 456 12493 14,7

Average 698.5 44519,5 18,5 487.8 23920,7 18,1
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Table 5: Computational results for LB3 and LB3 + FP for T' = 2 months.

LB3 LB3+FP
Instance | Time (sec.) Nodes Gap | Time (sec.) Nodes Gap
1 301 20561 20,5 107 4014 12,9
2 105 7982 8,6 144 7718 12,4
3 951 64918 18,8 781 48717 18,1
4 185 15624 18,2 384 25384 18,6
) 073 33366 11,9 504 20026 17,8
6 2018 131345 20,4 1211 86043 20,4
7 1079 79303 18,5 485 26943 12,9
8 760 64206 17,0 686 28353 17,0
9 850 54919 13,7 1088 41811 18,7
10 1050 52706 14,5 399 7660 11,0
11 312 10770 17,9 425 11650 15,7
12 753 28264 7,8 461 12494 11,5
Average 744.8 46997.0 15,7 556,3 26734,4 15,6

We can see that LB heuristics combined with FP are, in average, faster than the
LB heuristics which are in turn faster than the RH heuristic. The use of FP is more
relevant on those harder instances, where the solver is not able to find good initial
feasible solutions quickly. As expected, LB1 is faster than LB2, and LB2 is faster than
LB3. However, the quality of the solutions obtained varies in the opposite direction.
The most sophisticated heuristic, LB3 combined with FP, provides solutions with an
integrality gap which is, in average, half of the integrality gap of the usual RH heuristic.
The running time is almost a third of the running time of the RH heuristic.

Tables 6 and 7 give the computational results for 6 months for heuristics RH, LB1,
and LB2 and LB3 combined FP. The behavior of these algorithms is similar to the case
of 2 months. Only the gaps are higher. However, as this gap is computed by use of the
linear relaxation value we do not know whether this increase results from a deterioration
of the upper bound, the lower bound, or both.
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Table 6: Computational results for RH and LB1 for 7' = 6 months.

RH LB1+FP
Instance | Time (sec.) Nodes Gap | Time (sec.) Nodes Gap
1 3324 107998 42,6 2816 25114 24,3
2 10258 207125 448 1937 23517 28,7
3 3451 62775 45,6 2872 57014 26,1
4 4631 115802 41,6 1040 14311 26,5
) 6149 103324 47,7 3689 48353 32,8
6 10288 139427 42,5 3977 77989 31,5
7 7219 105059 424 1468 35739 27,8
8 3776 166414 46,2 1213 34326 32,5
9 4196 209323 47,2 7792 102636 29,7
10 2658 113510 45,1 4854 39172 30,5
11 13244 208361 448 569 12772 27,9
12 2079 93102 45,1 3042 35513 29,4
Average 5939.4  136018,3 44,6 | 2939,1  42204,7 29,0

Table 7: Computational results for LB2 and LB3 for 7' = 6 months

LB2+FP LB3+FP
Instance | Time (sec.) Nodes Gap | Time (sec.) Nodes Gap
1 4404 166993 23,1 4551 167148 21,1
2 1260 78999 20,7 1300 79060 18,6
3 2469 83566 23,8 2507 83647 22,0
4 1736 83330 20,3 1819 83457 18,2
) 2917 99785 28,2 3142 100031 26,6
6 3109 114450 28,7 3125 114455 27,1
7 2899 102661 31,9 3004 102776 30,4
8 2349 113899 28,7 2480 114137 27,1
9 3894 142451 21,1 4109 142606 19,2
10 1392 53626 20,7 1598 53742 18,7
11 2308 110136 244 2454 110286 22,6
12 1607 67245 24,5 1881 67355 22,8
Average | 2528,7  101428,4 24,7 | 2664,1  101558,5 22,9

To test the heuristic approaches that performed best on the larger instances, we
created two artificial future scenarios where the demands as well as the number of
ships are increased. One scenario with three ships and demands that are 1.5 times
the current demands, and another scenario with four ships and double demands. Each
scenario is identified by the number of ships (| V |=3 and | V |=4). We opted not to
reduce the length of each sub horizon. All the tested heuristics run within a reasonable
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computational time effort for 2 months. For 6 months, RH, LB2 and LB3 heuristics
were too time consuming.

In Table 8 we give the computational results. For | V |= 3 we used a variant
of LB2, where only the first run (until a gap of 10%) is performed, combined with
FP. For | V |= 4 we used LB1 combined with FP. We could not solve most of the
linear relaxations within 1 day time limit. To compute the lower bound we computed
the linear relaxation of the model obtained from F-SSIRP by removing all time and
inventory constraints, and with the additional cuts discussed in Section 4. Additionally
we imposed, for each port ¢ and each product k£ such that J;; = —1, the constraint

S vev S Gimok > T X Ry + Sy, — S5

Table 8: Computational results for larger instances with 3 and 4 ships

[V|=3 [V|=4
Instance | Time (sec.) Nodes Gap | Time (sec.) Nodes Gap
1 988 10154 27,0 0218 45921 31,0
2 1096 20695 29,7 2017 44186 35,1
3 924 30403 29,8 4633 51406 24,5
4 2120 34692 30,3 6804 47798 28,2
5 2120 49307 32,7 5706 49415 35,9
6 2199 25836 36,9 10988 55062 40,8
7 1158 32612 33,7 3338 48450 31,2
8 2340 62303 33,3 4173 24671 30,7
9 1486 51884 29,9 6813 52666 35,2
10 1857 51934 35,0 9958 47864 34,3
11 2275 25875 31,1 4581 49583 36,6
12 2628 30691 31,1 2064 47717 31,2
Average 1765,9 35532,2 31,7 6024,4 49561,6 32,9

7. Conclusions

We have presented a mathematical model for the short sea inventory routing prob-
lem. This model is tightened with valid inequalities and an estimation of the minimum
number of visits to each port by solving some port subproblems. In particular we in-
troduced new clique inequalities that can be used to tighten continuous time maritime
inventory routing models.

Given the long time horizons, we propose and compare different strategies of com-
bining three well-known heuristics that use the mathematical model as a black-box.
The Rolling Horizon heuristic is used to decompose the original problem into smaller
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and more tractable problems, the Feasibility Pump heuristic is used to find initial solu-
tions for MIP problems, and the Local Branching heuristic is used to improve feasible
solutions.

The best strategy tested combines all the three heuristics, and allowed us to obtain
solutions whose integrality gap is in average half of the integrality gap obtained using
the rolling horizon heuristic alone. We provided computational results for time horizons
up to 6 months.

In order to evaluate the quality of the solutions obtained by the hybrid procedures,
an important future direction of research is to investigate approaches to derive tight
lower bounds, specially for long time horizons where the size of the linear relaxation
model is quite large.
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