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Abstract

Large amounts of data are typically generated in applications such as surveillance of power lines and
railways, inspection of gas pipes, and security surveillance. In the latter application it is a necessity
that the data is transmitted to the control centre “on-the-fly” for analysis. Also missions related to other
applications would greatly benefit from near real-time analysis and operator interaction based on captured
data. This is the motivation behind this paper on coarse offline motion- and communication-planning for
cooperating Unmanned Aerial Vehicles (UAVs). A Mixed-Integer Linear Programming (MILP) problem is
defined in order to solve the surveillance mission. To efficiently transmit the data back to the base station
the vehicles are allowed to store data for later transmission and transmit via other vehicles, in addition to
direct transmission.

The paths obtained by solving the optimization problem are analyzed using a realistic radio propa-
gation path loss simulator. If the radio propagation path loss exceeds the maximum design criterion the
optimization problem is solved again with a stricter communication constraint, and the procedure is contin-
ued in an iterative manner until the criterion is met. The proposed algorithm is supported by simulations
showing the resulting paths and communication topologies for different choices of delay tolerance.
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1 Introduction

Among the first to consider multi-vehicle path planning
using MILP, were Schouwenaars et al. (2001), Earl and
D’Andrea (2002) and Richards and How (2002). Tra-
jectory generation for autonomous vehicles was consid-
ered in Schouwenaars et al. (2001), while a robotic ball
game was the application of Earl and D’Andrea (2002).
Since then MILP has been used extensively for path
planning problems, in particular for UAVs, both for
single and multi-vehicle systems, see Richards and How

(2002), Ma and Miller (2006), Shengxiang and Hailong
(2008), Kuwata and How (2011), Grøtli and Johansen
(2012b) and Grøtli and Johansen (2012c). In Schouwe-
naars et al. (2006) connectivity constrained trajectory
planning for autonomous helicopters through cluttered
environments was studied. Line-of-sight connectivity
between a leader helicopter and base station was main-
tained by coordinating the motion of intermediate he-
licopters. Other motion planning techniques for im-
proving network or communication properties, which
do not necessarily involve solving an optimization prob-
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lem, have been treated in Spanos and Murray (2005),
Dixon and Frew (2005) and Dixon and Frew (2007)
among many others.

In on of our previous papers, Grøtli and Johansen
(2012b), we described how paths for multiple UAVs can
be planned to create a communication chain between
two base stations, also known as chaining, Dixon and
Frew (2007). In Grøtli and Johansen (2012c) paths
were planned for a multi-task mission similar to that
presented in this paper, and where the mission objec-
tive only could be met if one of the vehicles were used
as a relay node. By relaying, we mean that additional
nodes are used to receive a transmission from a source
and retransmit it to a destination, Dixon and Frew
(2007), Frew and Brown (2008). Task assignment for
multiple UAVs has been considered in several earlier
papers, see for instance Kim et al. (2007), Alighanbari
et al. (2003) and Kingston and Schumacher (2005), but
the focus of these papers has mainly been on scheduling
or selection of straight line paths.

The results from Grøtli and Johansen (2012c) are
generalized in this paper in order to allow also for fer-
rying in a Delay Tolerant Network (DTN). The first
notion of message ferrying was developed by Zhao and
Ammar (2003). Ferrying means that a mobile node
physically stores and carries data from one location to
another Frew et al. (2006), Frew and Brown (2008).
This has the advantage of extended range and possi-
bly increased total data transmission rate compared
to direct communication, see Figure 1. Henkel and
Brown (2006) studied route design for aerial data fer-
rying nodes. The route designs were evaluated analyt-
ically for relative comparison based on node velocity,
data rate, and buffer size. In this paper ferrying of data
is incorporated into the optimization problem. This
makes the optimization problem much more complex,
as it is necessary for instance to keep track of which
node stores the data, how much data is stored on each
node and how long data has been in the network. The
reason for this is physical constraints on the storage ca-
pacity of each node and desired limitation on the time
taken from when the data is collected by the UAV un-
til it is received at the base station. On the upside,
ferrying means increased flexibility with respect to co-
ordination between vehicles compared to relaying, and
it also means that the surveillance range of a mission
can be extended beyond the line-of-sight distance of a
chain of relaying vehicles.

As in Grøtli and Johansen (2012b) and Grøtli and
Johansen (2012c) we analyze the planned paths in a
radio propagation simulator to get a more accurate
prediction of the radio path loss between the vehi-
cles, and between the vehicles and the base station.
In the MILP formulation the ability to communicate

at a certain data rate depends on the distance between
the nodes. For this distance to give a realistic pic-
ture of the communication properties, the paths found
by solving the MILP problem are analyzed at every
time step using the radio path loss simulator SPLAT!
Maglicane (2010 (Accessed August 18, 2010), Wright
(2011 (Accessed June 29, 2011). SPLAT! uses digi-
tal elevation data to calculate field strength and path
loss based on the Longley-Rice Irregular Terrain Model
Longley and Rice (1968). If the path loss estimate cal-
culated by SPLAT! is too high to maintain communica-
tion at the desired rate, the communication constraints
of the MILP problem are tightened. This means that
the maximal distance where communication is assumed
feasible is reduced by a certain value. The process is
then repeated until paths are found in which commu-
nication can be maintained at a predefined criterion
during the servicing of the tasks. We emphasize that
we have proposed an offline algorithm, which provides
coarse motion- and communication-planning for the
UAVs. In Beard and McLain (2012) they discriminate
between two different approaches to motion planning:
“deliberative motion planning, where explicit paths and
trajectories are computed based on global world knowl-
edge, and reactive motion planning, which uses behav-
ioral methods to react to local sensor information”.
Our method falls in the first category as it is designed
for preplanning of trajectories, which then can serve
as an input towards reactive planning methods. For
instance the online re-planning methods described in
Grancharova et al. (2012, 2014) are well suited for im-
proving robustness towards inaccuracies in the model
and uncertainties that become apparent in real-time.
Many other methods have been proposed in order to
solve the motion planning problem. For an extensive
overview over path- and motion-planning techniques
the interested reader is referred to LaValle (2006) or
Tsourdos et al. (2010). In our opinion MILP is well
suited for complex missions as outlined here. Partic-
ular benefits of MILP are that logics, approximations
of nonlinear functions, and non-convexity can easily
be handled, Richards and How (2005); Bemporad and
Morari (1999); Williams (1999). Another important
important property is the ability to define hard con-
straints. Other path- and motion-planning methods do
not easily handle hard inequality constraints. Instead,
dissatisfied constraints are penalized in the cost func-
tion. This makes these methods hard to tune, because
of the many (often competing) objectives that must
be weighted appropriately. Also, many optimization
methods are not easily modified to allow for coordi-
nation between multiple vehicles. Examples of popu-
lar methods used for path- or motion planning include
rapidly exploring random trees, LaValle and Kuffner
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(2001); Kuwata et al. (2009), particle swarm optimiza-
tion Kennedy and Eberhart (1995); Ho et al. (2013);
Saska et al. (2006), A? and D? Hart et al. (1968);
Stentz (1994); Likachev et al. (2005) or variants of
these. The performance of these methods relies heav-
ily on the choice of a good heuristic potential. Also
the application to the specific mission in this paper
is challenging because of the above-mentioned reasons.
Their primary strengths are within real-time local path
planning, a category where many methods are shown
to outperform MILP, Thunberg et al. (2008). Finally,
the fact that the MILP provides a globally optimal
solution makes it useful for benchmarking other opti-
mization methods, i.e how far away is the solution of
other sub-optimal methods.

2 Contribution

The main benefit of the proposed approach compared
to earlier works, lies in the flexibility obtained by al-
lowing for direct transmission, relaying and ferrying of
data in the same framework. To our knowledge, we
present a novel approach to an optimization problem
by combining motion- and data-transmission planning
while incorporating important constraints on vehicle
motion (visiting of waypoints, vehicle speed, height
above ground) and communication parameters (band-
width, buffer size, path loss, delay, etc.). Although
there are several authors who consider a combined
path- and communication-planning problem, the abil-
ity to communicate is typically approximated as a func-
tion of the relative distance between vehicles. Even
though this is also true for the MILP problem proposed
in this paper, we emphasize that all paths will eventu-
ally have to satisfy a radio propagation path loss re-
quirement in the simulator SPLAT! as described above.

In Grøtli and Johansen (2012b) we dealt with motion
planning in order to create a relay chain between two
stationary ground- or surface nodes. In comparison,
in this paper we have presented a solution to a surveil-
lance mission planning problem. In order to achieve the
main objective of surveillance of all tasks as efficiently
as possible, the means of communication (direct, re-
laying, ferrying) during the mission is chosen based on
important communication parameters such as buffer
size, delay, and bandwidth. We point out that this
paper is an extended version of our conference paper,
Grøtli and Johansen (2012a). The latter paper lacked
a detailed description of many of the constraints of the
MILP optimization problem due to space constraints.
These are now included. In addition, we have extended
the simulations section to cover both when the UAVs
have the possibility to store data for later transmission,
and when the transmission has to be immediate.

Figure 1: This figure illustrates how delay tolerant net-
working can be used not only to extend the
surveillance range, but also to increase the
total data transmission rate. In the dark
red areas the UAV can communicate with
the base stations at a high transmission rate,
whereas the transmission rate is poor in the
light red areas. By bringing the UAV into
range of the dark red areas, the total data
transmission rate can be substantially in-
creased even when taking into account the
UAV’s flight time. To quote Tanenbaum
(2003): “Never underestimate the bandwidth
of a station wagon full of tapes hurtling down
the highway”. The process of storing data on
a mobile node and physically bringing it from
one location to another is called ferrying.

3 MILP Problem formulation

The mission objective is to perform data acquisition
along sequences of waypoints by UAVs, and real-time
transmission of sensor data back to the base station.
The waypoints are not necessarily within communica-
tion range for direct transmission, and we will therefore
allow for one or more UAVs to function as relay links.
We will assume that the tasks consist of segments (e.g.
road, railway or power line segments), which can be
described by one or more waypoints. The interest in
real-time transmission of sensor data while observing
these segments, is to allow for a human operator to
intervene if something irregular is found in the sensor
data.

3.1 Notation

Abbreviations:

• MILP - Mixed Integer Linear Programming

• ECEF - Earth Centered, Earth Fixed

• ENU - East-North-Up
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• TIN - Triangulated Irregular Network

Constants:

• np - total number of vehicles

• N - optimization horizon

• ∆t - sample time

• V p, V p - minimum and maximum velocities, re-
spectively, of vehicle p

• Dvel - discretization level of velocity vector ap-
proximation

• Mvel
pkl - big-M constant related to approximation

constraints for velocity of vehicle p, where k ∈
{1, . . . , Dvel}, and l ∈ {1, . . . , Dvel/2}

• rp ∈ R3
≥0 - a nonnegative weighting vector for the

acceleration term of the cost function

• nt - number of tasks

• x, y, z and x, y, z - lower and upper bounds, re-
spectively, on the state vector in the east, north
and up directions

• dx, dy and dz - safety distances between vehicles
in the east, north and up directions, respectively

• M col
1 , M col

2 , M col
3 - big-M constants related to anti-

collision constraints

• Mfinish - big-M constant related to related to con-
straints on time steps elapsed before the vehicle
returns to landing site

• dTIN - safety distance between the UAVs and the
ground

• TTIN - number of non-overlapping triangles used
to represent the TIN

• mTIN - number of vertices used to represented the
TIN

• Pl = (xTIN
l , yTIN

l , hTIN
l )> - vertex l ∈

{1, . . . ,mTIN} in the TIN

• tseparation - number of time steps separating UAVs
arrival at the final waypoint

• nWt - number of waypoints of task t ∈ T nt
1

• dwp - distance from a waypoint to the side of a
cube, which within a UAV is considered to have
visited the waypoint

• Mwp
pw1, . . . ,M

wp
pw6 - big-M constants related to

vehicle p flying through waypoint w

• csensor - the rate at which sensor data is gathered
for later (or immediate) transmission back to the
base station

• hp - maximum storage capacity on node p

• tdelay - maximum number of time steps before col-
lected data should be forwarded

• Cmax is the maximum data rate between any two
nodes

• Cmax out, Cmax in - maximum data rate in to, re-
spectively out from, any node

• Dcon - discretization level of connectivity vector
approximation

• Rcon
qpi - connectivity distance between node q and

node p at some time instance i

Index sets:

• Pb
a = {a, a + 1, . . . , b} a, b ∈ Z - set of vehi-

cle/node indices. We consider np vehicles, each
equipped with a communication node. The set
of indices Pnp

1 refer, depending on the situation,
either to the physical vehicles or the communi-
cation nodes onboard these vehicles. In addition
we consider one communication node at the base
station, which is given the index {np + 1}, such
that the index set of all communication nodes is
Pnp+1

1 = Pnp

1 ∪ {np + 1}

• Iba = {a, a + 1, . . . , b} a, b ∈ Z, - sample time
index

• Dl - set of indices to triangles that have a common
vertex Pl, where l ∈ {1, . . . ,ml}

• T b
a = {a, a+1, . . . , b} a, b ∈ Z - set of task indices

• Wt - indices of the waypoints belonging to task
t, where t ∈ T nl

1 . Every waypoint belongs to one
and only one task, that isWr∩Ws = ∅ ∀r, s ∈ T nl

1

and r 6= s

• T + - tasks with more than one waypoint

• Wfirst
t ,W last

t - index to the first, respectively, the
last waypoints of task t ∈ T +

Optimization variables:

• ppi := (p1pi, p2pi, p3pi) := (xpi, ypi, zpi)
> - position

vector of vehicle p and time step i along the axes of
a local East-North-Up (ENU) coordinate reference
frame, see Figure 3

• vpi := (v1pi, v2pi, v3pi)
> - velocity of vehicle p at

time step i along the axes of a local ENU coordi-
nate reference frame
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• Vpi is an approximation of the magnitude of the
velocity vector vpi

• bvel
pikl - binary variable. When true, the projec-

tion of the velocity vector vpi, p ∈ P
np

1 , i ∈ IN1 ,
onto the unit vector ξkl, k ∈ {1, . . . , Dvel/2},
l ∈ {1, . . . , Dvel} is greater than Vp/α

vel

• bwp
piw - binary variable. When true, vehicle p ∈ Pnp

1

flies through waypoint w ∈ W1∪ . . .∪Wnt at time
step i ∈ IN1
• bcol

pqil - binary variable. When false, the relative

distance between vehicle p ∈ Pnp−1
1 and vehicle

q ∈ Pnp
p , in at least one of the direction of the

ENU frame is greater than the minimum separa-
tion distance

• wacc
pi := (wacc

1pi , w
acc
2pi , w

acc
3pi)
> - vector of slack vari-

ables, used to penalize the acceleration in each di-
rection of the ENU frame

• λTIN
pil ∈ [0, 1] - barycentric area coordinates

• bTIN
pit ∈ {0, 1} - binary variable which by con-

straints is forced to be true if and only if vehicle
p ∈ Pnp

1 flies over triangle t ∈ TTIN at time step
i ∈ IN1
• hpi - height of the terrain immediately below

vehicle p ∈ Pnp

1 at time step i ∈ IN1
• θw - time steps elapsed before waypoint w ∈ W1∪
. . . ∪Wnt−1 is visited

• θfinish
p - time steps elapsed before vehicle p ∈ Pnp

1

returns to the landing site

• ηfinish - time steps elapsed before the last vehicle
returns to the base station

• btask
pt - binary variable which is true if and only if

task t ∈ T nt−1
1 is served by vehicle p ∈ Pnp

1

• bsensor
pi - binary variable which is true if and only

if vehicle p ∈ Pnp

1 is serving a task at time step
i ∈ IN1

• λ′pit ∈ [0, 1] - auxiliary variable which is 1 at the

time step i ∈ IN1 at which vehicle p ∈ Pnp

1 is
servicing task t ∈ T nt−1

1

• mpisj - the amount of the message with source
node s ∈ Pnp

1 , created at time step j ∈ IN1 , which

is stored on node p ∈ Pnp+1
1 at time step i ∈ INj

• cpqisj - the transmission rate from node p ∈ Pnp+1
1

to node q ∈ Pnp+1
1 at time step i ∈ INj of the

message with source node s ∈ Pnp

1 created at time
step j ∈ IN1

• b̃con
pqi - binary variable which is true if and only if

node q ∈ Pnp+1
1 is within communication distance

of node p ∈ Pnp

1 at time step i ∈ IN1

• χpqi := (xpi − xqi, ypi − yqi, zpi − zqi)
> - vector

of relative distance between node p ∈ Pnp+1
1 and

node q ∈ Pnp+1
1 along each of the ENU coordinate

directions at time step i ∈ IN1

v1

v2

k = 1k = 2

k = 3

k = 4 k = 5

k = 6

Figure 2: The figure illustrates the constraints v>piξkl ≤
1 in the horizontal plane, for some particular
p ∈ Pnp

1 , some particular i ∈ IN−1
0 , ∀k ∈

{1, . . . , Dvel = 6}, and l = 1. The dashed
arrows illustrate the unit vectors, ξk1, k ∈
{1, . . . , Dvel = 6}.

3.2 Vehicle model

In the planning problem we assume that the pth UAV
is described by the discrete time model

pp(i+1) = ppi + ∆tvpi , (1)

∀p ∈ Pnp

1 ,∀i ∈ IN−1
0 , where np is the number of

UAVs, ∆t is the sample time, and ppi and vpi are
vectors with elements being positions and velocities
along the orthogonal axes of a local East-North-Up
(ENU) coordinate reference frame. The simplicity of
the model makes it suitable for the optimization prob-
lem described in this paper, where we focus on coarse
path planning. The relationship between the ENU and
the Earth-Centered Earth-Fixed (ECEF) frames is ex-
plained in Figure 3. The ECEF frame, is a coordinate
system where its origin is at the center of Earth, and
with axes X, Y , Z, rotating with the angular veloc-
ity of Earth. The ENU coordinate frame is a local
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Figure 3: The Earth-Centered Earth-Fixed (ECEF)
frame with axes X, Y , Z, and the East-
North-Up (ENU) with axes x, y, z. The ori-
gin of ENU frame is typically represented in
terms of the reference ellipsoidal parameters
longitude l, and geodetic latitude µ.

geodetic coordinate system whose tangent plane is fit-
ted to the geodetic reference ellipsoid at some conve-
nient point for local measurements. The x axis points
towards East, the y axis points towards North and the
z axis completes the right-handed orthogonal frame by
pointing away from the Earth perpendicular to the ref-
erence ellipsoid. The origin of the ENU frame is typ-
ically represented in terms of the reference ellipsoidal
parameters longitude l, and geodetic latitude µ.

3.3 Velocity constraints

We approximate Vpi in a similar manner as in
Chaudhry et al. (2004), here in the three-dimensional
case as in Grøtli and Johansen (2012b), by introducing
the constraints:

v>piξkl ≤ Vpi , (2)

αvelv>piξkl ≥ Vpi −Mvel
pkl(1− bvel

pikl) , (3)

∀p ∈ Pnp

1 , i ∈ IN−1
0 , k ∈ {1, . . . , Dvel}, l ∈

{1, . . . , Dvel/2}, and

Dvel∑
k=1

Dvel/2∑
l=1

bvel
pikl = 1 , (4)

(a) Dvel = 4 (b) Dvel = 6

(c) Dvel = 8 (d) Dvel = 10

Figure 4: The accuracy of the approximation in (2) de-
pends on the discretization level Dvel. Fig-
ures 4a (Dvel = 4), 4b (Dvel = 6), 4c (Dvel =
8), 4d (Dvel = 10) show that by including all
constraints ∀l ∈ {1, . . . , Dvel/2} the velocity
vector is restricted to be within a polytope
approximating the unit sphere in 3D space.

∀p ∈ Pnp

1 , i ∈ IN−1
0 , where bvel

pikl are binary optimiza-
tion variables, the unit vector

ξkl :=

cos (θk) sin (φl)
sin (θk) sin (φl)

cos (φl)

 , (5)

with θk := 2πk/Dvel, φl := 2πl/Dvel, k ∈
{1, . . . , Dvel/2}, l ∈ {1, . . . , Dvel} and the discretiza-
tion level Dvel is some constant even integer greater or
equal to four.

By (2), Vpi is constrained to be larger than the scalar
projection of vpi onto any of the unit vectors ξkl. To il-
lustrate this constraint, consider the simpler constraint
v>piξkl ≤ 1 in the horizontal plane in Figure 2, for

some particular p ∈ Pnp

1 , some particular i ∈ IN−1
0 ,

∀k ∈ {1, . . . , Dvel = 6}, and l = 1. The dashed arrows
illustrate the unit vectors, ξk1, k ∈ {1, . . . , Dvel = 6}.
These constraints ensure that the projection of the ve-
locity vpi onto the unit vectors ξk1 (the scalar prod-
uct of vpi and ξk1) are less or equal to 1. Hence, the
velocity vector should be within the red area in the
horizontal plane, which is a polygonal approximation
to the unit circle. The constant Dvel is required to
be an even integer greater or equal to four in order
to keep symmetry about both axes in the horizontal
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plane. In the constraints in (2) the right-hand side is
substituted with the speed Vpi, which in turn is con-
strained by Vpi ≤ V p, a constant maximum allowed
speed for vehicle p.

In (3) Vp is required to be less than αvelv>piξkl, or

the corresponding binary variable bvel
pikl must be zero.

To prevent (3) to be trivially satisfied with all bvel
pikl be-

ing zero, we add the additional constraints (4). The
accuracy of the approximation depends of course on
the discretization level Dvel (see Figure 4), but also on
αvel, a constant slightly greater than one. The closer
to one αvel is, the better is the approximation; how-
ever, taking it too close may have a negative impact on
the computation time of the MILP problem, Chaudhry
et al. (2004). The constants Mvel

pkl should be chosen suf-
ficiently large.

Remark 1 Here, and in the rest of the document, we
mean by sufficiently large (or sufficiently small) in this
context that the constant should be chosen large (small)
enough to maintain the original logical implication the
constraint is meant to realize. Consider for instance
the constraint f(x) ≤ 0, where f : Rn → R is lin-
ear, and x ∈ X for a given bounded set X . Then
a sufficiently large (small) constant can be chosen as
M = maxx∈X f(x) (m = minx∈X f(x)), Bemporad and
Morari (1999). Although M (m) in theory could be
taken to be arbitrarily large (small), this is not recom-
mended for computational efficiency, Williams (1999).

In YALMIP Löfberg (2008), a MATLAB toolbox
for implementing optimization problems, logic impli-
cations can be expressed instead of big-M formulations
such as (3), and YALMIP will automatically derive big-
M coefficients by analyzing the constraints on the other
variables involved in the expression. As the speed of
the vehicles is approximated by (2), (3) and (4), we
simply use that

V p(1− bwp
piw) ≤ Vpi ≤ V p(1− bwp

piw) , (6)

∀p ∈ Pnp

1 , i ∈ IN−1
0 , w ∈ Wnt

, where V p and V p are
the minimum and maximum velocities, respectively, of
vehicle p. If the binary variable bwp

piw is true, this means
that vehicle p is visiting waypoint w at time step i.
More on this implication and visiting of waypoints is
postponed and considered in Section 3.8. Equation (6)
will constrain the velocity of the vehicles to zero when
they have arrived at the waypoint w ∈ Wnt , which is
the final waypoint of the mission.

3.4 Acceleration cost

To avoid fluctuations in the speed, we introduce the
following cost function similar to the one proposed in

Schouwenaars et al. (2001),

Jacc =
∑

p∈Pnp
1

∑
i∈IN−2

0

r>p w
acc
pi , (7)

with the additional constraints

(vjpk − vjpi) ≤ wacc
jpi , (8)

−(vjpk − vjpi) ≤ wacc
jpi , (9)

∀p ∈ Pnp

1 , i ∈ IN−2
0 , k = i + 1, j ∈ {1, 2, 3} where

wacc
pi := (wacc

1pi , w
acc
2pi , w

acc
3pi)
> and rp ∈ R3

≥0 is a nonneg-
ative weighting vector. The motivation behind (7) is
to penalize the absolute value of acceleration in each
direction of the ENU frame. Also, to avoid a piecewise
linear cost function, we have introduced slack variables
wacc

jpi .

3.5 Position constraints

There are typically restrictions on where UAVs are al-
lowed to fly. This may for instance be air space used
for other air traffic, air space over a certain altitude, or
air space over populated areas. In addition the oper-
ator might want to avoid flying into regions with bad
weather, outside the area where the operator is able to
communicate with UAVs or in case of military appli-
cations: areas with enemies and enemy radars. If the
region the UAVs are required to stay within is convex
(e.g. a rectangular box), the constraints may simply
be written

x ≤xpi ≤ x , (10)

y ≤ypi ≤ y , (11)

z ≤zpi ≤ z , (12)

∀p ∈ Pnp

1 , i ∈ IN1 , where x, y, z and x, y, z are the
constant lower and upper bounds, respectively, on the
state vector in the east, north and up directions. More
generally, unions of convex sets can be implemented.

3.6 Anti-collision constraints

To avoid collision between vehicles we will implement
the method of Schouwenaars et al. (2001). Let the
position of vehicle p and vehicle q at time step i be
given by (xpi, ypi, zpi) and (xqi, yqi, zqi), respectively.
The constraints on their relative position are then given

83



Modeling, Identification and Control

as

dx −M col
1 bcol

pqi1 ≤ xpi − xqi≤M col
1 bcol

pqi2 − dx , (13)

dy −M col
2 bcol

pqi3 ≤ ypi − yqi ≤M col
2 bcol

pqi4 − dy , (14)

dz −M col
3 bcol

pqi5 ≤ zpi − zqi ≤M col
3 bcol

pqi6 − dz , (15)

6∑
l=1

bcol
pqil ≤ 5 (16)

∀p ∈ Pnp−1
1 , q ∈ Pnp

p+1, i ∈ IN1 , where dx, dy and dz
are the safety distances in the east, north and up direc-
tions, respectively. These safety distances represents
the separation required to still maintain the ability to
perform avoidance maneuvers. The binary variables
bcol
pqil, ensure that there is a minimum separation dis-

tance between the vehicles in at least one of the di-
rections of the ENU frame. The constant M col

1 should
be taken sufficiently large, see Remark 1, for instance
M col

1 > x−x+dx with x, x as in (10), and correspond-
ingly for M col

2 and M col
3 .

3.7 Anti-grounding constraints

As in Ma and Miller (2006) we will represent the ter-
rain as a triangulated irregular network (TIN). Ter-
rain avoidance constraints in MILP form are given
in Shengxiang and Hailong (2008), and will be used
here. TTIN non-overlapping triangles with mTIN ver-
tices Pl(x

TIN
l , yTIN

l , hTIN
l ) are used to represent the

piecewise affine terrain surface. The point strictly be-
low vehicle p at time step i is given by (xpi, ypi, hpi),
and satisfy

xpi =

mTIN∑
l=1

λTIN
pil x

TIN
l , (17)

ypi =

mTIN∑
l=1

λTIN
pil y

TIN
l , (18)

hpi =

mTIN∑
l=1

λTIN
pil h

TIN
l , (19)

0 ≤ λTIN
pil ≤ 1 ∀l = {1, . . . ,mTIN} (20)

mTIN∑
l=1

λTIN
pil = 1 , (21)

TTIN∑
t=1

bTIN
pit = 1 , (22)

λTIN
pil ≤

∑
t∈Dl

bTIN
pit ∀l = {1, . . . ,mTIN} , (23)

∀p ∈ Pnp

1 , i ∈ IN1 . Dl is the set of indices of trian-
gles that have a common vertex Pl. An example of the

P1

P2

P3

P4

P5

P6

P7

T1

T2

T3

T4

T5

T6

(a)

D1 = {1, 3, 6}
D2 = {3}
D3 = {4, 6}
D4 = {5, 2}
D5 = {4, 5}
D6 = {6, 1, 2, 4, 5}
D7 = {2, 1, 3}

(b)

Figure 5: In 5a a top view of a TIN with vertices Pl,
l ∈ {1, . . . , 7} is presented, and 5b shows the
corresponding sets Dl of indices to triangles
which have Pl as a common vertex.

enumeration of triangles, vertices and the correspond-
ing sets Dl is shown in Figure 5. Equations (17)-(21)
describe the position strictly below the vehicle in terms
of its barycentric coordinates, as illustrated in Figure 6.
By (22), the binary variables bTIN

pit are forced to be true
if and only if vehicle p flies over triangle t at time step
i. By (23), the variables λpil corresponding to vertices
which are not adjacent to the particular triangle are
set to zero. Finally, the terrain avoidance constraint
can be expressed as

zpi ≥ hpi + dTIN , (24)

∀p ∈ Pnp

1 , i ∈ IN1 , where dTIN is the minimum vertical
distance from the UAVs to the ground. The TIN is
generated from the elevation data by incremental De-
launay triangulation. This reduces the complexity of
the problem, since only a subset of the available data
is used in the MILP formulation.

3.8 Task assignment

We will assume that there are nt tasks, and that each
task t ∈ T nt

1 is comprised of a set of waypoint indices.
Let Wt denote the set of the indices of the waypoints
which belong to task t ∈ T nt

1 . A special meaning is
given to the final task Wnt

. It contains only one way-
point, which is located above the designated landing
site for the UAVs. Take-off and landing is not con-
sidered in this paper, but assumed to be handled sep-
arately. We require that Wr

⋂
Ws = ∅, ∀r, s ∈ T nt

1 ,
r 6= s, i.e. that each waypoint belongs to one and only
one task. A waypoint characterized by the ENU coor-
dinates (xwp

1w , y
wp
2w , z

wp
3w ) is considered to be visited if a

UAV is flying through a cube containing the waypoint.
More precisely, we assume each waypoint to be a cube
with sides of length 2dwp, and require that Richards
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xA

xB

xC

xP

AC

AB

AA

Figure 6: Let xA, xB and xC be the position vectors
of the blue, red and green vertices of the
triangle, respectively. The position of any
point xP on the triangle is given by xP =
λAxA + λBxB + λCxC , where λA = AA

A ,

λA = AB

A , and λC = AC

A . AA, AB , AC are
the areas of the blue, red and green subtri-
angles, respectively, and A is the total area
of the triangle such that A = AA +AB +AC .
Hence, λA + λB + λC = 1.

and How (2002)

xpi − xwp
w − dwp ≤Mwp

pw1(1− bwp
piw) , (25)

−xpi + xwp
w − dwp ≤Mwp

pw2(1− bwp
piw) , (26)

ypi − ywp
w − dwp ≤Mwp

pw3(1− bwp
piw) , (27)

−ypi + ywp
w − dwp ≤Mwp

pw4(1− bwp
piw) , (28)

zpi − zwp
w − dwp ≤Mwp

pw5(1− bwp
piw) , (29)

−zpi + zwp
w − dwp ≤Mwp

pw6(1− bwp
piw) , (30)

∀p ∈ Pnp

1 , i ∈ IN1 , w ∈ W1 ∪ . . . ∪ Wnt
, where

Mwp
pw1 . . .M

wp
pw6 are chosen sufficiently large. This way,

the binary variable bwp
piw is true then vehicle p flies

through waypoint w at time step i. We will require
that each waypoint of tasks Wt,∀t ∈ T nt−1

1 , is visited
once and once only. Mathematically this is formulated
by the equality constraint∑

p∈Pnp
1

∑
i∈IN1

bwp
piw = 1 , (31)

∀w ∈ W1 ∪ . . . ∪Wnt−1. By assigning all vehicles the
final task, all vehicles will return to the landing site be-
fore the end of the mission. This assignment is ensured
by the constraints ∑

i∈IN1

bwp
piw ≥ 1 , (32)

∀p ∈ Pnp

1 , w ∈ Wnt . We also add the constraints

bwp
p(i+1)Wnt

≥ bwp
piw , (33)

∀p ∈ Pnp

1 , i ∈ IN−1
1 , w ∈ Wnt

, which means that once
bwp
piw has become true for some time step i, it will re-

main true for the rest of the horizon. Together with the
implication presented in (6) and (25), this also means
that vehicle p will remain at the final waypoint (land-
ing site) once it has arrived there. Given that bpiw is
true, the implication in (25) constrains the position of
vehicle p to the final waypoint, whereas Equation (6)
constrains the velocity to zero. These constraints indi-
rectly force all tasks T nt−1

1 to be executed before the
the last vehicle returns to the landing site. Since each
waypoint w ∈ W1 ∪ . . . ∪ Wnt−1, is visited only once,
the time steps elapsed before a waypoint is visited are
given by

θw =
∑

p∈Pnp
1

∑
i∈IN1

ibwp
piw , (34)

∀w ∈ W1∪ . . .∪Wnt−1, where θw is a variable we have
introduced in our optimization problem. Furthermore,
we require that the waypoints within the same task
are visited in a specific order. Let T + represent those
tasks with more than one waypoint. Then, Wt\WLast

t ,
t ∈ T + contains the indices of all the waypoints of task
t, except the last one. Then the visiting order can be
achieved by requiring that

θw+1 > θw , (35)

∀w ∈ Wt\WLast
t , t ∈ T +. The number of time steps

elapsed before vehicle p returns to the landing site is
given by θfinish

p , if we use the constraints

θfinish
p ≤Mfinish(1− bwp

piw) + ibwp
piw , (36)

θfinish
p ≥ (i+ 1)(1− bwp

piw) , (37)

∀p ∈ Pnp

1 , i ∈ IN0 , w ∈ Wnt
where Mfinish is a constant

chosen sufficiently large, see Remark 1, for instance as
Mfinish := N . Recall that for each vehicle p, bwp

piw may
be true for many consecutive time steps i, so we can-
not use the same approach as in (34) to find the time
elapsed before vehicle p arrives at waypoint w ∈ Wnt

.
Instead with the upper- and lower-bounds on θfinish

p

given by (36) and (37), respectively, θfinish
p will repre-

sent the exact time step of arrival at the final waypoint.
Since we want to minimize the overall mission time -
the time elapsed until the last vehicle arrives at the
final waypoint - we introduce the variable ηfinish and
require that

ηfinish ≥ θfinish
p , (38)

∀p ∈ Pnp

1 , and set our objective to minimize the cost
function

Jfinish = γfinishηfinish , (39)
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where γfinish is a positive scalar. Equation (38) can be
satisfied for any sufficiently large ηfinish. However, by
minimizing ηfinish in the cost function, we achieve the
desired effect, which is to minimize the overall mission
time. We do not want vehicles to arrive at the final
waypoint simultaneously, as this may cause the UAVs
to collide. Therefore, we also require a temporal sep-
aration between the arrival at the final waypoint, that
is,

θfinish
p ≥ θfinish

q + tseparation (40)

∀p ∈ Pnp−1
1 , q ∈ Pnp

p+1, where tseparation ∈ N is the
number of time steps separating the UAVs at the ar-
rival of the final waypoint. Thus far, there is nothing
restricting multiple vehicles each accomplishing parts
of a task. As this may be undesirable, for instance
because we want video to be recorded continuously be-
tween waypoints of a task, we introduce an additional
binary variable btask

pt which is true if and only if task
t is served by vehicle p. This is achieved by imposing
the constraints

−
∑

w∈Wt

∑
i∈IN1

bwp
piw ≤ −nWtb

task
pt (41)

∀p ∈ Pnp

1 ,∀t ∈ T nt−1
1 and∑

p∈Pnp
1

btask
pt = 1 , (42)

∀t ∈ T nt−1
1 , where nWt is the number of waypoints

of task t. Still, there is a possibility that a UAV will
switch back and forth between different tasks. This
behavior is allowed, but as it is shown in the simula-
tions, it is more beneficial to accomplish one task at
the time. This is due to the demanding communica-
tion constraints during the accomplishment of a task,
which we will impose in Section 3.10.

3.9 Data gathering

We introduce the binary variable bsensor
pi which is true

if and only if vehicle p is serving a task at time step i.
This implication can be achieved by using the auxiliary
variable λ

′

pit ∈ [0, 1] and imposing the constraints

λ
′

pit ≤
i∑

k=1

∑
w∈Wt

bwp
pkw , λ

′

pit ≤
N∑
k=i

∑
w∈Wt

bwp
pkw , (43)

∀p ∈ Pnp

1 , i ∈ IN1 , t ∈ T nt−1
1 ,

N∑
i=1

λ
′

pit =

N∑
i=1

ibwp
piw1
−

N∑
i=1

(i+ 1)bwp
piw2

, (44)

∀p ∈ Pnp

1 , w1 ∈ WFirst
t , w2 ∈ WLast

t , t ∈ T nt−1
1 , and

finally ∑
t∈T nt

1

λ
′

pit = bsensor
pi , (45)

∀p ∈ Pnp

1 , i ∈ IN1 . WFirst
t and WLast

t represent the set
with index to the first and the last waypoint, respec-
tively, of task t. The inequalities in (43) force λ

′

pit to
be less or equal to one for every time step i during the
servicing of task t, and zero otherwise. Equation (44)
makes

∑
i∈IN1

λ
′

pit, for a specific vehicle p and a specific

task t, to be equal to the number of time steps elapsed
from when the vehicle visited the first waypoint of the
task and until it visited the last (and where we have
assumed that the servicing of the task ends at the end
of the step). Together, (43) and (44) constraint λ

′

pit to
be one at the time steps i at which vehicle p is servicing
task t and zero otherwise. Finally, (45) will give the
variables bsensor

pi the desired property.

3.10 Data flow for delayed transmission

In the following we will sometimes commonly refer to
the base station (where the antenna for the operator
user interface is located) and the UAVs as nodes. The
communication network will be modeled as a buffered
flow network, a directed graph where each edge rep-
resents a limited transmission capacity, but where the
nodes have the ability to store data. We assume that
while vehicle p is servicing a task - that is for those time
steps i the binary variable bsensor

pi is true - the rate at
which sensor data is gathered for later (or immediate)
transmission back to base station, is given by csensor.
In our setup, the base station is the only sink, whereas
the UAVs act as sources during servicing of a task. We
assume that the bandwidth required for transmission
is substantially larger during the execution of a task,
and ignore the possible need for communication dur-
ing transit between tasks. Immediate transmission of
data back to the base station requires that the vehicles
and therefore also the tasks lie within direct commu-
nication distance of the base station, or at least the
communication distance of a chain of multiple UAVs.
As this limits the surveillance area, we also allow for
ferrying. This may increase the surveillance area. It
could potentially also increase the data transfer rate,
as the vehicles can ferry the data into a range where
high bandwidth transmission is possible. The draw-
back is added complexity, and of course the additional
delay between sensing and receiving of data. In our
task assignment scenario, we require that the collected
data is forwarded within tdelay time steps. This allows
a human operator to analyze the data, and possibly
command the UAVs to service the task again if the
data shows something of interest.
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We will assume that each vehicle could possibly ser-
vice a task at any time instant over the horizon N , and
that the servicing of a task would mean that the vehicle
has collected some piece of data to be transmitted back
to the base station. Such piece of data will from now on
be referred to as a message, and a new message is cre-
ated every time step a vehicle is servicing a task. These
messages can be divided into even smaller pieces and
each piece could possibly be routed differently back to
the base station. It will therefore be important to label
when each piece is collected in order to constrain the
total time elapsed before the whole message is received
by the base station. Motivated by Jain et al. (2004),
we introduce the optimization variables mpisj to rep-
resent the amount of the message with source node s
created at time step j which is stored at node p at time
step i. Similarly, cpqisj is the transmission rate from
node p to node q at time step i of the message with
source node s created at time step j. These variables
can only take on nonnegative values, and we introduce
the constraints

mpisj ≥ 0 , (46)

∀p ∈ Pnp+1
1 , j ∈ IN1 , s ∈ P

np

1 , i ∈ INj ,

cpqisj ≥ 0 , (47)

∀p, q ∈ Pnp+1
1 , j ∈ IN1 , s ∈ P

np

1 , i ∈ INj . The sub-
scripts p and q can take on the value np + 1, which
refers to the base station. Notice that the subscript i
of the the variables mpisj and cpqisj start at j in (46)
and (47) since no message or transmission of message
can exist before the message is created. The flow equa-
tions relating the introduced variables are given by

mpisj = ∆t

csensorbsensor
pj −

∑
q∈Pnp+1

1 \{p}

cpqisj

 ,

(48)
∀s ∈ Pnp

1 , j ∈ IN1 , i = j, p = s, and

mpisj = mp(i−1)sj+∆t

 ∑
q∈Pnp+1

1 \{p}

(cqpisj − cpqisj)

 ,

(49)
∀p, s ∈ Pnp

1 , j ∈ IN1 , i ∈ INj+1, and where cp(np+1)isj de-
notes the data rate at which the message with source s
created at time step j is transmitted from vehicle p to
the base station (denoted by subscript np + 1) at time
step i. Equations (48) and (49) can be thought of as
representing the conservation of data. In particular, if
bsensor
pj is true vehicle p is servicing a task at time step j

and the amount of data gathered (message size) is given
by ∆tcsensor. The amount of data immediately trans-
mitted to other vehicles is given by the second term

on the right-hand side of (48), and the left-hand side
represents the amount that will be stored on vehicle p
for the next time step. After the data has been gath-
ered the amount of a specific message stored at node
p will remain unchanged, unless parts of this message
are transmitted to or received from other nodes, see
(49). We assume that each vehicle is equipped with a
buffer or a hard drive, and that the buffer can store a
limited amount of data. The data, which is the sum
of all messages on the node, should be less than the
buffer size, hp, that is∑

s∈Pnp
1

∑
j∈Ii1

mpisj ≤ hp (50)

∀p ∈ Pnp

1 ,∀i ∈ IN1 . If a task is not serviced by a vehicle
at a specific time instant, then the message size will be
zero for the whole horizon. We achieve this with the
constraints

mpisj ≤ bsensor
pj Mmsg , (51)

∀p, s ∈ Pnp

1 , j ∈ IN1 , i ∈ INj , where the constant
Mmsg := ∆tcsensor is the maximum message size. The
delay criterion is ensured by the constraints∑

i∈IN
min{j+tdelay,N}

∑
p∈Pnp

1

mpisj = 0 (52)

∀s ∈ Pnp

1 , j ∈ IN1 . These constraints mean that no part
of a message will remain on any node p ∈ Pnp

1 , tdelay

time steps after it was created on a node s ∈ Pnp

1 .
Furthermore, it also enforces that no data is left on
any of the vehicle nodes at the end of the optimization
horizon. If instantaneous transmission is required, the
constant tdelay should be set to 0. Since the base station
is only receiving data, we require that

c(np+1)qisj ≤ 0 , (53)

∀q, s ∈ Pnp

1 , j ∈ IN1 , i ∈ INj . To reflect the fact that
transmission is only possible when the different nodes
are within each others’ communication range, we also
add to our optimization problem the constraints

cpqisj ≤ Cmaxb̃con
pqi (54)

∀p, s ∈ Pnp

1 ,∀q ∈ Pnp+1
1 , j ∈ IN1 , i ∈ INj , where the

constant Cmax is the maximum data rate and b̃con
pqi is a

binary variable which is true if and only if vehicle q is
within communication distance of vehicle p at time step
i. The constraints required to give b̃con

pqi this property,
are introduced in the section to follow. We also want to
bound the collective incoming and outgoing data rate
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at each time step, and require that∑
q∈Pnp+1

1 \{p}

∑
s∈Pnp

1

∑
j∈Ii1

cpqisj ≤ Cmax out , (55)

∑
q∈Pnp

1 \{p}

∑
s∈Pnp

1

∑
j∈Ii1

cqpisj ≤ Cmax in , (56)

∀p ∈ Pnp

1 , i ∈ IN1 . The constants Cmax out and Cmax in

may be different from Cmax in Equation (54), and they
may be different for each UAV although we consider
them all to be equal for all UAVs in the simulations
in Section 4. Depending on the communication equip-
ment, each node may for instance be communicating
with multiple other nodes over different bands simul-
taneously.

Remark 2 Notice that we have chosen to consider the
raw flow between nodes in the above formulation. The
advantage of considering the raw flow instead of the net
flow, is that the raw flow can correctly model asymmet-
ric flow in a duplex communication network. Raw net-
work flows are characterized by nonnegative upper and
lower capacity constraints (as in (47) and (53)-(56)),
and conservation of flow (as in (48) and (49)).

Remark 3 In the above formulation we have not pe-
nalized the total amount of data sent in the network.
This means that information can transmitted back and
forth between nodes, or in loops when there are three
or more communication nodes. This behavior does not
influence the feasibility of the MILP problem, but the
planned path may unnecessarily be considered infeasi-
ble in SPLAT! with respect to the radio path loss design
criterion introduced in the next section. This behavior
can for instance be avoided by penalizing in the ob-
jective function the amount of data transmitted in the
network. In our case the problem will not be domi-
nant since we penalize the total time taken from data
is gathered and until it is received by the base station.

3.11 Connectivity constraints

When formulating the MILP, we will assume that the
ability of node p to successfully transmit data at a spec-
ified rate to node q, at some time instance i, depends
on whether the relative distance between the two nodes
is below a certain threshold. This threshold would typ-
ically depend on the antenna gains of the receiver and
transmitter node, surrounding terrain, data rate, ra-
dio frequency band, etc. We stress that Rcon

pqi is not
necessarily equal to Rcon

qpi , that is, the threshold de-
pends on the direction of communication. Instead of
requiring that node q is within a sphere of radius Rcon

pqi

of node p, we require that node q is within a poly-
hedron that approximates the sphere. The approxi-
mation is formed by taking the inner product of the

vector χpqi := (xpi − xqi, ypi − yqi, zpi − zqi)> and ξkl,
where ξkl was defined in (5) with θk := 2πk/Dcon and
φl := 2πl/Dcon and Dcon is some constant even integer
greater or equal to four. As already pointed out, we
introduce binary indicator variables b̃con

pqi such that

b̃con
pqi = 1 ⇐⇒ χ>pqiξkl −Rcon

pqi ≤ 0 , (57)

∀p, q ∈ Pnp+1
1 , i ∈ IN1 , k ∈ {1, . . . , Dcon/2}, l ∈

{1, . . . , Dcon}, that is, the indicator variable b̃con
pqi is true

if and only if, node p can directly transmit to vehicle q,
where p, q = np+1, denote the base station. The logical
statement in (57) can be achieved by the introduction
of a number of additional optimization variables, but
out of brevity we will simply refer to Bemporad and
Morari (1999) for this procedure.

Initially Rcon
pqi should be chosen large enough to give

a feasible solution to the MILP problem. The solution
will then be analyzed in SPLAT!, meaning that the
radio propagation path loss between all nodes will be
calculated at every time step. We denote the maximum
allowed path loss between vehicle p and q to maintain
the desired bandwidth during transmission by Lmax

pq . If,
for any time step i, the path loss calculated by SPLAT!
is below Lmax

pq while at the same time cpqi 6= 0, then
Rcon

pqi will be reduced and we solve the MILP problem
again.

4 Simulations

4.1 Mission set-up

We will consider three different scenarios all includ-
ing two UAVs. Scenarios 1 and 2 show simulations for
the proposed method when delay tolerant communi-
cation is not allowed and allowed, respectively. Sce-
nario 0 does not include the rather complex commu-
nication constraints we have proposed in this paper,
and serves as a justification for why this is necessary
in order to satisfy the communication constraints. The
tasks and their corresponding waypoints for all sce-
narios are listed in Table 1. The initial positions of
the vehicles with respect to the local ENU frame are
given in Table 2, whereas the base station is located
at (3750, 1450, 175)>. We assume that a human op-
erator will bring the UAVs up to the initial position,
and down from the final waypoint, as this is a common
approach in practice.

Table 3 shows the parameters used in the MILP
problem. The default solver parameters of the IBM
CPLEX Optimizer 12.6 were used, except for epgap

which was set to 1.0 × 10−2. The algorithm was run
on a HP EliteBook 8540w, with Intel Core i7 CPU
Q720 @1.6 GHz, 16 GB RAM and a Windows 7, 64-
bit operating system. Furthermore, we used MATLAB
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Table 1: Tasks, and coordinates of their corresponding
waypoints of Scenarios 1 and 2

Task Waypoint coordinates
W1 {(4100,2150,200),(4000,2250,200),(3900,2350,200)}
W2 {(2800,1850,300),(2900,1950,300),(3000,2050,300)}
W3 {(3500,1000,250)}
W4 {(4000,1200,250),(4000,1300,250),(4000,1400,250),

(4000,1500,250)}
W5 {(3000,1450,250)}

Table 2: Initial position of UAVs

UAV Initial position
1 (3000, 1350, 225)>

2 (3000, 1350, 300)>

version R2014a and YALMIP Löfberg (2008) version
R20140221. The Windows version of the radio prop-
agation path loss simulator SPLAT! was provided by
Wright (2011 (Accessed June 29, 2011), and the pa-
rameters used are shown in Table 4. SPLAT! is mainly
intended for ground-based antennas. However, it is
possible to adjust the antenna height, and we have
therefore set the antenna height equal to the altitude
of the vehicles when analyzing the radio path loss. The
point-to-point radio path loss is calculated using the Ir-
regular Terrain Model (ITM), Longley and Rice (1968),
with 60% clearance of the first Fresnel zone. It should
be noticed, however, that there are some constraints to
the parameters used in the ITM. For instance should
the antenna heights be less than 1 km above ground
level, and the relative distance should be between 1 km
and 1000 km. We take a conservative approach and use
the maximum of the path loss calculated using ITM
and the free space model. Due to the additional con-
straint of dTIN = 100 m safety distance to the ground,
the attenuation due to terrain shielding is likely to be
small for short relative distances, and the free space
path loss should be a good approximation to the ac-
tual path loss.

We set the maximum allowed path loss Lmax
pq =

Lmax = 98 for any p, q ∈ P3
1 , p 6= q, although it can

be different between different nodes, and does not even
have to be symmetric between a pair of nodes. We ini-
tially set Rcon

pqi = 750 ∀p, q ∈ P3
1 , p 6= q, i ∈ IN1 . How

to choose the initial value of Rcon
pqi can for instance be

guided by using the area prediction mode in SPLAT!,
which gives a prediction of the regional coverage from
the base station. If the calculated path loss at time

Table 3: MILP parameters

Parameter Value Unit Parameter Value Unit
Dcon 8 - x 4200 m
Dvel 8 - x 2700 m
dTIN 100 m y 2600 m
csensor 2 Mbits s−1 y 500 m
Cmax 4 Mbits s−1 z 550 m

tseparation 5 s z 0 m
V 1, V 2 28 m s−1 V 1, V 2 6 m s−1

racc
1 , racc

2 (0.1, 0.1, 0.2)> - γfinish 100 -
dx, dy, dz 50 m dwp 10 m

h 100 Mbits

Table 4: SPLAT! parameters

Parameter Value
Earth Dielectric Constant (Relative permittivity) 15
Earth Conductivity (Siemens per meter) 0.005
Atmospheric Bending Constant (N-units) 301
Frequency in MHz (20 MHz to 20 GHz) 2400
Radio Climate (5 = Continental Temperate) 6
Polarization (0 = Horizontal, 1 = Vertical) 0
Fraction of situations (50% of locations) 0.5
Fraction of time (50% of the time) 0.5

step i is below Lmax while at the same time cpqi 6= 0
or cqpi 6= 0, then Rcon

qpi = Rcon
pqi = Rcon

pqi − rcon, so as
to maintain the symmetry of Rcon in this particular
example. We use rcon = 150. The horizon is 160 s for
both Scenarios 1 and 2. With a discretization step of
5 s, we find that N = 32.

4.2 Scenario 0: Two UAVs, without
communication constraints

An interesting question is whether or not the solution
obtained by iterating between the optimization prob-
lem and the simulator SPLAT! can justify the increased
complexity. We have therefore solved the pure task as-
signment problem without taking into account any of
the communication constraints, in order to be able to
compare the performance. The cost to be minimized
is given by

J = Jacc + Jfinish , (58)

where Jacc and Jfinish are given in (7) and (39), subject
to the constraints (1)-(4), (6), (8)-(38), (40)-(42). Con-
sider therefore Figure 7 which shows a top view of the
planned path, and Figure 8 which shows the calculated
path losses. During the servicing of a task we have as-
sumed that the UAV will send sensed information on
the route with the least maximum path loss, either di-
rect or by relaying through the other UAV. Even by
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chosing the best possible data transmission route, we
can see that the path loss calculated using SPLAT!
(solid black) violates the maximum path loss of 98 dB
(dotted black) during communication (shaded areas).
This shows that the introduced iterative interplay be-
tween optimization and simulation is necessary in order
to enforce the design requirements with respect to path
loss. By comparing Table 1, Figure 8 and Figure 7, it
can be noted that UAV 1 communicates directly with
the base station during the servicing of task W2. UAV
2 also communicates directly with the base station dur-
ing the servicing of task W3. UAV 2 then services task
W4, first by relaying information to base station via
UAV 1, then by direct communication. Finally, task
W1 is serviced by UAV 1, by relaying information to
the base station. The UAVs fly in almost straight lines
between waypoints. This is partly because there are
no communication path loss constraints enforcing syn-
chronization of their motion during relaying. Further
penalizing of the acceleration constraints could have
resulted in planned trajectories of more accuracy with
respect to vehicle dynamics.

Figure 7: Scenario 0: Top view of the planned path.
The black circles represent the waypoints,
and the yellow circle is the initial location of
the UAVs where also the base station is lo-
cated. The red circles represent UAV 1, and
the green circles represent UAV 2. The con-
tours in the background represent the height
of the terrain.

4.3 Scenario 1: Two UAVs, direct or
relaying

In this scenario ferrying is not allowed, that is, tdelay =
0 seconds. The cost to be minimized is given by

J = Jacc + Jfinish , (59)

where Jacc and Jfinish are given in (7) and (39), sub-
ject to the constraints (1)-(4), (6), (8)-(38), (40)-(57).

Figure 8: Scenario 0: The calculated path loss us-
ing SPLAT! (solid black), maximum allowed
path loss for communication 98 dB (dashed
black) and time steps when high band-
width communication is required (shaded
grey area). Notice that, the communication
path loss requirement of 98 dB is violated at
several instants.

Figure 9 shows a top view of the planned path for dif-
ferent iterations. The black circles represent the way-
points, and the yellow circle is the initial location of
the UAVs, which East-North location coincides with
the location of the base station. In particular, take no-
tice that the trajectories planned at the first iteration
are rather straight lines, while after the last iteration
they are optimized in order to satisfy the communi-
cation path loss constraints during relaying. Figure
10 shows the calculated path loss using SPLAT! (solid
black), maximum allowed path loss for communication
98 dB (dashed black), communication data rate (solid
blue) and time steps when high bandwidth communi-
cation is required (shaded grey area). Comparing this
figure with Table 1 and Figure 9b we see that UAV 1
and UAV 2 serve tasks W2 and W3, respectively, and
transmit the sensor data directly to the base station.
Then UAV 2 serves task W4 by relaying data by UAV
1 to the base station, before UAV 1 uses UAV2 as a
relay node when servicing task W1. Figure 11 which
shows the relative distance between the nodes at the
final iteration. Also here the shaded areas represents
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time steps the nodes are communicating. The rela-
tive distance (solid lines) should preferably be below
the MILP maximum relative distance (dashed lines) at
these time steps. This may not always be the case,
since we used an over-approximation of the Euclidean
norm of the relative between the nodes in (57). Notice
that the dashed lines are no longer constantly equal to
750, but have been reduced at some time steps dur-
ing the iterations. Figure 12 shows the altitude of the
vehicles at the final iteration.

(a) Iteration 1

(b) Iteration 3

Figure 9: Scenario 1: Top view of the planned path at
(a) 1st iteration, and (b) 3rd and final itera-
tion. See also caption text for Figure 7.

4.4 Scenario 2: Two UAVs, direct,
relaying or ferrying

In this scenario ferrying is allowed, and we set tdelay =
25 seconds. The cost to be minimized is given by

J = Jacc + Jfinish , (60)

where Jacc and Jfinish are given in (7) and (39), sub-
ject to the constraints (1)-(4), (6), (8)-(38), (40)-(57).

Figure 10: Scenario 1: The calculated path loss us-
ing SPLAT! (solid black), maximum al-
lowed path loss for communication 98 dB
(dashed black), communication data rate
(solid blue) and time steps when high band-
width communication is required (shaded
grey area) to accomplish the task at the 3rd
and final iteration. Notice that the com-
munication path loss requirements of maxi-
mum 98 dB between all nodes are now sat-
isfied.

Figures 13 to 16 correspond to Figures 9 to 11 in Sce-
nario 1. In addition, the amount of data stored at
each node is shown in Figure 17. For easier compar-
ison between buffered and transmitted data, we have
used the unit bit for stored data. Comparing Figure
9 with 13 it can be noticed that the UAVs can fly in
slightly straighter paths between the tasks when de-
layed networking is allowed. This means that the total
mission time is also shorter. The UAVs will still not
fly in straight lines for two reasons: 1) We are mini-
mizing the total time of the mission, and not the time
spent by the individual UAVs. Hence, if one UAV will
have to take a longer route than the other, the UAV
with the shortest route will not be hurried to the fi-
nal waypoint, but may rather serve as a relay vehicle.
This may, or may not be a desirable feature depending
on whether it is most important with short flight time
or getting the sensor data transferred back to the base
station as soon as possible. 2) For better comparison,
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Figure 11: Scenario 1: The relative distance between
nodes (solid black), and the MILP rela-
tive distance constraint for communication
(dashed black) at the 3rd and final itera-
tion. The shaded grey areas are time steps
when high bandwidth communication is re-
quired, and therefore represents time in-
stances when the solid line should preferably
be at or below the dashed line. The rea-
son why this is not the case here, is due to
the fact that the solid line in the figure rep-
resents the actual relative distance, where
as in the MILP problem we have used an
over-approximation of the relative distance.
The violation is irrelevant for the objective
of our algorithm, which is to ensure that
the communication path loss requirements
are satisfied.

we are using the same initial conditions as in the previ-
ous simulation scenario. This means that the maximal
distance between the UAVs is bounded by Rcon which
was set to 750 meters. As a result, seen from Figure 15
the UAVs will typically relay sensor information when
possible, and delay the transmission only when neces-
sary. Taking a close look at Figure 15 and comparing
it with Table 1, Figure 13b and Figure 17 we see that
first UAV 1 and UAV 2 serve tasks W2 and W3, re-
spectively, and transmit the sensor data directly to the
base station. Then UAV 2 starts collecting data at the
waypoints of taskW4, even if it is not possible to com-

Figure 12: Scenario 1: Altitude of the vehicles at the
final iteration. The shaded region is the ter-
rain height, and the dashed lines are the up-
per and lower bounds on the altitude of the
vehicles. The actual altitude of the vehicles
is depicted with the continuous line during
the mission, and even after they reach the
final waypoint. When the final waypoint
is reached they are expected to be landed
manually by a pilot.

municate with the base station neither directly nor by
relaying data through UAV 1. Instead it will have to
store the data onboard until it gets into communication
range of UAV 1. It will then start relaying both the
sensed and the stored data through UAV 1, hence the
increased data transmission rate seen in Figure 15. Fi-
nally, taskW1 is then served by UAV 1, using UAV 2 as
a relay node. From Figure 15 alone, there is no appar-
ent reason why the transmission should be interrupted
since the communication path loss criteria is satisfied
between all nodes. Taking a close look at Figure 11
reveals that the relative distance constraint between
UAV 1 and UAV 2 has been tightened at the time in-
stant, and the transmission will therefore need to be
interrupted. The sensed data is temporarily stored on
UAV 1, as seen from Figure 17.

4.5 Discussion

As pointed out in the introduction the intention
of this paper is to provide a coarse motion- and
communication-plan for a complex surveillance mis-
sion. In addition, an online re-planner might be used
to account for model uncertainties and effects that be-
come apparent in real-time. We will now discuss some
of the uncertainties that should be captured by such
a re-planner. Here, a simple point mass model has
been used for the UAV, whereas the maneuverability
of the physical UAVs will highly depend on its design
parameters such as weight, engine power and aerody-
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(a) Iteration 1

(b) Iteration 3

Figure 13: Scenario 2: Top view of the planned path
at (a) 1st iteration, and (b) 3rd and final
iteration. See also caption text for Figure
7.

namics including lift- and drag forces. We have also
ignored some of the environmental effects, and in par-
ticularly wind will affect the lift and drag of the UAVs.
In addition the communication properties can be heav-
ily attenuated by rain at certain frequencies, and al-
though SPLAT! is a relatively advanced radio propa-
gation model there will be local effects that are not
captured. The sampling based nature of the problem,
and in particular when analyzing the radio propaga-
tion path loss in the simulator, means that the results
may be quite different between samples. Furthermore,
the Doppler effect is not taken into account, which may
have some effect for high velocity flights. A general rec-
ommendation would be to use conservative constraints
in the offline path planner, in particular for the vehi-
cle speed and the radio propagation constraints. This
means that there would be some robustness to changes
in radio propagation path loss between samples, and
that vehicle speed can be decreased or increased in or-
der to compensate for wind-effects and lack of abil-

Figure 14: Scenario 2: Altitude of the vehicles at the
final iteration. The shaded region is the ter-
rain height, and the dashed lines are the up-
per and lower bounds on the altitude of the
vehicles. The actual altitude of the vehicles
is depicted with the solid line. When arriv-
ing at the final waypoint, the UAV will be
brought down by remote control.

ity to perform planned maneuvers. Finally, a minor
drawback of the method was illustrated in Section 4.4
where the relative distance constraints of the MILP
problem may cause interruption in the communication
even when the actual communication path loss is below
the design criterion. In some cases this could be reme-
died by only tightening the relative distance constraint
by a little amount at each iteration. This will not work
in general as the order in which the tasks are served
may change from iteration to iteration and therefore
the necessity of transmission at a certain time instant
will also change.

The motion- and communication-planning algorithm
described in this paper is only intended for offline use,
and computational complexity may therefore be of less
importance than for real-time algorithms. It is how-
ever important to realize that low computation time
is desirable also for offline methods. An example is
the inspections of critical infrastructure with a known
failure, where it is important to locate the failure as
soon as possible for it to be dealt with. Reducing the
computational complexity has not been emphasized in
this work, but in this section we will discuss the many
means available for decreasing the computation time.
For instance, the code could be made more efficient by
estimating bounds on the optimization variables in ad-
vance such that tighter constraints could be provided
to the solver; bounds on the costs of the optimiza-
tion problem could be estimated and added as con-
straints; the required accuracy of the optimal solution
could be reduced by adjusting the solver parameters
(it should be related to the accuracy of the model pro-
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Figure 15: Scenario 2: The calculated path loss us-
ing SPLAT! (solid blue), maximum allowed
path loss for communication 98 dB (dashed
blue), communication data rate (solid blue)
and time steps when high bandwidth com-
munication is required (shaded grey area)
to accomplish the task at the 3rd and final
iteration.

vided); a non-optimal solution to the problem could be
provided at start-up, Vitus et al. (2008); Kuwata and
How (2011); the computation could be (decomposed
and) run in parallel over several computers, Gunnerud
and Foss (2010); Kuwata and How (2011); the compu-
tational complexity could be reduced by reducing the
number of binary variables, Vielma et al. (2010); Pro-
dan et al. (2012). In general it takes longer to find
a feasible solution when we allow for ferrying due to
the additional variables we have introduced. However,
ferrying means that it is possible to find a feasible solu-
tion with lower maximum allowed path loss and/or for
tasks placed further away from the base station. Also,
it does not require coordination between vehicles, and
can therefore be considered a more robust alternative
to relaying.

One of the benefits of using MILP is that it gives
a global optimal solution, and is therefore suitable for
the benchmarking of other, possibly sub-optimal meth-
ods. One such method is Particle Swarm Optimization
(PSO), Kennedy and Eberhart (1995), which has suc-
cessfully been applied for optimal path planning for
UAVs in e.g Sujit and Beard (2009), Ho et al. (2013)

Figure 16: Scenario 2: The relative distance between
nodes (solid black), and the MILP rela-
tive distance constraint for communication
(dashed black) at the 3rd and final iteration.
See also caption text for Figure 11.

and Ho et al. (2015). However, it turned out that PSO
is not very well suited for an implementation of an op-
timization problem similar to that of Section 3. By just
requiring the UAVs to visit all the waypoints (and dis-
regard any communication constraints), the resulting
paths using PSO were comparable to the one achieved
with MILP, but with computation time exceeding the
computation time of MILP with communication con-
straints. The dimension of the search space was in this
case np × N . By including the communication con-
straints in the PSO the dimension of the search space
would increase to n2

p × (np + 1)2 × N3 which leads to
very high computational complexity. The key prob-
lems of using PSO for this scenario were identified as:
a high-dimensional search space; PSO lacks the abil-
ity to implement hard inequality constraints, which re-
sulted in a large number of cost function terms that
were difficult to weigh in case of competing objectives
(e.g minimizing the mission time, while constraining
the velocity of the UAVs); PSO lacks the ability to
implement hard equality constraints, which resulted in
a problem of conserving the data flow in and out of
network nodes.
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Figure 17: Scenario 2: The amount of data stored at
the nodes at the 3rd and final iteration.
Notice that the increments are typically of
10 Mbits, which is equivalent to csensor∆t,
i.e. the rate at which data is collected mul-
tiplied with the sample time.

5 Conclusion

In this paper we have addressed the problem of task as-
signment and path- and communication-planning for
multiple UAVs. In the MILP formulation a general
communication topology is allowed such that sensor
data can be transferred efficiently back to the base sta-
tion by direct transmission, ferrying or relaying. Toler-
ating delays introduces flexibility into the motion- and
communication-planning problem, and means that the
range between tasks and base station can be extended,
and/or that the maximum allowed path loss can be
reduced. We have improved the accuracy of the com-
munication properties by using a path loss simulator
to analyze the paths generated from the optimization
problem.
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