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Abstract: A control-relevant nonlinearity measure (CRNM) method is proposed based on the gap 

metric and the gap metric stability margin to measure the nonlinear degree of a system once a linear 

control strategy is selected. Supported by the CRNM method, an integrated multi-model control 

framework is developed, in which the multi-model decomposition and local controller design are 

closely integrated, model redundancy is avoided, computational load is reduced, and dependency on a 

prior knowledge is reduced. Besides, a 1/δ gap-based weighting method is put forward to combine the 

local controllers. On one hand, the 1/δ gap-based weighting method has merely one tuning parameter 

and can be computed off-line; on the other hand, it is sensitive to the tuning parameter, flexible and 

easy to tune. Two continuous stirred tank reactor (CSTR) systems are investigated. Closed-loop 

simulations validate the effectiveness and benefits of the proposed integrated multi-model control 

approach based on CRNM. 
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1. Introduction 

Virtually all chemical processes are nonlinear. However, most of them are handled using 

linear analysis and design techniques because of operating around an equilibrium point, so that the 

development and implementation of a controller can be largely simplified [1]. Nevertheless, in 

some important cases, the linearity assumption does not hold and linear controllers are invalid. 

Then nonlinear controllers are necessary. Therefore, from the perspective of controller design, 

there is a need for nonlinearity measures, which quantify the nonlinearity extent of a process 

instead of merely judging a system as linear or nonlinear. Thus we can decide whether a linear 

controller is adequate for the system or a nonlinear controller is necessary according to the 

nonlinearity measures. In the past decades, researchers have made extensive studies on 

nonlinearity measures, and have proposed quite a few definitions and computational methods 

[1-13]. Most of them are defined as a distance between the nonlinear system and its best linear 

approximation [2-9]. Although the definitions are intuitive, the general computation of the best 

linear models and nonlinearity measures are rather complicated [2]. Besides, most of them cannot 

be used in feedback controller synthesis directly [3]. 

Recently, the gap metric which was recognized as being more appropriate to measure the 

distance between two linear systems than a norm-based metric [17-18], has been employed to 

quantify the nonlinearity level of industrial processes. And several definitions have been 

developed [13-16]. The nonlinearity measures based on the gap metric are comparatively easier 

and simpler to compute and apply. And some of them have been used for multi-model 

decomposition in the multi-model control framework [15, 16]. 

The multi-model control approaches have been popular in controlling chemical processes 



with wide operating ranges and large set-point changes [19-37]. The key point is to decompose a 

nonlinear system into a set of linear subsystems, so that classical linear control strategies can be 

easily adopted. Generally, the multi-model control approaches comprise three elements: the 

multi-model decomposition (i.e., model bank determination), the local controller design, and the 

local controller combination. From an integration perspective, it is necessary to connect the three 

elements closely, so that local model redundancy can be avoided to simplify the controller 

structure, dependency on previous knowledge can be reduced to make the design procedure more 

systematic, computational load can be decreased to make the method more efficient, and 

performance of the controller can be raised to make the method more effective. Therefore, 

integrated multi-model control methods have been recently put forward [19, 28-30], in which the 

model bank determination, the local linear controller design, and the local linear controller 

combination are fully or partly integrated. Two integrated multi-model control design frameworks 

were proposed in Ref. [19]. One method (Algorithm 2) uses the maximum stability margin (which 

is comparatively controller-independent) while the other (Algorithm 1) uses the actual stability 

margin of a given controller design. Although Algorithm 2 from Ref. [19] is simpler, it has a 

tuning parameter which depends on a priori knowledge. Algorithm 1 from Ref. [19] is more 

systematic; however, it is more complicated and involves intensive computation and tests. In Ref. 

[20], a weighting method with only one tuning parameter was proposed based on the gap metric, 

in which the weights can be computed off-line and kept in a look-up table. Here we call it 1-δ 

method for simplicity. It is intuitive and simple compared to traditional methods. Therefore, Ref. 

[29] used it to connect the local controller combination with the other two steps to propose an 

integrated multi-linear model predictive control method. However, the 1-δ method is not sensitive 

to the tuning parameter, which is undesirable. 

In this paper, a control-relevant nonlinearity measure (CRNM) method is proposed to 

quantify the nonlinearity extent of a process based on the gap metric, which can be used directly in 

controller synthesis: It offers guidance for controller design; and it sets up a criterion to assess the 

controller’s performance. The proposed CRNM method is then employed to perform model bank 

determination and local controller design in a multi-model control framework. Besides, a 1/δ 

gap-based weighting method, which has all the advantages of the 1-δ method and is more sensitive 

to the tuning parameter, is put forward to combine the local controllers. Thus an improved 

integrated multi-model control framework is established based on CRNM, which integrates the 

advantages of the algorithms Ref. [19] while overcomes their disadvantages. The proposed 

integrated multi-model control approach aims to realize four goals. (a) To select as few linear 

models as necessary to design a multi-model controller, so that the model redundancy can be 

avoided; (b) to use as little a priori knowledge as possible, so that the method can be systematic 

and user-friendly; (c) to reduce computational load as much as possible, so that the method can be 

easy to implement; (d) to schedule the local controllers as well as possible so that the global 

multi-model controller can be more effective. Two CSTRs are simulated to illustrate the use of the 

improved integrated multi-model control approach. Simulation results demonstrate that the 

proposed CRNM-based integrated multi-model framework is systematic, efficient and effective, 

and performs better than related multi-model control methods [20, 26]. 

This paper is organized as follows. Related background about the gap metric and the gap 

metric stability margin is shortly reviewed in Section 2. In Section 3, a control-relevant 

nonlinearity measure method is proposed. Supported by the proposed nonlinearity measure, an 



integrated multi-model control approach is proposed in Section 4, which includes a CRNM-based 

multi-model decomposition and local controller design procedure and a 1/δ gap-based weighting 

method. Closed-loop simulations are present in Section 5 to illustrate the effectiveness of the 

proposed approaches, and comparisons have been made with related methods. In Section 6, some 

conclusions are made about the paper. 

2. Gap metric and gap metric stability margin 

Relevant background about the gap metric and the gap metric stability margin is briefly 

recalled in this section. 

2.1. Gap metric 

The gap metric between two linear systems P1 and P2 with their normalized right coprime 

factorizations 1

1 1 1P N M   and 1

2 2 2P N M  ,  is denoted as δ(P1, P2) and is defined by the 

maximum of two directed gaps [17]: 
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The gap metric between any two linear systems is bounded between 0 and 1. Therefore, the 

gap metric is more intuitive than a metric based on norms. Besides, the gap metric offers some 

useful information for control system analysis and synthesis. For example, if the gap metric 

between two systems is close to 0, then at least one feedback controller can be found to stabilize 

both of them; otherwise if the gap is close to 1, it will be difficult of impossible to design a 

feedback controller that can stabilize both systems[18]. 

2.2. Gap metric stability margin   

Suppose K is a feedback controller that can stabilize the linear system P, then the gap metric 

stability margin of the closed-loop system is defined as [38]: 
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where I is the identity matrix. The gap metric stability margin is also called the normalized 

coprime stability margin. 

Denote the left normalized coprime factors of P as 1P M N , and the Hankel norm as 
H

. 

Then the maximum gap metric stability margin of P is defined as [38]: 
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From Eq. (3), it is clear that the maximum stability margin is an intrinsic property of the plant P, 

and has nothing to do with the controller. Besides, for the same system P, the maximum stability is 

greater than or equal to 𝑏𝑃,𝐾 for any controller K. 

The connection between the gap metric and the gap metric stability margin is shown by 



Proposition 1. 

Proposition 1 [38]: Suppose the feedback system with the pair (𝑃0, 𝐾) is stable. Let 𝒫 ≔

{𝑃: 𝛿(𝑃, 𝑃0) < 𝑟}. Then the feedback system with the pair (𝑃, 𝐾) is also stable for all 𝑃 ∈ 𝒫 if 

and only if  

𝑏𝑃0,𝐾 ≥ 𝑟 > 𝛿(𝑃, 𝑃0)        (4) 

Once a nonlinear process is linearized around a set of equilibrium points, the gap metric and 

the gap metric stability margin are usable. In this work, we will use the gap metric and the gap 

metric stability margin to propose a CRNM method on the basis of Proposition 1. The gap metric 

and maximum stability margin of the system are used to define a preliminary nonlinearity measure 

NM1 for guidance before a controller is designed, and afterwards the gap metric and actual 

stability margin of the closed-loop system are used to define a secondary nonlinearity measure 

NM2 to qualify the performance of the controller. If NM2 of the considered system is smaller than 

1, it means that the linear controller is capable to stabilize it. Otherwise, we will decompose the 

nonlinear system into a set of linear subsystems and design a set of local linear controllers 

according to the nonlinearity measure criteria. Thus, the proposed CRNM method tells us whether 

the linear controller is capable to stabilize the nonlinear system or not.  

Besides, the gap metric is also used for controller combination in the multi-model control of 

nonlinear systems by some researchers [20, 21]. In section 4, this work will proposed a 1/δ 

gap-based weighting method, which is simpler and more flexible compared to existent weighting 

methods. 

3. Control-relevant nonlinearity measures based on gap metric and gap metric 

stability margin 

Consider a nonlinear system represented by Eq. (5): 

{
𝑥̇ = 𝑓(𝑥, 𝑢)

𝑦 = 𝑔(𝑥, 𝑢)
                              (5) 

where 
nx R  is the state vector, 

ru R  is the control input vector, 
my R is the output 

vector, and f (∙) and g (∙) are nonlinear differentiable functions. 

Denote the scheduling variables of system (5) by θ. Generally, θ includes a subset of the 

states, inputs and outputs. According to the principles of gain scheduled control design [39], 𝜃 

should vary slowly, captures the nonlinearities of the system, characterizes the operating level and 

uniquely defines the equilibrium points of system (5). 

Denote Ф as the scheduling space of plant (5), and we have   . Namely, Ф is the 

variation range of θ, also the operating space of plant (5). Then Ф is gridded through the gap 

metric based dichotomy method [24]. Suppose n gridding points θ = [θ1, θ2, θi …, θn] are acquired. 

Then every gridding point corresponds to an equilibrium point of system (5). The operating point 

for θi is denoted as (xo(θi) uo(θi) yo(θi)) := (xoi, uoi, yoi). Then system (5) is linearized about (xoi, uoi, 

yoi) and a linearized model Pi is obtained described by: 
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Thus we get n linearized models Pi (i = 1, …, n) to approximate system (5) after gridding and 

linearization. Note that for every value of θ, there exists only one equilibrium point, which results 

in only one linearized model for every θ.  

As is mentioned previously, when a nonlinear system is linearized about a series of 

equilibrium points, the gap metric and gap metric stability margin are applicable. Here, we will 

use them to define nonlinearity measures in the following subsections. 

3.1. Nonlinearity measure based on gap metric and the maximum stability margin 

Compute the gap-matrix [25] with all pairs of the n linearized models, and compute their 

maximum stability margins according to: 
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Among the n linearized models, choose the best local linear model P*
 according to: 
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Eq. (8) is called the mix-max principle, which means the biggest gap of the n gaps between P* and 

the n linearized models is the smallest in the n linearized models. That is to say, in the n linearized 

models, P* is the one that is the nearest to the n linearized models in the min-max sense. Therefore, 

P* is the best local linear model. 

The biggest gap δmax of the n gaps between P* and the n linearized models is computed 

according to: 
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Then the preliminary nonlinearity measure over the entire operating range is defined as: 

𝑁𝑀1 =
𝛿𝑚𝑎𝑥(𝑃

∗)

𝑏𝑜𝑝𝑡(𝑃
∗)

        (10) 

According to Proposition 1, if 𝑁𝑀1 < 1, there exists a linear controller that can theoretically 

stabilize nonlinear plant (5) in the whole operating space and the considered system is weakly 

nonlinear under the maximum stability criterion. Otherwise the considered system is strongly 

nonlinear, and it will be difficult or impossible to get a stabilizing linear controller for it over the 

entire operating range. 

Because the maximum stability margin of the best local linear model P* has nothing to do 

with the controller, therefore, NM1 is a universal measure regardless of control strategies. It can be 

computed before a controller is designed, and supplies guidance for the controller design.  

3.2. A CRNM based on gap metric and the actual stability margin  

The control-relevant nonlinearity measure of system (5), i.e. NM2 over the entire operating 

range is defined as: 

𝑁𝑀2 =
𝛿𝑚𝑎𝑥(𝑃
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KP
b

,*

         (11) 



where K is a linear stabilizing controller designed based on P*. From Proposition 1, we can get 

that system (5) under controller K is considered as closed-loop linear if 𝑁𝑀2 < 1 and K satisfies 

the desired performance requirements. Otherwise, if a linear controller with both 𝑁𝑀2 < 1 and 

acceptable performance cannot be acquired, then system (5) is not possible to be stabilized by the 

chosen control strategy, or a nonlinear control method is necessary. Quite a few linear control 

techniques can be used to design controllers, such as PID, MPC, LQ, and so on. In this work, H∞ 

control method is employed to facilitate the comparison between the proposed method and the 

methods from Ref.[19] in the following sections. 

NM2 can be computed only after the linear controller is designed. It is used to judge whether 

the controller is enough for the considered system or not. It is dependent on both the system and 

the controller. Therefore, it is a control-relevant nonlinearity measure. 

For both NM1 and NM2, the bigger the value is, the more nonlinear the system is. In the next 

subsection, the proposed nonlinearity measures are applied to two CSTR processes to demonstrate 

their use and effectiveness. 

3.3. Case studies 

3.3.1. Case 1. An isothermal CSTR (iCSTR) 

Consider an iCSTR system with a first-order irreversible reaction, described by the following 

equation [26]: 

uCCkC
dt

dC
AAiA

A )(          (12) 

where CA (mol/l) is the reactant concentration, u (min−1) is the input, CAi (1.0 mol/l) is the feed 

concentration, and k (0.028 min−1) is the rate constant.  

 
Fig.1. Static input-output curve of the iCSTR with 19 gridding points  
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Fig. 2. Gaps between the 19 linearized models of the iCSTR 

CA is chosen as the scheduling variable of the iCSTR system for it captures the system’s 

nonlinearity and the operating conditions. The operating space is ]}1,0[|{ AA CC . Applying the 

gap metric based dichotomy gridding algorithm [24] with γ1 = 0.15 to the iCSTR, we get 19 

gridding points, as shown in Fig. 1. The gaps between the 19 linearized models are displayed in 

Fig. 2. As is seen, the biggest gap is almost 1. The iCSTR has strong nonlinearity in the light of 

the open-loop nonlinearity measure based on gap metric [15]. Here the proposed control-relevant 

nonlinearity measures are used to measure the nonlinear degree of the iCSTR system. 

For the 19 gridding points, the best local linear model is P10 based upon Eq.(8), as is marked 

in Fig. 1. And the biggest gap based on Eq.(9) is: 

𝛿𝑚𝑎𝑥(𝑃10) = 0.7551 

The maximum stability margin of P10 is: 

𝑏𝑜𝑝𝑡(𝑃10) = 0.9092 

Therefore, the preliminary nonlinearity measure based on maximum stability margin is: 

𝑁𝑀1 =
𝛿𝑚𝑎𝑥(P10)

𝑏𝑜𝑝𝑡(P10)
=
0.7551

0.9092
= 0.8305 < 1 

Since 𝑁𝑀1 < 1, it means that there is a linear feedback controller that can stabilize the 

iCSTR over its whole operating space. So the system is not as nonlinear as the open-loop 

nonlinearity measure [15] indicates. Nevertheless, the nonlinearity measure based on maximum 

stability margin is an ideal measure. When the H∞ control technique is used to design a local linear 

controller, we find it is hard to get a H∞ controller based upon P10 with an acceptable closed-loop 

performance and 𝑁𝑀1 < 1. For a H∞ controller based upon P10: 

𝑁𝑀2 > 1 

In the subsequent sections, the CRNM will be employed to decompose the iCSTR process 

into linear subsystems and design a multi-model H∞ controller for set-point tracking and 

disturbance rejection control. Although a nonlinear, inverse model controller can be design for the 

iCSTR, the inverse control method needs an accurate nonlinear model [40]. Once there exist 

modeling errors, the control performance degrades. Besides, the inverse control method needs the 
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nonlinear dynamics to be invertible. It fails when the system exhibits input or output multiplicity, 

e.g. Case 2 in this work. Additionally, it may be computationally intensive to get a nonlinear 

dynamic inversion [40]. Therefore, the multi-model approach is employed here for its advantages 

mentioned previously. 

3.3.2. Case 2: An exothermal CSTR (eCSTR) 

Consider a benchmark eCSTR process in which an irreversible, first-order reaction takes 

place. The eCSTR process is modeled by [27]: 

   

{
 
 

 
 

 

𝑥̇1 = −𝑥1 + 𝐷𝑎(1 − 𝑥1)exp(
𝑥2

1+𝑥2 𝛾⁄
)                           

𝑥̇2 = −𝑥2 + 𝐵𝐷𝑎(1 − 𝑥1)exp(
𝑥2

1+𝑥2 𝛾⁄
) + 𝛽(𝑢 − 𝑥2)

𝑦 = 𝑥2                                                                                   

     (13) 

where the state variables x1 and x2 denote the dimensionless reagent conversion and reactor 

temperature, respectively. The input variable u represents the dimensionless coolant temperature. 

The constants in Eq. (13) are Da = 0.072, γ = 20, B = 8 and β = 0.3, respectively. As shown in Fig. 

3, the eCSTR process has strong output multiplicity. Since the output y captures the nonlinearity 

of the eCSTR plant, y is chosen as the scheduling variable. Then the operating space is 

{ | [0,6]}y y .  

The gap metric based gridding algorithm [24] is applied to the eCSTR process with γ1 = 0.15, 

and we get 42 steady state points to grid its operating space { | [0,6]}y y , as shown in Fig. 4. 

Since the biggest gap is equal to 1, the system exhibits strong open-loop nonlinearity according to 

the gap metric based nonlinearity measure [15]. In the following, the proposed CRNM will be 

applied to the eCSTR process. 

 

Fig. 3. Static input-output curve of the eCSTR with 42 gridding points 
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Fig. 4. Gap metrics between the 42 linearized models of the eCSTR. 

For the 42 gridding points, the best local linear model is P10 based upon Eq.(8) as marked in 

Fig.3. And the biggest gap based upon Eq.(9) is: 

𝛿𝑚𝑎𝑥(𝑃10) = 0.7971 

The maximum stability margin of P10 is: 

𝑏𝑜𝑝𝑡(𝑃10) = 0.7861 

Therefore, the preliminary nonlinearity measure based on maximum stability margin for the 

eCSTR process is: 

𝑁𝑀1 =
𝛿𝑚𝑎𝑥(𝑃10)

𝑏𝑜𝑝𝑡(𝑃10)
=
0.7971

0.7861
= 1.014 > 1 

Since 𝑁𝑀1 > 1, it is difficult to get a linear controller to stabilize the eCSTR process in the 

whole operating space, and 𝑁𝑀2 > 1 for any H∞ controller. In the following, the CRNM will be 

used to propose an integrated multi-model control approach for both set-point tracking control and 

disturbance rejection control. 

Note that although the best local linear model of the eCSTR is also P10 just like the iCSTR, 

the two P10 models are totally different. There is no relation between the two models. For example, 

if γ1 = 0.13 is used to grid the eCSTR, we will find the best local linear model is P11 which is also 

at the point marked by blue hexagram in Fig. 3. In order to make a clear and direct comparison 

with the method in Ref.[19] in the following sections, we continue to use γ1 = 0.15 in this work as 

in Ref. [19]. 

4. A CRNM-based integrated multi-model control framework 

In this work, we are to propose a CRNM-based integrated multi-model control framework, 

which makes full use of the advantages of the two algorithms from Ref. [19], while avoiding their 

disadvantages. It means that given a control strategy for local linear controller design, an 

appropriate linear model bank for multi-model controller design is acquired systematically with 

less computational load and without model redundancy while the local controllers are designed. 

Namely, the local model selection is closely integrated with the local controller design. Moreover, 

the local stability of the system in every subregion is guaranteed by the corresponding local 

controller. Like most multi-model control approaches for nonlinear systems, the global stability of 
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the nonlinear system cannot be guaranteed. As in Ref. [19], many linear control techniques, such 

as H∞, PID, IMC, LQ, and so on, can be used in the proposed multi-model control framework and 

H∞ control algorithm is continued to be employed to design local  controllers to make the 

comparisons in the following sections simple and clear. Moreover, a 1/δ gap-based weighting 

algorithm, which is simple, easy and effective to apply, is formulated to combine the local 

controllers.  

The proposed CRNM-based integrated multi-model control approach which includes a 

CRNM-based multi-model decomposition and local controller design algorithm and a gap-based 

weighting algorithm, is detailed as follows. 

4.1. CRNM-based multi-model decomposition and local controller design 

For the nonlinear system (5), the procedure of the CRNM-based multi-model decomposition 

and local controller design is summarized as the following algorithm. 

4.1.1. Algorithm 

Step1: Grid the operating space of system (5) through the gap metric based dichotomy gridding 

algorithm [24] and linearize system (5) about the gridding points. Suppose we get n linearized 

models Pi (i = 1, …, n). 

Step2: Compute the gap-matrix [25] between all pairs of the n linearized models, and get their 

maximum stability margins according to Eq. (7). Then we get an nn  matrix 

nnijnnji PPgap   ][:)],([   and an 1n  vector 11 ][:)]([   noptnioptopt bPbB .  

Step3: Set k = 1, and Nm = 0.  

Step4: If k <= n, set l = k and Nm = Nm + 1. Otherwise, go to Step12. 

Step5: Choose the best local linear model P*
 among the kth to lth linearized model according to: 

 ))),((max(min::*

im
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m PPPP 
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               (14) 

Step6: Compute the biggest gap δmax between P* and the other linearized models according to: 

 )(maxmax i

*

lik
,PP


              (15) 

Step7: If 𝑁𝑀1 = 𝛿𝑚𝑎𝑥(𝑃
∗)/𝑏𝑜𝑝𝑡(𝑃

∗) < 1, set l = l + 1 and return to Step5; otherwise, go to 

Step8. 

Step8: Set l = l − 1.  

Step9: Design a linear controller K for the best linear model P*. If K satisfies both 𝑁𝑀2 =

𝛿𝑚𝑎𝑥(𝑃
∗)/𝑏𝑃,𝑘(𝑃

∗) < 1 and the desired performance requirements, then the l − k + 1 successive 

linearized models are classified into one subregion, represented by their local linear model P* and 

stabilized by the corresponding controller K. Set k = l + 1, and go back to Step4. 

Step10: If an acceptable controller K with 𝑁𝑀2 = 𝛿𝑚𝑎𝑥(𝑃
∗)/𝑏𝑃,𝑘(𝑃

∗) < 1 is not found, Set l = l 

– 1. 

Step11: Re-select P*
 among the kth to lth linearized model according to 

 ))),((max(min::*

im
liklmk

m PPPP 


 , and re-compute the biggest gap δmax(P*) between P* and the other 

linearized models. Go back to Step 9. 

Step12: The n linearized models are divided into Nm subregions with Nm local models and Nm 

linear controllers. 

Finally, the process (5) is decomposed into Nm local models with Nm local linear controllers 



which will be combined into a multi-mdoel controller by a 1/δ gap-based weighting method in the 

subsequent sections. 

Remark 1: Nm is the number of the subregions, i.e., the number of local linear models and 

local controllers. 

Remark 2: In Step9, the l − k + 1 successive linearized models are classified into one 

subregion and represented by P* according to the NM1 criterion.  

Remark 3: In the above procedure, NM1 is used to perform the preliminary decomposition; 

NM2 is used to perform the final decomposition. The use of NM1 reduces the computational load 

greatly; and the use of NM2 makes the decomposition more effective and less dependent on 

previous knowledge. Therefore, the above procedure combines the strong points of Algorithm 1 & 

Algorithm 2 in Ref. [19]. 

Remark 4: Just as in Ref. [19], the local model determination and local controller design are 

carried out sequentially, making the two steps closely connected with each other. Also, the above 

design procedures are somewhat conservative as a result of the conservativeness of Proposition 1. 

Local controllers which do not satisfy the CRNM criteria may have better performance. 

4.1.2. Case study  

In the following, the proposed Algorithm is applied to the above two CSTR processes. 

Case 1: The iCSTR  

Here, we will apply the proposed CRNM-based multi-model decomposition and local 

controller design procedure to the iCSTR process. The detailed procedure is listed step by step as 

follows. 

S1. For the 19 gridding points, we divide the system preliminarily according to the maximum 

stability margin based NM1, getting the result shown in Table 1. 

Table 1. Preliminary decomposition for 1st subregion of iCSTR 

Subregion Operating point NM1 

119 10th 
𝑁𝑀1 = 𝛿max (𝑃10)/𝑏𝑜𝑝𝑡(𝑃10) 

= 0.7551/0.9092 < 1 

S2: On the basis of S1, perform the final decomposition according to the actual stability 

margin based NM2, and get the result in Table 2. 

Table 2. Final decomposition for 1st subregion of iCSTR 

Subregion Operating point NM2 

115 8th 
𝑁𝑀2 = 𝛿max(𝑃8) 𝑏𝑝𝑘(𝑃8)⁄  

= 0.6527 0.7024⁄ < 1 

S3: For gridding points 1619, carry out the preliminary decomposition and get Table 3. 

Table 3. Preliminary decomposition for 2nd subregion of iCSTR 

Subregion Operating point NM1 

1619 17th 
𝑁𝑀1 = 𝛿max(𝑃17) 𝑏𝑜𝑝𝑡(𝑃17)⁄  

= 0.1785/0.9958 < 1 

S4: On the basis of S3, perform the final decomposition and get Table 4. 

Table 4. Final decomposition for 2nd subregion of iCSTR 

Subregion Operating point NM2 

1619 17th 𝑁𝑀2 = 𝛿max(𝑃17) 𝑏𝑝𝑘(𝑃17)⁄  

= 0.1785/0.1821 < 1 



The final decomposition result of the iCSTR process is summarized in Table 5. 

Table 5. CRNM-based multi-model decomposition and local controllers of the iCSTR 

Subregion 1st 2nd 

Linearized models included 115 1619 

Operating point of the local 

linear model (CA, u)  

8th 

(0.7734,0.0956) 

17th 

(0.9281,0.3616) 

Local linear model 
1236.0

2266.0*

1



s

P  
3896.0

07188.0*

2



s

P  

subrange 0 ≤ CA ≤ 0.9 0.9 < CA ≤ 1 

Local linear controller 
009389.027.11

179.1541.9
21






ss

s
K  

0007381.08866.0

05.1695.2
22






ss

s
K  

NM2 0.6527/0.7024<1 0.1785/0.1821<1 

From Table 5, we can see that the system is divided into 2 subregions. The 1st subregion contains 

15 linearized models (115), and the local linear model for the 1st subregion is the 8th linearized 

model )1236.0/(2266.0*

1  sP , with operating point (CA, u) = (0.7734, 0.0956). The first 

subrange is {CA|0≤CA≤0.9}. The local linear H controller 
009389.027.11

179.1541.9
21






ss

s
K  with 

NM2 < 1 is designed. The other column is interpreted in the same way. Note that K1 does not have 

an explicit integral action, but it has a pole − 0.0008, which is near the origin. Therefore, K1 has an 

approximate integral action, making it proper for tracking control of step changes for the iCSTR 

process. So is K2. 

The above decomposition result is the same as in Ref. [19]. Namely, the proposed 

CRNM-based multi-model decomposition method is as effective as the algorithms from Ref. [19] 

in avoiding model redundancy. However, the computational load is much less. Since there is a 

tuning parameter ε, Algorithm 2 in Ref. [19] is not as systematical as Algorithm 1 in Ref. [19]. In 

the following we therefore only compare the computational load between the proposed method 

and Algorithm 1 in Ref. [19].  

Using the proposed algorithm in this work, for the 1st subregion, 5 H controllers are 

designed and tested, and for the 2nd subregion, 1 H controller is designed and tested. In total, 6 

H controllers are designed and tested. 

However, in Ref. [19], 14 H controllers are designed and tested for the 1st subregion, and 3 

H controllers for the 2nd subregion. In total, 17 H controllers.  

The number of controllers that are designed and tested is denoted as “repeat times” for 

simplicity in the following. Table 6 shows the computational load of the proposed method and 

Algorithm 1 from Ref. [19]. 

Table 6. Comparison between the CRNM-based method and Algorithm 1 from Ref. [19]. 

Repeat times CRNM-based method Algorithm 1 from Ref. [19] 

1st subregion 5 14 

2nd subregion 1 3 

Total 6 17 

Therefore, the computational load of Algorithm 1 from Ref. [19] is almost three times of the 

proposed algorithm for the iCSTR process. So the proposed algorithm reduced computational load 



greatly. 

Case 2: The eCSTR 

As we know from Section 3, the control-relevant nonlinearity measure of the eCSTR process 

is strong since NM1 > 1. It is quite difficult to design a single linear controller to stabilize the 

eCSTR process over the whole operating range. Therefore, the CRNM-based method is applied to 

it to get a multi-model controller. 

The detailed decomposition of the eCSTR system is listed as follows: 

S1: Perform the preliminary decomposition of the 42 gridding points according to the 

maximum stability margin based NM1, and get the following decomposition result in Table 7. 

Table 7. Preliminary decomposition for 1st subregion 

Subregion Operating point NM1 

119 9th 
𝑁𝑀1 = 𝛿𝑚𝑎𝑥(𝑃9) 𝑏𝑜𝑝𝑡(𝑃9)⁄  

= 0.7922/0.8137 < 1 

S2: On the basis of S1, perform the final decomposition of the 1st subregion according to the 

actual stability margin based NM2, and get the result in Table 8. 

Table 8. Final decomposition for 1st subregion 

Subregion Operating point NM1 

116 8th 
𝑁𝑀2 = 𝛿𝑚𝑎𝑥(𝑃8) 𝑏𝑝𝑘(𝑃8)⁄  

= 0.6780/0.6797 < 1 

S3: Perform the preliminary decomposition of the 2nd subregion according to the maximum 

stability margin based NM1, and get Table 9. 

Table 9. Preliminary decomposition for 2nd subregion 

Subregion Operating point NM1 

1730 25th 
𝑁𝑀1 = 𝛿𝑚𝑎𝑥(𝑃25) 𝑏𝑜𝑝𝑡(𝑃25)⁄  

= 0.4332/0.4786 < 1 

S4: Perform the final decomposition of the 2nd subregion according to the actual stability 

margin based NM2, and we get the result as follows in Table 10. 

Table 10. Final decomposition for 2nd subregion 

Subregion Operating point NM1 

1730 25th 
𝑁𝑀2 = 𝛿𝑚𝑎𝑥(𝑃25) 𝑏𝑝𝑘(𝑃25)⁄  

= 0.4332/0.4432 < 1 

S5: Perform the preliminary decomposition of the 3rd subregion according to the maximum 

stability margin based NM1, and get Table 11. 

Table 11. Preliminary decomposition for 3rd subregion 

Subregion Operating point NM1 

3142 36th 
𝑁𝑀1 = 𝛿𝑚𝑎𝑥(𝑃36) 𝑏𝑜𝑝𝑡(𝑃36)⁄  

= 0.5249/0.8471 < 1 

S6: Perform the final decomposition of the 3rd subregion according to the actual stability 

margin based NM2, and we get the result as follows in Table 12. 

Table 12. Final decomposition for 3rd subregion 

Subregion Operating point NM1 

3142 36th 
𝑁𝑀1 = 𝛿𝑚𝑎𝑥(𝑃36) 𝑏𝑝𝑘(𝑃36)⁄  

= 0.5249/0.5326 < 1 

The decomposition of the eCSTR process is completed. The local models and controllers are 



summarized in Table 13. 

Table 13. CRNM-based multi-model decomposition and local controllers of the eCSTR 

Subregion 1st 2nd 3rd 

Linearized 

model included 
116 1730 3142 

Operating point 

of local linear 

model (x1, x2, u) 

8th 

(0.2068,1.375, 0.4446) 

25th 

(0.6077,3.625, -0.4937) 

36th 

(0.7393,4.5,-0.2149) 

Local linear 

model 191.0s113.1

3782.03.0
2

*

1





s

s
P  

170.0s3649.0

7647.03.0
2

*

2





s

s
P  

045.1s195.1

151.13.0
2

*

3





s

s
P  

subrange 0 ≤ y≤ 2 2 < y ≤ 4 4 < y ≤ 6 

Local linear 

controller 0075.027.439.43

785.744.4582.40
23

2

1





sss

ss
K

 
619.058.2044.3914.19

528.099.1768.4753.32
234

23

2





ssss

sss
K

 
162.07.1614.107

3.1755.2007.167
23

2

3





sss

ss
K

 

NM2 0.6780/0.6797<1 0.4332/0.4432<1 0.5249/0.5326<1 

Table 13 can be interpreted similarly as Table 5. As displayed in Table 13, the eCSTR is 

approximated by 3 local models with no integral elements, and 3 local H controllers are designed 

using the CRNM-based integrated multi-model control approach. As to the 3 H controllers in 

Table 13, we can also find that they have approximate integral actions, and therefore there are 

appropriate for tracking control of step changes, too. 

Evidently, the decomposition result is the same as in Ref. [19], which validates that the 

proposed CRNM-based multi-model control method is as effective as the methods from Ref. [19] 

in selecting local models and designing local controllers. Next, we will compare the computational 

load. 

Using the proposed method in this work, repeat times are 4 for the first subregion, 1 for the 

2nd subregion, and 1 for the 3rd subregion. In total 6 H controllers are designed and tested. 

However, in Algorithm 1 of Ref. [19], repeat times are 15 for the 1st subregion, 13 for the 2nd 

subregion, and 11 for the 3rd subregion. 39 H controllers are designed and tested in total, more 

than 6 times of that using the proposed method as shown in Table 14. Therefore, the proposed 

CRNM-based decomposition and local controller design method is much more efficient. 

Table 14 Comparison between the CRNM-based method and Algorithm 1 from Ref. [19]. 

Repeat times CRNM-based method Algorithm 1 in Ref. [19] 

1st subregion 4 15 

2nd subregion 1 13 

3rd subregion 1 11 

Total 6 39 

In summary, the proposed CRNM-based method can get the same decomposition result as the 

algorithms in Ref. [19]. Nevertheless, distinct from Algorithm 1 in Ref. [19], the proposed method 

reduces computation largely, so it is more efficient; different from Algorithm 2 in Ref. [19], the 

proposed method is independent of a prior knowledge, so it is more systematical. In short, the 

proposed method combines the advantages while avoids the disadvantages. 

In the next section, a 1/δ gap-based weighing method is proposed to combine the local 

controller into a global multi-model controller, which is also according to the gap metric criterion. 

4.2. A weighting method based on gap metric 

For the nonlinear system described by Eq. (5), at time t, the value of θ is denoted as θt. The 

steady state point corresponding to θt is denoted by ),,( ototot yux . Then the linearized model 



obtained by linearizing system (5) around ),,( ototot yux  is denoted as P(θt): 









uDxCy

uBxAx

tt

tt




                      (16) 

where 
otxxx   , 

otuuu  , 
otyyy   , 

x

uxf
A otot

ot





),(
, 

u
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B otot

ot





),(
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x

uxg
C otot

ot




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u

uxg
D otot
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




),(
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4.2.1. 1/δ weighting method 

At time t, nonlinear system (5) is denoted as nPt. Then P(θt) is the linearized model of nPt. 

The gap metric between nPt and the local linear system Pi is defined as the gap metric between 

P(θt) and Pi, denoted as γi(θt): 

))(,()( titi PP   , i = 1,…, Nm      (17) 

Then the weighting function of the ith local linear controller at time t is established as: 

𝜑𝑖(𝜃𝑡) =
(

1

𝛾𝑖(𝜃𝑡)
)
𝑘𝑤

∑ (
1

𝛾𝑗(𝜃𝑡)
)

𝑘𝑤
𝑁𝑚
𝑗=1

    i = 1,…, Nm       (18) 

where 𝑘𝑤 ≥  1 is a tuning parameter. 𝜑𝑖  satisfies ∑ φ𝑖(𝜃𝑡) = 1
𝑁𝑚
𝑖=1 . 

Therefore, the output of the multi-model controller is: 

𝑢(𝑡) = ∑ 𝜑𝑖(𝜃𝑡)𝑢𝑖(𝑡)
𝑁𝑚
𝑖=1         (19) 

where ui (t) is the ith local linear controller’s output. According to Eq. (18), a bigger gap will lead 

to a smaller weight, and vice versa. The weighting method formed by Eqs.(17)-(18) is called 1/δ 

weighting method for simplicity. 

For nonlinear system (5), suppose we get three local linear models (P1, P2, P3) by the 

proposed CRNM-based Algorithm. Then Fig. 5 shows a graphic interpretation of the 1/δ 

weighting method along the system’s transition and static locus. At time instant t, the gaps 

between the nonlinear system nPt and local linear model Pi (i = 1, 2, 3) are denoted by γi (i = 1, 2, 

3). According to the implication of the gap metric, a big γi indicates that the dynamic behavior of 

Pi is far apart from the nonlinear system’s. Therefore, the corresponding controller has a small 𝜑𝑖  

and plays a minor role in the multi-model controller, and vice versa. Apparently, the 1/δ weighting 

method is more intuitive compared to Gaussian and Trapezoidal functions. 

 

Fig. 5. Illustration of the 1/δ weighting method 

Like the 1-δ weighting method from Ref. [20], (a) the proposed weighting functions can be 
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computed off-line and saved as look-up tables since Eqs.(17)-(18) are only dependent on θ but 

independent of t. Therefore, online computational load is reduced and the method is more efficient. 

(b) There exists merely one tuning parameter in the 1/δ gap-based method regardless of the 

number of scheduling variables, whereas the number of parameters for traditional weighting 

methods, e.g. Gaussian and Trapezoidal functions, relies on the number of scheduling variables 

heavily. Hence the proposed 1/δ gap-based method is comparatively much simpler. 

Compared to the weighting method in Ref. [20], the proposed weighting method in this work 

is more sensitive to its tuning parameter kw, making it easier to get a proper weight for a local 

controller. We will discuss this in the following. 

4.2.2. Case studies-comparison between two gap-metric-based weighting methods 

In the section, we will show the difference between the 1-δ and 1/δ gap-metric-based 

methods by the CSTR processes. 

Based on the decomposition results of the two CSTR systems in Section 4.1, we can get the 

look-up tables of weights easily. For weights that cannot be found in the tables directly, linear 

interpolation is used in this work. Figures of weights will be shown instead of look-up tables for 

intuitiveness in the following. 

4.2.2.1. The iCSTR 

 
Fig. 6. Weights of two gap-metric-based weighting methods for iCSTR (Solid―weights for the 1st controller, 

dash―weights for the 2nd controller) 

For the iCSTR, we will make a comparison between the proposed 1/δ weighting method and 

the 1-δ weighting method in this section. 

Fig. 6 shows a set of weighting functions with different values of tuning parameters (ke and 

kw grow from 1 to 20). The upper subplot gives the 1-δ weights of the two local controllers with 

different values of ke. The lower subplot depicts the 1/δ weights of the two local controllers with 

different values of kw. The solid lines are weights for the 1st local controllers, and the dash lines 
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are for the 2nd local controllers. It is clearly seen that (1)When ke and kw grow bigger and bigger, 

the two weighting methods will have the similar weights for each local controller. (2)The variation 

ranges of the proposed 1/δ weights are wider than the 1-δ weights. (3)The proposed 1/δ weighting 

method is more sensitive to the variation of kw, while the 1-δ method is less sensitive when ke 

changes. (4)The proposed 1/δ weights have peaks equal to 1 in their subregions for smaller kw. The 

peaks are located at the operating points of local linear models. The ith local controller should 

have a weight equal to 1 when the system transits to the ith operating point. It is reasonable that 

each curve of the weights should at least have a value equal to 1 regardless of the value of the 

tuning parameters. Therefore, the 1/δ weights are more intuitive than the 1-δ weights. 

4.2.2.2. The eCSTR 

Fig. 7 displays a set of weights for the three local controllers of the eCSTR system when ke 

and kw grow from 1 to 50. The upper subplot shows the 1-δ weights of the three local controllers 

with different values of ke. The lower subplot shows the 1/δ weights of the three local controllers 

with different values of kw. The solid lines are weights for the 1st local controller, the dash lines 

are for the 2nd local controller, and the dotted lines are for the 3rd local controller. Obviously, the 

1/δ weights have a wider range in its own subregion than 1-δ weights; 1/δ weights have peaks 

while 1-δ weights are smoother; the1/δ weights have peak values equal to 1, while the 1-δ 

weights have peak smaller than 1. In summary, the 1/δ weights are more flexible and sensitive to 

the tuning parameter in their own subregions. Namely, the two weighting methods have the 

similar features as in the iCSTR. 

From the above experiments, we can get the conclusion that, the proposed 1/δ weighting 

method is more sensitive to the tuning parameter, which makes it easier to get a proper weight for 

a local controller.  

Fig. 7. Weights of two gap-metric-based weighting methods for eCSTR (Solid―weights for the 1st controller, 

dash―weights for the 2nd controller, dot―weights for the 3rd controller) 
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5. Closed-loop simulations 

In this section, closed-loop simulations of set-point tracking and disturbance rejection control 

are displayed for the above two CSTR processes to demonstrate the effectiveness of the proposed 

CRNM-based integrated multi-model control approach. For comparison, the 1-δ weighting 

method and trapezoidal weighting method from literature are also used to combine multi-model 

H∞ controllers.  

5.1. Case1: The iCSTR 

The proposed 1/δ gap-metric-based weighting functions with kw = 6 shown in Fig. 6 are used 

for the iCSTR. For comparison, the 1-δ gap-based weighting functions with ke = 1 shown in Fig. 6 

and trapezoidal functions shown in Fig. 8 are also employed to get multi-model H controllers. 

Parameters of the trapezoidal and 1-δ weighting functions are well tuned. Then the two local H 

controllers from Table 5 are combined into three multi-model H controllers. Note that for the 

iCSTR system, there is only one tuning parameter in every gap-based weighting method, while 

there are 4 tuning parameters in the trapezoidal weighting method. 

 

Fig. 8. Trapezoidal weighting functions for the iCSTR system (with 4 tuning parameters) 

Closed-loop responses of the iCSTR process using three multi-model H controllers are 

displayed in Figs. 9 and 10. The one using the 1/δ gap-based weighting method has CAg as its 

output and ug as its input; the one using the trapezoidal weighting functions has its output CAT and 

input uT; and the one using the 1-δ weighting method has CA0 and u0. 

On the whole, the three multi-model controllers have similar performances for set-point 

tracking control as shown in Fig. 9. All outputs track the reference signals fast and accurately 

without big overshoots or big static errors, and all the inputs vary in the feasible range. Transitions 

between the two subregions are also satisfactory: fast, smooth, and no chattering. In order to make 

a closer comparison among the three multi-model controllers and the three weighting methods, we 

calculate the integrated absolute error (IAE) values: IAEg = 92.1538 < IAE0 = 92.3390 < IAET = 

95.8575. Thus, the proposed 1/δ gap-based multi-model H controller is slightly better than the 

one using the 1-δ gap-based weighting method, and better than the one using the trapezoidal 
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weighting method.  

 

Fig. 9. Set-point tracking control of the iCSTR 

Disturbance rejection control responses of the iCSTR process using the three multi-model H 

controllers are displayed in Fig. 10. When the process is in subregion 2, a disturbance v1 = 0.03 

enters the output at time = 90, and leaves at time = 180. During the stay in subregion 1, another 

disturbance v2 = 0.1 appears at time = 350 and disappears at time = 430. In both cases, CAg and CA0 

return to the reference signal promptly and accurately whenever the disturbance occurs or goes 

away. However, CAT is a bit oscillatory when v1 appears, making IAET
 = 55.0693 significantly 

bigger than the other two: IAEg =52.2502 and IAE0= 52.9516. The proposed 1/δ based 

multi-model controller is slightly better than the 1-δ based multi-model controller since IAEg < 

IAE0, although both the gap-metric-based multi-model controllers have good disturbance rejection 

control performances: both react to the disturbances immediately and bring back CA to the 

reference signal rapidly and accurately. 

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

time/min

C
A

 

 

0 50 100 150 200 250 300 350 400 450 500
-0.5

0

0.5

1

1.5

time/min

u

 

 

u
g

u
T

u0

ref

C
Ag

C
AT

C
A0



 

 Fig. 10. Disturbance rejection control of the iCSTR 

From the closed-loop responses of the iCSTR system, we can see that the proposed 

multi-model controller has a better performance than the other two for both set-point tracking and 

disturbance rejection control. Therefore, the CRNM-based integrated multi-model control design 

method is effective in selecting local models, designing local controllers, and scheduling local 

controllers. 

5.2. Case 2 : The eCSTR 

For the eCSTR process, the 1/δ gap-based weighting functions with ke=3 shown in Fig. 7 are 

used to combine the 3 local H controllers from Table 13 to get a global multi-model H controller. 

For comparison, the 1-δ gap-based weighting functions and trapezoidal functions shown in Figs. 7 

and 11 are also used to combine the three local H controllers from Table 13. Closed-loop 

responses are shown in Figs. 12-13. The output of the 1/δ gap-based closed-loop system is yg with 

the control input ug, the output of the 1-δ gap-based system is y0 with its input u0, while the output 

of the other system is yT with its input uT. 

Note that for the eCSTR systems, there exists merely one tuning parameter in each of the 

gap-based weighting methods, while in the trapezoidal functions shown in Fig. 11, there are 8 

tuning parameters. 
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Fig.11. Trapezoidal weighting functions for the eCSTR with 8 tuning parameters  

 

Fig. 12. Set-point tracking control of the eCSTR 

Fig. 12 shows the set-point tracking control of the three multi-model H controllers for the 

eCSTR process. Obviously, all the three outputs follow the reference signal closely as a whole, but 

yg is faster than the other two. The IAE values are IAEg = 262.3101, IAET
 = 321.8751, and IAE0

 = 

372.9597(ke = 5), respectively. Apparently, IAEg < IAET < IAE0. Therefore, the 1/δ gap metric 

based multi-model controller has the best performance among the three controllers, and the 

trapezoidal functions based multi-model controller performs better than the 1-δ based multi-model 
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controller for the eCSTR in set-point tracking control regarding to the IAE criterion. Note that the 

gap-based weighting methods have much fewer tuning parameters, making them easier to use. 

 

Fig.13. Disturbance rejection control of the eCSTR  

 When it comes to disturbance rejection control, the proposed multi-model H controller 

based on CRNM performs better than the other two as shown in Fig. 13. Obviously, yg is faster 

and more accurate in each subregion than y0 and yT. Especially, in the 1st subregion during time = 

50 to 100, there is a big static error for yT. Besides, yT has a bigger overshoot when the setpoint 

changes to the 3rd subregion. The proposed controller can reject disturbance effectively and bring 

the output back to the setpoint quickly, while the other two multi-model H controllers perform 

relatively not so well. The IAE values are IAEg = 339.2100, IAET
 = 418.9340, IAE0

 = 397.1170, 

respectively. 

From the simulation results of the two CSTR systems, it is concluded that: 

1) The CRNM-based multi-model decomposition and local control design method is as effective 

as the algorithms in Ref. [19], but more efficient and systematic. So linear model redundancy 

is largely avoided, computational load is greatly reduced, and dependency on a prior 

knowledge is reduced. 

2) The proposed 1/δ weighting method is simple and effective. The resulting multi-model 

controller can have a performance as good as or even better than traditional weighting 

methods with less tuning effort. 

3) Compared with the 1-δ weighting method, the 1/δ method is consistently good, but the 1-δ 

method is sometimes not as good as traditional methods. 

6. Conclusions 

A gap-based CRNM method is proposed for quantification of the nonlinearity degree of a 

process when a linear control strategy is chosen. If the nonlinearity measures are larger than 1, a 
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nonlinear control algorithm may be needed. Otherwise, the designed linear controller is capable to 

stabilize the process over the whole operating space. Supported by the control-relevant 

nonlinearity measures, an integrated multi-model control framework is proposed. A bank of local 

models and controllers can be selected and designed systematically with little previous knowledge, 

with small computational cost, and without model redundancy. A 1/δ gap-based weighting method 

is developed for local controller combination. Two CSTR chemical processes are studied and 

comparisons have been made among the proposed approaches and other typical methods. It is 

demonstrated by the closed-loop simulations that the CRNM-based integrated multi-model control 

approach can get an effective model/controller bank, and schedule the local controllers more 

effectively. 
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