
Accumulated Plastic Strain Program

Lars Magnus Valnes

Master of Science in Physics and Mathematics

Supervisor: Alex Hansen, IFY

Department of Physics

Submission date: June 2014

Norwegian University of Science and Technology

Abstract

In this thesis we will look at the implementation and results of the APS program.
The program computes the accumulated plastic strain in a umbilical tube for the
deformations axial tension, bending and internal pressure. The computation is based
on solving incremental problems with the finite element method and the return-
mapping algorithm. The return-mapping algorithm encountered convergence failure
for large strain increments, this was solved by using the strain increment of 1.0e−4%.
The implementation of axial tension and bending was consistent with the results
provided by Nexans Norway. While the plastic behaviour of the internal pressure
proved to be more complex, so the implementation requires improvement.

Sammendrag

I denne avhandlingen skal vi se p̊a implementasjon og resultater av APS programmet.
Programmet kalkulere den akkumulerte plastiske forvrengningen i et umbilical rør
for deforamsjonen aksial strekk, bøyning og internt trykk. Utregning er gjort ved
løse inkrementelle problemer med element method og return-mapping algoritmen.
Return-mapping algoritmen hadde convergens problemer for store inkrement, dette
ble løst ved å bruke strain inkrement 1.0e−4%. Implementasjonen av aksial strekk
og bøyning var i samsvar med de resultatene som ble gitt av Nexans Norway. Mens
den plastiske oppførselen av internt trykk var mer kompleks og krever en forbedring
av implementasjonen.

Preface

The goal was to implement a fully functional program to estimate the accumulated
plastic strain caused by a series of deformations. The implementation encountered
technical issues, concerning the return-mapping algorithm, computational time and
Neumann conditions for internal pressure. The program is not fully tested and errors
and bugs may occur.
I would like to thank my supervisor at Nexans Norway, Ph.d Magnus Komperoed,
for the assistance and introduction to continuum mechanics. I would also like to
thank Prof. Alex Hansen for being my supervisor at NTNU.

Lars Magnus Valnes, June 2014

1

Contents

1 Introduction 9

2 Theory 11
2.1 General . 11

2.1.1 Elastic Summary . 11
2.1.2 Plastic Notations . 14

2.2 Plasticity . 15
2.2.1 Plastic Effects . 15

2.3 Tangent Stiffness . 16
2.4 Plasticity Modelling . 16

2.4.1 Flow Rule . 17
2.4.2 Yield Function . 17
2.4.3 Hardening Rules . 18

2.5 Drucker’s Postulate . 20
2.6 Rate Independent Plasticity . 21
2.7 Return Mapping Algorithm . 22

2.7.1 Prediction . 22
2.7.2 Correction . 23

2.8 Closest-Point Projection . 23
2.9 Combined Stresses . 24
2.10 Internal Pressure . 24
2.11 The Finite Element Method . 26

2.11.1 Weak Formulation . 26
2.11.2 Galerkin Method . 27

2.12 Solving Methods . 28

3 Implementation 29
3.1 Graphic User Interface . 29

3.1.1 CustomApp . 29
3.1.2 Advanced Frame . 29
3.1.3 CustomBox . 30
3.1.4 Main Frame . 30

3.2 Calculations . 33
3.2.1 Generating Mesh . 33
3.2.2 Marking Boundaries . 33

2

Contents

3.3 Function Spaces . 34
3.4 Plastic Model . 34
3.5 Modified Tangent Stiffness . 35

3.5.1 Solving Linear Problem . 35
3.5.2 Faster Projection . 36
3.5.3 Return Mapping . 36

3.6 Deformation Steps . 38
3.6.1 Axial Tension . 38
3.6.2 Bending . 39
3.6.3 Combined Stresses . 39
3.6.4 Internal Pressure . 39

3.7 Scaling . 40
3.8 Output . 40

3.8.1 DataHandler . 41
3.8.2 File . 41

4 Results 42
4.1 General Parameters . 42

4.1.1 Analytical Approximations . 42
4.2 Consistency . 43
4.3 Mesh Convergence . 44

4.3.1 Bending . 44
4.3.2 Axial Tension . 46
4.3.3 Internal Pressure . 47

4.4 Strain Increment . 49
4.4.1 Bending . 49
4.4.2 Axial Tension . 51
4.4.3 Internal Pressure . 52

4.5 Length Dependence . 56
4.5.1 Bending . 56
4.5.2 Axial Tension . 59
4.5.3 Internal Pressure . 61

4.6 Deformation Invariance . 61
4.7 Dynamic Mesh . 62

4.7.1 Bending . 62
4.7.2 Axial Tension . 63

4.8 Computational Time . 64
4.9 Default Parameters . 66
4.10 Comparison with Nexans’ APS Program 66

5 Conclusion 68

6 Future work 70

Appendices 72

3

Contents

A Flow Chart 73

B Deformation Steps 75

C Input Overview 77

D Code 79
D.A Graphic User Interface . 79
D.B Run Script . 89
D.C Calculation . 90
D.D Data Handling . 104
D.E Collection of Utility Functions . 107
D.F Return Mapping . 109
D.G Plastic Model . 110
D.H Subdomains . 112

4

Nomenclature

APS the accumulated plastic strain [1]

APSa the accumulated plastic strain estimated with analytical approximation [1]

APSd the accumulated plastic strain for a dynamic mesh [1]

APSs the accumulated plastic strain for a static mesh [1]

A∗ the computed cross-sectional area [m2]

At the theoretical cross-sectional area [m2]

a the inner radius of the tube [m]

a (·, ·) the bilinear form

b the outer radius of the tube [m]

c the ratio between β̇ and ε̇p [Pa]

D the elastic relation between stress and strain [Pa]

Dep the tangent stiffness [Pa]

dγ the boundary integrand for the domain Ω

dΩ the integrand for the domain Ω

dA the integrand for the domain A

E the Young modulus [Pa]

eij deviatoric strain tensor [1]

ḟ the rate of the yield function

f the yield function

F the stress dependent part of the yield function

ḟ the force rate on the domain Ω [N]

5

Contents

f the force on the domain Ω [N]

fσ the stress derivative of the yield function

fβ the back stress derivative of the yield function

fk the hardening term derivative of the yield function

ġ the boundary force on the domain Ω [N]

gσ the stress derivative of the flow potential

H the plastic modulus or work-hardening modulus [Pa]

h the vector function that determines the internal variable rate

hn the function that determines the internal variable rate for component n

J2 the second invariant of a deviatoric tensor
[
Pa2
]

J the Jacobian matrix for the residual vector r

k the hardening term of the yield function

k∗ the part of the hardening term independent of the plastic multiplier

L the length of the mesh [m]

l indicator for the linear approximation
[
faces/mm

]
l (·) the linear form

n̂ the surface normal of the domain Ω [1]

P projection matrix for deviatoric stress [1]

p the internal pressure [Pa]

py the internal pressure corresponding to the yield strength σy, [Pa]

r the different different residuals represented as a vector

rA the ratio of the approximated and the theoretical cross-sectional area. [1]

r∆λ the scalar residual for the plastic multiplier, equivalent with the yield function

rξ the residual for the internal variables

rε̄p the scalar residual for the equivalent plastic strain [1]

rσ the residual vector for stress [Pa]

sij the deviatoric stress tensor [Pa]

6

Contents

SMYS Nexans’ technical term for yield strength [Pa]

T the axial force [N]

u the displacement vector [m]

ur the radial displacement[m]

V a function space

Vh a projection of the function space V

v the test function, equal to the displacement vector[m]

α used to constructing the tubes end conditions [1]

β the back stress [Pa]

∆p the incremental internal pressure [Pa]

∆ur the incremental radial displacement [m]

∆λ increment of the plastic multiplier

∆ε the strain increment [1]

∆t the time increment [s]

εij the infinitesimal strain tensor [1]

εeij the elastic strain tensor [1]

εpij the plastic strain tensor[1]

ε̄ the equivalent strain [1]

ε̄p the equivalent plastic strain [1]

˙̄ε the equivalent plastic strain rate [s−1]

ε the Voight notation of the strain tensor [1]

εp the Voight notation of the plastic strain tensor [1]

εz the strain in z-direction i.e. the axial direction [1]

ε0 the strain in z-direction caused by an axial force [1]

κ the hardening variable, dimensions are dependent on the definition.

κx the curvature projection onto the y-axis and the curvature axis is directed
along the x-axis [m−1]

7

Contents

κy the curvature projection onto the x-axis and the curvature axis is directed
along the y-axis [m−1]

λ the first Lamé coefficient [Pa]

λ̇ the plastic multiplier or Lagrange multiplier

µ the second Lamé coefficient [Pa]

ν the Poisson’s ratio [1]

Ω the domain which the partial differential equation is defined plastic multiplier

φi a set of basis functions

ρ nodal density
[
nodes/mm3

]
σij the Cauchy stress tensor [Pa]

σ the Voight notation of the stress tensor [Pa]

σt the trial stress in the return-mapping algorithm [Pa]

σy the yield strength [Pa]

σr the radial stress, known as Hoop stress [Pa]

σθ the circumferential stress. Units [Pa]

σz the axial stress [Pa]

σ∗
z the computed axial stress [Pa]

Ξ the consistent tangent moduli [Pa]

ξ the internal variable [1]

8

Chapter 1

Introduction

The construction and transportation of umbilical tubes require that the tube is
deformed in several processes. These processes will each generate an amount of
plastic and elastic strain.
The absolute value of the plastic strain will contribute to the hardening of the tube,
and continued hardening will eventually cause fracture. Therefore the accumulation
of plastic strain (APS) is used as an indicator for the hardening. Defined as

APS =
∑

i=steps

|εp|i, (1.1)

where εpi is the plastic strain generated in process i. The use of the accumulated
plastic strain is quite common and can be seen in [9].
In this thesis we will give a representation of the Accumulated Plastic Strain Pro-
gram. The program is developed at the request of Nexans Norway, for analysing the
accumulation of plastic strain.
We will use the finite element method with linear Lagrange elements to compute
the total strain for each deformation. The finite element method is used in many
different problems, involving all from fluid mechanics to electromagnetism. For this
reason, there are many commercial and open-source programs using the finite ele-
ment method. We will construct the program using the FEniCS project [5].
The amount of plastic strain will be determined by the return-mapping algorithm,
which is used in problems involving plastic and elastic strain, [1], [2] and [9].
The program is constructed with a graphic user interface for easier handling of
different input parameters. The graphic user interface has two main functions; to
specify the material and dimensional data, and to specify the deformation processes,
including the order.
The program is made to handle three separate deformations, which are axial tension,
bending and internal pressure. For these, the input parameters are respectively the
axial force, curvature, and the internal pressure. The curvature input requires that
the curvature projections in both plane axis are specified.
We will in the implementation specify a piecewise linear stress-strain relation. This
will make it possible to approximate the APS value analytically, so that we may

9

Chapter 1. Introduction

asses the computed results. The results will also be compared with Nexans’ current
APS program.

10

Chapter 2

Theory

2.1 General

The theory presented here is based on the theory presented in [10], which consists
of elastic and finite element theory. We will in this thesis focus on the theory of
plasticity found in [6]. The theory also extends to some articles and books, which
will be referred to in the appropriate sections.
The theory will consist of some important parts of plasticity, which may not be
included in the implementation. However, it will give an assessment to the limita-
tions and future improvements of the program. We assume isothermal conditions,
therefore the thermal dependence is not included.
We will continue with the tube orientation defined in [10], which places the tube in
a Cartesian coordinate system where z-axis aligns with the axial direction, shown
in Fig.2.1. So that a second-rank tensor

Tij =

T11 T12 T13

T21 T22 T23

T31 T32 T33

 , (2.1)

will have the orientation, where T11 points in the x-direction, T22 points in the
y-direction and T33 points in the z-direction.

2.1.1 Elastic Summary

The theory of plasticity in this thesis is a continuation of the elastic theory, given

in [10], thus we will give a brief summary of definitions, equations and notations.

The notation of tensor is Tij..kl, where the number of subscripts indicates the tensor’s

rank. While matrices are denoted as M, and vectors are given with the notation v.

The operator ∇ will be defined as

∇ =
[
∂
∂x ,

∂
∂y ,

∂
∂z

]
. (2.2)

11

Chapter 2. Theory

Figure 2.1: Shows the tube orientation in the Cartesian coordinate system.

We will give a short introduction to the definitions stress and strain, for more detailed
introduction see [6]. The stress represents the pressure on the surfaces of a 3-
dimensional element, which is subject to an external force. The stress has dimension
[Pa] and produces a 3x3 second-rank tensor

σij =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 . (2.3)

The strain is the distortion of the element due to an external force. It is dimensionless
and is constructed by the gradient of the displacement. The displacement is a vector
field given as

u =
[
ux, uy, uz

]
, (2.4)

and the gradient is defined as

∇u =
[
∂
∂x
, ∂

∂y
, ∂

∂z

]T [
ux, uy, uz

]
. (2.5)

12

Chapter 2. Theory

The infinitesimal strain tensor is constructed with

εij =
1

2

(
(∇u)T +∇u

)
, (2.6)

which will produce a symmetric 3x3 second-rank tensor

εij =

ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 . (2.7)

The stress and strain tensors are symmetric and can therefore be presented as a 6
dimensional vector, such as

ε =

ε11

ε22

ε33

2ε23

2ε13

2ε12

 σ =

σ11

σ22

σ33

σ23

σ13

σ12

 . (2.8)

This is referred to as Voight notation and it is important to note the factor 2 for
the shear strain.
With the Voight notation the linear elastic relation is given as

σ = Dε, (2.9)

with the matrix D defined as

D =

λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

 . (2.10)

The λ and µ are known as the first and second Lamé coefficients, defined as

λ =
Eν

(1− 2ν) (1 + ν)
, µ =

E

2 (1 + ν)
. (2.11)

With E as the Young Modulus and ν as the Poission’s ratio, definitions can be found
in [6].
Plasticity often involves deviatoric stress and strain. The deviatoric strain is defined
as

eij = εij − δij
1

3
εkk, (2.12)

and the deviatoric stress as

sij = σij − δij
1

3
σkk. (2.13)

13

Chapter 2. Theory

The tensor can also be presented as scalar known as equivalent stress and strain.
The equivalent stress is defined as

σ̄ =

√
3

2
sijsij, (2.14)

and the equivalent strain as

ε̄ =

√
2

3
eijeij. (2.15)

Which is similar to the second invariant of a deviatoric tensor defined as

J2 =
1

2
TijTij. (2.16)

This will conclude the brief summary, and see [10] for a more detailed presentation.

2.1.2 Plastic Notations

We will also include some new notations, such as the step function, defined as

< θ >=

{
θ, if θ ≥ 0

0, if θ < 0
. (2.17)

We will continue to use the Voight notation in this thesis, therefore it is convenient
to introduce the matrix P. Defined as

P =
1

3

2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3

 , (2.18)

with the matrix P, the transformation to deviatoric stress can be written as

s = Pσ. (2.19)

The matrix P is a symmetric and unitary with the properties

PT = P

P ·P = P
. (2.20)

So that the second invariant of the deviatoric stress tensor Eq.2.16 can be rewritten
to

J2 =
1

2
σTPTPσ =

1

2
σTPσ. (2.21)

14

Chapter 2. Theory

In the modelling of plasticity we will use derivatives, which will have the following
notation

∂F

∂t
= Ḟ

∂F

∂σij
= Fσ

, (2.22)

where F is an arbitrary function. The stress and strain derivatives of a scalar
function is a symmetric second-rank tensor, and will therefore be given in Voight
notation. This requires some structuring of partial derivation, and will acquire the
form of

Ḟ = FT
σ σ̇. (2.23)

2.2 Plasticity

In this section we will give a general introduction to plasticity, with the theory taken
from [6]. Plasticity covers different types of inelastic behaviour, among them are
viscoplasticity and elastic-plastic. The former is also known by other terms, but it
covers the combination of elastic and plastic deformation. We will focus on elastic-
plastic problems, which can be seen as the limiting case of viscoplasticity as the
viscosity goes to zero.
Plasticity constitutes a non-linear relation between stress and strain. The non-
linear relation indicates that there are more parameters effecting the strain, than
the stress and temperature. This prompted the notion of material memory, meaning
a dependency on past events. This material memory dependence can be seen in the
rate sensitivity. For example, stress which is applied slowly produces different and
mostly greater displacement than stress that is applied rapidly.

2.2.1 Plastic Effects

There are some plastic effects, which we will address in this section. The first effect
is known as Bauschinger effect and is observed when the strain direction is reversed.
For instance from extension to compression, and it will cause a lowering of the yield
strength. The modelling of the Bauschinger effect requires the use of back stress,
which we will introduce later in this thesis.
The material can also experience the effect of recovery, which is a spontaneous
softening of the yield surface, i.e a decrease in yield strength. The effect is slow and
decreases along with temperature. For room temperature (300 K), the recovery may
be neglected for steel, copper and aluminium.
There are more plastic effects, but these effects are more related to temperature
dependence, thus not included, see [6] for more details.

15

Chapter 2. Theory

2.3 Tangent Stiffness

For infinitesimal strain theory, the total strain can be decomposed additively as

εij = εpij + εeij, (2.24)

with superscript p and e, respectively denoting plastic and elastic strain. This
assumption is essential in the implementation and the results of the program. The
elastic rate relation can be constructed using Eq.2.9, which will give

σ̇ = Dε̇e. (2.25)

By inserting Eq. 2.24 into Eq. 2.9 we obtain

σ̇ = D (ε̇− ε̇p) . (2.26)

It is common to write the equation as

σ̇ = Depε̇, (2.27)

where the matrix Dep is called the tangent stiffness moduli.

2.4 Plasticity Modelling

The theory behind plasticity behaviour is not fully understood, therefore we will
look at a generalized scheme of modelling. The generalized scheme is based on three
functions, known as yield function, flow rule and hardening rule. These functions will
be implemented into the program, thus we will look at each function individually.
To manage these functions properly, internal variables were introduced to govern
the local plastic behaviour. The internal variables are denoted as a vector ξ with
N components. We will treat each component in ξ as a scalar, but in some models
they are second-rank tensors.
The internal variables are, like other parameters in the plastic model, determined
by a rate equation. The rate equation for component n is

ξ̇n = h∗n (σij, ξ) . (2.28)

For simplifications later on, we will use

ξ̇n = φhn (σij, ξ) , (2.29)

with φ as a scalar function.
The internal variables can be considered auxiliary variables, which are replaced in
the plastic model for known parameters.

16

Chapter 2. Theory

2.4.1 Flow Rule

The flow rule determines the plastic strain rate, defined as

εpij = gij (σ, ξ) . (2.30)

Here the function gij given as

gij = φ
N∑
n

∂εp

∂ξn
hn. (2.31)

Based on the Eq.2.29, we assume that there exists a function g, so that

gij (σ, ξ) = φ
∂g

∂σij
. (2.32)

This function g is known as the flow potential or plastic potential. In this way the
plastic strain rate can be written as

ε̇pij = φ
dg

dσij
. (2.33)

The use of a potential is similar with that in a fluid flow, and in each model the
potential is specified. We can also construct a general potential with Helmholtz free
energy, but we will not include this in the thesis, see [6]. The plastic strain rate
also determines the accumulation of plastic strain, thus it is a crucial part of the
implementation.

2.4.2 Yield Function

The transition from elastic to plastic strain is marked by the yield surface, thus the
yield function is constructed to give an indication of yield surface, and is denoted
f (σ, ξ). For f < 0 the stress is inside the elastic range, while f > 0 gives the stress
in the plastic range. The case of f = 0, marks the yield surface.
The yield surface can be subjected to hardening, which is determined by the yield
functions dependence on the internal variables. Under constant stress, the rate of
the yield function becomes

ḟ
∣∣∣
σ=const

= φ

N∑
n

∂f

∂ξn
hn. (2.34)

From which the work-hardening modulus H can be defined as

H = −
N∑
n

∂f

∂ξn
hn. (2.35)

The hardening properties of the material can be determined by the work-hardening
modulus. The cases of H < 0 and H = 0, are respectively known as softening

17

Chapter 2. Theory

and perfect plastic. These cases have little relevance in this thesis and will not be
further explained. We will only consider the case of H > 0, which constitutes a
work-hardening material.
The dynamic behaviour of the yield surface can be assessed by taking the time
derivative, which can be presented as

ḟ =
df

dσij
σ̇ij +

∑
k

∂f

∂ξn
hn. (2.36)

The last term is known from Eq.2.35 as φH, so we can write it as

ḟ = fσσ̇ −Hφ. (2.37)

The generation of plastic strain occurs while the yield function is expanding for a
stress state on the yield surface, i.e. ḟ > 0 and f = 0. For H > 0, we can see in
Eq.2.37 that this can only happen for fσσ̇ > 0, which is known as loading. The case
of fσσ̇ < 0 is called unloading, which generates no plastic strain. This prompts that
the expression of the plastic strain includes a step function.

2.4.3 Hardening Rules

It is common for the yield function to be decomposed as

f (σ, ξ) = F (σ)− k (ξ) . (2.38)

The hardening behaviour of the material is determined by k (ξ), where the internal
variables determine the hardening variable.
The hardening variable κ can either be defined by equivalent plastic strain or in-
elastic work. The inelastic work definition yields

κ =

∫
σij ε̇ijdt, (2.39)

while the equivalent plastic strain definition is

κ =

∫ √
2

3
ε̇pij ε̇

p
ijdt. (2.40)

The factor of 2/3 was introduced to scale the expression. So that a strain tensor
given as

ε̇ij =

ε̇p 0 0
0 −1

2
ε̇p 0

0 0 −1
2
ε̇p

 , (2.41)

would give

κ̇ =

√
2

3
ε̇pij ε̇

p
ij = | ˙̄εp| (2.42)

We will use the equivalent plastic strain definitions in the implementation, but the
definitions are often equivalent.

18

Chapter 2. Theory

Accumulated Plastic Strain

We have stated that the accumulated plastic strain can indicate the hardening of
the material. Using implicit Euler on Eq.2.42, we obtain

κt+1 = κt + |ε̄p|t. (2.43)

Given that the initial condition k0 = 0, we can write

κt =
∑
t

|ε̄p|t. (2.44)

Which is the same as the one dimensional expression of the accumulated plastic
strain, given as

APS =
∑
i

|εpi |. (2.45)

Thus the hardening rule gives the relation between the APS and the hardening in
the material. The term of accumulated plastic strain is often known as equivalent
plastic strain, due to the definition of the hardening variable.

Isotropic Hardening

Isotropic hardening denotes that the boundary is symmetrically expanded. This
occurs as the hardening variables increase in value, causing k (ξ) and the yield
strength to increase. The increase is determined by the hardening rule, which for
linear hardening is given as

k (κ) = σ0
y +Hκ, (2.46)

with σ0
y as the initial yield strength.

Kinematic Hardening

Kinematic hardening was introduced for taking into account effects like Bauschinger,
which can not be explained by isotropic hardening.
The kinematic hardening gives a local change in the yield surface, making the yield
surface non-symmetric. This is done by using back stress, which can be seen as
plastic strain memory. The back stress will be denoted β, and it is inserted into
Eq.2.38, yielding

f (σ,β, ξ) = F (σ − β)− k (ξ) . (2.47)

Following the Melan-Prager model the back stress is proportional to plastic strain

β̇ = cε̇p, (2.48)

which is the simplest model. In more sophisticated models, the back stress is non-
linear.

19

Chapter 2. Theory

2.5 Drucker’s Postulate

The Drucker’s postulate is connected to plasticity, and it has a stricter definition of
work-hardening than presented earlier.
The postulate defines a work-hardening plastic material as one where the work
during incremental loading is positive and work done in loading -unloading cycle is
non-negative. This can be shown as an inequality

σ̇ε̇p ≥ 0, (2.49)

known as Drucker’s inequality, for details see [6].
The inequality also holds for any two different stress states, which we will denote σ
and σ∗. We set that σ is on the yield surface and σ∗ inside the elastic domain. So
that the inequality can be written as

(σ − σ∗) ε̇p ≥ 0. (2.50)

The yield function is considered smooth, so every point has a tangential plane. Then
it follows from Eq. 2.50, that σ∗ is constrained by the tangential plane, thus making
the yield function convex, In case of a nob convex surface, the inequality of Eq. 2.50
would be wrong, see Fig.2.3.

Figure 2.2: Shows that the plastic strain rate is normal to the tangential plane.
Taken from [6].

The inequality in Eq.2.50 dictates that the plastic strain must be directed along
the tangential plane normal. This is known as the normality rule and constitutes
a relation between the flow rule and yield function, see Fig.2.2. In calculus the
tangential plane normal can be shown to be proportional to the gradient of the
function. Hence the normality rule indicates that the flow rule is associated with
the yield criterion. This property makes the flow rule known as an associate flow
rule, shown as

fσ ∼ gσ. (2.51)

It is often further simplified, by making them equal. Which we will do to simplify
the implementation of the plastic model.

20

Chapter 2. Theory

Figure 2.3: Shows a violation of the Eq.2.50, as the yield function must be convex.
Taken from [6].

2.6 Rate Independent Plasticity

For sufficiently slow processes, compared to the material relaxation time, the tran-
sition to rate independent plasticity is possible. This means that the equations are
no longer affected by changing the time scale. So we can multiply with a time in-
crement ∆t to obtain the incremental values. We will follow the procedure in [6].
The scalar function φ will from now on be denoted as λ̇ and known as the Lagrange
multiplier or plastic multiplier. We will insert the plastic multiplier into the rate
equations, making them rate-independent. Thus the plastic strain rate becomes

ε̇p = λ̇gσ, (2.52)

and the internal variable rate becomes

ξ̇k = λ̇hk. (2.53)

The hardening rate may be written in the general form of

k̇ =
∂k

∂ξn
ξ̇n = λ̇k∗. (2.54)

We will now obtain an expression for the plastic multiplier, which can be seen in [4].
The time derivative of the yield function can be presented with partial derivation as

ḟ = fTσ σ̇ + fTβ β̇ + fkk̇. (2.55)

From Eq.2.47 we have that fβ = −fσ. Inserting the rate-independent equitations
into Eq.2.55 will give

ḟ = fTσD
(
ε̇− λ̇gσ

)
− λ̇fTσ cgσ − λ̇fkk∗. (2.56)

For a slow process the generation of plastic strain will occur close to the yield surface,
i.e f → 0+. So that the plastic flow will keep the stress state on the yield surface,
which means that the time derivative of the yield function is zero, thus we obtain

λ̇ =
fTσDε̇

fTσDgσ + fTσ cgσ + fkk∗
. (2.57)

21

Chapter 2. Theory

We see in Eq.2.52 that the generation of plastic strain is determined by the plastic

multiplier. And we have seen that there are some requirements to the generation of

the plastic strain, thus we must impose these requirements on the plastic multiplier.

The first requirement is that the stress state is on the yield surface, which can be

imposed by f = 0. While the second requirement is that we have loading, i.e.

fσσ̇ > 0. This expression is given in the nominator in Eq.2.57, and can therefore be

enforced by a step function. This will generate an expression

λ̇ =

{
<fTσDε̇−ḟ>

fTσDgσ+fTσ cgσ+fkk∗
, f = 0

0 , f < 0
. (2.58)

The expression for the plastic multiplier is now known and can be used to determine
the tangent stiffness moduli in Eq.2.27. We will use the expressions of Eq.2.52 and
Eq.2.58 and insert them into Eq.2.26. This will yield

σ̇ =

(
D− Dgσf

T
σD

fTσDgσ + cfTσgσ + fkk∗

)
ε̇, (2.59)

for λ̇ > 0. Hence the tangent stiffness matrix form Eq.2.60 is determined as

Dep =

{
D, λ̇ = 0

D− Dgσf
T
σD

fTσDgσ+cfTσgσ+fkk∗
, λ̇ > 0

. (2.60)

2.7 Return Mapping Algorithm

We will use the return mapping algorithm to map the stress onto the yield surface.
The mapping occurs incrementally and is based on a predictor-corrector scheme.
The incremental steps are generated by using implicit Euler on the rate equations,
yielding

εpn+1 − εpn = ∆λgσ, (2.61)

for the plastic strain.

2.7.1 Prediction

The first step of the return mapping algorithm is the update of the strain increment

εn+1 = εn + ∆ε, (2.62)

which is based on the incremental displacement. We use the updated strain incre-
ment to predict the stress, by using

σt
n+1 = D (εn+1 − εpn) , (2.63)

22

Chapter 2. Theory

where εpn is plastic strain from the previous increment. The predicted stress is known
as the trial stress, and will be marked by the superscript t. We can see that the
prediction is based on Eq.2.26.
The next step is to insert the trial stress into the yield function Eq. 2.38, which has
two possible outcomes either f ≤ 0 or f > 0. The first case indicates that the trial
stress is below the yield strength, so no corrections are required.
In case of present back stress, the back stress of the previous increment is also
inserted into the yield function, see [9].

2.7.2 Correction

For f > 0, we have plasticity and therefore corrections are needed. The corrections
are obtained by imposing that the yield function is zero and finding the correspond-
ing plastic multiplier. We will discuss the procedure in more detail in the section
2.8 involving the closest-point projection. The plastic multiplier is used to correct
the trial stress and update the other parameters, summarized as

εpn+1 = εpn + ∆λgσ
ξn+1 = ξn + ∆λh

σn+1 = σt
n+1 −D∆λgσ

βn+1 = βn + cεpn+1.

(2.64)

The corrections are also used in the construction of the tangent stiffness moduli
Eq.2.27.

2.8 Closest-Point Projection

The calculation of ∆λ needs to take into account the differential changes of σ and
ξ. This can be done with the closest-point projection. The differential problem to
be solved can be summarized as

∂σ (λ)

∂λ
= −Dg (σ, ξ) ,

∂ξ (λ)

∂λ
= h (σ, ξ) . (2.65)

With the constraint
f (σ (λ) , ξ (λ)) = 0, (2.66)

and initial conditions of σt, ξ0, 0 .
The problem is non-linear and can be solved with the Newton-Raphson method. We
first construct the residuals, given as

rσ = σn+1 + ∆λDgσ − σt

rξ = ξn+1 −∆λh− ξn
r∆λ = f(σ, ξ)

. (2.67)

23

Chapter 2. Theory

Here the residual subscripts refer to the variable, and must not be confused with
derivatives. The solution to the problem is achieved when the equations in Eq.2.67
equal zero, and can be presented as a vector function

r (x) = 0. (2.68)

Where x = {σ, ξ,∆λ}. The first order expansion yields

r (x) = r (xn) +
∂r

∂x
|x=xn (x− xn) ≈ 0. (2.69)

From which an iterative solution may be obtained with

xn+1 = xn + ∆x. (2.70)

And the increment is calculated based on

∆x = −J−1 (xn) r (xn) , (2.71)

where J is the Jacobian matrix of r.
There are known convergence difficulties regarding the Newton-Raphson method.
For large enough increments, the method may not converge, and modifications have
been purposed in [1] and [2].

2.9 Combined Stresses

The combination axial extension and bending, may occur simultaneously, which is
known as combined stresses. The theory regarding bending can be found in [6].
In [10] we chose that the reference for the bending was the center of the tube. This
gave that the axial strain for bending is

εz = −κyx+ κxy, (2.72)

where κx is the curvature projection onto the y-axis and κy is the curvature projec-
tion onto the x-axis. The subscripts indicate the axis, that is directed in the same
direction, as the curvature axis, which is normal to the projection.
Based on the theory in [6], the axial extension can be added to the equation, if the
amount is sufficiently small. Which will yield

εz = −κyx+ κxy + ε0, (2.73)

with ε0 corresponding to the strain caused by axial extension.

2.10 Internal Pressure

The elastic stress in a tube with only internal pressure is derived in [6], and partial
shown in [10]. The boundary conditions were

σr|r=a = −p , σr|r=b = 0, (2.74)

24

Chapter 2. Theory

with p denoting the inner pressure, and a and b respectively the tube’s inner and
outer radius. This yielded the radial and circumferential stress in cylindrical coor-
dinates as

σr = − p

(b/a)
2 − 1

(
b2

r2
− 1

)
σθ = − p

(b/a)
2 − 1

(
b2

r2
+ 1

). (2.75)

The axial stress component depends on the tube end conditions, and we considered
closed and open-ended tubes. We obtain the axial stress in both cases, yielding

σz =
(2ν + α) p

(b/a)
2 − 1

, (2.76)

with α given as

α =

{
1− 2ν if closed-ended

−2ν if open-ended
. (2.77)

Given that we know the stress components, we can find the corresponding strain
components. Which in [6] were used to derive the elastic radial displacement

u (r) =
(1− ν)p

E
[
(b/a)2 − 1

] [(1− 2ν) r +
b2

r

]
− νεzr, (2.78)

and the axial strain
εz =

αp

E
[
(b/a)2 − 1

] , (2.79)

with E as the Young Modulus. We will now determine the pressure corresponding
with the yield strength, which is done in [6]. The Mises yield criteria in cylindrical
coordinates are given as

σ2
r + σ2

θ + σ2
z − σrσθ − σrσz − σθσz = 3σ2

y. (2.80)

In this equation the shear stresses are not included. Since we know the stress
components, we can determine the internal pressure py corresponding with the yield
criterion. This is done by inserting Eq.2.75 and Eq.2.76 into Eq.2.80, so that we
obtain

py =
σy

(
1−

(
a
b

)2
)

√
1 + 1

3
(1− 2ν − α)2 (a

b

)4
. (2.81)

We can see that the determination of the yield pressure did not require knowledge
of the plastic behaviour in the tube. Thus we can asses Eq.2.81 by assuming elastic
displacement.

25

Chapter 2. Theory

2.11 The Finite Element Method

The finite element method consists of making a partial differential equation into a
variational problem, which can be solved numerically.
The theory about finite element method is given in [8], while the theory in [10] covers
what is necessary in constructing a variational problem by using linear Lagrange
elements.
In this thesis, we will address the differences in the construction of the variational
problem from that in [10]

2.11.1 Weak Formulation

In [10] the weak formulation was constructed by using the linear elastic relation
Eq.2.25. We will now use the rate relation Eq.2.27 in the construction of the varia-
tional problem for the finite element method. We will assume quasi-static condition,
so the partial differential equation is

∇ · σij = f. (2.82)

The rate of Eq.2.82 is obtained by time derivation, yielding

∇ · σ̇ij = ḟ. (2.83)

The rate equation indicates a dependence on time, making the subspace temporal
bounded. So to obtain the weak formulation we need to multiply a testfunction v
for all t > 0. This is followed by the integration over the domain Ω, yielding

−
∫
Ω

∇ · σ̇ij (u) vdΩ =

∫
Ω

ḟvdΩ. (2.84)

We will use Green’s formula on the left-hand side of Eq.2.84 to obtain

−
∫
Ω

∇ · σ̇ij (u) vdΩ =

∫
Ω

σ̇ij (u)∇vdΩ−
∫
∂Ω

σ̇ij (u) n̂vdγ, (2.85)

with ∂Ω, dγ and n̂ denoting the boundary surfaces, boundary integrand and surface
normal. The symmetry of the stress tensor makes it possible to write

σij (∇v)ij = σijεij (v) . (2.86)

This is followed by the transformation to Voight notation, so that

σijεij = εTσ. (2.87)

We can insert the relation in Eq.2.27 to obtain∫
Ω

εT (v) Depε̇ (u̇) dΩ =

∫
Ω

vT ḟ · dΩ +

∫
∂Ω

vT ġdγ, (2.88)

26

Chapter 2. Theory

with ġ as the stress at the boundary. The strain is determined by the displacement
and using Eq.2.91, we have that

ε̇ij (u) = εij (u̇) . (2.89)

So we can write the weak formulation as

Find u̇∀V : a (u̇,v) = l̇ (v) ∀v ∈ V, (2.90)

with

a (u̇,v) =

∫
Ω

εT (v) Dep ε (u̇) dΩ

l̇ (v) =

∫
Ω

vT ḟ · dΩ +

∫
∂Ω

vT ġdγ

. (2.91)

The term a (., .) is known as the bilinear form and l (.) is known as the linear form.

2.11.2 Galerkin Method

The construction of the variational problem is similar to the procedure in [10]. We
use the Galerkin method to construct a subspace of the function space V , which we
denote as Vh. The subspace will be used to solve Eq.2.90, yielding

Find u̇h∀Vh : a (u̇h,vh) = l̇ (vh) ∀vh ∈ Vh. (2.92)

The main concern is that we used a rate equation. This is solved by decoupling the
position and time dependence in the basis, yielding

u̇h =
∑
j

u̇jφj (x) , (2.93)

where x is the Cartesian coordinates. The basis of the testfunction is independent
of time. So we can insert the basis into Eq.2.92, yielding

a

(∑
i

u̇iφi,
∑
j

vjφj

)
= l̇

(∑
j

vjφj

)
. (2.94)

We will use the properties of the linear and bilinear form, shown in [8], which will
give ∑

j

∑
i

vja (φi, φj) u̇i =
∑
j

vj l̇ (φj) . (2.95)

Setting a (φi, φj) = A, l̇ (φj) = ḃ and u̇i = u̇, we obtain the variational problem

Au̇ = ḃ. (2.96)

The subspace Vh will be constructed by using linear Lagrange elements, which can
be seen in [8].

27

Chapter 2. Theory

2.12 Solving Methods

The variational formulation in Eq.2.96 can be solved with a scheme as

A∆u = ∆b

un+1 = un + ∆u
, (2.97)

with the initial condition u0 = 0. However the matrix A becomes non-linear with
the tangent stiffness Dep, given in Eq.2.60.
There are different methods to solve the problem posed in Eq. 2.97 and we will now
look at the methods mentioned in [6].
The most extensive method is the tangent stiffness method, which recomputes the
stiffness matrix A for each iteration in obtaining the incremental displacement, mak-
ing it equivalent to the Newton-Raphson method. A simplification is the modified
tangent stiffness method, which only recomputes the matrix once for each incremen-
tal step.
The simplest method is the initial stress method, which simplifies by using the elas-
tic tangent only. This requires less computation related to matrix inversion, but will
require more incremental steps.
The combination of the tangent stiffness method and the tangent stiffness in Eq.
2.27 will cause the method to lose the quadratic convergence rate. This can be
solved by using the consistent tangent moduli, defined as

Ξ =
∆σ

∆ε

∣∣∣∣
n+1

. (2.98)

The moduli is obtained by a linearisation of the return-mapping algorithm, see [9].

28

Chapter 3

Implementation

The implementation is given in two parts and organized to give minimal interactions.
This makes it easy to adjust the implementation, without unwanted effects.
We will start with the implementation of graphic user interface, then we will proceed
with the implementation of the calculation. The calculations are performed with the
FEniCS-project [5] to create and solve partial differential equations. We constructed
a flowchart to indicate the use of FEniCS-class and functions, see Fig.A.1.

3.1 Graphic User Interface

We based graphic user interface on input handling from the user and the code was
written in python with the wx-module, see D.A. The graphic user interface (GUI)
is not essential to the calculations, therefore we will give a brief implementation
overview.
The different input parameters are listed in Tab.C.1, combined with their function-
ality and possible options.

3.1.1 CustomApp

The implementation of the calculations may be integrated into the GUI. But the
graphic user interface tends to freeze, while the computation is ongoing, causing
the program to fail. This can be avoided by extracting the data and starting the
computation after the GUI is closed, see D.B.
The input values are extracted from the GUI with the wx.GetApp function. This
required that the CustomApp had additional attributes to hold the input values.

3.1.2 Advanced Frame

The AdvancedFrame is for handling specific input parameters, which should remain
on the default setting. We can see the advanced frames appearance in Fig.3.1. The
construction of the frame was done by declaring an array of the class CustomBox.
We can see there are two buttons present in the advanced frame. The buttons are

29

Chapter 3. Implementation

known as, OK and Reset, the reset button restores the default parameters, while
the OK button stores the input and closes the frame.

Figure 3.1: Shows the advanced frame for the graphic user interface.

3.1.3 CustomBox

The construction of the class CustomBox was done due to repeated implementation
of input boxes. The class makes it easy to add more parameters to the interface,
since the appearance is predetermined. We can also generate a drop down menu,
but this requires that the possible choices are determined in the initialization of the
class.
The inputs are obtained by unicode, which requires a conversion to the appropriate
form. This conversion will cause failure if for instance a float input contains letters or
symbols . So to avoid any errors, the return form is determined by the class-function
Rform. The function uses a try-except sequence on the default input parameter,
which undetermined will be float. In case that there is an error, an error message
will appear.
The extraction of the input values and the corresponding label is done with the class-
functions GetValue and GetLabel. These variables are then combined to create a
dictionary.

3.1.4 Main Frame

The main frame contains four panels, each with their own specific task, see Fig.3.2.

30

Chapter 3. Implementation

Figure 3.2: Shows the main frame for the graphic user interface. The input name
of SMYS in the main frame is Nexans’ technical term for yield strength.

First Panel

The first panel holds the general parameters, which are fixed during the computation.
This is done by constructing an array of CustomBox. We can see that the first panel
also includes the advanced button, which opens the advanced frame.

Second Panel

The second panel is created for the user to select the output folder, in which the
results will be stored. The default setting of the folder is determined by the use of
config-module, which loads the previous selected folder.

31

Chapter 3. Implementation

Figure 3.3: Shows the structure of an xml-file, SMYS is Nexans’ technical term for
yield strength.

Third Panel

The third panel is the user input for defining each load step, there are four different
possible inputs for each step. Which can be edited by clicking with the cursor and
then inserting the specified value.
Three buttons are connected to the list, which are known as new, clear and delete.
The new button initiate a new step to be added to the list. The delete button
removes the previous added step, and the clear button removes all previous added
steps.

Fourth Panel

The fourth panel contains four buttons; ”close”, ”run”, ”save” and ”load”. The
buttons ”close” and ”run”, will both close the program, but ”run” will also initiate
the calculations.
The options of ”load” and ”save” the input were implemented by storing the data in
xml-file. All user inputs may be stored, with the exception of the output folder and
advanced inputs. To avoid error, only the first word is used to identify the general
parameters. While each load step is stored as an array, and identified by the word
”Step”, see Fig.3.3.

32

Chapter 3. Implementation

3.2 Calculations

In this section we will review the implementation regarding the calculations. The cal-
culations are based on the return mapping algorithm and the finite element method.
Most of the code uses FEniCS functions and classes, of which a general introduction
is given in [5].

3.2.1 Generating Mesh

The mesh generation is divided into two parts, the first one is to define the initial
vertex structure. This is done with the FEniCS-function Cylinder, which requires the
geometrical dimensions and the number of faces. The number of faces corresponds
to linear surfaces on the curved sides. Similar to the linear approximation of a circle,
thus higher number, leads to better approximation, see Fig 3.4.

(a) Shows the mesh with number of
faces equal 20.

(b) Shows the mesh with number of
faces equal 200.

Figure 3.4: Shows the mesh difference with faces set to 20 and 200, with geometrical
data in Tab.4.1.

The next step is to connect the vertices and create the cells, which is done with the
FEniCS-function Mesh. We obtain the mesh by inserting the vertex structure and
the wanted resolution. The resolution controls the maximum volume of the cells
and splits the cells which exceed the maximum volume. The splitting will generate
more vertices, but only interior. This means that the linear approximation of the
curved side will remain even for higher resolution.

3.2.2 Marking Boundaries

After constructing the mesh, comes the defining and marking of the exterior bound-
aries. This involves defining the appropriate boundary values with the FEniCS class

33

Chapter 3. Implementation

SubDomain, see D.H.
The marking of a curved surface proved difficult, since some boundaries can remain
unmarked. The solution was to repeatedly mark the curved boundaries, until none
was left unmarked. Then the top and bottom boundaries were marked using lower
tolerance.

3.3 Function Spaces

The determination of number of variables is done with defining the FunctionSpace,
which requires that we specify both the polynomial and quadrature.
The displacement is vectorial, so we will use FEniCS-function VectorFunctionSpace,
which will generate three degrees of freedom for each node. The number of degrees
of freedom can also be specified, which is done for the tangent stiffness and the
Voight tensors.
In the implementation, both the terms of nodes and points are used. The terms are
similar, with a slight difference. While nodes refer to the number of displacement
nodes, the points refer to the number of Voight points. Only for linear elements are
these terms equal.

3.4 Plastic Model

In the theory section we have seen that a plastic model is determined by three
functions, yield function, flow rule and hardening rule. We will now define the
plastic model and implement the needed functions.
We chose to implement the plastic model given in [9], where the yield function is
dependent on the second invariant of the deviatoric stress tensor Eq.2.16. This is
known as the Mises yield criteria and will give

F (σij) =
1

2
sijsij, (3.1)

where sij is defined in Eq.2.13. The model includes an associative flow rule, so that

gσij = fσ = sij. (3.2)

To obtain a piecewise linear stress-strain relation, a linear hardening is needed. We
chose that the hardening parameter is based on the equivalent plastic strain, so the
internal variables will not be used.
We chose the hardening to be purely isotropic, excluding the back stress, thus we
will use Eq.2.46. The use of Eq.3.1 requires that the hardening is scaled and inserted
quadratically into the yield function, see [9].
The specified plastic model will give the following functions in Voight notation

f (σ, ε̄p) =
1

2
σTPσ − 1

3
k2 (ε̄p)

k (ε̄p) = σy +Hε̄p

εp = Pσ

. (3.3)

34

Chapter 3. Implementation

The hardening parameter is scaled with 1/3, which is known as the characterising
yield strength. For uni-axial case, the characterising yield strength is 1.0.
The equations in Eq.3.3 were coded into the class PlasticModel, see D.G. The linear
hardening in the plastic model will make the stress-strain relation piecewise linear.
This can be seen in Fig.3.5, it will also give a piecewise linear relation between
plastic strain and strain, see Fig.3.6. Thus, by knowing the yield stress and the
slops, we can approximate the generated plastic strain.

Figure 3.5: Shows the piecewise linear stress-strain relation.

3.5 Modified Tangent Stiffness

We implemented the modified tangent stiffness method to solve the problem posed
by Eq.2.97. The method can be seen as two processes; solving the incremental
problem and updating the matrix A.

3.5.1 Solving Linear Problem

The increment displacement is obtained by solving the variational problem Eq.2.97,
which can be done with a direct or an iterative method. The direct method of
solving a variational problem requires a high precision to avoid the accumulation
of round-off errors. Hence we selected that the problem was to be solved with an
iterative method, which is implemented in FEniCS. There are several options for
both iterative solvers and precondtioners in FEniCS, see [5]. Most of the iterative

35

Chapter 3. Implementation

Figure 3.6: Shows the piecewise linear plastic strain and strain relation.

methods experienced convergence problem after the matrix A was updated with
plastic strain. The option Richardson and successive over relaxation(SOR) proved
to be most reliable. The details for the iteration method and preconditioner can be
found in [7].
After the incremental displacement is obtained, we need to calculate the tangent
stiffness for the next increment. The procedure starts by calculating the total strain.
This can easily be done by using the FEniCS-function project, but there are faster
methods available.

3.5.2 Faster Projection

The function project in FEniCS is a relatively slow function, and the computation
time can be decreased at the cost of memory. The scheme is to assemble the pro-
jection matrix, so only matrix multiplication is needed to obtain the projection.
The assembled matrix is stored in the computers memory throughout the com-
putation. Since there are numerous projections in the implementation, the lower
computation time outweighs the extra memory consumption.

3.5.3 Return Mapping

The return mapping algorithm is performed on all the points connected to the mesh,
thus we implemented a for-loop.

36

Chapter 3. Implementation

We obtain the strain with matrix multiplication and the results are stored in FEniCS-
class Function. The implementation of the return-mapping algorithm uses numpy.matrix
objects, which makes matrix operations easier to handle. This requires that we ex-
tract the strain corresponding to a point from FEniCS-class Function and assign
them to a numpy.matrix object. This is also done for the plastic strain.
We use the total strain and the plastic strain to calculate the trial stress σt in
Eq.2.63. Which will be inserted into the yield function to determine if the stress
must be corrected.The corrections require that we know the plastic multiplier, which
is obtained with closest-point-projection.

Closest-Point Projection

We need to construct the residual from Eq.2.67, but in the chosen plastic model we
have replaced the internal variables with the equivalent plastic strain Eq.3.3. This
will produce a set of residuals as

rσ = σn+1 + ∆λDPσn+1 − σt

rēp = ēpn+1 −∆λ

√
2

3
σT
n+1Pσn+1 − ēpn

r∆λ =
1

2
σT
n+1Pσn+1 −

1

3

(
σy +Hēpn+1

)2

. (3.4)

Since the residuals should equal zero, we can from the first residual obtain the
expression

σn+1 =
1

I + ∆λDP
σt, (3.5)

with I as the identity matrix. We can see that the only variable is ∆λ, so by inserting
Eq.3.5 in the other residuals, Eq.3.4, we obtain

1

2
σT
n+1Pσn+1 −

1

3

(
σy +Hēpn+1

)2
= 0. (3.6)

Hence the three coupled equations is reduced to only one. The back stress can be
included with minor changes, see [9].
The convergence difficulties explained in the theory section, made the implementa-
tion difficult. Both an iterative method and a method using python-functions were
tried.
The high computational time with iterative methods made smaller increments with
python-functions more preferable. We selected the python-function Brentq, but
other functions worked just as well.

Corrections

The plastic multiplier is used to correct the stress and generate plastic strain. We
can use Eq.3.5 to obtain the corrected stress σn+1 . Which is used to obtain

εpn+1 = εpn + ∆λPσn+1

ε̄pn+1 = ε̄pn+1 + ∆λ
√

2/3σT
n+1Pσn+1

. (3.7)

37

Chapter 3. Implementation

The return mapping algorithm is also used to determine the tangent stiffness,

Eq.2.27, for the next increment. Which is

Dep =

D, ∆λ ≤ 0

D− DPσTσPD

σTPDPσ+ 2
3Hk(ε̄p)

√
2
3σ

TPσ
, ∆λ > 0.

, (3.8)

with k (ε̄p) given in Eq.3.3. The plastic strain, stress and tangent stiffness will at
the end be reassigned to their corresponding FEniCS-class Function.

3.6 Deformation Steps

We will handle three different deformation steps; axial tension, curvature and in-
ternal pressure. The implementation uses only Dirichlet conditions, where the defi-
nition is given in [10]. We will focus on applying minimal boundary conditions, so
that we preserve enough free variables in the variational problem.
The different deformation steps use different Dirichlet conditions and if these con-
ditions are applied combined, we will have defined a completely different problem
with a different solution. Therefore the deformations in each step are ordered in the
following sequence, axial tension, curvature and internal pressure.
The inputs are in reference to the tubes initial state, considering that the deforma-
tion of bending requires the input of curvature κy and κx. These inputs will give
the curvature state of the tube, and the tube will be bent to that curvature state.
So the input of κy = 0.0 and κx = 0.0 will unbend the tube, and likewise for axial
tension and internal pressure.

3.6.1 Axial Tension

The axial tension is defined as

T =

∫
σzdA, (3.9)

where σz is the axial stress for every point on the cross-section A.
The implementation uses a while-loop, which continues until the desired axial force
is acquired. We see in Eq.3.9, that for a constant area A, this can only be achieved
by increasing σz. Therefore we will increase the axial stress by increasing the axial
strain ε0, which is constant on the surface A.
The axial strain is incrementally increased by using Dirichlet conditions, which re-
quires the expression of the corresponding incremental axial displacement. We can
obtain the expression for axial displacement by integrating the strain increment ∆ε
in the axial direction, yielding

uz = −z∆ε+ φ (x, y) . (3.10)

38

Chapter 3. Implementation

The axial displacement for z = 0 is assumed to be zero, so that φ (x, y) = 0.
The integration given in Eq.3.9 is done by assembling a vector similar to the con-
struction of a linear form in FEniCS. This vector contains the integration over each
element on the boundary. Thus we can obtain the axial force by adding the contri-
bution for each vector element together. In the implementation, we chose that the
top cross-section corresponded to A, while the Dirichlet conditions were applied on
the top and bottom cross-sections of the tube.
The input of axial force is given in the uni-axial case, therefore we need to scale
the integration of the axial stress with factor of 3/2 to take multiple dimensions into
account.

3.6.2 Bending

We will give a brief repetition of the bending implementation, taken from [10]. We
used the infinitesimal strain definition Eq.2.6 to obtain the axial displacement

uz = −z (κyx+ κxy) + φ (x, y) . (3.11)

The axial displacement was set to zero for z = 0, which meant that g = 0. This will
produce the shear strain of

ε23 = −zκy
ε13 = −zκx

. (3.12)

We see in Eq.3.12 that strain is dependent on the axial position z, thus if the length
of the mesh remains small, we can neglect the shear strain. Based on the results
of [10], we implemented the Dirichlet conditions on the cross-sections of the tube,
i.e top and bottom surface.

3.6.3 Combined Stresses

The combination of axial tension and bending can occur simultaneously. However,
bending and axial tension have different while-statements, so it is simpler to asses
them separately.

3.6.4 Internal Pressure

The plastic behaviour for a tube under internal pressure is more complex than for
bending and axial tension. This requires additional conditions and can be difficult to
implement. Therefore we will focus on checking the yield pressure, given in Eq.2.81
against the computed results.
This makes it possible to implement based Eq.2.78, which is the radial displacement
in the elastic region. We can see in Eq.2.78 that the displacement is constant for
r = a, thus we can use Dirichlet conditions.
In Eq.2.78, we can see that the displacement is determined by the pressure. There-
fore we need a relation between the incremental strain and incremental pressure,

39

Chapter 3. Implementation

which we set to

∆ε =
∆p

E
(

(b/a)
2 − 1

) , (3.13)

with ∆p as the incremental pressure.
The insertion of the Eq.3.13 into Eq.2.78 and Eq.2.79 will provide the expression of
the incremental radial displacement as

∆ur (a) =

(
(1 + ν)

[
(1− 2ν) a+

b2

a

]
− (1− 2ν) νa

)
∆ε. (3.14)

The incremental displacement is normal to the surface, so we multiply the negative
surface normal with the increment radial displacement to obtain the Dirichlet con-
ditions.
We have not taken into account the presence of an axial strain defined in Eq.2.79.
Since the axial and radial displacements are orthogonal, we can apply Dirichlet con-
ditions separately. This is no longer valid for curved tubes, which require additional
implementations. The axial strain was also used applied with Dirichlet conditions
on the cross sections of the tube. This was to ensure that the axial strain was con-
stant in the tube.
The program will continue to solve the incremental problems, until the internal
pressure exceeds the input parameter. This requires a good indicator of the internal
pressure. In Eq.2.75 we see that for r = a the radial stress will be equal to the
internal pressure. So the average radial pressure on the inner surface can be a good
indicator. The average radial stress can be obtained with

Average (σr) =

∫
σrdA∫
dA

, (3.15)

where A is the inner curved surface.
The integration of the radial stress required some extra implementation. This is
because for each element integration, there will exist an opposite contribution for
an element on the opposite side of the curved surface. Therefore we take the absolute
value of each element integration and add them together.
The implementation is based on an elastic equation and constant displacements.
Thus the implementation does not account for plastic strain and changes in the
mesh.

3.7 Scaling

The geometrical dimensions are scaled to m from mm, which require a scaling of
other parameters. The scaling is shown i Tab.3.1, which is taken from [10].

3.8 Output

The data produced by the program is saved in the selected output-folder. This is
either done by the class DataHandler or the function File in FEniCS.

40

Chapter 3. Implementation

Table 3.1: Shows the scaling factors and units for the appropriate parameters taken
from [10].

- u E σ κ Area

Units mm N/m2
N/m2 m−1 m2

scaling 103 10−6 10−6 10−3 106

3.8.1 DataHandler

The class Data was created to extract the necessary data, it is constructed to reini-
tialize accordingly to iteration and step. We extract the maximum values of the
equivalent stress, and the corresponding strain and plastic strain in each iteration.
These values are then saved at the end of each step.
The class also stores the maximum APS-value for each step in an attribute array,
which is saved at the end of the program.

3.8.2 File

The FEniCS-function File creates a pvd-file to save the data, which links the values
to the mesh, which can be visualised in Paraview, see [3]. This generation of data
is done at the end of each step, for stress, strain and APS.

41

Chapter 4

Results

4.1 General Parameters

The APS-program requires that we specify multiple input parameters, which means
many possible combinations. Thus we will focus on one set of general parameters,
which is given in Tab.4.1. We set the length of the mesh to 2.0 mm, which will
decrease the computational time. The length will also make it possible to neglect
the shear strain in Eq.3.12, which is produced by the Dirichlet conditions for bending.
We will focus on linear elements, and only use quadratic elements if specified.
We will first look at mesh convergence and then the strain increment dependence,
for each deformation step.

Table 4.1: Shows the general input parameters for the tube. The term SMYS is
Nexans’ technical term for yield strength.

Label Value
Young Modulus 200 GPa
Poission’s ratio 0.3
Outer Diameter 25.0 mm
Wall thickness 2.5 mm

Work-Hardening Modulus 1 GPa
SMYS 600 MPa

4.1.1 Analytical Approximations

The chosen plastic model is characterised by having a piecewise linear stress-strain
relation, This makes it possible to approximate the results analytically. We will
denote the APS generate by the analytical approximations as APSa
The analytical approximations can be obtained by

εe =
1

E
min (σ, σy) , εp =

< σ − σy >
H

. (4.1)

42

Chapter 4. Results

In the case of bending, we can estimate the total strain with Eq.2.72. So by calcu-
lating the elastic strain εe in Eq.4.1, we can obtain the plastic strain by Eq.2.72.
For axial tension, we must assume uniform stress distribution, so that the axial
stress is obtained by dividing the axial force with the cross-sectional area.
The analytical approximation of internal pressure is more complicated, thus we will
not try to approximate the results. But we can use Eq.2.81 to asses the computed
yield pressure.
The analytical approximations do not take into account the differential changes of
the tube, which means that we must consider a static mesh.

4.2 Consistency

We need to evaluate the consistency of results, because the construction of the
mesh uses Delauney triangulation to generate the cells. The Delauney triangulation
uses randomization to generate the cells, which means that each mesh generate
is unique, see [7]. The difference between two meshes is small, but can produce
different incremental solutions that will accumulate for each increment.
So to test the consistency, we will run the program in two sequences. A sequence
consists of running the program 10 times with the same input parameters. We will
consider the case of bending. In the first sequence, we setκy = 1.0m−1 and for the
second sequence κy = 0.3m−1. The strain increment was set to 1.0e−4%, which
produced the results listed in Tab.4.2.

Table 4.2: Shows the APS values for the two sequences with strain
increment 1.0e−4%.

(a) Shows computed APS values for
10 runs with the input parameters
κy = 1.0m−1 and the number of in-
crements was 1000.

Run APS [%]
1 0.941157
2 0.943280
3 0.941303
4 0.939854
5 0.938016
6 0.938935
7 0.941519
8 0.944565
9 0.943483
10 0.944692

(b) Shows computed APS values for
10 runs with the input parameters
κy = 0.3m−1 and the number of in-
crements was 300.

Run APS [%]
1 0.072247
2 0.071677
3 0.071583
4 0.072707
5 0.073247
6 0.073222
7 0.070891
8 0.072060
9 0.072221
10 0.072181

43

Chapter 4. Results

The results in Tab.4.2a gave a mean value of 0.942% and standard deviation of
0.002 %. And the results in Tab.4.2b gave a mean value of 0.0722% and a standard
deviation of 0.0007 %. This indicates a dependence between the number of incre-
ments and the standard deviation. This can be related to the different incremental
solutions.
The coefficient of variation is obtained by dividing the standard deviation with the
mean values. Based on the results in Tab.4.2, the coefficient of variation was less
than 1.0% in both cases. Thus we can conclude that the results are consistent. We
assume that the results are also consistent for axial tension and pressure.
We see in Fig.4.2, that the standard deviation marks the uncertainty in the third
decimal, thus we will only present results up to the third decimal.

4.3 Mesh Convergence

The finite element method is characterised by the fact that the results converge with
finer mesh. However, the increased quality of the mesh will require longer computa-
tional time. Thus finding a balance between mesh quality and computational time
will be beneficial.
We will generate a finer mesh by increasing the number of nodes within the mesh,
but to generalize the quality, we need to account for different mesh volumes. Thus
we will assert the quality of the mesh by the density of nodes. This density will be
denoted ρ and will have the dimension nodes/mm3 .
The linear approximation of the curved surfaces are connected to the outer diam-
eter. So to correctly indicate the quality of the linear approximation, we will use
the number of faces divided by the outer diameter, denoted as l, with dimensions
faces/mm.

4.3.1 Bending

We will first asses the convergence in the case of bending. The curvature was set
κy = 1.0m−1, while the other step parameters remained zero. The computed results
are shown in Fig. 4.1. In the computation the strain increment was set to 1.0e−3%
to decrease the computation time.
From Fig.4.1 we see that the APS-values converge with higher values of ρ. The
results seem to have the shape of a damped oscillation, indicating a more unstable
convergence than asymptotic. We see that higher l converge quicker, so there is a
relation between l and the damping. This makes a high number of faces preferable,
so that we can obtain convergence with lower node density.
We will look closer on the shape of convergence, which can be caused by linear
elements. The same procedure was used in the convergence of quadratic elements,
giving the results shown in Fig.4.2.

44

Chapter 4. Results

Figure 4.1: Shows the convergence of the APS versus the density ρ for different
number of faces, with the strain increment set to 10−3%.

Figure 4.2: Shows the convergence of the APS versus the density ρ an with different
numbers of l marked in the legend, with κy = 1.0m−1.

45

Chapter 4. Results

We observe that in Fig.4.2 the results converge asymptotic. So the convergence of
a damped oscillation occurs by using linear elements. The relation between l and
the damping indicates that the oscillation is connected to the linear approximation
of the curved surface. However, the maximum APS values are taken from one point
on the outer rim of the tube. So the oscillation which occurs is caused by linear
under- and over-approximation for one point in the mesh.
The analytical approximation was set by using Eq.4.1, and yields 0.95%. This
corresponds to the converged results in both Fig.4.1 and Fig.4.2.

4.3.2 Axial Tension

We will now consider the case of axial tension, and input for the axial force was
set to 106.2kN. The analytical approximations in Eq.4.1 gave that yield force was
106.028kN, thus the axial force of 106.2kN should produce a low amount of plastic
strain. We set the input parameter close to the yield surface to avoid long computa-
tion time, due to high nodal density. The strain increment was set to 10−4%, which
computed the results found in Fig.4.3.

Figure 4.3: Shows the convergence of the APS versus the density ρ for different
number of faces, given an axial force of 106.2kN.

In Fig.4.3, we see that the results converge. However, we see that lower values of l
generate more APS, so there is a discrepancy related to l. This discrepancy is due
to the fact that the parameter l also presents the quality of the cross-sectional area,
over which we integrate. We will now look at the effects of the APS due to the
approximation of the cross sectional area.

46

Chapter 4. Results

The while-loop will end for a specific value of axial forces, which was set to 106.2kN.
We can see in Fig.4.4 that the stress is almost uniform, which allows Eq.3.9 to be
written as

T = σzA. (4.2)

Figure 4.4: Shows axial stress distribution for axial force of 106.2kN.

Since the tension value is constant, we can obtain the corrected axial stress with

σz =
A∗

At
σ∗
z . (4.3)

The mark ∗ denotes computed values and At is the theoretical cross-section. We
will denote the ratio of A∗ and At as rA. We made the corrections on the results
from Fig.4.3, which are listed in Tab.4.3.
We can see in Tab.4.3 that the corrected APS values are similar for all the different
combinations of ρ and l. This indicates that there is almost an immediate con-
vergence of the APS value. However, the analytical approximation gives an APS
value of 0.0969%, which do not correspond to the corrected values in Tab.4.3. This
discrepancy is quite large and will require looking at other parameters.

4.3.3 Internal Pressure

The radial displacement is applied on the inner curved surface, which can indicate
a large dependence on l. Therefore we will consider a larger variation of l. We
will consider the case of close-ended tube, so that Eq.2.77 will give α = 0.4. This
is used with Eq.2.81 and the values in Tab.4.1, to estimate the yield pressure as
214MPa. We set the input for internal pressure to 220MPa, so that we could asses
the yield pressure and the generation of APS. The results were produced with a
strain increment of 1.0e−5%, and seen in Fig.4.5.
We observe in Fig.4.5 that the results converge for higher values of nodal density ρ.
The APS is low indicating a correspondence with the yield pressure.

47

Chapter 4. Results

Table 4.3: Shows the results from Tab.4.3 and the corresponding area ratio and
corrected APS. The axial input set 106.2kN.

ρ l APS∗ [%] rA APS [%]
1.5 6 0.0879 0.99979 0.0753
1.5 10 0.0845 0.99984 0.0749
1.5 14 0.0833 0.99986 0.0751
1.5 20 0.0783 0.99994 0.0748
3 6 0.0914 0.99972 0.0744
3 10 0.0802 0.99990 0.0744
3 14 0.0770 0.99995 0.0742
3 20 0.0755 0.99998 0.0744
10 6 0.0928 0.99970 0.0749
10 10 0.0811 0.99989 0.0745
10 14 0.0786 0.99994 0.0751
10 20 0.0772 0.99997 0.0753

Figure 4.5: Shows the APS values for different values of l and ρ, which are marked
in the legend and along the x-axis. The results were computed with the internal
pressure of 220MPa and strain increment of 1.0e−5%.

48

Chapter 4. Results

4.4 Strain Increment

The results are obtained by adding strain increments to the total strain, we will
therefore investigate the effects of different strain increments for each of the defor-
mations.
To better investigate the dependence, the resolution and number of faces where re-
spectively set to 30 and 250. This corresponds to a nodal density of ρ = 3 nodes/mm3

and l = 10 faces/mm.

4.4.1 Bending

The computation of bending is done by adding strain increments, until the total
strain is reached. This means that the total strain value is not affected by different
strain increments.
We set parameter κx = 1.0m−1, while the other parameters remained zero. The
APS values with corresponding strain increments are listed in Tab. 4.4.

Table 4.4: Shows the APS and the incremental strain contribution for an axial force
of 110kN .

APS [%] ∆ε [10−4%]
0.941 200
0.942 100
0.943 50
0.944 25
0.945 12.5
0.945 1

We observe a slight difference for the APS values in Tab.4.4. Since the total strain
value remains constant, the difference must be caused by the generation of plastic
strain.
Thus we will look at the stress-strain diagram for the procedure. For simplicity, we
will consider the equivalent stress and strain, which require no scaling of the yield
strength. The results can be seen in Fig.4.6, and we observe a discrepancy in the
yield strength. Therefore we will look closer on the yield surface, shown in Fig. 4.7.
The discrepancy seen in Fig.4.7, is caused by using an incorrect value of the plastic
multiplier in the return mapping algorithm. This incorrect value is acquired due
to the convergence problems of the closest-point projection. The incorrect plastic
multiplier is either too small or too large, each with a different effect on the APS
values.
The case that the value of the plastic multiplier is too small, will cause the stress not
to be fully mapped onto the yield surface. This is seen in Fig.4.7, and will generate
a a lower amount of APS. If the value is too large, the effects are opposite, causing
an increase in the APS value.

49

Chapter 4. Results

Figure 4.6: Shows the deviatoric stress-strain diagram for bending to κx = 1.0m−1,
with the number of increments marked in the legend.

Figure 4.7: Shows the deviatoric stress-strain diagram for bending to κy = 1.0m−1,
with the number of increments marked in the legend.

50

Chapter 4. Results

4.4.2 Axial Tension

We will now consider the deformation of axial tension, which, like bending, applies
the Dirichlet conditions on the top and bottom surfaces. We set the axial force to
be 110kN and we varied the strain increments, which produced the results given in
Tab.4.5.

Table 4.5: Shows the APS and the incremental strain contribution for an axial force
of 110kN .

APS [%] ∆ε [10−4%]
0.023 100
0.458 80
1.090 60
1.340 40
1.893 20
2.027 10
2.072 8
2.165 4
2.231 1

We can see large discrepancies in the APS values given in Tab.4.5. The analytical
approximation for an axial force of 110kN is 2.247%. The approximation was used
to compute the relative error seen in Fig.4.8. In Fig.4.8, we observe a linear relation
between the relative error and the increment size.

Figure 4.8: Shows the relative error for the APS-value compared to the strain in-
crements. The relative error is constructed with the analytical approximation of
2.247%.

This dependency on the strain increment is not present in the case of bending. Thus

51

Chapter 4. Results

we will compare the transition from elastic to plastic in the two cases. The transition
for bending is seen in Fig.4.7, while the transition for axial tension is seen in Fig.4.9.

Figure 4.9: Shows the deviatoric stress-strain diagram close to the yield surface for
an axial force of T = 110.0kN, with the strain increments marked in the legend.

We can see that Fig.4.9 has similar discrepancies as Fig. 4.7. But in Fig.4.9 we can
see that the stress is cut-off, generating less APS. This is due to the while-statement,
which ends when the axial force exceeds the input value. If the stress is not fully
mapped onto the yield surface, the integration will give an axial force of greater
value, thus ending the while-loop prematurely.
This can also explain the linear relation shown in Fig.4.8. We see that in Fig.4.9
the different stress-strain curves remain parallel in the plastic region, thus the APS
error is proportional to the discrepancy of the yield strength.
This would mean that the difference in APS is constant for a given strain increment.
This can be seen in Tab.4.6, which shows the APS value for different values of axial
force and the difference from the corresponding analytical approximations.
We can see from Tab.4.6 that the difference is constant for a given strain increment.
The linear dependence in the relative error, indicates that infinitesimal strain in-
crements will give zero error. Though this would mean an infinite computation
time.

4.4.3 Internal Pressure

The incremental Dirichlet conditions are calculated with Eq.3.14, which multiplies
the strain increment with the radial dependency. Therefore the incremental dis-
placement is larger than for bending and axial tension, so we will use smaller strain
increments. We set the internal pressure to 220MPa, which produced the results

52

Chapter 4. Results

Table 4.6: Shows the APS for different values of axial strain, and the corresponding
approximations, for strain increment of 1.0e−4%.

Axial force [kN] APS [%] APSa [%] ∆APS [%]
106.2 0.080 0.097 0.017
106.4 0.193 0.210 0.017
106.6 0.306 0.323 0.017
106.8 0.419 0.436 0.017
107.0 0.533 0.550 0.017
107.2 0.646 0.663 0.017
107.4 0.759 0.776 0.017

seen in Tab.4.7 for different strain increments. We see in Tab.4.7 that the APS

Table 4.7: Shows the APS and the incremental strain contribution for an axial force
of 110kN .

APS [%] ∆ε [10−5%]
0.079 10
0.088 8
0.088 6
0.076 4
0.073 2
0.087 1

values are small, which means that the computed yield pressure corresponds with
Eq.2.81. The implementation was based on the elastic radial displacement, thus the
behaviour in the plastic region is incorrect. Therefore we will look at the equivalent
stress-strain diagram close to the yield surface, see Fig.4.10.
In Fig.4.10, we can observe that the different increments have different slops in the
elastic area. This indicates a difference in the incremental solution, which accumu-
lates for each increment. The more curious behaviour occurs in the transition to the
plastic region. We can see an instantaneous lowering of the stress. The behaviour
in the plastic region can best be seen in Fig.4.11, which shows a strain and plastic
strain diagram.
We see in Fig.4.11 that the plastic strain is produced instantaneously. This can
explain the lower of the stress in Fig.4.10, since the plastic strain is included in the
determination of the trial stress. If the plastic strain strain increment is larger than
next strain increment, then we will have a decrease in the trial stress. The decrease
will move the trial stress into the elastic region, thus no corrections.
This clearly indicates that the elastic displacement can not be used in the plastic
region. The lowering of the stress indicates that the plastic displacement is larger
than the elastic.
We will also asses the use of the average radial stress Eq.3.15 in the while-statement.
For this, we need to look at the distribution of the radial stress, seen in Fig.4.12.

53

Chapter 4. Results

Figure 4.10: Shows stress-strain diagram close to the yield surface with the internal
pressure set to 220MPa. The different strain increments are marked in the legend.

Figure 4.11: Shows the generation plastic strain close to the yield surface in Fig.4.10.
The input for internal pressure was 220MPa and the different strain increments are
marked in the legend.

54

Chapter 4. Results

Figure 4.12: Shows the radial stress distribution on one half of the inner surface. The
results were computed with the internal pressure of 220MPa and strain increment
of 1.0e−5%

Figure 4.13: Shows the APS distribution on one half of the inner surface. The
results were computed with the internal pressure of 220MPa and strain increment
of 1.0e−5%.

55

Chapter 4. Results

In Fig.4.12 we can see that the stress distribution is not uniform. This does not
coincide with the theory, which should produce a uniform radial stress distribution.
Thus the use of the Eq.3.15 do not present an accurate relation to the APS with
the current implementation. This can be further shown by looking at the APS
distribution in Fig.4.13. We can see in Fig.4.13 that the generation of APS occurs
locally and not corresponding with the maximum radial stress. This indicates that
most of the radial stress distribution is in the elastic region. Thus not caused by
using elastic displacement in the plastic region.
The Dirichlet conditions enforce a uniform displacement field, but we see a non-
uniform radial stress distribution. This indicates that linear Lagrange elements are
not to be preferred for this problem.

4.5 Length Dependence

The results have been computed, based on mesh with length 2.0 mm. So we will
consider the results that are computed with different lengths of the mesh. The
length of the tube will be denoted as L and dimension of [mm].

4.5.1 Bending

We will look at the case of bending with the input parameter κx = 1.0m−1. The
strain increment was set to 1.0e−4%, which gave the results shown in Tab.4.8

Table 4.8: Shows the APS value for different lengths L. The step input was κx =
1.0m−1 and strain increment 1.0e−4%.

L [mm] APS [%]
2.0 0.941
10.0 0.946
30.0 1.101
50.0 3.761

In Tab.4.8, we can see that the length has a significant effect on APS value. We
have previously calculated that the analytical approximation for κy = 1.0m−1 was
0.95 %. This was used to generate the relative error seen in Fig.4.14.
We can see in Fig.4.14 that the relative error has the shape of a higher order equation.
This indicates that there is difference in the generation of APS. The APS distribution
for L = 10 and L = 50 can be seen in Fig.4.15.
We can see that maximum value of APS in Fig.4.15a is generated on the top surface.
While in Fig.4.15b the APS generation is constant along the x-direction. The top
surface is a Dirichlet boundary, so the difference can be in the Dirichlet condition.
We mentioned in the implementation that the Dirichlet conditions would produce
shear strain. In Eq.3.12 we see a dependence on the z-coordinates.

56

Chapter 4. Results

Figure 4.14: Shows relative error of the APS value 0.95% for different lengths of the
mesh. The input parameter was κx = 1.0m−1 and strain increment of 1.0e−4%.

However, we listed the absolute values of the components in the final maximum
stress tensor in Tab.4.9. We can see that the shear stress increases, but compared
to the discrepancy in σ22 and σ33 it is still small.

Table 4.9: Shows the absolute value for each component in the final incremental
maximum stress tensor for different lengths L. With κx = 1.0m−1 and strain incre-
ment 1.0e−4%.

|σij| L = 10mm L = 50mm
|σ11| 198.090 MPa 190.820 MPa
|σ22| 210.054 MPa 242.000 MPa
|σ33| 408.146 MPa 432.819 MPa
|σ12| 1.590 MPa 3.262 MPa
|σ13| 1.498 MPa 1.861 MPa
|σ23| 2.289 MPa 9.342 MPa

So the discrepancy is not caused by the Dirichlet conditions. In Fig.4.15a, we can
see that the generation of APS is focused on the top surface. The decrease along
the axial direction implies that the Dirichlet condition does not affect the middle
of the tube. This can be investigated by applying the Dirichlet conditions also
on the curved surfaces, this produced the APS distribution seen in Fig.4.16. The
distribution was created with κy = 1.0m−1 and strain increment set to 1.0e−4%
We can see that the APS distribution in Fig.4.16 and Fig.4.15b coincide. So for
long tubes, the bending displacement requires additional Dirichlet conditions on the
curved sides.

57

Chapter 4. Results

(a) Shows the APS distribution for L =
50mm.

(b) Shows the APS distribution for L =
10mm.

Figure 4.15: Shows the APS distribution for two different lengths with κx = 1.0m−1.
The strain increment was set to 1.0e−4% and the tube shape will remain unbent,
since we consider a static mesh.

Figure 4.16: Shows the APS distribution for L = 50mm, and κy = 1.0m−1. With
the Dirichlet conditions on all the surfaces.

58

Chapter 4. Results

4.5.2 Axial Tension

We will now investigate the generation of APS in the case of axial tension. The
step input for axial force was set to 106.2kN and the strain increment was set to
1.0e−4%. These inputs produced the results seen in Tab.4.10, for different lengths
L of the mesh.

Table 4.10: Shows the APS value for different lengths L. The step input was
κy = 1.0m−1 and strain increment 1.0e−4%.

L [mm] APS [%]
2.0 0.0802
10.0 0.0809
30.0 0.0601
50.0 0.0472

In Tab.4.10, we see that by increasing the length of the mesh, we will decrease the
APS value. The analytical approximation has been calculated as 0.097%, which was
used to create Fig.4.17. The figure shows the relative error in the APS for different
lengths of the mesh.

Figure 4.17: Shows relative error between the values in Tab.4.10 and the analyti-
cal approximation of APS value 0.097%. The input parameter for axial force was
106.2.0kN and strain increment of 1.0e−4%.

We see that in Fig.4.17, the relative error increases close to linearly with the length
of the mesh. The APS distribution for the cases of L = 10mm and L = 50mm
In Fig.4.18b, we can see that the generation of APS is close to constant. While in
Fig.4.18a the maximum APS is generated at the top surface and decreases along
the axial direction of the mesh. This is similar to the case of bending, so we added

59

Chapter 4. Results

(a) Shows the APS distribution for L =
50mm.

(b) Shows the APS distribution for L =
10mm.

Figure 4.18: Shows the APS distribution for two different lengths for an axial force
of 106.2kN. The strain increment was set to 1.0e−4%.

Dirichlet conditions on the curved sides, which generated the APS distribution in
Fig.4.19.

Figure 4.19: Shows the APS distribution with Dirichlet conditions on all the surfaces.
The input parameter were axial force 106.2.0kN, strain increment of 1.0e−4% and
mesh length of 50mm.

We can see that the APS distribution in Fig.4.19 is constant in the axial direction.
However, the maximum APS value is larger than for smaller lengths. This was due
to approximation of the cross sectional, which was 176.55mm2. So by performing
the corrections, we obtain that the maximum APS value is 0.0740%, similar to the
corrected values in Tab.4.3.
The reason for the decrease of APS along the axial direction is of the length between
the Dirichlet boundaries. The increased length will generate more nodes in the axial

60

Chapter 4. Results

direction, so that the Dirichlet boundaries do not enforce the axial displacement
throughout the mesh.

4.5.3 Internal Pressure

The elastic radial displacement causes for unwanted behaviour in the plastic region.
So looking at the length dependence of the APS value will not be useful. However,
it can be beneficial to look at the difference in radial stress distribution.

(a) Shows the radial stress distribution
for L = 50mm.

(b) Shows the radial stress distribution
for L = 10mm.

Figure 4.20: Shows radial stress distribution for two different lengths with an internal
pressure of 220MPa. The strain increment was set to 1.0e−5%.

In both Fig.4.20b and Fig.4.20a, we can see that stress values are highest close to the
x and y axis. We also see a significant increase in the maximum radial stress, which
means that using the Eq.3.15 is not preferred indicator of the internal pressure for
any lengths.

4.6 Deformation Invariance

The implementation is based on decomposing the combined stress into two sepa-
rate deformations of bending and axial tension. Since there are no restrictions to
the order of the decomposition, we would expect an invariance of the deformation
order. So to determine if the decomposition is valid, we will investigate if the order
is invariant. We will do this by comparing the results from different combinations
of deformation order.
We will look at a sequence of three deformation steps, which include two bend-
ing deformations and one axial tension deformation. The bending deformations
are bending and unbending with input κx = 1.0m−1. We set the input for axial
tension to 10kN. The explicit deformation inputs are given in Tab.B.1, and the
corresponding results are given in Tab.4.11.

61

Chapter 4. Results

Table 4.11: The APS produced for the deformation steps seen in Tab.B.1, with
∆ε = 1.0e−1%,ρ = 3 nodes/mm3 and l = 10 faces/mm.

(a) Shows the produced
APS for the deformation
steps given in Tab.B.1a.

Step APS [%]
1 0.941
2 1.573
3 1.614

(b) Shows the produced
APS for the deformation
steps given in Tab.B.1b.

Step APS [%]
1 0.000
2 0.945
3 1.581

(c) Shows the produced
APS for the deformation
steps given in Tab.B.1c.

Step APS [%]
1 0.942
2 0.991
3 1.651

The final APS value results in Tab.4.11a, Tab.4.11b and Tab.4.11c do not coincide.
This indicates that the order is not invariant.
The different APS values are caused by applying an axial force on different stress
states. In Tab.4.11b, the axial force on the initial tube. The initial stress state is
zero, thus the axial force will not generate any APS. While in Tab.4.11a the stress
state on the on the sides tube is on the yield surface and therefore will generate
APS.
The fact that the deformation is variant to the order coincides with large deformation
theory. Which states that the plastic deformation is dependent on the order, see [6].

4.7 Dynamic Mesh

So far we have considered the results by using a static mesh, making it possible to
approximate the results analytically. However, a static mesh do not reassemble real
case of deformation, where the mesh changes infinitesimal.
Therefore we will consider a dynamic mesh, where the mesh is moved incrementally.
We will compare the difference in the results for bending and axial tension. However,
the implementation of internal pressure is based on static Dirichlet conditions and
on a static mesh.
The static solutions will be marked with a subscript s and the dynamic solutions
with subscript d. We set the strain increment to 1.0e−4%, and selected ρ = 3
nodes/mm3 and l = 10 faces/mm.

4.7.1 Bending

First, we will look at the difference between static and dynamic APS values for
bending. The results were produced with different values of κy and are shown in
Tab.4.12.
We can see that for increased curvature, the difference between static and dynamic
APS values increases. However, the relative difference will remain small, so the
difference can be neglected.

62

Chapter 4. Results

Table 4.12: Shows the APS value for dynamic and static mesh, for different values of
axial force and strain increment 1.0e−4%.The analytical approximations are marked
with subscript a and listed for reference.

κy m−1 APSs [%] APSd [%] ∆APS [%] APSa [%]
0.3 0.072 0.073 0.001 0.075
0.5 0.322 0.321 0.001 0.325
1.0 0.943 0.958 0.015 0.950
2.0 2.182 2.201 0.019 2.200

4.7.2 Axial Tension

We will now investigate the difference for axial tension, which produced the results
seen in Tab.4.13.

Table 4.13: Shows the APS value for dynamic and static mesh, for different values
of axial force. The input of strain increment was set to 1.0e−4% and ρ = 3 nodes/mm3

and l = 10 faces/mm. The analytical approximations are marked with subscript a and
listed for reference.

Axial force [kN] APSs [%] APSd [%] ∆APS [%] Aa [%]
106.2 0.080 0.476 0.396 0.096
106.4 0.193 0.766 0.573 0.210
106.6 0.306 1.058 0.752 0.323

We observe that the difference between static and dynamic in Tab.4.13 is significant.
And the reason is due to incremental movement of the mesh.
The axial force will generate an axial displacement, but the continuity condition
require that the volume remain constant. Therefore we will have displacements in
other directions, and as the height increases, the cross-sectional area will decrease.
We have seen the effects due to small changes of the cross-sectional area, which
cause the APS value to increase.
The Poisson’s ratio of 0.3 will give the material some compressibility but only in
the elastic region. Thus the decrease in the area of the cross section is mostly an
effect that occurs when the tube is fully plastic. So the difference is small for partial
plastic tubes.
This can be seen in Fig.4.21, which shows the final APS distribution after the
three deformation steps defined in Tab.B.1a. We set the mesh is to be updated
incrementally and set the strain increment to 1.0e−4%. We see that the maximum
value in the APS distribution in Fig.4.21 is 1.60 %. So the maximum APS produced
with dynamic mesh is lower than for a static mesh, but the relative error is only
0.8%.

63

Chapter 4. Results

Figure 4.21: Shows relative error between the values in Tab.4.10 and the analytical
approximation of APS value 0.097%. The input parameters are given in Tab.B.1a
and strain increment was set to 1.0e−4%.

4.8 Computational Time

The computational time will vary for different computers, and we will therefore
investigate the computational time dependence on the number of nodes and the
number of increments. This will be done for linear elements, so that the number
of nodes equals the number of points. The computation was done on a commercial
computer with a Linux operating system, and hardware specifies listed in Tab.4.14.

Table 4.14: Shows the hardware specifies in the computer that computed the results.

Component Value
Memory 7.8 GiB
Processor AMD FX(tm)-8350 Eight-Core Processors x8
OS-type 64-bit

We see that the curves in both Fig.4.22 and Fig.4.23 seem to be linear. However, we
see a small deviation in Fig.4.23. So we will assume that the curve has the shape of
y = axn, and use logarithmic linear regression to determine n. The procedure was
done using python and produced n = 1.21.
The assumption of y = axn is not valid in Fig.4.22, since the curve does not intersect
with origo. This is due to computational time required to construct the mesh. We
used linear regression on Fig.4.22, which had very low error, so we assume that the
relation is linear, i.e. n = 1.

64

Chapter 4. Results

Figure 4.22: Shows the CPU time for various numbers of increments, with the
number of nodes at 1000.

Figure 4.23: Shows the CPU time for various numbers of nodes, with the number
of increments at 1000.

65

Chapter 4. Results

4.9 Default Parameters

We have seen how the results are affected by different parameters and we will now
recommend some default parameters.
The variation of length caused large deviations in the APS values, but this was
solved by adding additional Dirichlet conditions on the curved surfaces. Thus we
will recommend a length of 2.0mm, since it will give less computation time.
In case of bending we have seen that the generation of APS is dependent on the
nodal density. The relation between damping and l makes it possible to decrease
the resolution and still obtain a converged result. The mesh also affected the defor-
mation of axial tension through the approximation of the cross-sectional area, which
resulted in greater generation of APS. So we set the number of faces to 250 and the
resolution to 30. This will correspond to ρ = 3 nodes/mm3 and l = 10 faces/mm with
the geometrical dimensions given in Tab.4.1.
The variation of the strain increment caused the closest-point projection convergence
failure, so that we obtained an incorrect value of the plastic multiplier. This had
minor effects concerning bending, but for axial tension it gave a large discrepancy in
the APS values. It was further shown that the relative error had a linear relation to
the strain increment. Therefore we will recommend the strain increment 1.0e−4%,
which would cause minor deviation and reasonable computation time.
We have seen that dynamic mesh had a large effect on the generation of plastic strain
for axial tension. This is due to the decrease in the cross-sectional area caused by
the continuity condition. However, this effect is mostly present when the tube is
fully plastic, so the effects are minor for partially elastic tubes. Thus the option
gives minor changes , but it is more realistic with a dynamic mesh.
We can not conclude that these parameters will give the optimal results for other
tubes, since we have only considered one tube.

4.10 Comparison with Nexans’ APS Program

We will in this section compare the results with Nexans’ current APS program. The
program is not based on the finite element method, but uses a piecewise stress-strain
relation. We will only compare the results, since the implementation is confidential.
The comparison is seen in Tab.4.15 and is done for a static mesh and with the
recommended parameters.
In the table we see that the relative error is less than 1.0% for all the different
sequences. We can therefore conclude that the results coincide.

66

Chapter 4. Results

T
ab

le
4.

15
:

S
h
ow

s
th

e
in

p
u
t

p
ar

am
et

er
s

w
it

h
th

e
av

ai
la

b
le

op
ti

on
an

d
th

e
fu

n
ct

io
n
al

it
y.

D
ef

or
m

at
io

n
S
te

p
s

D
ef

or
m

at
io

n
s

in
S
e-

q
u
en

ce
A

P
S

co
m

p
u
te

d
b
y

N
ex

-
an

s’
A

P
S

p
ro

gr
am

[%
]

A
P

S
co

m
p
u
te

d
b
y

th
e

p
ro

gr
am

of
th

is
th

es
is

[%
]

R
el

at
iv

e
E

rr
or

[%
]

T
ab

.B
.2

B
en

d
in

g
4.

06
9

4.
06

6
0.

07
T

ab
.B

.3
B

en
d
in

g
6.

54
5

6.
55

7
0.

2
T

ab
.B

.4
B

en
d
in

g,
ax

ia
l

te
n
si

on
5.

58
2

5.
56

0
0.

4
T

ab
.B

.1
a

B
en

d
in

g,
ax

ia
l

te
n
si

on
1.

62
4

1.
61

4
0.

6
T

ab
.B

.1
b

B
en

d
in

g,
ax

ia
l

te
n
si

on
1.

58
3

1.
58

1
0.

1
T

ab
.B

.1
c

B
en

d
in

g,
ax

ia
l

te
n
si

on
1.

66
6

1.
65

1
0.

9

67

Chapter 5

Conclusion

We have looked at the results produced by the APS program with the deformations
of axial tension, bending and internal pressure. The results were computed on a
umbilical tube with the general parameters given in Tab.4.1, while the construction
of the mesh and strain increments varied. We used linear Lagrange as elements in
the finite element method.
The construction of the mesh involves randomization, which required that we inves-
tigated the consistency of the computed results. We observed small differences in
the results, but the coefficient of variation was less than 1.0%, thus we concluded
that the results were consistent.
The results converged with higher nodal density for the different deformations, but
for bending, the convergence had a shape of a damped oscillation. Therefore we
looked at the convergence of quadratic elements, which indicated that the oscilla-
tions were due to the use of linear Lagrange elements.
In the case of axial tension, we observed that lower values of l generate more APS.
This was caused by the approximation of the cross-sectional area, and the corrected
results gave equal values.
We have seen how the variation of the strain increment effects the generation of
plastic strain for the different deformations. The effect on the axial tension proved
to be most significant, due to the convergence failure in the closest-point projection.
This failure causes the stress not to be mapped onto the yield surface, which sub-
sequently causes the while-loop to end prematurely. We observed that the strain
increment of 1.0e−4% did not cause convergence failure.
In the case of internal pressure we have seen that the radial stress distribution was
not uniform, which is not in accordance with the presented theory. Therefore we
can conclude that the implementation for internal pressure needs to be improved.
We have seen that an incremental moving mesh affected the generation of APS due
to a decrease in the cross-sectional area. This effect becomes more apparent for a
large axial force and a tube that is fully plastic.
In the implementation we decomposed the combination of axial tension and bending
into two separate processes. There was no restriction to the order of the decompo-
sition, so we assumed that the order was invariant. This assumption was tested by

68

Chapter 5. Conclusion

looking at the results for different order combinations of axial tension and bending.
The computed results did not coincide, thus proved that the assumption was invalid.
We used the observed results to recommend some default parameters to the program.
In the recommendations the computation time became a factor, and therefore we
looked at the computation time dependence on the number of nodes and increments.
The dependence on the number of increments was linear,while the dependence on
the number of nodes had the form of y = axn with n = 1.21. This resulted in the
recommendation given in section 4.9.
The results for different deformation sequences, containing axial tension and bend-
ing, was compared with Nexans’ current APS program. There were some small
deviations in the results, but the relative error was less than 1.0 %.

69

Chapter 6

Future work

We concluded that the implementation of the internal pressure needs improvement.
The implementation should use Neumann conditions, see [8], but the focus should
be on implementing a uniform radial stress distribution. This may require the use of
other element than linear Lagrange, so a further understanding of the finite element
method may be required, see [8].
The APS-program generates a significant amount of output, and assessing each de-
formation step individually can be time consuming. So the APS program should
generate a report based on the most significant output.
The implementation of the return mapping algorithm is based on a closest-point
projection, which has problems converging for large strain increments. This re-
sults in longer computation due to increased number of increments. Therefore the
implementation of a globally convergent closest-point projection algorithm can de-
crease the number of increments and subsequently the computation time. Since
the convergence issue is a well documented problem, there are algorithms for global
convergence, see [2].
We implemented a simple plastic model, so that the APS values could be analytically
approximated. This meant that we could asses the computed results. However, the
model may not correspond to experimental results. Therefore a validation based on
experimental results is preferred. This may require the implementation of another
plastic model, if the results do not correspond with the experimental results.
The implementation did not include the presence of back-stress and this can be
implemented following [9].
The input of resolution and faces can be transformed into the input of nodal density
and linear approximation quality. This requires that we look at the convergence of
tubes with different sizes.

70

References

[1] F. Armero and A. Perez-Foguet. On the formulation of closest-point projection
algorithms in elastoplasticity. part i: The variational structure. International
Journal for Numerical Methods in Engineering, 53(2), 2002.

[2] F. Armero and A. Perez-Foguet. On the formulation of closest-point projection
algorithms in elastoplasticity. part ii: Globally convergent schemes. Interna-
tional Journal for Numerical Methods in Engineering, 53(2), 2002.

[3] A. Henderson. A Parallel Visualization Application. Kitware Inc, 2007.

[4] M. Jirasek and Z. P. Bazant. Inelastic Analysis of Structures, chapter 20. John
Wiley & Sons, 2002.

[5] A. Logg, K.-A. Mardal, G. N. Wells, et al. Automated Solution of Differential
Equations by the Finite Element Method. Springer, 2012.

[6] J. Lubliner. Plasticity Theory. Dover Publicatins Inc, 2008.

[7] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University
Press, New York, NY, USA, 3 edition, 2007.

[8] A. Quarteroni. Numerical models for Differential Problems. Springer-verlag
Italia, 2008.

[9] J. C. Simo and R. L. Taylor. A return mapping algorithm for plane stress
elastoplasticity. International Journal for Numerical Methods in Engineering,
22(3):649–670, March 1986.

[10] L. M. Valnes. Stress and Strain in Elastic Tubes with the Finite Element Method.
Project Thesis, NTNU, 2013.

71

Appendices

72

Appendix A

Flow Chart

73

Appendix A. Flow Chart

GUI, run

Advanced
data

General
data

Step data

Geometrical
data

Material
data

SubDomainsMesh

Boundaries

FunctionSpaces

Weak
Formulation

Incremental
Variational

Problem

Expressions

Functions

Dirichlet
Conditions

Plastic
model

Strain
Projection

Return
Mappping

Closest-
Point

Projection

Update

Step
Finished?

DataHandler

Any
Steps?

Output

No

Yes

Point Values

Max Values

Yes

No

If Yes: store values

Figure A.1: Shows a flowchart of the APS program, red blocks represent FEniCS
classes and functions. The interaction between FEniCS functions and classes are
more complicated than what is shown.

74

Appendix B

Deformation Steps

Table B.1: Shows the input for deformation steps related to the section Order
Invariance

(a) Shows the inputs for the first order of deformation steps.

κy [m−1] κx [m−1] Internal Pressure [MPa] Axial Force [kN]
1.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 10.0

(b) Shows the inputs for the second order of deformation steps.

κy [m−1] κx [m−1] Internal Pressure [MPa] Axial Force [kN]
0.0 0.0 0.0 10.0
1.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

(c) Shows the inputs for the third order of deformation steps.

κy [m−1] κx [m−1] Internal Pressure [MPa] Axial Force [kN]
1.0 0.0 0.0 0.0
1.0 0.0 0.0 10.0
0.0 0.0 0.0 0.0

75

Appendix B. Deformation Steps

Table B.2: Shows the specific inputs for a deformation sequence.

κy [m−1] κx [m−1] Internal Pressure [MPa] Axial Force [kN]
0.0 0.0 0.0 0.0
1.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
1.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
1.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

Table B.3: Shows the specific inputs for a deformation sequence.

κy [m−1] κx [m−1] Internal Pressure [MPa] Axial Force [kN]
0.0 0.0 0.0 0.0
0.5 0.0 0.0 0.0
1.0 0.0 0.0 0.0
1.5 0.0 0.0 0.0
2.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
-0.5 0.0 0.0 0.0
-1.0 0.0 0.0 0.0
-1.5 0.0 0.0 0.0
-2.0 0.0 0.0 0.0

Table B.4: Shows the specific inputs for a deformation sequence.

κy [m−1] κx [m−1] Internal Pressure [MPa] Axial Force [kN]
1.0 0.0 0.0 0.0
1.0 1.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 -1.0 0.0 0.0
-1.0 -1.0 0.0 0.0
-1.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 20.0

76

Appendix C

Input Overview

77

Appendix C. Input Overview

Table C.1: Shows the input parameters with the available option and the function-
ality.

Name Options Location Function
Material Name String Main Frame Stores the material name for

later use.
Young Modulus Float Main Frame Sets the Young Modulus in

the computation.
Work-Hardening
Modulus

Float Main Frame Sets the work-hardening
modulus in the computation

SMYS (Yield
Strength)

Float Main Frame Sets the yield strength in the
computation

Poission’s ratio 0.0 -0.5 Main Frame Sets the Poisson’s ratios in
the computation.

Outer Diameter Float Main Frame Sets the outer geometrical
values of the mesh

Wall Thickness Float Main Frame Sets the wall thickness in the
computation.

Base Float Adv. Frame Set the lower z-position of
the tube in a Cartesian co-
ordinate system.

Length Float Adv. Frame Sets the length of the tube
slice.

Facets Integer Adv. Frame Used in the construction of
the mesh

Resolution Integer Adv. Frame Sets the Young Modulus in
the computation.

Strain Increment float Adv. Frame Sets the strain increment in
the computation.

Quadrature 1 or 2 Adv. Frame The use of linear of
quadratic elements.

Debug True/False Adv. Frame Allows for additional data
during the computation.

Update of Mesh Static or
Increment

Adv. Frame Specifies if the nodes are
move based on the incre-
mental displacements.

End Conditions Closed or
Open

Adv. Frame Specific if the tube is closed-
ended or open-ended for the
internal pressure.

78

Appendix D

Code

Appendix D.A Graphic User Interface

import wx as wx
from wx . l i b . mixins . l i s t c t r l import TextEditMixin
import xml . e t r e e . cElementTree as ET

class CustomApp(wx . App) :
def i n i t (s e l f) :

wx . App . i n i t (s e l f)
s e l f . s t ep s=None

def SetInput (s e l f , Steps , Values) :
s e l f . s e t t i n g s = d i c t (s e l f . s e t t i n g s . i tems () +Values .

i tems ())
s e l f . s t ep s = Steps

def SetAdvanced (s e l f , array) :
s e l f . s e t t i n g s=array

class AdvancedFrame (wx . Frame) :
def i n i t (s e l f , parent) :

wx . Frame . i n i t (s e l f , parent)
vbox=wx . BoxSizer (wx .VERTICAL)
panel = wx . Panel (s e l f)
s e l f . boxes =[CustomBox(panel , d e f a u l t=” 2 .0 ” , l a b e l

=”Length (mm) ”) ,
CustomBox(panel , d e f a u l t=” 0 .0 ” , l a b e l

=”Base”) ,
CustomBox(panel , d e f a u l t=” 1 .0 e−6” ,

l a b e l=” Increment o f s t r a i n ”) ,

79

Appendix D. Code

CustomBox(panel , d e f a u l t=” Fal se ” ,
l a b e l=”Debug” , c h o i c e s =[”True” , ”
Fa l se ”]) ,

CustomBox(panel , d e f a u l t=”250” , l a b e l
=” Faces ”) ,

CustomBox(panel , d e f a u l t=”30” , l a b e l=
” Reso lut ion ”) ,

CustomBox(panel , d e f a u l t=”1” , l a b e l=”
Quadrature” , c h o i c e s =[”1” , ”2”]) ,

CustomBox(panel , d e f a u l t=” S t a t i c ” ,
l a b e l=”Update o f Mesh” , c h o i c e s =[”
Increment ” , ” S t a t i c ”]) ,

CustomBox(panel , d e f a u l t=” Closed ” ,
l a b e l=”End Condit ion ” , c h o i c e s =[”
Open” , ” Closed ”])]

btn=wx . Button (panel , 100 , ”Ok” , s i z e =(90 ,30))
s e l f . Bind (wx .EVT BUTTON, s e l f . OnQuit , id =100)
d f l=wx . Button (panel , 9 9 , ” Reset ” , s i z e =(90 ,30))
s e l f . Bind (wx .EVT BUTTON, s e l f . OnDefault , id =99)
vbox . AddSpacer ((−1 ,20))

for i in s e l f . boxes :
vbox . Add(i , 1 ,wx .ALL |wx .EXPAND|wx .CENTER, 5)

hbox=wx . BoxSizer (wx .HORIZONTAL)
hbox . Add(d f l , 0 ,wx .ALIGN RIGHT |wx .ALL, 1 0)
hbox . Add(btn , 0 ,wx .ALIGN RIGHT |wx .ALL, 1 0)

vbox . Add(hbox , 0 ,wx .ALIGN RIGHT |wx .ALL, 1 0)
vbox . F i t (s e l f)
panel . S e t S i z e r (vbox)

s e l f . Center ()
s e l f . parent=parent

def OnQuit (s e l f , event) :
i f s e l f . SetValues ()==True :

s e l f . parent . adv frame=None
s e l f . Close ()

def OnDefault (s e l f , event) :
[i . Se tDe fau l t () for i in s e l f . boxes]

80

Appendix D. Code

def GetValues (s e l f) :
return { i . GetLabel () . s p l i t () [0] : i . GetValue () for

i in s e l f . boxes}

def SetValues (s e l f) :
try :

wx . GetApp () . SetAdvanced (s e l f . GetValues ())
return True

except :
wx . MessageBox (” Please i n s e r t c o r r e c t input

va lues ” , ” I n c o r r e c t Values ” ,wx .OK)
return False

def SetDe fau l t s (s e l f) :
wx . GetApp () . s e t t i n g s=s e l f . GetValues ()
s e l f . Close ()

class CustomBox(wx . BoxSizer) :
def i n i t (s e l f , panel , d e f a u l t=”0” , c h o i c e s =[] ,∗ args

,∗∗ kwargs) :
super (CustomBox , s e l f) . i n i t (wx .HORIZONTAL)
i f not c h o i c e s :

s e l f . va lue=wx . TextCtrl (panel , va lue=d e f a u l t)
else :

s e l f . va lue=wx . ComboBox(panel , va lue=de fau l t ,
c h o i c e s=c h o i c e s)

s e l f . d e f a u l t=d e f a u l t
s e l f . Rform ()

s e l f . AddSpacer ((50 , 30))
s e l f . Add(wx . Stat i cText (panel ,∗ args ,∗∗ kwargs) , 1 , wx

.ALL, 5)
s e l f . AddSpacer ((50 , 30))
s e l f . Add(s e l f . value , 1 , wx .ALL |wx .EXPAND, 5)
s e l f . l a b e l=kwargs . get (” l a b e l ”)

def Rform (s e l f) :
try :

f l o a t (s e l f . d e f a u l t)
s e l f . f l a g=True

except :
s e l f . f l a g=False

81

Appendix D. Code

def SetValue (s e l f , va lue) :
s e l f . va lue . ChangeValue (va lue)

def SetDe fau l t (s e l f) :
try :

s e l f . va lue . ChangeValue (s e l f . d e f a u l t)
except :

s e l f . va lue . SetValue (s e l f . d e f a u l t)
def GetValue (s e l f) :

i f s e l f . f l a g==True :
return f l o a t (s e l f . va lue . GetValue ())

else :
return s t r (s e l f . va lue . GetValue ())

def GetLabel (s e l f) :
return s e l f . l a b e l

class E d i t a b l e L i s t C t r l (wx . L i s tCt r l , TextEditMixin) :
def i n i t (s e l f , parent) :

wx . L i s t C t r l . i n i t (s e l f , parent , −1, s t y l e=wx .
LC REPORT, s i z e =(500 ,−1))

TextEditMixin . i n i t (s e l f)

class U s e r i n t e r f a c e (wx . Frame) :
def i n i t (s e l f , ∗args , ∗∗kwargs) :

super (U s e r i n t e r f a c e , s e l f) . i n i t (∗ args , ∗∗kwargs
)

s e l f . c o n f i g=wx . Config (”APS”)
s e l f . dirname=s e l f . c o n f i g . Read (”Path”)
s e l f . o u t p u t f o l d e r=s t r (s e l f . c o n f i g . Read (”

Output fo lder ”))

s e l f . In i tUI ()

def In i tUI (s e l f) :

Main pnl = wx . Panel (s e l f , −1)
AdvancedFrame (s e l f) . Se tDe fau l t s ()

##
PANEL 1
##

pnl1=wx . Panel (Main pnl ,−1)

82

Appendix D. Code

vbox1=wx . BoxSizer (wx .VERTICAL)
s e l f . boxes =[CustomBox(pnl1 , d e f a u l t=” I n s e r t mate r i a l

name” , l a b e l=’ Mater ia l ’) ,
CustomBox(pnl1 , d e f a u l t=” 200 .0 ” , l a b e l=’

Young Modulus (GPa) ’) ,
CustomBox(pnl1 , d e f a u l t=” 1 .0 ” , l a b e l=’

Work−Hardening Modulus (GPa) ’) ,
CustomBox(pnl1 , d e f a u l t=” 25 .0 ” , l a b e l=’

Outer Diameter (mm) ’) ,
CustomBox(pnl1 , d e f a u l t=” 2 .5 ” , l a b e l=’

Wall Thickness (mm) ’) ,
CustomBox(pnl1 , d e f a u l t=” 0 .3 ” , l a b e l=’

Poisson r a t i o ’) ,
CustomBox(pnl1 , d e f a u l t=”600” , l a b e l=’

SMYS (MPa) ’)]

vbox1 . AddSpacer ((−1 ,20))
[vbox1 . Add(i , 1 ,wx .ALL |wx .EXPAND|wx .CENTER, 5) for i

in s e l f . boxes]
adv=wx . Button (pnl1 , 2 7 , ’ Advanced ’ , s i z e =(90 ,30))
vbox1 . Add(adv , 0 , f l a g=wx .ALIGN RIGHT, border =10)
pnl1 . S e t S i z e r (vbox1)

##
Panel 2
##

pnl2= wx . Panel (Main pnl ,−1)
hbox2=wx . BoxSizer (wx .HORIZONTAL)

vbox2=wx . BoxSizer (wx .VERTICAL)

text=wx . Stat i cText (pnl2 , l a b e l=” S e l e c t output
f o l d e r : ”)

brw=wx . Button (pnl2 , 1 9 , ’ Browser ’ , s i z e =(90 ,30))

s e l f . brw tc=wx . TextCtrl (pnl2 , s i z e =(450 ,−1) , va lue=
s e l f . o u t p u t f o l d e r)

hbox2 . Add(s e l f . brw tc , 0 . 1 , wx .LEFT |wx .EXPAND,
border =10)

hbox2 . Add((20 , −1) ,1 ,wx .EXPAND)

83

Appendix D. Code

hbox2 . Add(brw , 0 , wx .ALIGN RIGHT |wx .EXPAND , border
=10)

vbox2 . Add(text , 1 ,wx .LEFT |wx .ALL |wx .EXPAND)
vbox2 . Add(hbox2)
vbox2 . Add((−1 ,20))

pnl2 . S e t S i z e r (vbox2)
##
PANEL 3
##

hbox = wx . BoxSizer (wx .HORIZONTAL)
pnl3=wx . Panel (Main pnl ,−1)
s e l f . l i s t = E d i t a b l e L i s t C t r l (pnl3)
s e l f . l i s t . InsertColumn (0 , ’Nr . ’ , width=30)
s e l f . l i s t . InsertColumn (1 , ’ Curvature Y (m’+u”\u207B”

+u”\u00B9”+’) ’ , width=130)
s e l f . l i s t . InsertColumn (2 , ’ Curvature X (m’+u”\u207B”

+u”\u00B9”+’) ’ , width=130)
s e l f . l i s t . InsertColumn (3 , ’ Pres sure (MPA) ’ , width

=120)
s e l f . l i s t . InsertColumn (4 , ’ Tension (kN) ’ , width= 90)

hbox . Add(s e l f . l i s t , 1 , f l a g=wx .EXPAND|wx .ALL, border
=50)

btnPanel = wx . Panel (pnl3 , −1)
new = wx . Button (btnPanel , 20 , ’New ’ , s i z e =(90 , 30))
d l t = wx . Button (btnPanel , 21 , ’ De lete ’ , s i z e =(90 ,

30))
c l r = wx . Button (btnPanel , 22 , ’ Clear ’ , s i z e =(90 , 30)

)

vbox = wx . BoxSizer (wx .VERTICAL)
vbox . Add((−1 , 130))
vbox . Add(new , 0 ,wx .TOP, 5)
vbox . Add(dlt , 0 , wx .TOP, 5)
vbox . Add(c l r , 0 , wx .TOP, 5)

vbox . Add((−1 ,150))

84

Appendix D. Code

btnPanel . S e t S i z e r (vbox)

hbox . Add(btnPanel , 0 , f l a g=wx .ALIGN RIGHT |wx .RIGHT |
wx .EXPAND , border= 20)

pnl3 . S e t S i z e r (hbox)

##
PANEL 4
##

pnl4= wx . Panel (Main pnl ,−1)
hbox4=wx . BoxSizer (wx .HORIZONTAL)
save=wx . Button (pnl4 , 2 3 , ’ Save ’ , s i z e =(90 ,30))
load=wx . Button (pnl4 , 2 4 , ’ Load ’ , s i z e =(90 ,30))
run = wx . Button (pnl4 , 25 , ’Run ’ , s i z e =(90 , 30))
c l o s e = wx . Button (pnl4 , 26 , ’ Close ’ , s i z e =(90 , 30))

hbox4 . Add(c l o s e , 0 , f l a g=wx .BOTTOM|wx .ALL, border =10)

hbox4 . Add(save , 0 , f l a g=wx .BOTTOM|wx .ALL, border =10)
hbox4 . Add(load , 0 , f l a g=wx .BOTTOM|wx .ALL, border =10)
hbox4 . Add(run , 0 , f l a g=wx .BOTTOM|wx .ALL, border =10)

pnl4 . S e t S i z e r (hbox4)

##
APPERANCE
##

main vbox=wx . BoxSizer (wx .VERTICAL)

main vbox . Add(pnl1 , f l a g=wx .ALL |wx .EXPAND , border =30)
main vbox . Add(pnl2 , f l a g=wx .ALIGN RIGHT |wx .RIGHT |wx .

EXPAND|wx .ALL, border =10)
main vbox . Add(pnl3 , f l a g= wx .EXPAND, border =30)
main vbox . Add(pnl4 , f l a g=wx .ALIGN RIGHT |wx .BOTTOM,

border =30)

main vbox . Fi t (s e l f)
Main pnl . S e t S i z e r (main vbox)

s e l f . Bind (wx .EVT BUTTON, s e l f . OnBrowser , id =19)

85

Appendix D. Code

s e l f . Bind (wx .EVT BUTTON, s e l f . NewItem , id =20)
s e l f . Bind (wx .EVT BUTTON, s e l f . OnDelete , id =21)
s e l f . Bind (wx .EVT BUTTON, s e l f . OnClear , id =22)
s e l f . Bind (wx .EVT BUTTON, s e l f . OnSave , id =23)
s e l f . Bind (wx .EVT BUTTON, s e l f . OnLoad , id =24)

s e l f . Bind (wx .EVT BUTTON, s e l f .OnRun, id =25)
s e l f . Bind (wx .EVT BUTTON, s e l f . OnClose , id =26)
s e l f . Bind (wx .EVT BUTTON, s e l f . OnAdvanced , id =27)

s e l f . adv frame=None
s e l f . count=0
s e l f . S e t T i t l e (’ Accumulated P l a s t i c S t ra in User

I n t e r f a c e ’)
s e l f . Centre ()
s e l f . Show(True)

##
EVENT FUNCTIONS
##

def OnAdvanced (s e l f , event) :
s e l f . adv frame=AdvancedFrame (s e l f)
s e l f . adv frame . Show ()

def NewItem(s e l f , event) :
s e l f . count+=1
s e l f . l i s t . Append ([i n t (s e l f . count) , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0])

def OnDelete (s e l f , event) :
i f s e l f . count>0:

s e l f . count−=1
s e l f . l i s t . DeleteItem (s e l f . count)

def OnClear (s e l f , event) :
s e l f . count=0
s e l f . l i s t . De l e t eAl l I t ems ()

def OnClose (s e l f , e) :
i f s e l f . adv frame !=None :

s e l f . adv frame . Close ()
s e l f . Destroy ()

86

Appendix D. Code

def OnRun(s e l f , e) :
i f s e l f . SetData () :

i f s e l f . adv frame !=None :
s e l f . adv frame . Close ()

s e l f . Destroy ()

def OnBrowser (s e l f , event) :
d i a l o g = wx . DirDia log (None , ”Choose a d i r e c t o r y : ” ,

s t y l e=wx .DD DEFAULT STYLE | wx .DD NEW DIR BUTTON)
i f d i a l o g . ShowModal () == wx . ID OK :

s e l f . o u t p u t f o l d e r=s t r (d i a l o g . GetPath ())
s e l f . c o n f i g . DeleteGroup (” Output fo lder ”)
s e l f . c o n f i g . Write (” Output fo lder ” , d i a l o g . GetPath

())
s e l f . brw tc . ChangeValue (d i a l o g . GetPath ())

d i a l o g . Destroy ()

def OnLoad(s e l f , event) :
s e l f .LoadXML()

def OnSave (s e l f , event) :
s e l f . WriteXML()

##
Other Functions
##

def SetSteps (s e l f , Steps) :
s e l f . count=0
s e l f . l i s t . De l e t eAl l I t ems ()
for i in Steps :

s e l f . l i s t . Append ([(i [j] , i n t (i [j])) [i n t (j==0)]
for j in range (l en (i))])

s e l f . count=len (Steps)

def SetBoxes (s e l f , array) :
[s e l f . boxes [i] . SetValue (array [i]) for i in range (l en

(s e l f . boxes))]

def SetData (s e l f) :

try :

87

Appendix D. Code

wx . GetApp () . SetInput (s e l f . GetSteps () , s e l f .
GetValues ())

return True

except :
wx . MessageBox (” Please i n s e r t c o r r e c t input

va lues ” , ” I n c o r r e c t Values ” ,wx .OK)
return False

def GetValues (s e l f) :
temp={ i . GetLabel () . s p l i t () [0] : i . GetValue () for i in

s e l f . boxes}
temp [” o u t p u t f o l d e r ”]= s e l f . o u t p u t f o l d e r
return temp

def GetSteps (s e l f) :
return [[f l o a t (s e l f . l i s t . GetItem (itemId=row , c o l=i) .

GetText ()) for i in range (s e l f . l i s t . ColumnCount)
] for row in range (s e l f . count)]

def WriteXML(s e l f) :
d lg=wx . F i l eD ia l og (s e l f , ”Save” , s e l f . dirname , ”” , ”
∗ . xml∗” , wx .SAVE)

i f dlg . ShowModal () == wx . ID OK :
s e l f . dirname=dlg . GetDirectory ()

Data = ET. Element (”Data”)
General = ET. SubElement (Data , ” General ”)
for i in s e l f . boxes :

i n f o = ET. SubElement (General , ”Value”)
i n f o . s e t (i . GetLabel () . s p l i t () [0] , s t r (i .

GetValue ()))

for i in s e l f . GetSteps () :
Step=ET. SubElement (Data , ” Steps ”)
Step . s e t (” Step ” , s t r (i) . r e p l a c e (” , ” , ” ”) .

s t r i p (” [] ”))

t r e e = ET. ElementTree (Data)
t r e e . wr i t e (d lg . GetDirectory ()+”/”+dlg .

GetFilename ())

88

Appendix D. Code

dlg . Destroy ()

def LoadXML(s e l f) :
d lg=wx . F i l eD ia l og (s e l f , ”Load” , s e l f . dirname , ”” , ”
∗ . xml∗” , wx .OPEN)

i f dlg . ShowModal () == wx . ID OK :
doc=ET. parse (d lg . GetDirectory ()+”/”+dlg .

GetFilename ())
s e l f . c o n f i g . DeleteGroup (”Path”)
s e l f . c o n f i g . Write (”Path” , d lg . GetDirectory ())

s e l f . SetSteps ([[f l o a t (j) for j in i . a t t r i b [” Step
”] . s p l i t ()] for i in doc . f i n d a l l (” Steps ”)])

s e l f . SetBoxes ([i . a t t r i b . va lue s () [0] . s t r i p (” [] ”)
for i in doc . f i n d a l l (” . // Value”)])

d lg . Destroy ()

Appendix D.B Run Script

#!/ usr / b in /env python

import APSUI as GUI
from d o l f i n import ∗
import Ca l cu l a t i on s as CAL

def main () :

app= GUI . CustomApp ()
GUI . U s e r i n t e r f a c e (None)
app . MainLoop ()

i f app . s t ep s !=None :

CAL. Ca l cu l a t i on s (app . s e t t i n g s , app . s t ep s)

else :
pass

i f name == ’ ma in ’ :

main ()

89

Appendix D. Code

Appendix D.C Calculation

−∗− coding : u t f−8 −∗−

from d o l f i n import ∗
from SubDomains import ∗
from Plast icMode l import ∗
from ReturnMapping import ∗
import DataHandler as Handler
import u t i l s as u t i l s

def Ca l cu l a t i on s (Se t t ings , Steps) :
s e t l o g l e v e l (20)
debug=bool (S e t t i n g s [”Debug”]==”True”)
d i r e c t o r y=S e t t i n g s [” o u t p u t f o l d e r ”]

update=S e t t i n g s [”Update”]
”””
1 . Assign General parameters
”””
”””
s c a l i n g :

young 1.0 e3
Poisson 1
SMYS 1 MPa auto s c a l e d
Work−hadrening 1.0 e3

”””

o u t e r r a d i=S e t t i n g s [”Outer”] / 2 . 0
i n n e r r a d i=oute r r ad i−S e t t i n g s [”Wall”]
l ength=S e t t i n g s [”Length”]
base=S e t t i n g s [”Base”]
r a t i o= o u t e r r a d i / i n n e r r a d i
Area= np . p i ∗(o u t e r r a d i ∗∗2 − i n n e r r a d i ∗∗2)

nu =S e t t i n g s [” Poisson ”]

”””

90

Appendix D. Code

S e t t i n g a lpha
”””
i f S e t t i n g s [”End”]==” Closed ” :

alpha=1−2∗nu
e l i f S e t t i n g s [”End”]==”Open” :

alpha=−2∗nu
r dep = (1+nu) ∗ ((1 −2∗nu)∗ i n n e r r a d i + o u t e r r a d i ∗∗2/

i n n e r r a d i) − alpha∗nu∗ i n n e r r a d i

p l a s t i c m o d e l=Plast i cMode l (1 . 0 e3∗ S e t t i n g s [”Young”] ,
S e t t i n g s [” Poisson ”] , S e t t i n g s [”SMYS”] , 1 . 0 e3∗ S e t t i n g s [”
Work−Hardening”])

”””
2 . Create Mesh
”””

f a c e s=i n t (S e t t i n g s [” Faces ”])
r e s o l u t i o n=i n t (S e t t i n g s [” Reso lut ion ”])

Inner geo = Cyl inder (Point (0 , 0 , length− base) , Point (0 , 0 ,
base) , i n n e r r a d i , f a c e s)

Outer geo = Cyl inder (Point (0 , 0 , l ength −base) , Point (0 , 0 ,
base) , ou t e r r ad i , f a c e s)

mesh3d= Mesh(Outer geo−Inner geo , r e s o l u t i o n)

i f debug==True :
print ” Reso lut ion : ” , r e s o l u t i o n
print ”Num. c e l l s : ” , mesh3d . num ce l l s ()
print ” Num vert ices : ” , mesh3d . num vert i ces ()
p l o t (mesh3d , i n t e r a c t i v e=True)

”””
3 . Define boundar ies and subdomains
”””
boundar ies=FacetFunction (” s i z e t ” , mesh3d)
boundar ies . s e t a l l (0)
t o l=S e t t i n g s [”Wall”] /2
subdomains=[Top(to l , he ight=length−base) , Bottom (to l , base=

base) , Outer (t o l , o u t e r r a d i=o u t e r r a d i) , Inner (t o l ,
i n n e r r a d i=i n n e r r a d i)]

91

Appendix D. Code

”””
4 . Marking boundar ies wi th subdomains
”””
while any (boundar ies . array ()==0) :

subdomains [3] . mark (boundar ies , 4)
subdomains [2] . mark (boundar ies , 3)
t o l +=0.01
subdomains [2]= Outer (t o l , o u t e r r a d i=o u t e r r a d i)
subdomains [3]= Inner (t o l , i n n e r r a d i=i n n e r r a d i)

t o l =0.01
subdomains [0]=Top(to l , he ight=length−base)
subdomains [1]= Bottom (to l , base=base)
subdomains [0] . mark (boundaries , 1)
subdomains [1] . mark (boundaries , 2)

”””
5 . S p e c i f y the boundary i n t e g r a t i o n in the weak

formu la t ion
”””
ds = Measure (”ds”) [boundar ies]

i f debug==True :
p l o t (boundaries , i n t e r a c t i v e=True)
print 2

”””
6 . Create the FunctionSpaces
”””
quad= i n t (S e t t i n g s [”Quadrature”])
V=VectorFunctionSpace (mesh3d , ”Lagrange” , quad)
Vt=VectorFunctionSpace (mesh3d , ”Lagrange” ,1 ,36)
Vs=VectorFunctionSpace (mesh3d , ”Lagrange” ,1 , 6)
W= FunctionSpace (mesh3d , ”Lagrange” , 1)
U= TensorFunctionSpace (mesh3d , ”Lagrange” ,1)
Vx, Vy, Vz = V. s p l i t ()

”””
7 . Store some a u x i l l a r y v a l u e s f o r easy acces s
”””

92

Appendix D. Code

num points = Vs . dim () /Vs . element () . va lue d imens ion (0)
num nodes= V. dim () /V. element () . va lue d imens ion (0)
print V. element () . va lue d imens ion (0)
print Vs . element () . va lue d imens ion (0)
”””
8 . I n t a l i z e Functions
”””
Cons tangent=Function (Vt)
Cons tangent . vec to r () . s e t l o c a l (np . array (p l a s t i c m o d e l .

r e t u r n l i s t () ∗num points))

S t r e s s=Function (Vs)
S t r e s s . vec to r () [:] = 0 . 0

S t ra in p=Function (Vs)
S t ra in p . vec to r () [:] = 0 . 0

Res idua l=Function (Vs)
Res idua l . vec to r () [:] = 0

APS = Function (W)
APS. vec to r () [:] = 0 . 0

S t ra in=Function (Vs)
S t ra in . vec to r () [:] = 0 . 0

”””
9 . Declear s u r f a c e s normals
”””
normal=FacetNormal (mesh3d)

”””
10. The weak formu la t ion
”””
u=Tria lFunct ion (V)
v=TestFunction (V)

a=inner (u t i l s . eps (v) , dot (u t i l s . tangent (Cons tangent) ,
u t i l s . eps (u)))∗dx

93

Appendix D. Code

L = inner (v , Constant ((0 . 0 , 0 . 0 , 0 . 0)))∗dx

”””
11. Pre−assemble o f p r o j e c t i o n matrix , f o r f a s t e r

p r o j e c t i o n s
”””

M = assemble (inne r (TestFunction (Vs) , u t i l s . eps (
Tr ia lFunct ion (V)))∗dx)

M. compress ()
P= assemble (inne r (Tr ia lFunct ion (Vs) , TestFunction (Vs))∗

dx)
ones = Function (Vs)
ones . vec to r () [:] = 1
P diag = P ∗ ones . vec to r ()
P diag . s e t l o c a l (1 . 0/ P diag . array ())

”””
12. I n i a t e Return−mapping and DataHandler
”””
RM=ReturnMapping (10000)
data=Handler . Data (num points , d i r e c t o r y)

”””
Saving i n i t i a l parameters
”””
data . StoreGenerea l (Se t t ings , num points , Area , num nodes)
data . StoreSteps (Steps)
data . area approx . append (sum(assemble (inne r (TestFunction (

V) , Constant ((1 , 0 , 0)))∗ds (1))))
data . StoreApproxArea ()
”””
13. S t r a i n i n c r e m e n t s
”””
s t r a i n i n c r e m e n t=S e t t i n g s [” Increment ”]

”””
14. Problem f u n c t i o n
”””
du = Function (V)
u = Function (V)
dp=Function (V)
p=Function (V)

94

Appendix D. Code

”””
15. Express ion to be used wi th D i r i c h l e t c o n d i t i o n s
”””

Curvature= Express ion (”−x [2] ∗ (CurvY∗x [0]+CurvX∗x [1]) ” ,
CurvY=0.0 , CurvX=0.0)

Tension = Express ion (”x [2] ∗ value ” , va lue =0.0)

”””
16. I n i t i a l i z e p r e v i o u s s t a t e v a r i a b l e s
”””

prv curv x =0.0
prv curv y =0.0
p rv t en s i on =0.0
p rv p r e s su r e =0.0
for s tep in Steps :

”””
A l l f l o a t :
Step number = i [0]
Curvature y = i [1]
Curvature x = i [2]
I n t e r n a l Pressure = i [3]
Axia l Tension = i [4]

”””
num step=i n t (s tep [0])

data . New step ()

print (s tep [4]− prv t en s i on)
i f (s tep [4]− prv t en s i on) !=0:

”””
I n i t i l i z e based on l o a d i n g or un loading
”””
i f (s tep [4]− prv t en s i on) >0:

Tension . va lue=s t r a i n i n c r e m e n t
statement=u t i l s . Loading

e l i f (s tep [4]− prv t en s i on) < 0 :
Tension . va lue=−s t r a i n i n c r e m e n t

95

Appendix D. Code

statement=u t i l s . Unloading

”””
D i r i c h l e t c o n d i t i o n s on boundary
”””
BCS=[]
BCS. append (Dir ichletBC (Vz , Tension , boundaries , 2))
BCS. append (Dir ichletBC (Vz , Tension , boundaries , 1))

f o r c e=sum(assemble (inne r (TestFunction (V) , dot (
normal , u t i l s . s igma 3 (S t r e s s)))∗ds (1))) ∗1 .5

while statement (1 . 00 e3∗ s tep [4] , f o r c e) :
”””
new i t e r a t i o n
”””
data . New i te ra t i on ()
”””
Assembling the problem
”””
A=assemble (a)
b=assemble (L)

”””
Apply D i r i c h l e t c o n d i t i o n s
”””
for i in BCS:

i . apply (A, b)
”””
S o l v i n g problem
”””
s o l v e (A, du . vec to r () ,b , ” r i chardson ” , ” so r ”)

u . vec to r () [:] += du . vec to r ()
grad eps=M∗u . vec to r ()
S t ra in . vec to r () [:] = grad eps ∗ P diag

i f update==” Increment ” :
mesh3d . move(du)

for point in range (num points) :
d o f s s =[po int ∗6 + j for j in range (6)]
d o f s t =[po int∗36+ j for j in range (36)]

96

Appendix D. Code

e p s i l o n =np . matrix (S t ra in . vec to r
() [d o f s s]) .T

e p s i l o n p =np . matrix (S t ra in p .
vec to r () [d o f s s]) .T

t r i a l s i g m a =p l a s t i c m o d e l .
e l a s t i c t a n g e n t ∗(ep s i l on−e p s i l o n p)

tangent , data . e p [po int]=RM. automatic (
p l a s t i c mode l , t r i a l s i g m a , ep s i l on p ,
data . e p [po int])

data . MaxValues (t r i a l s i g m a , eps i l on ,
e p s i l o n p)

”””
Updating f u n c t i o n s
”””

Cons tangent . vec to r () [d o f s t]=np . asar ray
(tangent) . reshape (−1)

S t r e s s . vec to r () [d o f s s]=np . asar ray (
t r i a l s i g m a) . reshape (−1)

S t ra in p . vec to r () [d o f s s]=np . asar ray (
e p s i l o n p) . reshape (−1)

data . AddValues ()

print max(data . e p)

f x =sum(assemble (inne r (TestFunction (V) , dot (
normal , u t i l s . s igma 1 (S t r e s s)))∗ds (1)))
∗1 .5

f y= sum(assemble (inne r (TestFunction (V) , dot (
normal , u t i l s . s igma 2 (S t r e s s)))∗ds (1)))
∗1 .5

f z= sum(assemble (inne r (TestFunction (V) , dot (
normal , u t i l s . s igma 3 (S t r e s s)))∗ds (1)))
∗1 .5

f t o t = (f x ∗∗2+ f y ∗∗2+ f z ∗∗2) ∗∗0.5

97

Appendix D. Code

print max(data . e p) , f t o t , f z
f o r c e=f z

p rv t en s i on =1.0 e3∗ s tep [4]

”””

S e t t i n g curva ture
”””

t o t a l c u r v y=step [1]− prv curv y
t o t a l c u r v x=step [2]− prv curv x
prv curv x=step [2]
prv curv y=step [1]

i f not (t o t a l c u r v x==0 and t o t a l c u r v y ==0) :

”””
S c a l i n g and s e t t i n g increment
”””
max i t e ra t i on =(1.0 e−3)∗(t o t a l c u r v x ∗∗2 +

t o t a l c u r v y ∗∗2) ∗∗0.5/ s t r a i n i n c r e m e n t
increment curv x = t o t a l c u r v x / max i t e ra t i on
increment curv y = t o t a l c u r v y / max i t e ra t i on
Curvature . CurvY=(1.0 e−3)∗ inc rement curv y
Curvature . CurvX=(1.0 e−3)∗ inc rement curv x

”””
D i r i c h l e t on top and bottom markes 1 and 2 , in

subdomain 0 and 1
”””
BCS = []

BCS. append (Dir ichletBC (Vz , Curvature , boundaries
, 1))

BCS. append (Dir ichletBC (Vz , Curvature , boundaries
, 2))

98

Appendix D. Code

i t e r a t i o n =0

while i t e r a t i o n < max i t e ra t i on :
”””
new i t e r a t i o n
”””
data . New i te ra t i on ()
print i t e r a t i o n
i t e r a t i o n+=1

”””
Assembling the problem
”””
A=assemble (a)
b=assemble (L)

”””
Apply D i r i c h l e t c o n d i t i o n s
”””
for bcs in BCS:

bcs . apply (A, b)

”””
S o l v i n g problem
”””
s o l v e (A, du . vec to r () ,b , ” r i chardson ” , ” so r ”)

u . vec to r () [:] += du . vec to r ()

grad eps=M∗u . vec to r ()
S t ra in . vec to r () [:] = grad eps ∗ P diag
i f update==” Increment ” :

mesh3d . move(du)

for point in range (num points) :

d o f s s =[po int ∗6 + j for j in range (6)]
d o f s t =[po int∗36+ j for j in range (36)]

99

Appendix D. Code

e p s i l o n =np . matrix (S t ra in . vec to r
() [d o f s s]) .T

e p s i l o n p =np . matrix (S t ra in p .
vec to r () [d o f s s]) .T

t r i a l s i g m a =p l a s t i c m o d e l .
e l a s t i c t a n g e n t ∗(ep s i l on−e p s i l o n p)

tangent , data . e p [po int]=RM. automatic (
p l a s t i c mode l , t r i a l s i g m a , ep s i l on p ,
data . e p [po int])

”””
Store max v a l u e s
”””
data . MaxValues (t r i a l s i g m a , eps i l on ,

e p s i l o n p)

”””
Updating f u n c t i o n s
”””
Cons tangent . vec to r () [d o f s t]=np . asar ray

(tangent) . reshape (−1)
S t r e s s . vec to r () [d o f s s]=np . asar ray (

t r i a l s i g m a) . reshape (−1)
S t ra in p . vec to r () [d o f s s]=np . asar ray (

e p s i l o n p) . reshape (−1)

data . AddValues ()

print ”Max APS : ” ,max(data . e p)

i f (s tep [3]− prv p r e s su r e) != 0 . 0 0 :

”””
S e t t i n g Boundary cond i t i ons ,
”””

100

Appendix D. Code

dp . vec to r () [:] = assemble (inne r (TestFunction (V) ,−
normal)∗ds (4))

dp=u t i l s . MakeUnitvector (dp)

BCS=[]

i f (s tep [3]− prv p r e s su r e) > 0 . 0 0 :
Tension . va lue=alpha∗ s t r a i n i n c r e m e n t
BCS. append (Dir ichletBC (V, Constant (r dep ∗

s t r a i n i n c r e m e n t)∗dp , boundaries , 4))
statement=u t i l s . Loading

e l i f (s tep [3]− prv p r e s su r e) < 0 . 0 0 :
Tension . va lue=alpha∗(− s t r a i n i n c r e m e n t)
BCS. append (Dir ichletBC (V, Constant (r dep∗(−

s t r a i n i n c r e m e n t))∗dp , boundaries , 4))
statement=u t i l s . Unloading

BCS. append (Dir ichletBC (Vz , Tension , boundaries , 1))
BCS. append (Dir ichletBC (Vz , Tension , boundaries , 2))
BCS. append (Dir ichletBC (Vz , Tension , boundaries , 4))

p . vec to r () [:] = assemble (inner (TestFunction (V) , dot
(normal , u t i l s . s i gma ax i s (S t r e s s)))∗ds (4))

Area 4=sum(assemble (inne r (TestFunction (V) ,
Constant ((1 , 0 , 0)))∗ds (4)))

p r e s su r e = u t i l s . SumVector (p) / Area 4

while statement (s tep [3] , p r e s su r e) :
”””
new i t e r a t i o n
”””
data . New i te ra t i on ()
”””
Assembling the problem
”””

A=assemble (a)
b=assemble (L)

101

Appendix D. Code

”””
Apply D i r i c h l e t c o n d i t i o n s
”””
for bcs in BCS:

bcs . apply (A, b)
”””
S o l v i n g problem
”””
s o l v e (A, du . vec to r () ,b , ” r i chardson ” , ” so r ”)

u . vec to r () [:] += du . vec to r ()
grad eps=M∗u . vec to r ()
S t ra in . vec to r () [:] = grad eps ∗ P diag

i f update==” Increment ” :
mesh3d . move(du)

for point in range (num points) :

d o f s s =[po int ∗6 + j for j in range (6)]
d o f s t =[po int∗36+ j for j in range (36)]

e p s i l o n = np . matrix (S t ra in . vec to r () [
d o f s s]) .T

e p s i l o n p = np . matrix (S t ra in p . vec to r
() [d o f s s]) .T

t r i a l s i g m a = p l a s t i c m o d e l .
e l a s t i c t a n g e n t ∗(ep s i l on−e p s i l o n p)

tangent , data . e p [po int]=RM. automatic (
p l a s t i c mode l , t r i a l s i g m a , ep s i l on p ,
data . e p [po int])

”””
Store max v a l u e s
”””
data . MaxValues (t r i a l s i g m a , eps i l on ,

e p s i l o n p)

”””
Updating f u n c t i o n s
”””
Cons tangent . vec to r () [d o f s t]=np . asar ray

(tangent) . reshape (−1)

102

Appendix D. Code

S t r e s s . vec to r () [d o f s s]=np . asar ray (
t r i a l s i g m a) . reshape (−1)

S t ra in p . vec to r () [d o f s s]=np . asar ray (
e p s i l o n p) . reshape (−1)

p . vec to r () [:] = assemble (inner (TestFunction (V)
, dot (normal , u t i l s . s i gma ax i s (S t r e s s)))∗ds
(4))

Area 4=sum(assemble (inne r (TestFunction (V) ,
Constant ((1 , 0 , 0)))∗ds (4)))

p r e s su r e = u t i l s . SumVector (p) / Area 4

data . AddValues ()

print ” Pressure : ” , p r e s su r e
print ”Max APS : ” ,max(data . e p)
print ”Max S t r e s s : ” , data . max st re s s

p rv p r e s su r e=step [3]

data .AddAPS()
APS. vec to r () [:] = np . asar ray (data . e p) . reshape (−1)

”””
Saving output
”””
data . Plot (num step)
data . StoreValues (num step)

f i l e = F i l e (d i r e c t o r y+”/ St ra in ”+s t r (num step)+” . pvd”
)

f i l e << p r o j e c t (s q r t ((2 . 0 / 3 . 0) ∗dot (Stra in , S t ra in)) ,W
)

f i l e = F i l e (d i r e c t o r y+”/ S t r e s s ”+s t r (num step)+” . pvd”
)

f i l e << p r o j e c t (s q r t ((3 . 0 / 2 . 0) ∗dot (St r e s s , S t r e s s)) ,W
)

f i l e = F i l e (d i r e c t o r y+”/APS”+s t r (num step)+” . pvd”)
f i l e << APS
f i l e = F i l e (d i r e c t o r y+”/ Stra inTensor ”+s t r (num step)+

” . pvd”)
f i l e << p r o j e c t (u t i l s . sigma (St ra in) ,U)
f i l e = F i l e (d i r e c t o r y+”/ Stre s sTensor ”+s t r (num step)+

” . pvd”)

103

Appendix D. Code

f i l e << p r o j e c t (u t i l s . sigma (S t r e s s) ,U)
f i l e = F i l e (d i r e c t o r y+”/ r a d i a l S t r e s s ”+s t r (num step)

+” . pvd”)
f i l e << p

data . StoreAPS ()
return True

Appendix D.D Data Handling

import numpy as np
import u t i l s as u t i l s
import matp lo t l i b . pyplot as pyplot

class Data (ob j e c t) :
def i n i t (s e l f , num cel l s , d i r e c t o r y=””) :

s e l f . d i r e c t o r y=d i r e c t o r y
”””
Data hand l ing
”””
s e l f . e p =np . array ([0 . 0 0 for i in range (num ce l l s)])
”””
Re−i n i t every i t e r a t i o n
”””
s e l f . New i te ra t i on ()

”””
Re−i n i t every s t e p
”””
s e l f . New step ()
s e l f . APS values =[]
s e l f . area approx =[]

def New i te ra t i on (s e l f) :
s e l f . max st re s s =0.0
s e l f . max stra in =0.0
s e l f . max stra in p =0.0

s e l f . max sigma=np . matrix ([[0 . 0] for i in range (6)])
s e l f . max eps i lon=np . matrix ([[0 . 0] for i in range (6)

])
s e l f . max eps i lon p=np . matrix ([[0 . 0] for i in range

(6)])

104

Appendix D. Code

pass

def New step (s e l f) :
s e l f . max ar ray s t ra in =[]
s e l f . max a r ray s t r e s s =[]
s e l f . max ar ray s t ra in p =[]
s e l f . max array sigma =[]
s e l f . max ar ray eps i l on =[]
s e l f . max ar ray eps i l on p =[]

pass

def MaxValues (s e l f , s t r e s s , s t r a i n , s t r a i n p) :
temp=u t i l s . e q u i v a l e n t S t r e s s (s t r e s s)
i f temp > s e l f . max st re s s :

s e l f . max st re s s=temp
s e l f . max sigma=s t r e s s
s e l f . max stra in=u t i l s . e q u i v a l e n t S t r a i n (s t r a i n)
s e l f . max eps i lon=s t r a i n
s e l f . max stra in p=u t i l s . e q u i v a l e n t S t r a i n (

s t r a i n p)
s e l f . max eps i lon p=s t r a i n p

pass

def AddAPS(s e l f) :
s e l f . APS values . append (max(s e l f . e p))

def StoreAPS (s e l f) :
np . savetxt (s e l f . d i r e c t o r y+”/APS. txt ” , s e l f . APS values

)

def AddValues (s e l f) :
s e l f . max ar ray s t ra in . append (s e l f . max stra in)
s e l f . max ar ray s t ra in p . append (s e l f . max stra in p)
s e l f . max a r ray s t r e s s . append (s e l f . max st re s s)
s e l f . max array sigma . append (s e l f . max sigma)
s e l f . max ar ray eps i l on . append (s e l f . max eps i lon)
s e l f . max ar ray eps i l on p . append (s e l f . max eps i lon p)
pass

def Plot (s e l f , num step) :

105

Appendix D. Code

pyplot . p l o t (s e l f . max array st ra in , s e l f .
max a r ray s t r e s s)

pyplot . s a v e f i g (s e l f . d i r e c t o r y+”/ S t r e s s S t r a i n ”+s t r (
num step)+” . png”)

pyplot . c l f ()
pyplot . p l o t (s e l f . max array st ra in , s e l f .

max ar ray s t ra in p)
pyplot . s a v e f i g (s e l f . d i r e c t o r y+”/ St ra inpSt ra in ”+s t r (

num step)+” . png”)
pyplot . c l f ()
pass

def StoreValues (s e l f , num step) :
np . savetxt (s e l f . d i r e c t o r y+”/MaxStress ”+s t r (num step)

+” . txt ” , s e l f . max a r ray s t r e s s)
np . savetxt (s e l f . d i r e c t o r y+”/ Maxp las t i cSt ra in ”+s t r (

num step)+” . txt ” , s e l f . max ar ray s t ra in p)
np . savetxt (s e l f . d i r e c t o r y+”/MaxStrain”+s t r (num step)

+” . txt ” , s e l f . max ar ray s t ra in)
np . savetxt (s e l f . d i r e c t o r y+”/ MaxStressTensor ”+s t r (

num step)+” . txt ” , s e l f . max array sigma)
np . savetxt (s e l f . d i r e c t o r y+”/ Maxplast i cStra inTensor ”+

s t r (num step)+” . txt ” , s e l f . max ar ray eps i l on p)
np . savetxt (s e l f . d i r e c t o r y+”/MaxStrainTensor”+s t r (

num step)+” . txt ” , s e l f . max ar ray eps i l on)
pass

def StoreApproxArea (s e l f) :
np . savetxt (s e l f . d i r e c t o r y+”/ApproxArea”+” . txt ” , s e l f .

area approx)
pass

def StoreGenerea l (s e l f , Se t t ings , num points , Area , Nodes) :
f=open (s e l f . d i r e c t o r y+”/ General . txt ” , ’w ’)
for key , va lue in S e t t i n g s . i tems () :

f . w r i t e l i n e s (s t r (key)+” : ”+s t r (va lue)+”\n”)
f . w r i t e l i n e s (”Num po in t s : ” +s t r (num points)+”\n”)
f . w r i t e l i n e s (”Area : ”+s t r (Area)+”\n”)
f . w r i t e l i n e s (”Num nodes : ” +s t r (Nodes)+”\n”)
f . c l o s e ()
pass

def StoreSteps (s e l f , s t ep s) :
f=open (s e l f . d i r e c t o r y+”/ Steps . txt ” , ’w ’)
for s tep in s t ep s :

106

Appendix D. Code

f . w r i t e l i n e s (s t r (s tep)+”\n”)
f . c l o s e ()
pass

Appendix D.E Collection of Utility Functions

from d o l f i n import∗
import numpy as np
def d e v i a t o r i c (t e n s o r a r r a y) :

temp=t e n s o r a r r a y
t r a c e= t e n s o r a r r a y [0]+ t e n s o r a r r a y [1]+ t e n s o r a r r a y [2]
temp [0]= t e n s o r a r r a y [0]− t r a c e /3 .0
temp [1]= t e n s o r a r r a y [1]− t r a c e /3 .0
temp [2]= t e n s o r a r r a y [2]− t r a c e /3 .0
return temp

def e q u i v a l e n t S t r e s s (t e n s o r a r r a y) :
T=d e v i a t o r i c (t e n s o r a r r a y)
return 1.2247448713915892∗(f l o a t (T [0]) ∗∗2 + f l o a t (T [1])
∗∗2 + f l o a t (T [2]) ∗∗2+2∗ f l o a t (T [3]) ∗∗2+2∗ f l o a t (T [4])
∗∗2+2∗ f l o a t (T [5]) ∗∗2) ∗∗0.5

def e q u i v a l e n t S t r a i n (t e n s o r a r r a y) :
T=d e v i a t o r i c (t e n s o r a r r a y)
return 0.816496580927726∗(f l o a t (T [0]) ∗∗2 + f l o a t (T [1])
∗∗2 + f l o a t (T [2]) ∗∗2+ f l o a t (T [3]) ∗∗2+ f l o a t (T [4]) ∗∗2+
f l o a t (T [5]) ∗∗2) ∗∗0.5

def eps (u) :
return a s v e c t o r ([u [i] . dx (i) for i in range (3)] + [u

[i] . dx (j) + u [j] . dx (i) for i , j in [(0 , 1) , (0 ,
2) , (1 , 2)]])

def sigma (s) :
return as matr ix ([[s [0] , s [3] , s [4]] , [s [3] , s [1] , s

[5]] , [s [4] , s [5] , s [2]]])

def tangent (t) :
return as matr ix ([[t [i ∗6 + j] for j in range (6)] for i in

range (6)])

def s i gma ax i s (s) :

107

Appendix D. Code

return as matr ix ([[s [0] , 0 . 0 , 0 . 0] , [0 . 0 , s [1] , 0 . 0] ,
[0 . 0 , 0 . 0 , s [2]]])

def s igma 1 (s) :
return as matr ix ([[s [0] , 0 . 0 , 0 . 0] , [0 . 0 , 0 . 0 , 0 . 0] ,

[0 . 0 , 0 . 0 , 0 . 0]])
def s igma 2 (s) :

return as matr ix ([[0 . 0 , 0 . 0 , 0 . 0] , [0 . 0 , s [1] , 0 . 0] ,
[0 . 0 , 0 . 0 , 0 . 0]])

def s igma 3 (s) :
return as matr ix ([[0 . 0 , 0 . 0 , 0 . 0] , [0 . 0 , 0 . 0 , 0 . 0] ,

[0 . 0 , 0 . 0 , s [2]]])

def MakeUnitvector (Function) :
V = Function . f u n c t i o n s p a c e ()
num points = V. dim () /V. element () . va lue d imens ion (0)
for point in range (num points) :

do f s u =[po int ∗3 + j for j in range (3)]
v=Function . vec to r () [do f s u]
i f norm(v) !=0:

Function . vec to r () [do f s u] /= norm(v)

return Function

def SumVector (Function) :
V = Function . f u n c t i o n s p a c e ()
num points = V. dim () /V. element () . va lue d imens ion (0)

SumVector=0.0
for point in range (num points) :

do f s u =[po int ∗3 + j for j in range (3)]
v=Function . vec to r () [do f s u]
SumVector+=norm(v)

return SumVector

def Deviator i cFunct ion (Function) :
V = Function . f u n c t i o n s p a c e ()
num points = V. dim () /V. element () . va lue d imens ion (0)

for point in range (num points) :

108

Appendix D. Code

do f s u =[po int ∗3 + j for j in range (3)]
v=Function . vec to r () [do f s u]
temp=(v [0]+ v [1]+ v [2]) /3 .0
Function . vec to r () [do f s u [0]]−=temp
Function . vec to r () [do f s u [1]]−=temp
Function . vec to r () [do f s u [2]]−=temp

return Function

def Loading (s t ep input , v a r i a b l e) :
return (v a r i a b l e −s t ep input) < 0

def Unloading (s tep input , v a r i a b l e) :
return (s t ep input−v a r i a b l e) < 0

Appendix D.F Return Mapping

import numpy as np
from Plast icMode l import ∗
from s c ipy . opt imize import ∗

def f unc t i on (delta lambda , p l a s t i c mode l , t r i a l s t r e s s , e p)
:
D =p l a s t i c m o d e l . e l a s t i c t a n g e n t
P =p l a s t i c m o d e l .P
H =p l a s t i c m o d e l .H
sigma y=p l a s t i c m o d e l . y i e l d s t r e s s
Q= 1.0∗np . i d e n t i t y (6) + f l o a t (de lta lambda)∗D∗P
Qinv = Q. I
sigma= Qinv∗ t r i a l s t r e s s
phi =f l o a t (p l a s t i c m o d e l . dg (sigma) .T∗ p l a s t i c m o d e l . dg (

sigma))
kappa = e p + f l o a t (de lta lambda) ∗ (2 . 0/ 3 . 0∗ phi) ∗∗0.5
return f l o a t (0 .5∗ phi − (s igma y+kappa∗H) ∗∗2/3.0)

class ReturnMapping () :
def i n i t (s e l f , maxit =1000) :

s e l f . maxit=maxit

def automatic (s e l f , p l a s t i c m o d e l , t r i a l s t r e s s ,
p l a s t i c s t r a i n , e p) :

de lta lambda =0.0

109

Appendix D. Code

De= p l a s t i c m o d e l . e l a s t i c t a n g e n t
P=p l a s t i c m o d e l .P

i f p l a s t i c m o d e l . f (t r i a l s t r e s s , e p)> 1 .0 e−12 :

de lta lambda=f l o a t (brentq (funct ion , 0 . 0 , 1 . 0 , a rgs
=(p la s t i c mode l , t r i a l s t r e s s , e p ,) , maxiter=
s e l f . maxit , f u l l o u t p u t=False , d i sp=True))

Q= 1.0∗np . i d e n t i t y (6) + f l o a t (de lta lambda)∗De∗P
Qinv = Q. I

s igma current=Qinv∗ t r i a l s t r e s s

t r i a l s t r e s s= s igma current

df ds igma=p l a s t i c m o d e l . df (t r i a l s t r e s s)
dg dsigma=p l a s t i c m o d e l . dg (t r i a l s t r e s s)

hardening=p l a s t i c m o d e l . hardening (t r i a l s t r e s s ,
e p)

Rn = (De∗df ds igma) .T
D = De − De∗(dg dsigma∗Rn) /(Rn∗dg dsigma +

hardening)

e p=p l a s t i c m o d e l .APS(t r i a l s t r e s s , delta lambda ,
e p)

p l a s t i c s t r a i n += delta lambda ∗dg dsigma

else :
D=De

return D, e p

Appendix D.G Plastic Model

−∗− coding : u t f−8 −∗−
”””

110

Appendix D. Code

Created on Mon Apr 7 20 :02 :24 2014

@author : l a r s
”””

import numpy as np

class Plast icMode l (ob j e c t) :#P i . e ddg ddsigma
def i n i t (s e l f ,E, nu , y i e l d s t r e s s , work hardening) :

”””
Must parameters

”””
mu=E/(2∗(1 + nu))
lmbda=E∗nu /((1 + nu) ∗(1 − 2∗nu))

s e l f . e l a s t i c t a n g e n t= np . matrix ([[(lmbda+mu∗ i n t (i==
j))∗ i n t (j<3 and i <3)+mu∗ i n t (i==j) for i in
range (6)] for j in range (6)])

s e l f . y i e l d s t r e s s=y i e l d s t r e s s
s e l f .H=work hardening

”””
Opt ina l parameters

”””
s e l f .P=np . matrix ([[f l o a t (i==j) −(1/3.0)∗ i n t (j<3 and

i <3) + f l o a t (i==j and j>2 and i >2) for i in
range (6)] for j in range (6)])

def f (s e l f , sigma , e p) :
return 0 .5∗ sigma .T∗ s e l f .P∗ sigma − ((s e l f .

y i e l d s t r e s s + s e l f .H∗ e p) ∗∗2) /3 .0

def df (s e l f , sigma) :
return s e l f .P∗ sigma

def dg (s e l f , sigma) :
return s e l f .P∗ sigma

def ddg (s e l f , sigma) :
return s e l f .P

def hardening (s e l f , s t r e s s , e p) :

111

Appendix D. Code

return 2 . 0 / 3 . 0∗ (s e l f . y i e l d s t r e s s+s e l f .H∗ e p)∗ s e l f .H
∗np . s q r t (2 . 0 / 3 . 0∗ s e l f . dg (s t r e s s) .T∗ s e l f . dg (s t r e s s
))

def APS(s e l f , sigma , delta lambda , e p) :
return e p + delta lambda ∗np . s q r t (2 . 0 / 3 . 0∗ s e l f . dg (

sigma) .T∗ s e l f . dg (sigma))

def r e t u r n l i s t (s e l f) :
return l i s t (np . asar ray (s e l f . e l a s t i c t a n g e n t) . reshape

(−1))

Appendix D.H Subdomains

from d o l f i n import ∗
import math

class Top(SubDomain) :
def i n i t (s e l f , to l ,∗∗ kwargs) :

SubDomain . i n i t (s e l f)
s e l f . t o l=t o l
s e l f . he ight=kwargs . get (” he ight ”)

def i n s i d e (s e l f , x , on boundary) :
return near (s e l f . he ight , x [2] , s e l f . t o l)

class Bottom (SubDomain) :
def i n i t (s e l f , to l ,∗∗ kwargs) :

SubDomain . i n i t (s e l f)
s e l f . t o l=t o l
s e l f . base=kwargs . get (” base ”)

def i n s i d e (s e l f , x , on boundary) :
return near (x [2] , s e l f . base , s e l f . t o l)

class Outer (SubDomain) :
def i n i t (s e l f , to l ,∗∗ kwargs) :

SubDomain . i n i t (s e l f)
s e l f . t o l=t o l
s e l f . o u t e r r a d i=kwargs . get (” o u t e r r a d i ”)

def i n s i d e (s e l f , x , on boundary) :
r = math . s q r t (x [0] ∗ x [0]+ x [1] ∗ x [1])
return near (r , s e l f . ou t e r r ad i , s e l f . t o l)

112

Appendix D. Code

class Inner (SubDomain) :
def i n i t (s e l f , to l ,∗∗ kwargs) :

SubDomain . i n i t (s e l f)
s e l f . t o l=t o l
s e l f . i n n e r r a d i=kwargs . get (” i n n e r r a d i ”)

def i n s i d e (s e l f , x , on boundary) :
r = math . s q r t (x [0] ∗ x [0]+ x [1] ∗ x [1])
return near (r , s e l f . i n n e r r a d i , s e l f . t o l)

113

