
Rye et al. BMC Genomics 2014, 15:120
http://www.biomedcentral.com/1471-2164/15/120
RESEARCH ARTICLE Open Access
Chromatin states reveal functional associations
for globally defined transcription start sites
in four human cell lines
Morten Rye1,2*, Geir Kjetil Sandve3, Carsten O Daub4,5, Hideya Kawaji4,5,6, Piero Carninci4,5, Alistair RR Forrest4,5,
Finn Drabløs1 and the FANTOM consortium
Abstract

Background: Deciphering the most common modes by which chromatin regulates transcription, and how this is
related to cellular status and processes is an important task for improving our understanding of human cellular
biology. The FANTOM5 and ENCODE projects represent two independent large scale efforts to map regulatory and
transcriptional features to the human genome. Here we investigate chromatin features around a comprehensive set
of transcription start sites in four cell lines by integrating data from these two projects.

Results: Transcription start sites can be distinguished by chromatin states defined by specific combinations of both
chromatin mark enrichment and the profile shapes of these chromatin marks. The observed patterns can be
associated with cellular functions and processes, and they also show association with expression level, location
relative to nearby genes, and CpG content. In particular we find a substantial number of repressed inter- and
intra-genic transcription start sites enriched for active chromatin marks and Pol II, and these sites are strongly associated
with immediate-early response processes and cell signaling. Associations between start sites with similar chromatin
patterns are validated by significant correlations in their global expression profiles.

Conclusions: The results confirm the link between chromatin state and cellular function for expressed transcripts, and
also indicate that active chromatin states at repressed transcripts may poise transcripts for rapid activation during
immune response.
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Background
The transcriptional landscape of human cells is tightly
linked to chromatin structure. By modulating chromatin,
transcription factors (TFs) and chromatin modifying en-
zymes decides which transcripts, and the amount of
each that are produced by a cell [1,2]. Deciphering the
most common modes by which chromatin regulates
transcription, and how this is related to cellular status
and processes, represents an ongoing endeavor towards
our understanding of human cellular biology. However,
the diversity of the transcriptional landscapes among dif-
ferent cell types in the human organism, and the
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reproduction in any medium, provided the or
complex mechanisms that account for this diversity are
just beginning to be understood. Recently two large scale
efforts with the goal to map and understand the regulatory
and transcriptional landscape of human cells and tissues
have been undertaken. Using single molecule Cap Analysis
of Gene Expression (CAGE [3]) technology to profile 975
human tissues, cell lines and primary cells, the FANTOM5
consortium has generated a comprehensive map of tran-
scription start sites (TSSs) and their relative expression
across the human genome [4] The amount of TSS data
produced by this consortium have been condensed into a
global set of 184 827 defined Robust clusters of Transcrip-
tion Start Sites (here abbreviated as RTSSs) throughout
the human genome. A robust cluster is defined as groups
of TSSs which are in close proximity of each other in the
genome, have the same direction of transcription, share a
similar global expression pattern across all cells and
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tissues, and have sufficient support in the number of
CAGE sequence tags [4]. The ENCODE project [5] has
generated data on a huge amount of features that partici-
pate in the regulation of gene expression in human cell
lines. Among the several approaches taken by ENCODE
to investigate the different aspects of transcript regulation,
the mapping of chromatin modifications and transcription
factor binding sites in selected human cell lines using
ChIP-Seq [6,7] is probably the most comprehensive. To fa-
cilitate comparison and utilize the efforts made by both
projects, the four cell lines K562, GM12878, HeLa-S3 and
HepG2 used by ENCODE where specifically subjected to
CAGE in FANTOM5.
One of the important findings in the ENCODE project

was the impact on gene expression by different combi-
nations of chromatin modifications at regulatory ele-
ments throughout the genome. Chromatin modifications
are post-translational chemical modifications, most com-
monly methylations and acetylations, on the N-terminal
tails of the eight histone proteins constituting the nu-
cleosome core. These modifications affect the interaction
between the core and the DNA wrapped around it, as
well as interactions with chromatin-binding proteins,
resulting in configurations of open and closed chromatin
[8]. In addition, variants of the histone proteins and
modifications to the DNA itself also impact the chroma-
tin configuration. The general distribution of chromatin
and other DNA-binding proteins can be analyzed by
DNase Hypersensitivity (DNase HS) [9], which can iden-
tify regions of open chromatin. Overall features like
chromatin modifications, histone variants and open
chromatin are referred to as chromatin marks. Studies
made by ENCODE and others have shown that different
combinations of chromatin marks can separate the chro-
matin landscape of the genome into states of open and
closed chromatin, where closed chromatin generally corre-
sponds to repression of transcription, and open chromatin
corresponds to active transcription. Active chromatin can
further be separated into additional states, depending on
the enrichment of various active chromatin modifications
[10-13]. Two examples of such states are found in pro-
moters and enhancers, which affect transcription from
proximal and distal genomic locations, respectively. Other
studies have shown that the actual shapes of enrichment
for individual chromatin marks also differ between gen-
omic locations. However, the functional implications of
these differences have been less investigated [14-17].
For studies of chromatin profile shapes, a crucial step is

the definition of anchor points throughout the genome,
which are used as reference positions for the study of
shapes in the neighborhood of the anchor points. TSSs of
annotated genes are examples of such anchor points.
However, these generally represent a too limited selection
of genomic sites for general analysis, considering that a
large amount of regulation takes place distal from any an-
notated gene TSS. Other strategies for anchor point defini-
tions have thus included binding sites for clusters of
transcription factors [17] or for specific transcription fac-
tors, like the enhancer associated protein p300 [14,18,19].
One challenge with this approach is the lack of direction-
ality of such data. Directionality is important, because in-
dividual chromatin shapes have been shown to display
asymmetry around anchor points, especially if the anchor
points are transcript-producing [17]. Another challenge is
the functional heterogeneity of various transcription fac-
tors, which can make the anchor points difficult to com-
pare. In contrast to transcription factors, RTSSs as defined
in FANTOM5 are both directional and represent a set of
genomic sites associated with the same function, that is, ac-
tivation of transcription. In addition, due to aggregation of
data across multiple cell types, a lot of RTSS regions will
have zero expression in any individual cell type, since the
general FANTOM5 RTSS regions are defined over a com-
prehensive set of human cells and tissues. This information
represents a novel opportunity to investigate chromatin
marks genome-wide at locations where transcription is
known to be repressed, which could previously be investi-
gated only for TSS positions of annotated genes. TSSs from
CAGE were previously used to analyze states for a single
chromatin mark (H3K9ac) in few cell lines during
FANTOM4 [20].
It has now become well established that the regulatory

landscape of the human genome includes much more
than the genomic regions surrounding the approximately
22 000 currently well annotated genes. The 184 827 glo-
bally defined transcripts from FANTOM5, as well as the
mapping of chromatin states and transcription factors in
ENCODE are both attempts to map the characteristics
and diversity of these transcriptional events, and the
mechanism that regulate them. In contrast to most pre-
viously known genes, the function of these novel tran-
scripts is mostly unknown. However, several have been
shown to correlate with transcriptional outputs of
nearby genes [4,19,21-30]. Whether this correlation is
due to direct spatial interaction between regulatory ele-
ments, co-transcription from the same promoter,
assisted recruitment of factors promoting transcription,
or establishment of favorable chromatin domains re-
mains to be determined [31], but should nevertheless
encourage the association of such non-coding transcripts
to nearby genes.
The four cell lines K562, GM12878, HeLa-S3 and

HepG2 common to ENCODE and FANTOM5 all in-
clude the complete set of 12 chromatin marks mapped
by ChIP-Seq in ENCODE. In addition, the 184 827
RTSSs from FANTOM5 defined globally over 975 hu-
man tissues, cell lines and primary cells represent an op-
portunity to investigate chromatin marks at RTSSs



Table 1 Cell line specific expressed and repressed RTSSs
and their association with genomic regions

Total Annotated Proximal Intragenic Intergenic

K562 Expressed 41 472 6 793 18 134 15 090 8 248

Repressed 122 575 3 678 17 105 64 677 40 793

GM12878 Expressed 54 475 7 151 19 998 22 949 11 528

Repressed 101 964 3 084 14 395 52 675 34 894

HeLaS3 Expressed 50 324 7 055 19 892 20 429 10 003

Repressed 107 756 3 311 14 831 55 866 37 059

HepG2 Expressed 52 862 7 311 21 005 22 305 9 552

Repressed 105 793 2 973 13 623 54 193 37 977
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repressed in the respective cell-lines, as well as the
expressed ones. In this study we have used globally de-
fined RTSSs from FANTOM5 as anchor points, and in-
vestigated combinations of enrichment and shape
profiles for chromatin marks around these anchor
points. Most RTSSs are intra- or inter-genic, rather than
being located at or close to currently annotated TSSs.
These RTSSs are mostly repressed in the four cell lines
studied, however, we also discovered a substantial number
of such repressed inter- and intra-genic RTSSs harboring
activating chromatin marks and Pol II, indicative of regu-
latory elements poised for transcription. Using a tool for
ontology analysis in genomic regions, we found that these
RTSSs were strongly associated with immediate-early re-
sponses and cell signaling. Shape profiles for chromatin
marks around expressed RTSSs were subjected to a two-
level clustering procedure, identifying metaclusters with
combinatorial characteristics of enrichment and shape.
These metaclusters differed substantially in functional
ontology annotations, average RTSS expression, location
of RTSSs with respect to nearby genes, and CpG content,
indicating that the clusters are biologically relevant. Finally
we validated the associations between RTSSs within
metaclusters, showing that the global expression levels of
corresponding RTSSs are correlated.
This work is part of the FANTOM5 project. Data

downloads, genomic tools and co-published manuscripts
are summarized at http://fantom.gsc.riken.jp/5/.

Results
Globally defined RTSSs are mostly located in intra- and
intergenic regions, and repressed in individual cell lines
We defined a set of 179 369 global RTSSs from the 184
827 RTSSs produced by the FANTOM5 consortium,
and used this set throughout the rest of the study
(Methods). We then mapped the expression profile for
these 179 369 RTSSs in each of the four cell lines K562,
GM12878, HeLa-S3 and HepG2. To get an overview of
the genomic locations of the globally defined RTSSs in
each cell line, we divided the 179 369 RTSSs into
expressed and repressed RTSSs (Methods), and then fur-
ther into the following categories: i) annotated RTSSs
overlapping exactly with RefSeq TSS annotations, ii) in-
tragenic RTSSs overlapping with full gene annotations,
iii) intergenic RTSSs having no overlap with annotated
genes, and iv) proximal RTSSs located at most 150 bp
up- or downstream for annotated gene TSSs (Table 1).
The last category was included to account for proximal
alternative TSSs for the same gene which often sur-
rounds the annotated TSSs in CAGE data [3,32]. Com-
paring the fraction of expressed versus repressed RTSSs
within the four location categories we are considering,
the intergenic and intragenic RTSSs are dominated by
repressed RTSSs (2 to 5 fold more repressed than
expressed), while the annotated and proximal categories
are dominated by expressed RTSSs (1 to 2.4 fold more
expressed than repressed). We also observe that more
RTSSs are intragenic than intergenic. An overall ob-
served trend is that the RTSS density drops while the
cell line specificity of the RTSSs increases as one move
away from annotated gene TSSs. In addition, the large
number of RTSSs falling into the proximal compared to
the annotated category is indicative of substantial alter-
native TSS usage ±150 bp around annotated TSSs of
genes. The number of RTSSs falling into the four cat-
egories is quite consistent for all cell lines, and the slight
deviation observed for K562 is likely attributable to the
lower number of CAGE tags in the K562 library. Our ob-
servations fit with previous reports that distal regulatory
elements, like enhancers, are generally more cell-type
specific than regulatory elements proximal to annotated
genes [11,14,33], and the consistent pattern across the
cell lines indicates that this is a general feature.

Markers for active chromatin show enrichment at both
expressed and repressed RTSSs
The four cell lines used in this study were specifically
mapped by CAGE in FANTOM5 for comparison with
ENCODE. We could therefore use the 179 369 globally
defined RTSSs as anchor points for studying enrichment
and profile shapes for the 12 chromatin marks down-
loaded from ENCODE for each of the four cell lines
(Methods). We divided the RTSSs into expressed and re-
pressed, and calculated the number of overlaps for each
chromatin mark in a 500 bp extension around each RTSS.
Figure 1 shows results from HeLa-S3. Plots for all cell
lines are in [Additional file 1: Figure S1]. In general, if re-
sults are similar for all cell lines, we display results from
only one cell line. As expected, we observed a depletion
for the transcriptional repressive marks H3K27me3 and
H3K9me3 in expressed RTSSs, but general enrichment for
the 10 other marks, which are traditionally regarded as
transcription activating marks [34]. More surprisingly, we
also observed a considerable enrichment of active marks
for the repressed RTSSs. The actual number of repressed

http://fantom.gsc.riken.jp/5/


Figure 1 Active chromatin marks overlap with repressed RTSSs. The figure shows data for HeLa-S3for all RTSS and isolated RTSS. Data for
isolated RTSSs defined as RTSSs separated by at least 2kbp from its nearest neighboring RTSS. The p-values also confirmed highly significant
overlaps of active marks with repressed RTSSs, especially for the marks DNase HS, H2A.Z, H3K4me1, H3K4me2, H3K4me3, H3K27ac, H3K9ac and
H4K20me1, but less significant overlap with the transcriptional marks H3K36me3 and H3K79me2 [Additional file 1: Table S18]. Plots for the other
three cell lines are in [Additional file 1: Figure S1].
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RTSSs overlapping with active chromatin marks is com-
parable to expressed RTSSs. However, the ratio of overlaps
compared to the total number of repressed or expressed
RTSSs is lower for repressed, since there are more re-
pressed RTSSs than expressed. Many RTSSs are located
close to each other in the genome, often separated by less
than 100 bp, making it possible that the enrichment ob-
served in repressed RTSSs was due to confounding from
neighboring expressed RTSSs. To account for this possi-
bility, we identified RTSSs separated from other RTSSs by
at least 2kbp, which resulted in 35 500 isolated RTSSs, and
performed the same analysis on these isolated RTSSs. We
observed similar, and sometimes increased, enrichment of
active marks in the repressed isolated RTSSs compared to
the full set of global RTSSs (Figure 1; [Additional file 1:
Figure S1]), and p-values calculated for each overlap
also confirmed highly significant overlaps (Methods,
[Additional file 1: Table S18]). The enrichment was most
significant for DNase HS, H2A.Z, H3K4me1, H3K4me2,
H3K4me3, H3K27ac, H3K9ac and H4K20me1 and less
significant for the transcriptional markers H3K36me3 and
H3K79me2. We thus conclude that several active chroma-
tin marks are enriched at both expressed and repressed
RTSSs.

Active chromatin marks at expressed and repressed
RTSSs show distinct chromatin profiles, and differ in
nucleosome positioning at their TSSs
The enrichment of active chromatin marks on a subset of
repressed RTSSs led us to further investigate the shapes of
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chromatin marks around these RTSSs. We therefore col-
lected and analyzed profiles for all chromatin marks in
expressed and repressed RTSSs for the 179 369 globally
defined RTSSs in each cell line (Methods). Average pro-
files (Figure 2; [Additional file 1: Figure S2]) showed that
profiles around expressed RTSSs had increased signal for
active marks around the RTSS center and transcript body,
while repressed RTSSs only had increased signal at the
RTSSs center. Expressed RTSSs also display a characteris-
tic dip in the signal exactly at the RTSS center, which cor-
responds to a nucleosome-free region commonly observed
at actively transcribed TSSs [35,36]. In contrast, profiles of
Figure 2 Expressed and repressed RTSSs display distinct chromatin p
here for K562. Profiles for other cell lines are in [Additional file 1: Figure S2].
active marks around repressed genes lack this charac-
teristic dip, which indicates that these RTSSs retain nu-
cleosome occupancy at the RTSS center. Repressed RTSSs
also seem to display a similar symmetric profile around
the RTSSs for all active marks, while profiles for expressed
genes are either symmetric (DNase HS, H3K4me3,
H3K4me2, H2A.Z, H3K27ac, H3K9ac) or show increased
signal primarily in the direction of the main transcript
(H3K36me3, H3K79me2, H4K20me1). H3K4me1 display
slight asymmetry, thus deviating from the other K4
methylation marks in this aspect. Similar profiles were
also observed for the isolated RTSSs described above,
rofiles. Chromatin profiles are shown around their RTSS center position,
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confirming that the general observations were not due to
confounding. Though the repressive marks H3K27me3
and H3K9me3 were more pronounced in repressed RTSSs
compared to active marks, we also observed weak enrich-
ment of repressive marks, especially H3K9me3, in
expressed RTSSs (Figure 2; [Additional file 1: Figure S2]).
To further investigate the nucleosome occupancy around
expressed and repressed RTSSs we used nucleosome data
from ENCODE, which gives nucleosome occupancy at
base pair resolution for the cell lines K562 and GM12878.
Nucleosome positioning in K562 around expressed and
repressed RTSS enriched for the active chromatin mark
H3K4me2 is shown in Figure 3. A clear periodic nucleo-
some positioning pattern with a dip at TSS is observed for
expressed RTSSs, while the repressed RTSSs show no sign
of ordered nucleosomes, except for an increased signal
exactly at the RTSS center, indicative of a well-positioned
nucleosome at this location. The general presence of a nu-
cleosome at the center of repressed RTSSs was also con-
firmed for all chromatin marks in both cell lines using a
lower resolution mapping (Methods). A well-positioned
nucleosome at TSS was also a general feature for all re-
pressed RTSSs, not only the ones enriched for active chro-
matin marks.
Because expressed and repressed RTSSs displayed such

distinct profiles characteristics of active chromatin
marks, we chose to analyze these two classes of RTSSs
separately throughout the rest of our study. We start
with the analyses of expressed RTSSs, and continue with
the repressed RTSSs afterwards.
Figure 3 Nucleosome data at bp resolution reveal different
nucleosome positioning. Nucleosome data at bp resolution reveal
different nucleosome positioning around expressed and repressed
RTSSs enriched for H3K4me2 in K562. Expressed RTSS nucleosome
profiles display highly ordered nucleosome positioning, while this is
not evident around repressed RTSSs, except for a well-positioned
nucleosome exactly at the RTSS center. In contrast, expressed RTSSs
generally display nucleosome depletion at the TSS center.
Clustering of chromatin profiles around expressed RTSSs
identifies combinatorial subsets of various asymmetric
chromatin shapes
Profiles for a single chromatin mark around expressed
genes and active regulatory elements have been shown to
display a considerable variation in asymmetric shapes
within the same cell type [17]. To identify profile shape
variations within each chromatin mark, we used the set of
expressed RTSSs as profile anchor points and k-means
clustering to identify distinct chromatin profiles over
a ±3kbp extension around expressed RTSS center posi-
tions. We first performed clustering of RTSS profiles on
each chromatin mark in each cell line individually, and
continued with a meta-clustering using a combination of
correlation coefficients for each RTSS towards each chro-
matin mark in the respective cell line (Methods). Between
15 000 and 50 000 profiles for active marks and 1000 and
15 000 profiles for repressive marks passed the filtering
criteria for inclusion in the first individual clustering.
Though k-means clustering is designed to handle a large
number of profiles, it requires the number of clusters to
be specified prior to clustering. To investigate whether an
intuitive prior number of clusters could be identified, we
used Principal Component Analysis (PCA) on each set of
profiles to see if they displayed discrete profile groupings
[Additional file 1: Figure S3]. We could not identify any
distinct groups for any mark in any cell line, and the land-
scape of profile differences in all sets seemed to represent
a continuum, rather than discrete groupings. We therefore
consistently set the prior number of clusters to 5 for each
individual clustering. This number was mainly chosen to
give a manageable number of clusters for later interpret-
ation of the meta-clusters. For the first individual cluster-
ing we calculated average subprofiles over all RTSS
clusters for each chromatin mark in each cell line (Figure 4;
[Additional file 1: Figure S4]), resulting in a total of 60
subprofiles (5 clusters and 12 chromatin marks) in each
cell line. The same subprofiles were generally observed in
all four cell lines, with active chromatin marks displaying
more similarity than repressive marks. Several of the iden-
tified subprofiles were comparable to profiles identified in
previous studies [17], showing various asymmetrical
shapes around TSSs. Canonical average profiles for several
of the chromatin marks were also visible, for example
H3K79me2 and H4K20me1 had several subprofiles with
reduced signal upstream of TSSs and gradually increased
signal in the transcript direction. In addition we also ob-
served opposite non-canonical subprofiles for H3K79me2
and H4K20me1, with increased signal upstream of TSSs
and reduced signal in the transcript direction.
Having identified subprofiles for individual chromatin

marks in each cell line, we next wanted to identify over-
represented combinations of subprofiles using several
chromatin marks within each cell line. This was achieved



Figure 4 Average subprofiles for 12 chromatin marks in HeLa-S3. Average subprofiles for the other three cell lines are in [Additional file 1: Figure S3].
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by a meta-clustering approach based on Pearson correl-
ation coefficients between RTSS profiles and subprofiles
(Methods). The meta-clustering was applied independ-
ently in each cell line. For each chromatin mark, the
Pearson correlation coefficient was calculated between
chromatin mark profiles for each expressed individual
RTSS and the 5 subprofiles for the respective chromatin
marks, resulting in 60 correlation coefficients (55 for
HepG2, see Methods) calculated for each RTSS. The
matrix of all expressed RTSSs and corresponding correl-
ation coefficients was then subjected to k-means clustering
with the prior number of clusters set to 10. A heatmap of
the cluster results together with subprofiles for all clusters
for all chromatin marks are shown in Figure 5 for K562
and in [Additional file 1: Figure S5 and S6] for the other
three cell lines. The heatmaps show characteristic subpro-
files in all 10 metaclusters, as well as general enrichment
of specific marks in each metacluster. For example meta-
clusters c9 and c2 are exclusively enriched for H4K20me1,
c1 is the only cluster depleted for H3K79me2, while c6 is
depleted for both H3K4me2 and H3K4me3. Metaclusters
c2-10 are all enriched for H3K79me2, however, c5-c7 are
dominated by a different H3K79me2 profile than the other
6 metaclusters. Likewise, while general H3K9ac enrich-
ment is found in most metaclusters, c4 displays a domin-
ating H3K9ac profile not characteristic for the other
metaclusters. Of all the chromatin marks, the elongation
mark H3K79me2 and the two acetylations H3K27ac and



Figure 5 Meta-clustering identifies combinatorial subprofiles for chromatin marks. Meta-clustering identifies metaclusters of combinatorial
subprofiles for different chromatin marks in K562. A) Heatmap of characteristic subprofiles in each metacluster. Each cell in the heatmap represents the
correlation of a RTSS profile with one of five subprofiles identified from the clustering of each chromatin mark. B) Average subprofile over all RTSSs in
each metacluster for each chromatin mark in K562. Plots for other cell-lines are in [Additional file 1: Figure S4 and S5].
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H3K9ac seem to contribute most to the subprofile varia-
tions between the metaclusters. DNase HS, H2A.Z and
H3K4me3 seem to be most stable, showing similar sub-
profiles in many metaclusters, while profiles for the repres-
sive marks H3K27me3 and H3K9me3, together with
H3K4me1, show no specific subprofiles in any metacluster.
Most of the trends observed for K562 were also observed
in the other cell lines, though some cell type specific differ-
ences were also visible. The overall conclusion for the
complete clustering approach is that expressed RTSSs can
be clustered into distinct groups displaying different enrich-
ment and profile shapes of various chromatin marks.

Metaclusters of RTSSs differ in functional associations,
average expression level, localization with respect to
nearby genes and enrichment of CpG-islands
The efforts made by FANTOM5, ENCODE and others
have confirmed the huge landscape of transcriptional
events existing in addition to the well-known catalogue
of protein coding genes. Most of this landscape consists
of non-coding transcripts, whose exact functions have
yet to be determined. One commonly described property
of these non-coding transcripts is their tendency to
affect the regulation of nearby genes. To determine the
biological relevance of the defined metaclusters, we
linked the metaclusters to functional annotations using
the publicly available Genomic Regions Enrichment of
Annotations Tool (GREAT) [37]. GREAT is a tool that
assigns functionality to a set of genomic regions based
on nearby genes, and is thus well suited for analyses of
RTSS metaclusters with an abundance of intra- and inter-
genic elements. In addition, we investigated whether the
metaclusters differed with respect to number of associated
RTSSs, average RTSS expression level, localization with
respect to nearby genes and CpG content.
We first observed that the metaclusters in each cell

line differed in the number of associated RTSSs, and
average RTSS expression level. The number of RTSSs as-
sociated with each cluster varied from >11 000 for the
largest clusters to 2–3000 for the smallest, while expres-
sion levels could be separated into high, intermediate
and low [Additional file 1: Figure S7]. Average expres-
sion level did correlate with metacluster size. However,
the correlation was not absolute in any cell-line. For ex-
ample the three largest clusters, each containing more
than 11 000 RTSSs, were not the ones with the highest
average expression in any of their respective cell lines.
We also observed differences in RTSS localization pref-
erences with respect to nearby genes for the different clus-
ters (Figure 6a). The most prominent difference was
observed between clusters with distal and proximal en-
richment of RTSSs relative to genes. Typically 2 or 3
metaclusters in each cell line displayed a distal enrich-
ment, and these clusters generally displayed a low average
expression, and contained few RTSSs. The separation of
distal and proximal RTSSs was expected, and in concord-
ance with previous reports of different chromatin enrich-
ments in gene proximal and distal elements. More
unexpectedly we also observed differences between clus-
ters with RTSSs preferentially enriched upstream or
downstream from the TSSs of nearby genes. This property
was observed for clusters in all cell lines, involved clusters
with most of their RTSSs located proximal to nearby
genes, and was mostly observed as a considerable enrich-
ment of RTSSs in the 5 kb region either up- or down-
stream of their associated gene TSS. Finally, several
clusters did not show any specific enrichment of RTSSs in
the proximal or distal regions.
To determine functional associations of the different

metaclusters, we analyzed functional terms extracted from
GREAT for each metacluster. Due to possible confounding
of RTSSs located close to each other in the genome, we
used two strategies referred to as permissive and conserva-
tive for analysis in GREAT (Methods). For both strategies
we used the total set of RTSSs in all metaclusters as back-
ground data. By doing this, we identify terms significantly
over-represented in one metacluster compared to other
metaclusters, rather than compared to a general genomic
background. A total of 5229 and 3671 genes significantly
related to 2114 and 1293 terms were retrieved from
GREAT for all metaclusters by this approach, for the per-
missive and conservative strategy respectively, while no
significant genes or terms were retrieved for random se-
lections of RTSSs. Using the permissive strategy, all
metaclusters were associated with many, often related, sig-
nificant terms, while this was only true for a subset of
metaclusters in the conservative strategy. Terms associ-
ated with individual metaclusters were considerably more
different between metaclusters in the same cell line than
between metaclusters in different cell lines [Additional
file 1: Figure S8]. Metaclusters with similar functional
terms between the cell lines also shared individual
RTSSs, as well as chromatin configurations in these cell
lines, showing that chromatin configurations are repro-
ducible. Both the enrichment of individual chromatin
marks and the profile shape of these marks were
important for separating metaclusters. For example
metacluster c4 in K562 is separated from metacluster
c2 by enrichment differences for H3K9ac, H3K36me3
and H3K4me3/2, while the separation from metacluster
c8 is mainly due to differences in the profile shapes of
H3K9ac, H3K27ac and H3K4me2/3.
To investigate metaclusters with corresponding func-

tional associations between cell-lines, we performed PCA
on all clusters from each cell-line (40 clusters) using genes
from the most significant terms from GREAT for each
cluster as model variables. After performing PCA, a plot
of the first two principal components revealed several
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Figure 6 RTSSs in metaclusters are enriched at different genomic locations. A) RTSSs in metaclusters are enriched at different genomic
locations relative to their nearby genes as calculated by GREAT. The color in each cell represents enrichment (dark blue) or depletion (light blue)
of RTSSs in the given genomic interval relative to associated genes. The enrichment is calculated with respect to average enrichment of the full
set of RTSSs from all metaclusters. The observed patterns can be divided into normal (resembling the average distribution for the full set of
RTSSs), distal, proximal upstream and proximal downstream according to where they are mostly enriched. B) Global correlations between RTSSs
validate RTSS-to-gene associations identified by GREAT. Both intra-correlations between all globally defined RTSSs in each window (all), and
between RTSSs present in the respective clusters (clusters) are calculated for increasing window sizes centered on annotated gene TSSs from
GREAT. Correlation values for all proximal, normal, distal and poised cluster sets (as defined in A) have been aggregated for all cell lines.
Intra-correlations among RTSS for specific clusters are generally higher compared to intra-correlations between all globally defined RTSSs. The
improved correlation was also higher in the more distal windows.
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interesting relationships between the metaclusters, and
these relations between clusters were mostly conserved
between a permissive and conservative strategy employed
for functional associations (Figure 7; [Additional file 1:
Figure S9]; Methods). The PCA plot indicates that the
clusters can be separated into three main groups based on
genes from their functional associations. Interestingly, the
strongest functional associations are observed among
metaclusters enriched with RTSSs distal to their associated
genes with scores in the upper right quadrant of the PCA
plot. These metaclusters are also characterized by having
low expression, low enrichment of CpG islands, and gen-
eral enrichment for specific active marks. Metaclusters in
this group contain terms related to receptors and cell-
signaling, with a subgroup of metaclusters (c3 and c5 in
K562, c4 in HeLa-S3 and c10 in HepG2) especially
enriched for terms related to G-protein coupled receptor
(GPCR) signaling. These metaclusters all have a character-
istic enrichment of the transcriptional mark H3K36me3,
but are depleted for nearly all other marks. Strong func-
tional associations are also observed for the metaclusters
with scores in the bottom right quadrant of the PCA plot.
These metaclusters are characterized by low levels of tran-
scription, intermediate enrichment of CpG islands, and
have a distribution of RTSSs relative to genes resembling
the average RTSS-to-gene distribution over all metaclus-
ters. Five of these clusters (c6 in K562, c3 in GM12878, c2
and c10 in HeLa-S3, and c4 in HepG2) share similar chro-
matin configuration, characterized by H3K9ac, H3K4me3/
2, H3K79me2 and to a certain degree H3K27me3 profile
shapes that deviate from profile shapes for these chromatin
marks in other clusters. Functional terms for these clusters
were diverse, but terms related to cell cycle, circadian
rhythm and certain metabolic processes like glycolysis were



Figure 7 PCA of metacluster terms from GREAT identifies groups with different functional associations. The two first components from a
Principal Component Analysis (PCA) on the functional terms from GREAT for all clusters in all cell lines. Cell line abbreviations are K5 for K562, Gm
for GM12878, He for HeLa-S3 and Hp for HepG2, and c1-c10 are cluster indexes as used previously. A) PCA plot for all cluster scores. Clusters with
scores in the same quadrant of the PCA plot have related functional terms, and the distance between two clusters corresponds to the degree of
similarity. Clusters with scores close to origo (the crossing of the axes arrows) have few functional terms associated with them, while those with
scores further away from origo are enriched for several terms. B) Interpretations of groupings in the PCA plot, with additional cluster properties
also taken into consideration. Three main groups are apparent, with one group (yellow shading) also displaying within-group variation. The terms
proximal, normal and distal refers to the localization of RTSS enrichment relative to genes as calculated by GREAT (Figure 6). Interestingly, the
more distal clusters with low or intermediate RTSS expression show the strongest functional associations. Displayed PCA plot are from the
permissive GREAT analysis. A PCA plot from the conservative analysis are in [Additional file 1: Figure S9].
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Figure 8 Poised RTSSs enriched for active chromatin also have
enrichment of Pol II. A selection of 6184 characteristic poised
RTSSs enriched for active chromatin marks also have additional
enrichment of Pol II in K562. Plots for the other cell lines are in
[Additional file 1: Figure S11 and S12]. A) Average pooled profile of
all active chromatin marks for expressed RTSSs and the selected
subset of 6184 poised RTSSs. B) Average Pol II profile around
expressed RTSSs, the subset of selected poised RTSSs and all
repressed RTSSs.
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frequent. The third group contains the largest clusters,
which generally have lower scores in the left quadrants of
the PCA plot. This group is characterized by high and
intermediate expression levels, high enrichment of CpG
islands, RTSS enrichment proximal to nearby genes, gener-
ally high enrichment of many active chromatin marks, and
reoccurring functional terms related to various transcrip-
tional activities and processing of RNA and DNA.
Metaclusters in this group generally had weaker functional
associations, and many metaclusters only returned signifi-
cant GREAT terms in the permissive setting. The two most
prominent subclusters in this group both displayed charac-
teristic chromatin configurations. First, the four clusters
with scores leftmost in the PCA plot, with one cluster from
each cell line (c7 in K562, c9 in GM12878, c9 in HeLa-S3
and c2 in HepG2), are characterized by the non-canonical
upstream enrichment of H3K79me2, are also enriched for
RTSSs proximal and upstream of nearby genes, and contain
terms related to histone proteins and nucleosome
organization. Second, the two metaclusters c9 in K562 and
c7 in HepG2 located close together in the PCA plot are the
only metaclusters particularly enriched for H4K20me1.
The annotation terms identified by GREAT imply a

functional association between RTSSs and their nearby an-
notated genes. To validate that sensible RTSS-to-gene in-
teractions are represented in these associations, we used
the global expression profiles over all 975 FANTOM5
samples and calculated intra-correlations between RTSSs
in windows of increasing size, anchored on annotated
TSSs of genes associated with RTSSs through GREAT
(Figure 6b, Methods). For each window and each cluster,
we compared intra-correlation in expression profiles be-
tween RTSSs present in each cluster to the correlation ob-
served when all globally defined RTSSs within the window
were considered. We generally observed a higher correl-
ation between RTSSs within clusters than within all glo-
bally defined RTSSs, especially in windows representing
the distal RTSSs. The high correlations observed in all cal-
culations indicate that co-expression of nearby genes
within clusters is substantial. Overall the results supports
that many of the RTSS-to-gene associations identified by
GREAT are sensible, and validate that strategies such as
those applied by GREAT to attach possible functions to
non-coding transcripts that currently lack functional an-
notations are feasible.
In general, all observations described above show that

the identified metaclusters differ in several properties
and associated functions, that properties, functions and
chromatin states are related, and that these relations
are reproducible across cell lines. All these results when
taken together show that the subclusters that were
identified by the different chromatin configurations
through the metaclustering approach are biologically
relevant.
Repressed RTSSs enriched for active marks are linked to
immune response by gene ontology terms, and contain
additional enrichment of polymerase II
As described above, we found considerable enrichment of
active chromatin marks at repressed RTSSs throughout
our set of 179 369 globally defined RTSSs (Figure 2). Be-
cause of the general profile similarity of all active marks
around repressed RTSSs, we pooled the profiles of all ac-
tive marks around each repressed RTSS, and identified a
robust subset of RTSSs with a general active profile for
each cell line (Figure 8a; [Additional file 1: Table S10 and
Figure S11]; Methods). This filtering procedure resulted in
subsets of 6184 RTSSs for K562, 3813 for GM12878, 4345
for HeLa-S3 and 4303 for HepG2, which constitutes be-
tween 4% and 6% of all repressed RTSSs with significant
signal in at least one chromatin mark. To separate the se-
lected RTSSs from the generally repressed RTSSs, we from
now on refer to the former as poised RTSSs. Between 15%
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and 30% of the poised RTSSs overlapped between the cell
lines. Of the 13 693 poised RTSSs selected over all four
cell lines, only 253 (2%) were present in all cell lines while
10 103 (74%) were present in only one cell line. The poised
RTSSs reflect the genomic distribution of repressed RTSSs
in general, in that less than 20% are proximal to annotated
genes, and over 80% are intra- or intergenic, the latter also
being highly cell line specific.
Genes responding rapidly to environmental stimuli, for

example in immune response, have been shown in sev-
eral studies to display only low levels of transcription,
but with marks characteristic of an active chromatin
state, also when the cell is unstimulated [38-41]. These
genes were defined as being in a poised state, where the
active chromatin poises the gene for rapid activation in
response to external stimuli. Similar poised states were
also recently shown to exist for enhancers [42]. An add-
itional common feature described in these studies was
the additional enrichment of polymerase II (Pol II) in
the poised genes and enhancers, where the initiating
form of Pol II, but not the elongating form, was gener-
ally observed in the poised regions. The existence of ini-
tiating Pol II was shown to transform to the elongating
form rapidly in response to stimuli [43]. As the region
changed from poised to active, more Pol II was also
shown to be recruited to the region. To investigate
whether our selected RTSSs displayed characteristics of
such poised regions, we downloaded data on Pol II in all
four cell lines from ENCODE (Methods), and investi-
gated the Pol II enrichment in our poised RTSSs. Indeed,
we found that our poised RTSSs showed enrichment of
Pol II in all four cell lines (Figure 8b; [Additional file 1:
Figure S12]). The enrichment was less than for expressed
RTSSs, but considerably higher than the general average
over all repressed RTSSs.
We also tried to investigate whether our selected re-

gions would respond to external stimuli. For this ana-
lysis, we could only find one relevant dataset from
ENCODE. The data was for Pol II enrichment in the
K562 cell line after stimulation with interferon alpha
(IFNα) and gamma (IFNγ). We observed similar levels
of Pol II for our selected RTSSs relative to Pol II levels
for expressed RTSSs before and after stimulation of both
IFNα and IFNγ (details in S13, [Additional file 1: Figure
S14 and S15]). This was in contrast to the previous stud-
ies which reported a general increase in Pol II levels
after stimulation [43].
To investigate possible functions of the selected poised

RTSSs, we again used GREAT for GO annotation
(Methods). We found that our selected RTSSs were
highly enriched for terms related to Immune Response
and Signaling in all four cell lines, compared to ran-
domly selected sets of RTSSs (Figure 9). So even though
the selected RTSSs only partly overlap between the cell
lines, they seem to be related to similar functions in all
four cell lines. In addition to functional terms, GREAT
also returned lists of all the genes associated with the in-
put genomic regions (RTSSs). In total the 13 693 poised
RTSSs were associated with 1148 unique genes by
GREAT (537 in K562, 380 in GM12878, 592 in HeLa-S3
and 293 in HepG2). As expected from the functional
terms, the gene lists are dominated by genes typically re-
lated to early response, signaling and the immune-
related processes, like FOS, JUN, BCL3, EGR-family,
TNF-family, NFkB-family, MAP kinases, interleukins
and interferons. When comparing our 1148 genes to a
compiled set of 67 early response genes from a study in
mice [44], we found exact matches for 44 of the 67
genes, while 15 of the remaining 23 matched closely re-
lated genes. As examples of the latter we found SAA1
but not SAA3, ARHGEF1 but not ARHGEF3, NOS3 but
not NOS2 and IRF1, 2, 4, 5, 6 and 9 but not IRF7. The
cell type specificity of affected genes is comparable to
the cell type specificity of the selected RTSSs, with only
46 (4%) genes affected in all cell lines, and 705 (61%) af-
fected in only one cell line. Similar to ubiquitously
expressed genes in general, the CpG content in pro-
moters of the 46 genes affected in all cell lines was sig-
nificantly higher (p < 0.05 by Monte Carlo sampling,
Methods) than for promoters in the other 1102 genes.
Affected genes are both repressed and (already)
expressed in their respective cell-lines, in proportions
similar to expressed and repressed genes in general.
When considering only the repressed genes in the
gene list, they showed higher signals for active chro-
matin marks compared to generally repressed genes,
indicating that they may exist in a somewhat poised
state as well [Additional file 1: Figure S16]. However,
these signals were considerably less than for our se-
lected poised RTSSs. Overall, genes related to immune
response and cell signaling must be able to react rap-
idly in response to environmental cues, and it thus
makes sense that response elements affecting such
genes, here represented by nearby RTSSs, exist in a
poised state with active chromatin marks. Although
our set of selected RTSSs did not respond to stimula-
tion by IFNα or IFNγ, the functional associations from
GREAT, the strong association of the corresponding
genes with signaling, immune and early response
genes, and the enrichment of Pol II and active chro-
matin marks at the selected RTSSs, corroborates the
indication that these RTSSs represents poised, mostly
intra- and intergenic elements ready to be activated
rapidly as a response to environmental cues. Finally,
as for the expressed RTSSs, we observed increased
correlation between global expression profiles within
neighboring poised RTSSs compared to neighboring
RTSSs in general (Figure 6b).



Figure 9 Selected RTSSs enriched for active chromatin are enriched for specific terms. Selected subsets of RTSSs enriched for active
chromatin marks are also enriched for terms related to Immune Response and Signaling in all four cell-lines. In the legend Poised are the selected
subsets of poised RTSSs, All are sets of RTSSs with equal sizes as the selected ones, but drawn randomly from the set of all repressed RTSSs in
each respective cell line, while No signal are drawn randomly from the set of repressed RTSSs with no significant enrichment of active chromatin
marks. The sets drawn from all repressed marks are also somewhat enriched for Immune Response and Signaling terms, however this association
is considerably stronger for the selected RTSSs subsets.
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Discussion
Several studies have now shown that the transcriptional
landscape of human cells is far more diverse than previ-
ously anticipated [5,45,46]. In addition to the well-
known protein coding transcripts, an abundance of
intra- and intergenic non-coding transcripts are also
produced, whose functions have yet to be determined.
Based on results from previously published studies, we
assume that one role of these non-coding transcripts is
to affect the expression of genes in their neighborhood,
and have used GREAT to assign functional relationships
to these non-coding transcripts through their association
with nearby genes. Moreover we have assumed that tran-
scripts sharing similar patterns of chromatin enrichment
and profile shape are associated with similar functions,
and have thus grouped the transcripts into distinct clus-
ters based on chromatin features. This strategy has re-
vealed strong non-overlapping functional associations for
the different clusters, many of which are reproducible
across the four studied cell lines. Some of the identified
clusters also display chromatin configurations which, to
our knowledge, are yet uncharacterized. The two most
prominent of these are clusters with a non-canonical
H3K79me2 profile associated with cell division, nucleo-
some assembly and histone proteins found in all four cell
lines, and clusters with sole H3K36me3 enrichment re-
lated to G-protein coupled receptor signaling found in
three of the cell lines.
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Intra- and intergenic RTSSs have correlated expression
with nearby genes
In this study we have assumed that an important func-
tion of regulatory elements, including RTSSs producing
non-coding transcripts, is to affect the transcription of
nearby genes. The RTSSs is a subset of the general col-
lection of regulatory elements available to a cell, which
also includes enhancers and insulators, many of which
do not produce their own transcripts. There are individ-
ual examples of situations where regulatory elements
affect flanking genes [47-50], and where the regulatory
element and the affected gene are separated by several
unaffected genes [51-53]. However, it less known how
common these modes of regulation are on a global scale.
Some studies have found the association of regulatory el-
ements to flanking genes to be substantial [11,54,55],
while other studies using 5C technology [56] to identify
spatial genomic interactions have concluded that the as-
sociation between a distal regulatory element and its
closest gene is less common [57]. Studies of spatial gen-
omic interactions have also revealed that a single regula-
tory element may affect several genes, and a gene may
be affected by several regulatory elements, complicating
the picture further [58]. However, while spatial interaction
is necessary for some regulatory elements, like enhancers,
to execute their function, transcript-producing regulatory
elements do not necessarily need to interact directly with
the genes to affect their transcription. GREAT allows asso-
ciations with both upstream and downstream genes at the
same time, but not beyond the closest gene or a genomic
distance limit. Considering GREAT’s dependence on clos-
est gene associations, the strong functional relations ob-
served in this study may seem somewhat surprising. We
acknowledge that several of the individual RTSS-to-gene
associations identified by GREAT may be false positives.
However, we see several reasons why the functional ana-
lysis still might work. i) The analysis in GREAT is based
on statistical overrepresentation, which makes it robust
against low levels of misclassification. ii) Several of the
clusters are enriched for RTSSs that are proximal to, and
often coincide with, their nearest gene. These RTSS-to-
gene associations are thus very likely to be true. iii) Genes
with similar function may have a tendency to be located in
the same genomic region [59,60]. So, even if a specific
RTSS-to-gene association is wrong, the RTSS may still be
affiliated with a gene with similar function, resulting in a
correct functional association. iv) Validation of RTSS-to-
gene associations using global expression profiles shows
that the correlations for RTSSs within the same clusters
are higher than for closely located RTSSs in general, and
that this improved correlation is most visible for distal
RTSSs. This indicates that the RTSS-to-gene associations
used by GREAT are more likely to be correct than a ran-
dom association between two RTSSs within the same
genomic region. We have not validated individual RTSS-
to-gene associations in this study. However, several associ-
ations are interesting candidates for further investigation.
Overall we have shown that clustering RTSSs based on
chromatin configuration, and using GREAT for ontology
annotation of each cluster, has produced functional anno-
tations for these clusters that seem to be reasonable and
are reproducible across cell lines.

Inter- and intragenic RTSSs enriched for active chromatin
marks and Pol II are poised for activation
The investigation of average chromatin profiles around
repressed and expressed RTSSs has revealed a subtle re-
lationship between open and closed chromatin, and be-
tween transcript repression and expression. Especially
our analyses of a selected subset of poised RTSSs that
are substantially enriched for active chromatin marks,
but with zero expression levels, shows that chromatin
state is not always directly correlated with active tran-
scription. In addition we also observe slight enrichment
of repressive marks, especially H3K9me3, at expressed
RTSSs. Possible reasons for H3K9me3 enrichment in
gene bodies have been described previously [61], but
their potential effect on TSSs has to our knowledge not
been studied. Our poised RTSSs were selected by quite
conservative criteria, but should still make up a repre-
sentative subset for this category of RTSSs. As evidence
for this, an alternative selection procedure resulted in
sets of poised RTSSs which were highly overlapping with
the sets used for these analyses. Poised regulatory ele-
ments reside generally in regions of open chromatin,
and are used by the cell to respond rapidly to environ-
mental cues. Because they reside in open chromatin,
their function can be initiated with at most a limited de-
gree of chromatin remodeling, and often also without
any de novo production of transcription factors [44], and
this ensures rapid activation. We observed characteris-
tics for our RTSSs which indicate that they represent
such poised regulatory elements. First we observed sub-
stantial enrichment of Pol II at the RTSSs, which is a
typical hallmark for poised regulatory elements. This en-
richment was observed independently of the selection
procedure. Previous reports have discussed the role of
stalled Pol II at poised regulatory elements, and it has
been suggested that one role of these elements is to load
Pol II onto the gene promoter through the activation of
long-range spatial interactions [62,63]. In our analysis,
since the RTSSs actually represent transcription events,
we find it more likely that Pol II initiates transcription at
the respective RTSSs, though we cannot exclude that at
least some RTSSs also function through other mecha-
nisms. Second, the selected RTSSs are located in regions
that are also occupied by genes associated with immune
responses, cell signaling and general immediate cell
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responses, all of which are activated rapidly in response
to environmental cues. Several of the poised RTSSs are
located proximal to, or coincide with, the actual genes,
creating quite robust RTSS-to-gene associations. For the
distal RTSSs we again observed a higher global correl-
ation of expression between the poised RTSSs in the
genomic region than for general RTSSs in the same re-
gion, confirming that many of the RTSS-to-gene associa-
tions are also likely to be relevant. Third, common
immediate response genes like FOS and JUN were asso-
ciated with poised RTSSs in all cell lines, and we ob-
served a higher CpG content in genes associated with all
cell types than genes associated with three or less cell
types, in accordance with other data on subsets of
immediate-early response genes [44].

The predefined number of clusters reveals functional
features despite lack of fine-structure in data
In our study we set the predefined number of clusters
for the k-means clustering to 5 for clustering of individ-
ual chromatin marks, and 10 for the combination of
marks. Other studies have identified higher number of
profiles, both for each chromatin mark and for combina-
tions of marks [10,17], where the final number of states
has been determined through various optimizations of a
clustering procedure. Visual inspection of score plots
from PCA revealed no obvious separation of groups of
profiles for any chromatin marks, leaving no suggestion
for an initial estimation of the number of clusters. How-
ever, the variation in RTSS profile shapes should still
warrant that a separation into groups is meaningful.
Thus the number of clusters was chosen to be suitable
for keeping the number of states equal for all chromatin
marks and cell lines, and at a level convenient for inter-
pretation. The numbers chosen turned out to be suffi-
cient for producing relevant functional associations, and
thus this works as a proof of principle. We anticipate
that more sophisticated ways of selecting clusters will
probably produce stronger and more detailed functional
associations than the ones observed in this study.
The regulatory landscape governing transcription in

different cell types is highly complex. However, it is also
predictable, in that the same cell type responds similarly
every time it is subjected to the same environmental
cue, and coordinated, in that several transcriptional ele-
ments respond in the same manner to stimulation. Gen-
ome wide mapping of various features, whether it is
expression level measurements, TSS activity level, chro-
matin configuration, DNase HS or transcription factor
binding and activity, all leave traces of this coordinated
action. Thus, it is an important challenge to integrate
such data and determine at what level it is meaningful
to look for general patterns that are robust and predict-
able on a global scale, to investigate what these patterns
mean in terms of function and phenotype, and what the
main components that govern these patterns are. In this
study we have used combinations of chromatin marks
around a global set of experimentally defined TSSs, and
identified subsets of TSSs with similar chromatin config-
uration, several of which have functional associations.
Hopefully this and related strategies, together with inte-
gration of even more genome wide features, will con-
tinue to reveal patterns of ubiquitous and cell type
specific gene regulation, expression and function.

Conclusions
We have integrated chromatin data from the ENCODE
consortium with the robust set of globally defined TSSs
from FANTOM5 to investigate how chromatin features
can be used to distinguish TSSs with different properties
in four cell lines analyzed by both consortia. We find that
most TSSs are repressed in the cell lines studied here,
however, a substantial number of the repressed TSSs are
enriched with active chromatin marks. These TSSs are
strongly associated with immediate-early response pro-
cesses and cell signaling. Expressed TSSs can be clustered
into subsets based on combinations of both enrichment
and profile shape of individual chromatin marks. We iden-
tified three main groups of clusters which differ in average
TSS expression, CpG island enrichment, TSS location with
respect to nearby genes and functional GO terms. Inter-
estingly, groups with clusters enriched for TSSs distal to
nearby genes show the strongest functional associations.
Finally we show that nearby TSSs with similar chromatin
configuration show better correlation in global expression
profiles than nearby TSSs in general, thus validating the
link between chromatin states and cellular function.

Methods
Data sources
ChIP-Seq mapped tag libraries, and enrichment regions
for the 10 histone modifications H3K4me1, H3K4me2,
H3K4me3, H3K27me3, H3K36me3, H3K9me3, H3K27ac,
H3K9ac, H3K79me2, H4K20me1, histone variant H2A.Z
(Broad Histone, Broad Institute), DNase hypersensitivity
(DNase HS, Duke DNaseI HS, Duke University) and Pol II
(SYDH TFBS, Stanford/Yale/USC/Harvard) were down-
loaded from ENCODE for the four cell lines K562,
GM12878, HeLa-S3 and HepG2 [64]. In addition, 4 ChIP-
Seq datasets of Pol II after stimulation with IFNα and
IFNγ measured after 6 and 30 hours were also down-
loaded from ENCODE (SYDH TFBS, Stanford/Yale/USC/
Harvard). Nucleosome position sequencing data for the
cell lines K562 and GM12878 were downloaded as bigWig
files from ENCODE (Stanf Nucleosome, Stanford/BYU).
For RTSS from FANTOM5, we started with a preliminary
global CAGE RTSS dataset of 180 338 robust RTSS (this
set was later expanded to 184 827 for the FANTOM5
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main paper [4], the additional RTSS were not included in
this study), in addition to cell-type specific expression of
these clusters in the four selected cell lines. Three RTSS
expression replicates were pooled into a single expression
profile in each cell line. RTSS overlapping with unmap-
pable regions from ENCODE [64] (mapability, exludable
regions from Duke University and Stanford) were removed
prior to analysis, reducing the number of global RTSS to
179 369. In addition, we encountered unexpected profiles
for histone modification H3K27me3 in HepG2. These pro-
files were not confirmed by a second H3K27me3 dataset
(UW Histone, University of Washington)) from ENCODE.
We thus decided to discard this dataset from the analysis.
An overview of all datasets used in the analysis are listed
in [Additional file 1: Table S17].

Overlap of chromatin marks with expressed/repressed RTSSs
To define expressed RTSS, we used a mapped tag
threshold of 5 for the cell lines GM12878, HeLaS3 and
HepG2 and 3 for K562. The reason for the lower thresh-
old in K562 was that the CAGE tag library for K562
contained a lower total number of tags (10.7 m) than the
other three cell lines (30.2 m, 26.5 m and 33.1 m re-
spectively). Only RTSSs regions with zero tag count were
defined as repressed. RefSeq genes (UCSC Genome
Browser 18.10.2011) [65,66] were used for gene annota-
tions. RTSSs in the category ±150 bp proximal to anno-
tated RefSeq TSS were required to have the same strand
directionality as the annotated TSS. Overlaps between
RTSSs and chromatin marks were calculated for each
mark individually using downloaded enrichment peak-
profiles from ENCODE (filename extension .broadPeak
for histone modifications and histone variant H2A.Z and
.narrowPeak for DNase HS). An overlap between an en-
richment peak and a RTSS was identified if the enrich-
ment profile overlapped the RTSS plus a 500 bp
extension from each end of the RTSS region. The exten-
sion was used because some chromatin marks associate
with RTSSs up- or downstream, rather than at the exact
position of the RTSS. Isolated RTSSs were defined as
RTSSs with a genomic distance of at least 2kbp from
any other RTSSs. The p-value for each overlap was cal-
culated by the Genomic Hyperbrowser [67] using a
Monte Carlo scheme with 100 permutations [Additional
file 1: Table S18]. Details of the calculations can also be
found at [68].

Processing of chromatin marks around RTSSs
Profiles around each of the 179 369 globally defined RTSSs
in each cell line for all chromatin marks were calculated
from ChIP-Seq mapped sequence read libraries down-
loaded from ENCODE. Replicates for each chromatin
mark were pooled. RTSS center positions were used as
genomic anchor points for profile regions spanning 3 kbp
in both directions from the anchor point. Because the
average sequence read length was estimated to be around
200 bp (ENCODE, Broad Histone, Broad Institute), start
positions for the mapped reads were shifted by +100 bp
for reads mapped to the positive strand, and −100 bp for
reads mapped to the negative strand. Each profile was
then calculated by summing all start positions in 100 bp
intervals up and downstream of the anchor point, extend-
ing 3kbp in each direction. To limit the impact of noise,
only RTSSs overlapping with ENCODE-defined signifi-
cantly enriched regions for each chromatin mark were
used to calculate the average profiles. Nucleosome data
for K562 and GM12878 were downloaded as bigWig files
from ENCODE, and profiles were calculated by summing
values in 100 bp intervals ±3kbp around RTSSs as de-
scribed for the chromatin marks.

Clustering of individual chromatin marks within each
cell line
Clustering was performed for each chromatin mark in
each cell line individually using k-means clustering with
number of clusters set to 5. We chose this number both
because it generally produced subprofiles that were
clearly distinct in shape, and to avoid too much com-
binatorial variation for the subsequent meta-clustering
(see below). For clustering we used profiles for all
expressed RTSSs in each cell line. The profiles were cal-
culated using the RTSS center position as anchor point,
and averaging sequence read intensities in 100 bp win-
dows extending 3kbp both up and downstream. RTSSs
with profiles containing less than 100 reads for a chro-
matin mark were filtered out for the clustering of this
mark. Applying this filter resulted in between 15 000 and
50 000 profiles clustered for each active mark, and be-
tween 1000 and 15 000 profiles for each repressive mark.
All profiles selected for clustering were smoothed prior
to clustering using Gaussian convolution with window
size of 7 bins. Removing edge effects caused by the
smoothing reduced the number of measuring points in
each profile from 60 to 48. Clustering was performed
using the kcluster function in the Python Bio.Cluster
package. We used Pearson Correlation as distance meas-
ure rather than Euclidian Distance to emphasize profile
shape rather than intensity differences, and also to re-
duce the effect of normalization. We did repeated ana-
lyses with number of passes, npass, set to 10, and found
that this number made each clustering fairly reprodu-
cible as evaluated by visual inspection of the resulting
profiles. We thus chose 200 passes in the final clustering of
each chromatin mark, which should be sufficient to pro-
duce robust cluster profiles. All other parameters were set
to default. To investigate the effect of confounding, we also
selected profiles from isolated expressed RTSSs and clus-
tered them separately. Clustered profiles using only the
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isolated clusters were generally comparable to cluster pro-
files from the full sets of expressed RTSSs. We thus used
results from the full set clustering for further analysis.

Meta-clustering of correlation coefficients for multiple
chromatin marks within each cell line
The initial clustering produced 5 average subprofiles for
each of the 12 chromatin marks in each cell-line. For
each expressed RTSS, a Pearson correlation coefficient
was calculated between each of the RTSS chromatin
profiles and the five subprofiles for this chromatin pro-
file. This resulted in 60 correlation coefficients for each
of the expressed RTSSs (55 for HepG2, because
H3K27me3 was excluded from this cell line). Correlation
coefficients where the total chromatin signal was below
the predefined threshold of 100 where set to zero. The
matrix of expressed RTSSs and chromatin profiles was
then subjected to k-means clustering, with number of clus-
ters set to 10 and number of passes to 1000. Other cluster
parameters were the same as previously defined. The clus-
tering was performed independently in each cell line.

Robust subset of repressed RTSSs with active marks
In each cell line profiles for all active marks around each re-
pressed RTSS were pooled to create a general active profile
for each RTSS. A RTSS was selected for the robust subset if
it i) overlapped with a peak-region of significant enrichment
for any chromatin mark, ii) the total signal for the pooled
profile was above a threshold set to 1000 reads, iii) the cor-
relation of the RTSS profile to the average pooled repressed
profile was above 0.5, and iv) the correlation of the RTSS
profile to the average repressed profile was significantly bet-
ter (p-value ≤ 0.05) than the correlation to the average
expressed profile. For the last criteria we implemented a
statistical test for comparing dependent correlations [69]. A
total number of 6184 RTSSs for K562, 3813 for GM12878,
4345 for HeLa-S3 and 4303 for HepG2 passed these filter-
ing criteria [Additional file 1: Table S9]. To confirm the ro-
bustness of the selected subsets, we also applied a second
procedure to select repressed RTSSs with active marks. In-
stead of pooling the samples, we now used the five criteria
described above on each chromatin mark individually,
using a threshold of 100 (instead of 1000) on each individ-
ual mark. Then only repressed RTSSs which passed all cri-
teria in at least three active marks were selected. This
resulted in slightly fewer RTSSs for each cell line compared
to the other selection procedure. Between 60% and 80% of
the RTSSs selected by the second procedure were also se-
lected by the first procedure. This overlap is high, consider-
ing that the selected RTSSs only constitute around 5% of
the total number of repressed RTSSs enriched for any chro-
matin mark. We thus conclude that the selected subsets
represent a robust selection of repressed RTSSs with active
marks in each cell line.
Gene ontology enrichment analysis by GREAT
RTSS regions for each of the 40 metaclusters (10 in each
cell-line) were individually submitted to the Genomic Re-
gions Enrichment of Annotations Tool (GREAT) [37]
using default parameters and the full set of expressed
RTSSs from each cluster’s corresponding cell line as
background. Terms and associated genes for each term
were extracted for the most relevant categories, which we
determined to be Molecular Function, Biological Process,
PANTHER Pathway, Pathway Commons, BioCyc Pathway
and MSigDB Pathway. Only terms displayed by GREAT
were included in the analysis. In default mode, GREAT
only displays the top 20 terms for each category which
pass two statistical tests (p-value < = 0.05): A binomial test
which accounts for over-representation in genomic re-
gions, and a hypergeometric test which accounts for over-
representation in functionally associated gene sets. In
addition, the region fold enrichment must be larger than 2
for a term to be reported. For each cluster, localization en-
richment with respect to associated genes was retrieved
from Region-Gene Association Graphs (Binned by orienta-
tion and distance to TSS) displayed by GREAT. An issue
with the initial analysis using RTSS locations in each clus-
ter was the possibility of confounding of nearby RTSSs.
RTSSs located less than a few hundred bp apart may have
a confounded chromatin signature, which may bias the
significance of some terms in GREAT. To deal with this
issue, we applied two strategies for CAGE analysis. In the
permissive strategy we used all RTSSs in each metacluster
as input, thus allowing more weight to be put on regions
where many RTSSs are located close together, while in the
conservative strategy we merged all RTSSs within a
100 bp window surrounding anchor RTSSs. The RTSSs
used as anchors for merging were the ones having the
highest proximity to other RTSSs. The matrix used for
PCA on GREAT terms was constructed by first listing all
genes associated with significant terms for all metaclus-
ters. Then, for each gene and each cluster, a value of 1 was
assigned if significant terms for this cluster contained the
gene, and 0 if the gene was not contained in the significant
terms. This procedure resulted in a matrix where each of
the 40 clusters is a sample, each gene is a variable, and
each elements in the matrix have the value 0 or 1. For the
poised RTSSs we collected terms from the same GREAT
categories as for the metaclusters, but now we used the
general human genomic background provided by GREAT
rather than a customized background for the analysis. To
evaluate the GREAT terms for the selected repressed
RTSSs we compared them to terms generated using ran-
dom sets of RTSSs with set sizes equal to the selected RTSS
sets, and drawn randomly from i) the total set of all re-
pressed RTSSs, and ii) the set of repressed RTSSs with not
overlapping significantly enriched chromatin regions from
ENCODE. To enumerate the terms related to immune
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response, we counted terms containing variants of the
words immune, interferon, interleukin, cytokine, inflamma-
tion, TNF, NFkB and TCF. For terms related to signaling we
only counted variants of the word signaling. Associated
genes were also extracted from the GREAT reports.
CpG island enrichment analysis
CpG island coverage and enrichment in RTSS promoters
(defined as the region 200 bp upstream of a RTSS) in 40
metaclusters, as well as promoters for genes affected by our
selection of poised RTSSs, was computed using the
Genomic HyperBrowser [67]. A track of genomic locations
for CpG islands was downloaded from the UCSC genome
browser, and enrichment factors for each metacluster and
gene set were computed as the ratio of observed bp overlap
with the CpG island track versus the expected bp overlap
across all promoters in each metacluster or gene set. For
CpG content of genes affected by our poised RTSSs, we
constructed a hypothesis test to investigate whether genes
affected in all four cell lines (case) where more significantly
enriched for CpG islands than genes affected in one, two or
three cell lines (control). The p-value was computed using a
Monte Carlo scheme where case and control marks were
permuted randomly across all promoter regions of the ana-
lysis. Further details on the analysis, including the possibility
to reproduce results, is given in a Galaxy page at [70].
Validation of RTSS-to-gene associations
The correlation between two RTSSs was calculated as
Pearson correlation between expression levels over all 975
cell types and tissues analyzed in FANTOM5. For each
cluster and the set of poised RTSSs in each cell-line, we
used annotated TSSs for genes associated with each clus-
ter from GREAT, and calculated intra-correlations be-
tween all RTSSs in increasing distances of 0.05, 0.2, 0.5, 1,
5, 10, 50 and 150 kbp upstream and downstream from the
annotated gene TSS. Correlations were calculated for all
globally defined RTSSs within the region, and RTSSs con-
tained in each cluster only for the same region. Random
correlations were calculated as all intra-correlations be-
tween 100 randomly selected RTSSs from the global set.
Additional file
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