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Abstract

This paper presents the design and real-time decoding of a
color symbol that can be used as a reference marker for
optical navigation. The designed symbol has a circular
shape and is printed on paper using two distinct colors.
This pair of colors is selected based on the highest achiev‐
able signal to noise ratio. The symbol is designed to carry
eight bit information. Real time decoding of this symbol is
performed using a heterogeneous combination of Field
Programmable Gate Array (FPGA) and a microcontroller.
An image sensor having a resolution of 1600 by 1200 pixels
is used to capture images of symbols in complex back‐
grounds. Dynamic image segmentation, component
labeling and feature extraction was performed on the
FPGA. The region of interest was further computed from
the extracted features. Feature data belonging to the
symbol was sent from the FPGA to the microcontroller.
Image processing tasks are partitioned between the FPGA
and microcontroller based on data intensity. Experiments
were performed to verify the rotational independence of
the symbols. The maximum distance between camera and
symbol allowing for correct detection and decoding was
analyzed. Experiments were also performed to analyze the
number of generated image components and sub-pixel
precision versus different light sources and intensities. The

proposed hardware architecture can process up to 55
frames per second for accurate detection and decoding of
symbols at two Megapixels resolution. The power con‐
sumption of the complete system is 342mw.

Keywords robotic vision, indoor navigation, reference
symbol

1. Introduction

An Automatic Guided Vehicle (AGV) or robot must able to
measure its own current position for safe localization and
navigation within indoor environments. In an outdoor
environment Global Navigation Satellite System (GNSS)
provides an effective solution for measuring the current
position and also gives guidance for navigation. In an
indoor environment GNSS signals are attenuated by
multiple reflection from roof, walls etc. By this attenuation
the accuracy of the GNSS becomes very low. Several indoor
localization techniques have been developed e.g. Ultra
Wideband based indoor localization [1], Wireless Local
Area Network (WLAN) based localization [2] etc. Optical
methods have evolved for the accurate positioning of an
object in indoor environments.
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Position sensing using cameras is based on methods for
finding  and  mapping  references  in  the  surrounding
environment. These reference structures can be obtained
from the natural surroundings [3] or from reference symbols
planted into the surrounding environment. Visual Simulta‐
neous  Localization  and  Mapping  (VSLAM)  provide  a
solution for indoor navigation based on exploiting natural
references [4]. Finding natural reference structures in the
surrounding environment while searching a large data‐
base of related reference positions becomes a very demand‐
ing task on any computational platform. On the other hand,
a well coded reference symbol that can be planted into any
indoor environment can be made so that it can be found
easily and will require less computational burden.

There are several application areas of mobile robotics that
provide a structured environments and opportunities for
coded reference structures. This includes harsh indoor
environments such as chemical, nuclear and biological
plants with applications such as robotic inspection,
maintenance and repair. Mobile robotics is also well suited
for logistics and transport applications in well-structured
environments such as warehouses, factories or transport
terminals. Applications also include similar outdoor
environments that are either GPS-denied (e.g. due to
structures blocking satellite line of sight, or in underwater
environments) or where GPS does not provide sufficient
accuracy and reliability. Visual navigation based on coded
symbols could be used as a standalone navigation system
in some cases when there will always be at least one symbol
in sight, or when the robot is able to move relatively
accurately in dead reckoning mode between the symbols.
Such landmark-based navigation would require a map
with known location of the symbols, which must be
assumed to be available in the structured environment [6].
In order to increase accuracy, robustness and to extend to
a situation or where symbol locations are sparser or the
robot motion accuracy is low, an integrated navigation
system with sensor fusion could be made. The coded
symbols can be used to aid navigation by means of inertial
sensors and odometry [7].

In this paper, the design of a reference symbol and a
corresponding method for real-time symbol detection and
decoding will be presented. The symbol is composed of two
distinct colors and this pair of colors is selected based on
the highest achievable Signal to Noise Ratio (SNR) [8]. The
circular shape of the proposed reference symbol makes it
rotationally independent. The decoding of the proposed
symbol is much simpler as compared to QR codes. QR
codes were designed to store large amounts of data on a
limited spatial area. QR codes have a complex detection
process, require long processing time and feature extrac‐
tion is not stable [12].

Optical methods for real-time position sensing have
become feasible due to substantial technological progress
and commercial market growth for high resolution imag‐
ing detectors [9]. In addition to new detectors, there has also
been a remarkable development of programmable hard‐
ware platforms providing resources for massive parallel
embedded computation [10]. Exploiting this parallelism for
the computation of position and orientation requires more
research on hardware architectures that can efficiently
mapped onto heterogeneous combinations of FPGA
circuits and processor kernels. This has provided the
motivation to develop an implementation centric method
for real-time detection and decoding of a color symbol.

An overall data-flow graph of operations for decoding the
symbol that is proposed is presented in Figure 1. The front-
end data flow intensive image processing tasks are mod‐
eled at the Register Transfer (RT) level for implementation
on the programmable hardware FPGA. The back-end
control-flow intensive parts are captured by imperative
programming in C for computation on a micro-controller.
The image sensor MT9D112 from Aptina, operating at 13
frames per second at a resolution of 2 Mega pixels, is used
to capture images. The captured color images are prepro‐
cessed, where all possible regions of interest are separated
from the background. The preprocessed and segmented
images are labeled such that each image object is assigned
a unique label. In addition to the labeling process the image
object features area, bounding box and Centre of Gravity
(COG) are accumulated. These extracted features provide
sufficient information to detect the sets of image compo‐
nents defining our Regions of Interest (ROI) from the
remaining set of spurious components. After successfully
determining the regions of interest, the component features
defining all ROI via Serial Parallel Interface (SPI) are
transmitted to a second chip. This second chip is a 32bit
Atmel AVR micro-controller, which is finally used to
decode the 8 bit coded symbol identities. The designed
symbol is shown in Figure 2. The symbol consists of an
outer red color circle that can be used to identify the ROI in
a segmented image. Inside the ROI there are ten circles, two
of them are bigger than the reset of circles. The small eight
circles are code bit circles that can be used to encode 256
distinct values. The two reference circles can be set as a
reference to direction of decoding. In this paper, the present
the experiments and results for the camera distance in
which the symbol can be accurately detected will be
presented. The will also be a discussion with regards to the
sub-pixel precision under different illumination condi‐
tions.
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Figure 1. Dataflow operation for symbol decoding
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Figure 2. Designed symbol

The key requirements for the proposed reference symbol
and its corresponding method for real-time detection and
decoding are:

1. Symbol must provide a unique identity code and allow
for an easy and efficient segmentation method. Hence,
it should be possible to segment the symbol from a
complex image background without generating too
many spurious image objects. This requirement has
already been verified in a previous publication [8],

2. Algorithm for detection and decoding should allow for
an efficient implementation achieving high frame
speed, low latency and low power,

3. The symbol should provide an accurate spatial
reference in the image plane with highest possible sub-
pixel accuracy,

4. Detection and decoding of the symbol must, to the
largest possible extent be independent of illumination,
projection angle, scale, position and rotation in image
plane.

The main contribution of this article is a method for real
time detection and decoding of a reference symbol used for
optical navigation. This symbol is designed while main‐
taining the focus on the hardware architecture. The
proposal is for a parallel and pipelined hardware architec‐
ture that can provide high throughput at low power
consumption, ensuring high frame speed for real-time
detection and the decoding of symbols present in a complex
image background. The insensitivity to variation in
illumination, scale and rotation while providing good
spatial sub-pixel accuracy makes the designed symbol, in
combination with proposed method for real-time decod‐
ing, suitable for optical navigation. The proposed symbol
and method for real time decoding is a valuable scientific
contribution within the area of robotics.

2. Related work

Reference markers used in navigation systems are specially
designed patterns, for pose estimation of the machine
vision system. The advantage of using markers is that it can

be easily extracted from its background if compared to the
extraction of natural features. The related research on
reference markers used in indoor positioning of machine
vision system is as follows:

Jian-tung Wang [13] used QR code, combined with the idea
of augment reality (AR). A prototype system called QRAR
was implemented. The advantage of using QR code is that
it provides error correction and carries an abundance of
information. The drawback of QR decoding is that it
involves geometrical pixel transformations to compensate
for the variation in projections. These transformations are
different for each symbol and must be performed before
data can be read. The average processing time per frame
for detection only and not including decoding is 0.4s.

StarGazer sensor system [14] analyzed images of infrared
rays reflected from a passive landmark attached to the
ceiling in an indoor environment. The land marker consists
of different point patterns, which can be arranged as a 3X3
or 4X4 matrix. The land marker is associated with location,
direction and ID information. The maximum localization
range of the system is between 440 and 630 cm and the
accuracy of the system for pose estimation lies in the sub-
desimeter range.

Mulloni et al. [16] implemented a real time indoor naviga‐
tion system by using a fiduciary marker and off-the-shelf
camera phones. Markers are attached to walls or posters in
an indoor environment. These markers can be encoded for
36 bits data but they used 9 bits at each of marker’s sides in
black and white squares. The 2D markers are used to
estimate the pose in three degrees of freedom, 3DOF. The
maximum tilt angle for decoding of the markers is 70
degrees, which is relatively small and also affects the
accuracy of the system. The system can determine its
position with a the precision of a few centimeters.

Nakazato et al [18] proposed a user localization system
based on invisible markers for wearable augmented reality.
The user can estimate its pose by recognizing the markers
using an infrared camera. The invisible markers are affixed
to the ceiling by means of wallpaper. The markers are
square and contain a unique pattern of dot points. The
system is designed to a cover large area but the author
found it difficult to assign a unique identity to all markers.
The accuracy of the system localization is in centimeters.

The study of related work shows different approaches
adopted by various researchers for optical positioning.
Using coded symbols as a reference structure is not a novel
idea [12,14]. Our accumulated scientific contribution in
optical position sensing is, instead, focused on providing
real-time and power performance at a speed that has not
been seen in any of the related research works. This high
performance is achieved by co-designing a symbol and its
corresponding method for detection and decoding.

The main contribution of this article is a method, and its
related hardware architecture for real time detection and
decoding of a reference symbol.
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3. Image processing operations

In this section, the different image processing operations as
presented in Figure 1 along with the design of a coded
symbol will be presented.

3.1 Image capturing

The Aptina MT9D112 is a 1/4-inch 2 Mega pixel CMOS
image sensor. This camera system features a microcontrol‐
ler (MCU) and a sophisticated image flow processor (IFP).
The microcontroller manages all the components of the
camera system and sets the key operation parameters for
the sensor core in order to optimize the quality of raw
image data entering the IFP. The sensor core consists of an
active pixel array of 1616 x 1216 pixels, programmable
timing and control circuitry including a PLL and support
for an external flash. The camera can be programmed
through an I2C interface for different image resolutions and
PLL settings. For all experiments presented in this paper,
the camera was set to operate at the maximum resolution
i.e. (1600x1200) and at a frame speed of 13 frames per
second.

3.2 Image preprocessing

Captured pixel data from the image sensor is preprocessed
before the symbols can be detected. This preprocessing
includes the following three steps:

1. Color model conversion

2. Dynamic Segmentation

3. Thresholding

The primary spectral components Red Green and Blue
(RGB) can be coded from an interpolation filter operating
on pixel responses from a Bayer pattern image sensor.
However, the wide wavelength light spectrum intensity is
represented on all three color components RGB resulting in
information redundancy.

The YCbCr color model is merely another way of encoding
the RGB color model such that the intensity and color
information becomes less redundant. The Y channel of
YCbCr carries information regarding luminance while Cb
and Cr represent color. The Cr component of the YCbCr
color model has been used in this case. A pair of back‐
ground and foreground colors is then selected such that the
highest possible SNR is achieved on the Cr channel [8]. The
Cr channel output is then further processed at a dynamic
segmentation step. High SNR for the symbol leads to fewer
segmented spurious image components. Consequently, a
printed label can be highlighted within a complex image
background such that the total number of components after
segmentation is reduced. Less image components will ease
the workload on the computational platform [8].

We have also studied other segmentations techniques
presented in literature. A fuzzy color classification base

image segmentation in presented in [15]. The presented
method is based on human perception of colors using fuzzy
logic. The process need many iterations before pixels can
be assigned to a search space. The author also presented
rule base approach which is more robust. The presented
approaches give good result in simulations. For time-
critical machine vision applications we need simplified
algorithms that can be parallelized for efficient hardware
implementation. The presented approach in [15] is not
suitable for direct hardware implementation. Another
segmentation method base on people counting application
is presented in [16]. The authors used the approach of
taking frame difference, applying morphological opera‐
tions and then region growing technique. The applied
technique require frame buffer to store intermediate
frames, thus increasing memory utilization and power
consumption.

The 2-dimensional Gussian filter is designed in MATLAB
and convolves with the input image as shown in Figure 3.
The details of designed filer can be found in [27]. A final
thresholding is applied to segment the filtered Cr channel
of its input image and convert it into a binary image. One
way to determine this threshold value is to find global
maximum pixel intensity in a gray scale image and set the
threshold depending on this value e.g. 25 percent of the
maximum pixel intensity. This method for dynamic
thresholding is too sensitive to image noise and generates
a great deal of spurious image objects. Instead, in this case,
a more exhaustive approach to dynamically set the thresh‐
old value has been developed. Instead of computing the
threshold based on a global maximum gray scale value, an
average of maximum gray scale values from eight consec‐
utive rows is computed. The threshold value is then
experimentally set to a percentage of that average maxi‐
mum. The proposed method for dynamic thresholding is
less sensitive to noise if it is compared that when using a
global maximum.

The  computation  of  the  2-dimensional  convolution
required for the 11 by 11 pixels filter, shown in Figure 6,
involves massive access regarding the pixel data stored
in the memory. Implementation of such a large convolu‐
tion  would  thus  lead  to  an  exploding  requirement
regarding the memory bandwidth if  special  care is  not
taken.  An  application  specific  memory  hierarchy  is
therefore introduced to exploit the reuse of data such that
the requirement with regards to the memory bandwidth
is  kept  to  a  minimum.  Figure  4  shows  a  memory
hierarchy that provides access to a 3 by 3 pixels neighbor‐
hood.  This  3x3  memory  hierarchy  is  just  an  example,
actual memory hierarchy will be of 11x11 Input pixel data
is  continuously  shifted  into  this  memory  hierarchy,
providing fast register access to a neighborhood of pixels.
For our experiments, line buffers are implemented in the
FPGA block memories while registers are located close to
the data path of computations. This design technique is
not novel, but it’s extremely important in order to allow
for high frame speed and low power consumption [11].
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Figure 3. Dynamic segmentation

For the RT level modeling of dynamic segmentation, the
filter coefficients are obtained from MATAB. These floating
point values are quantized into 12 bit fixed point coeffi‐
cients. The typical neighborhood of a pixel is shown in
Figure 5. To compute the output of a single pixel, 121
multiplications and 120 additions are required. At the RT
level, these costly multiplications are replaced by shift and
add operations. To efficiently model the shift and add
operations for an 11x11 convolution, the data path is
pipelined into 7 stages. The architecture for the shift and
add operations is shown in Figure 5. This pipelined
architecture minimizes the delay paths from register-
outputs to inputs such that the maximum clock frequency
on which the whole system can run is increased. This
increase in maximum clock frequency will, in turn, result
in the higher possible frame rate.
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Image component labeling and feature extraction

A binary image is input to a process often referred to as blob
analysis. All pixels belonging to a connected image
component (blob) are assigned a unique set of labels during
the scanning of the input binary image. Data for the
computation of features are, at the same time, accumulated
into a set of memories. The hardware architecture for image
component labeling and feature extraction is shown in
Figure 7(b). For the labeling process of a typical image, the
neighborhood is shown in Figure 7 (a). The pixel P5 is
assigned a label based on its neighboring pixels P6 to P9. A
delay line of one FIFO-buffer and two registers hold the
labels assigned to the previous row [20]. The kernel for
labeling and feature extraction is depicted in Figure 7 (b).
The labeler assigns labels to P5 depending on its neighbors.
If the labeler does not find any labeled pixels in the
neighborhood, a new label is assigned to P5. If the labeler
finds two different labels in the neighborhood of P5, then
P5 is assigned to one of these labels and the detected pair
of labels must be recorded as equivalent. This reason for
this is that all the connected pixels must be recognized as
belonging to the same image component. The equivalences
are recorded in Table A or B based on an odd or even frame.
Equivalences are resolved after labeling the whole frame
such that all labels in an image component should have the
same value. This label assigning and resolution runs in
parallel in Table A or B. Along with the labeling process the
data for feature extraction is also accumulated in Data table
A or B. When all equivalences are resolved in Table A or B,
the Table ready signal is sent to the feature extraction unit
e.g. COG calculation in Figure 7 (b). For symbol decoding

experiments, three features are extracted: area, bounding
box and COG. However before the symbol can be decoded
it must firstly be detected.

3.3 ROI and symbol detection

After sorting all image components by means of their
feature data, the ROI for all symbols present in the binary
input image is extracted. The bounding box feature is used
in this case to locate the outer big circle of the symbol. The
difference between the width and height of the bounding
box around the outer circle should be within a specific
threshold value to qualify as being an ROI. In our experi‐
ments, this value is set at to 30 pixels. Once the outer circle
is located, a check is made for exactly 10 components to be
located inside the ROI, otherwise detected ROI is not
belonging to a valid symbol. The feature data of objects
present in all ROIs belonging to the symbols are sent to a
micro-controller for further decoding of the symbols. An
SPI link, operating at 8 MHz is used for this communica‐
tion. In the experiments with three symbols in a video
frame, the number of segmented image components varies
from one to two hundred. To avoid this communication
overhead, the ROI in the segmented image is determined
and only features related to the detected symbol are sent
from the FPGA to the micro-controller.

Symbol design and decoding

The design of the reference symbol is based on the selection
of a pair of foreground and background colors to allow for
efficient image segmentation. [8]. The structure of the color
symbol is simple, but, it is still able to carry one byte of
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encoded information. The symbol consists of one large
circle (ROI), which contains two reference circles and 8 bit
circles as illustrated in Figure 2. The distance from a bit
circle to the origin is used to code its value to either one or
zero. A threshold distance from the origin defines the value
of an encoded bit circle. If the distance from the origin to
the bit circle is less than the threshold value then the bit
circle is assigned the value of zero, otherwise it is one. Two
reference circles are used to define the weight of the other
eight bit circles used to carry information. During decod‐
ing, the bit circles are scanned in a clockwise manner,
starting from the vector defined by the two reference circles
at zero degrees. This mechanism allows the symbol to be
decoded independently of its rotation. Eight bit binary
encoded data are represented by eight bit circles. For the
experiments presented in this paper, the code size carried
by the symbol is limited to eight bits. However, this code
size could easily be extended if required.
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3.3.1 Encoding

A Matlab script for assigning the information data to the
labels has been developed. The circles of different radii
have  been  defined.  The  big  outer  circle  (AOI)  is  fol‐
lowed by the smaller reference circles and the bit circles.
For  the  correct  detection  of  the  label  at  maximum
distances, the space between the bit circles is fixed. Input
data, which ranges from 0 to 255 decimal numbers, can
be given and the identity code is assigned to the label as
shown in Figure 2.

3.3.2 Decoding

The decoding of the symbols is computed by the micro‐
controller. Once the feature data for the symbols are
transferred into the micro-controller, the angles and
distances with respect to the origin and for all image objects
within the ROI, are computed. Two reference circles are
detected based on their area being larger than for the eight
bit circles. The reference circle, located at the center of the
ROI, is defined as the origin while distances and angles are
computed using a polar coordinate system. The two
reference circles define zero degrees. For rotationally
independent decoding of the symbol, the least significant
bit will always be detected first, when scanning clockwise
starting from zero angles.

4. Experiments and results

In this section different experiments and results for symbol
detection  and  decoding,  maximum  frame  speed  and
power consumption are presented.

4.1 Rotational independence and maximum camera distance from
symbol

The circular nature of the proposed symbol and the method
used for decoding makes the symbol rotationally inde‐
pendent. Experiments were performed in order to to check
this rotational independence as well as the correct detection
and decoding of the symbol at different distances and
viewing angles. A 1/2 inch Aptina CMOS sensor, having a

Figure 8. Experiment on rotational independence
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3.1 mega pixel resolution attached to a lens with a focal
length of 24mm was used for these experiments. The
experiments were conducted in different complex back‐
grounds. The results from decoding a symbol at arbitrary
rotations are shown in Figure 8. The second type of
experiment deals with recognizing the symbol at maximum
distances and at various viewing angles as shown in Figure
9. The results from this experiment are summarized in
Table 2. The Maximum distance for the successful detection
and decoding of a symbol and, at a viewing angle equal to
90° is 10.7 m.

Figure 9. A), B) Detection and decoding of the symbol at 10.7 m having 90o
view angle. B), C) Symbol located at 7 m having 45o view angle. E), F)
Experiment for the recognition of the symbol at 10 m having view angle of
60o.

4.2 Maximum frame speed and latency

The latency and frame speed are very important design
metrics for reactive machine vision systems such as optical
navigation. The modeling of data image processing tasks
on an FPGA will enable short latency and high frame speed.
The experimental setup for real time decoding of the
reference symbols is shown in Figure 10. The Aptina image
sensor MT9D112, operating at a frame rate of 13 frames per
second with a two mega pixel resolution, is used to capture
the images. The micro-controller is operating at 16 MHz.
Captured images are fed to the FPGA to perform data
intensive image processing operations. The binary image
generated after thresholding is sent through an HDMI
interface for displaying on an external monitor. Figure 10.
The total latency of the proposed system is calculated from
the accumulated measured latencies caused by hardware
modules on the FPGA, communication and software on the
microcontroller for decoding. The latencies are measured
at a throughput of 13 frames per second and estimated for
a system running at maximum frame speed. See Table 1.
The maximum frame speed is calculated based on the
maximum clock frequency that the Xilinx toolset gives after
synthesis of the design. In order to calculate this maximum
frame speed, any camera synchronization overhead is
excluded. This is possible for the proposed system since the
developed hardware architecture has no dependency on
row synchronization. Latency for the hardware modules on
the FPGA and the software on the microcontroller were
measured using a logic analyzer.

Table 4. Experiments on sub pixel precision using different light sources 

Light source Light source 

properties 

Luminance 

(LUX) 

Std. Dev  

 (in Centroid 

values) 

Segmented 

image 

components 

Image 

components 

( > 8pixels)  

Fluorescent lamp  

17 W, 

Tkelvin==2500 

K, 970 lumen 

88 0.08 63 32 

Fluorescent lamp 63 0.11 97 39 

Fluorescent lamp 47 0.13 130 42 

LED lamp  

7W, 

Tkelvin==3000 

K, 470 lumen 

89 0.08 92 38 

LED lamp 57 0.09 100 40 

LED lamp 46 0.10 126 53 

incandescent 

lamp 

 

 

40W 

90 0.08 81 35 

incandescent 

lamp 

60 0.11 94 43 

incandescent 

lamp 

46 0.14 140 57 

Halogen lamp  1 KW 400 0.062 50 25 

Halogen lamp 300 0.067 60 32 

3.3.1 
 ENCODING 

 A Matlab script for assigning the information data 

to the labels has been developed. The circles of 

different radii have been defined. The big outer 

circle (AOI) is followed by the smaller reference 

circles and the bit circles. For the correct detection 

of the label at maximum distances, the space 

between the bit circles is fixed.   Input data, which 

ranges from 0 to 255 decimal numbers, can be given 

and the identity code is assigned to the label as 

shown in Figure 2. 

3.3.2  DECODING 

The decoding of the symbols is computed by the 

microcontroller. Once the feature data for the 

symbols are transferred into the micro-controller, 

the angles and distances with respect to the origin 

and for all image objects within the ROI, are 

computed. Two reference circles are detected based 

on their area being larger than for the eight bit 

circles. The reference circle, located at the center of 

the ROI, is defined as the origin while distances and 

angles are computed using a polar coordinate 

system. The two reference circles define zero 

degrees. For rotationally independent decoding of 

the symbol, the least significant bit will always be 

detected first, when scanning clockwise starting 

from zero angles. 

4. EXPERMENTS AND RESULTS 

In this section different experiments and results for 

symbol detection and decoding, maximum frame 

speed and power consumption are presented. 

4.1 ROTATIONAL INDEPENDENCE AND 

MAXIMUM CAMERA DISTANCE FROM 

SYMBOL 

The circular nature of the proposed symbol and the 

method used for decoding makes the symbol 

rotationally independent. Experiments were 

performed in order to to check this rotational 

independence as well as the correct detection and 

decoding of the symbol at different distances and 

viewing angles. A 1/2 inch Aptina CMOS sensor, 

having a 3.1 mega pixel resolution attached to a lens 

with a focal length of 24mm was used for these 

experiments. The experiments were conducted in 

different complex backgrounds. The results from 

decoding a symbol at arbitrary rotations are shown 

in Figure 8. The second type of experiment deals 

with recognizing the symbol at maximum distances 

and at various viewing angles as shown in  

Figure 9. The results from this experiment are 

summarized in Table 1. The Maximum distance for 

the successful detection and decoding of a symbol 

and, at a viewing angle equal to 90o is 10.7 m. 

4.2 MAXIMUM FRAME SPEED AND 

LATENCY                                                                      

The latency and frame speed are very important 

 

Figure 10. Experimental setup 
Figure 10. Experimental setup

Frame
speed/
second

Latency
(Hardware
modules)

Latency
(Communicat

ion)

Latency (16
MHz)

(Software)

Total

13 (current) 78.06 msec 41 usec 14 msec 92.10 msec

55
(maximum)

17.9 msec 41 usec 14 msec 31.9 msec

Table 1. Latency values for different operation

Dist
Angle

0.9m 1m 2m 3m 4m 5m 6m 7m 8m 9m 10m 10.7m

90° √ √ √ √ √ √ √ √ √ √ √ √

60° x x √ √ √ √ √ √ √ √ √ x

45° x x √ √ √ √ √ √ √ x x x

Table 2. Distance and angle of camera from reference symbol
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4.3 Power consumption

The estimated power consumption for the proposed
system is presented in Table 3. The power consumption for
the FPGA is obtained after post place and route simulations
using the Xpower tool, provided by the Xilinx tool set. DC
current measurements for the microcontroller are made
using the digital multi-meter 34410A from Agilent [21].
This digital meter can sample the data at 10 KHz and store
samples on a host computer. The micro-controller only
remains in active mode for 14 msec out of 92 msec. For the
remainder of the time, the micro-controller can be put into
sleep mode, where it only draws 75 uA of current. The
power consumption for the microcontroller, presented in
Table 3 is the mean power calculated by taking the sleep
mode into account.

Image sensor FPGA
(Static

+Dynamic)

Micro-controller
(Processing +

Communication)

Total

245 mW 96 mw 1 mW 342 mW

Table 3. Power consumption @ 13 frames/second

4.4 Sub-pixel precision using different light sources

In this section, the results from the experiments on sub-
pixel precision using different light sources will be pre‐
sented. The centeroid value of the symbol’s central circle
was used for this experiment. The key idea for these
experiments is to determine the variation of the computed
centeroid values, using different light sources and under
different light intensities. Four different light sources were
used for this experiment: incandescent lamp 40W, fluores‐
cent lamp 17W, LED lamp 7w and halogen lamp 1KW. The
wavelength spectrums from these light sources are shown
in Figure 11 and Figure 12. These spectrums are measured
using a KVANT spectrometer [22]. Experiments were also
performed at different light intensities in order to observe
how this was affecting the sub pixel precision and the
number of segmented image components. Light intensity
is described as Luminance and was measured using the
LUX meter LM-120 at a position close to the symbol [23].
For all these experiments, only one source was used to
illuminate the symbol. The Aptina image sensor MT9D112
was configured for automatic control of exposure and gain.
The result from computing the standard deviation of a
series of centeroid values and the corresponding generated
number of segmented image components is presented in
Table 4. It can be seen that high luminance will result in a
lower standard deviation of the computed centeroids. High
luminance will also result in a reduced number of segment‐
ed image components. For approximately the same
luminance, but using different light sources, the number of
generated image components as well as the precision of the
centeroid values, remains almost the same.
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Figure 11. Light sources spectrum a) Incandescent bulb b) LED lamp
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Light source Light

source

properties

Luminance

(LUX)

Std. Dev

(in Centroid

values)

Segmented

image

components

Image

components

( > 8 pixels)

Fluorescent

lamp
17 W,

Tkelvin=2500K

, 970 lumen

88 0.08 63 32

Fluorescent

lamp
63 0.11 97 39

Fluorescent

lamp
47 0.13 130 42

LED lamp 7W,

Tkelvin=3000K

, 470 lumen

89 0.08 92 38

LED lamp 57 0.09 100 40

LED lamp 46 0.10 126 53

incandescent

lamp

40W

90 0.08 81 35

incandescent

lamp
60 0.11 94 43

incandescent

lamp
46 0.14 140 57

Halogen lamp
1 KW

400 0.062 50 25

Halogen lamp 300 0.067 60 32

Table 4. Experiments on sub pixel precision using different light sources

5. Discussion

Camera based optical position sensing plays an important
role for indoor navigation of robots and AGV. Optical
methods become particularly interesting for environments
where GPS signals are attenuated or their accuracy is low.
Reference symbols with known locations in the environ‐
ment can be used for the computation of the camera pose
in 3DOF or more [14]. In this paper the design and real-time
decoding of one such symbol has been presented.

The proposed symbol has a circular shape printed using
two distinct colors. Experimental results show that de‐
signed symbol is rotationally independent and can be
detected and decoded correctly at distances from 0.9 to 10.7
meters. Closer than 0.9 m, the symbol is out of field of view
and cannot be detected. If a camera lens having a focal
length less than 24mm is used then it becomes possible to
detect it for distances less than 0.9 m but, then, the maxi‐
mum range will be reduced.

For time critical vision systems such as optical navigation
the latency should be low. This latency value is dependent
on the frame speed of the video signal generated by the
image sensor and the time necessary for computing the
3DOF position. In order to keep a low latency of the
computational platform, hardware architecture has been
developed for data intensive image processing tasks. The
maximum clock frequency reported by Xilinx toolset is
107MHz. This clock frequency corresponds to 55 image
frames per second when using a two megapixel image
sensor. The latency value at this maximum achievable
frame speed is 17.9 ms. The maximum frame speed and
latency is also dependent on the image resolution. If a lower
resolution results in an acceptable image quality, the frame

speed can be increased further and the latency will decrease
correspondingly. The latency for decoding symbols in
software running on the micro controller is 14 msec. This
latency was measured when the micro-controller was
operating at a 16 MHz clock frequency. This latency can be
reduced to 3.6 msec if the AVR32 micro-controller is
operated at its full speed i.e. 60 MHz.

Power consumption is an important issue when the camera
and image processing platform is operated by a battery e.g.
camera aid for visually impaired persons [24]. The same
requirement can be seen in camera based indoor robotic
navigation. It can be noticed from Table 3 that the Aptina
image sensor is the major source of power consumption
[25]. Researchers are actively working to reduce the power
consumption for image sensors. A characterization of
different CMOS image sensors is presented in [26]. They
report that in the active state of an image sensor, the analog
read-out circuitry consumes 70-85% of the total power. The
digital controller and image processing consumes 5%. The
I/O controller that manages external communication
consumes 10-15%. They also propose strategies to lower the
power consumption for image sensors i.e. by clock scaling
and putting image sensor into standby mode when
possible. The energy reduction is about 30-40 % by apply‐
ing these techniques.

In section 4.4 the result on sub-pixel precision using
different light sources has been presented. It has been
shown that the proposed system is able to correctly decode
the symbol using different light sources having a different
spectral distribution. A reasonable standard deviation can
be obtained after computation of the centroid values. A
standard deviation of 0.06 means that the precision of the
centeroid values is equal to or less than+/-1/17 of a pixel at
the 68 percent confidence level. 1/80 of a pixel was reported
in [27] for experiments using near infrared LEDs as
reference objects and at an SNR of 20. Lower sub-pixel
precision was reported for a lower SNR. SNR is known to
be dependent on many parameters: light intensity, pixel
size, aperture of optics and exposure time. For the experi‐
ment using a 1 kW halogen lamp, the expectation was that
better sub-pixel precision could be obtained. We think that
the reason for the lower precision was that the automatic
exposure control reduced exposure times when the light
intensity was increased. There was no possibility to
measure the exposure times for the Aptina MT9D112 image
sensor. For a robot in motion, short exposure times are of
equal importance as SNR. This is because, motion and long
exposure times will eventually cause a blurring of images
which, in turn, will lead to reduced precision.

The total number of segmented image components at
different light intensities has been reported. Experimental
results show an increase in the number of segmented image
components, as the light intensity decreases. It can be seen
in Table 4 that, in general, it is the number of image
components less than eight pixels that increases. This is
expected since a lower light intensity leads to more image
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noise and a lower SNR, which generates small spurious
image components stemming from the noise. What is most
important is that symbol was correctly detected and
decoded for all test cases reported in Table 4. Thus, the
conviction is that the proposed color symbol and its related
method for detection and decoding are reasonably robust
with respect to spectral distribution and intensity of
illumination.

6. Conclusion

This paper presents the real-time decoding of a color
symbol for optical navigation in a GNSS denied indoor
environment. The results show that the designed symbol
can be detected and decoded within a distance between 0.9
and 10m from the image sensor. The results also show that
the segmentation process is robust and that the proposed
symbol provides good spatial reference under different
light sources and intensities.
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