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Description of the problem as stated in the thesis contract

The purpose of this thesis is to develop and implement an optimization method in order
to establish the energy target for optimal heat and work integration of multiple pressure
changing process streams. Since two forms of energy (heat and work) are under consider-
ation, the objective is to minimize the exergy consumption by locating the optimal stream
split arrangement for the pressure changing streams.

Background:
Extensive efforts have been made to optimize heat recovery networks. However, few
articles have been published describing how pressure energy of process streams can be
integrated in the heat exchanger network to enhance energy efficiency. The objective of
this work is to study the influence of integrating compressors and expanders into the heat
exchanger network, and identify inlet temperatures to the pressure changing units so to
minimize the exergy consumption. Methods have been developed for heat integration of
one compressing and one expanding stream. This work extends the problem to include
multiple compressing and expanding streams.

Main tasks:

• Formulate a two-level optimization model

• Implement the optimization model for evaluation of candidate solutions

• Implement the search algorithm

• Design new test cases involving multiple pressure changing streams

• Test the model on the new test cases

• Discuss the value of integrating compressors and expanders into the heat exchanger
network
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Abstract

Heat integration is of significant importance to the process industry in the efforts of re-
ducing energy consumption and total annual costs. The heat integration problem attempts
finding the optimal interconnections of processing equipment in order to reduce the energy
requirements of the process. A complete model of the heat integration problem involves
determining the optimal performance of the heat integrated system and the optimal design
of the heat exchanger network. The performance of the system can be identified prior to
the network design. This work is concerned with identifying the performance of a system
in terms of an energy target for optimal heat integration.

Heat integration has long been a central topic in the process industry, however, work
integration is a topic of recent interest. Both heat and work are forms of energy that are
often available in industrial processes, and utilization of this energy should therefore be
attempted instead of resulting in waste. For small problems, optimization of heat and work
integration can be modeled with mixed-integer nonlinear programming. Introducing more
than one compressing and one expanding stream, no exact solution method has currently
been able to identify the energy target for optimal heat and work integration.

In order to solve the problem of simultaneous heat and work integration, a two-level
optimization model using genetic algorithms has been developed. Results from solving
a set of test cases with one compressing and one expanding stream, in which exact meth-
ods can prove optimality, show that the two-level optimization model is able to find the
optimal or a near-optimal solution. Four new test cases are presented involving multiple
compressing and expanding streams, in which the model provides high quality solutions.
The model cannot guarantee a global optimal solution. However, in comparison with
common practice in the industry, the two-level optimization model generates significantly
better solutions.

Two genetic algorithms have been implemented and tested in this research; a basic genetic
algorithm and a genetic algorithm with crowding. The algorithm with crowding was
implemented in an effort to improve the global search, reducing the likelihood of getting
stuck in a local optimum. Results from both algorithms are presented in comparison with
common practice in the industry.
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Sammendrag

Grunnet klimaendringer og store utgifter forbundet med høyt energibruk er det en økende
interesse for energieffektive løsninger i produksjonsanlegg. Miljøpåvirkningene og pro-
duksjonskostnadene kan reduseres betraktelig. Varmegjenvinning er viktig for å redusere
energiforbruk og består hovedsakelig i å designe et varmevekselnettverk som minimalis-
erer drifts -og produksjonskostnader. Maksimal varmegjenvinning kan identifiseres før
utforming av selve nettverket i form av et minstekrav til energiforbruk. Denne oppgaven
omhandler lokalisering av et minstekrav til energiforbruk i industrielle prosesser.

Varmeintegrering har vært gjenstand for betydelig forskning i lengre tid. I et varmeveksel-
nettverk skal varme strømmer kjøles ned og kalde strømmer varmes opp. Uten trykkforan-
dring kan disse avkjøles og varmes opp kontinuerlig. Det er derimot ofte et behov for
trykkendring av slike strømmer. Trykkendring fører imidlertid til en diskontinuerlig en-
dring i temperatur. Varmeintegrering av få strømmer med trykkendring kan modelleres
med blandet heltall -og kontinuerlig ikke-lineær programmering. For prosesser med mer
enn en komprimerende og en ekspanderende strøm finnes det ingen eksakt løsningsmetode
som kan lokalisere et minstekrav til energiforbruk ved optimal varmeintegrasjon.

For å kunne finne gode løsninger for varmeintegrasjon av strømmer med trykkendring er
det utviklet en optimeringsmodell med to nivå som benytter genetiske algoritmer. Mod-
ellen er testet på problem som ikke involverer mer enn en komprimerende og en exs-
panderende strøm. I disse tilfellene er optimal løsning kjent og modellen fant optimal
eller tilnærmet optimal løsning. Modellen kan også vise til gode resultater for fire nye
test problemer av større størrelse. De nye testtilfellene er laget for å studere fordelaktig
integrering av et større antall strømmer med trykkendring enn tidligere. To-nivå modellen
er en heuristisk metode og kan ikke garantere optimal løsning. Men, i sammenligning med
vanlig praksis i industrien genererer modellen betydelig mer energieffektive løsninger.

To genetiske algoritmer er implementert og testet i denne oppgaven; en grunnleggende
genetisk algoritme og en genetisk algoritme med crowding. Algoritmen med crowding ble
implementert i et forsøk på å forbedre den globale søkeevnen, ved å redusere risikoen for
å gå seg fast i et lokalt optimum. Resultater fra begge algoritmer er sammenlignet med
vanlig praksis i industrien.
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Preface

This master’s thesis is written as part of my MSc. in Industrial Economics and Technology
Management at the Norwegian University of Science and Technology, Department of
Industrial Economics and Technology Management. The thesis is a continuation of the
work done in my specialization project during the fall of 2016.

My technological specialization is in process engineering and my economical specializa-
tion is in optimization. I have chosen a project in which I can use my knowledge from both
fields. Combining the two disciplines have been rewarding, as large parts of my education
have come to use. Also, it has been inspiring to experience how expertise in the filed of
optimization may contribute to new developments in the field of process engineering.



viii



ix

Acknowledgments

First and foremost, I would like to thank my supervisor, Asgeir Tomasgard at the Depart-
ment of Industrial Economics and Technology Management, for facilitating the project
and making time for meetings and guidance. I am also thankful to Truls Gundersen at the
Department of Energy and Process Engineering for inspiring me to take on the project.

I would then like to thank Björn Nygreen at the Department of Industrial Economics and
Technology Management for helpful conversations on difficult matters. A great thank you
is also required to Fu Chao from Sintef Energy Research for valuable feedback on results
and for sharing his knowledge in process synthesis. Furthermore, I am thankful to Matias
Vikse, PhD candidate at the Department of Energy and Process Engineering, for always
keeping the door open for any matters.

Lastly, my greatest appreciation to Tom Kåre Borge from Kongsberg Defence and Aerospace
for devoting considerably time to understanding my project. I am grateful for the help
given in developing the solution method and for providing assistance in using genetic
algorithms. Most of all I am thankful for encouragement and for giving valuable feedback
when I have been in need of discussion of an issue.

Trondheim, 30th of June 2017
Kari Sofie Hall Borge



x



xi

Contents

Abstract iii

Sammendrag v

Preface vii

Acknowledgments ix

Contents xi

List of Figures xv

List of Tables xix

Acronyms xxiii

Nomenclature xxv

List of Symbols xxvii

1 Introduction 1

2 Literature review 5
2.1 Heat integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Heat and work integration . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Utilization of genetic algorithms in heat integration problems . . . . . . . 8

3 Problem description 11

4 Heat and work integration 13
4.1 Pinch nnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 The heat cascade method . . . . . . . . . . . . . . . . . . . . . . . . . . 15



xii Contents

4.3 Correct integration of compressors and expanders . . . . . . . . . . . . . 17
4.4 Exergy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Genetic algorithms 21
5.1 Principle structure of genetic algorithms . . . . . . . . . . . . . . . . . . 22
5.2 Encoding of variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3 Fitness evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.4 Initialization of population . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.5 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.6 Crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.7 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.8 Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.9 Search termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.10 Crowding techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.11 Schema theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.12 Advantages and limitations of genetic algorithms . . . . . . . . . . . . . 42

6 Methodology 43
6.1 Characteristics of heat and work integration . . . . . . . . . . . . . . . . 43
6.2 Design thought of the two-level optimization model . . . . . . . . . . . . 45
6.3 Two-level optimization model for simultaneous heat and work integration 46

6.3.1 Inner loop optimization . . . . . . . . . . . . . . . . . . . . . . . 47
6.3.2 Outer loop optimization . . . . . . . . . . . . . . . . . . . . . . 50

6.4 Heuristic optimization algorithms for the outer loop . . . . . . . . . . . . 50
6.4.1 Basic genetic algorithm . . . . . . . . . . . . . . . . . . . . . . . 50
6.4.2 Genetic algorithm with crowding . . . . . . . . . . . . . . . . . 56

7 Implementation 59
7.1 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.2 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.3 Parameter settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

8 Computational study 63
8.1 Case 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.2 Case 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.3 Case 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.4 Case 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

9 Concluding remarks 83

10 Future research 85

Bibliography 87



Contents xiii

A Benchmark cases 93
A.1 Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
A.2 Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
A.3 Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.4 Case 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
A.5 Case 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
A.6 Case 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.7 Case 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.8 Case 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

B Additional results from Case 12 101

C Illustration of search process 105
C.1 Illustration of early search process . . . . . . . . . . . . . . . . . . . . . 105
C.2 Illustration of complete search process . . . . . . . . . . . . . . . . . . . 110

D Julia source code 115
D.1 Basic genetic algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
D.2 Genetic algorithm with crowding . . . . . . . . . . . . . . . . . . . . . . 131



xiv



xv

List of Figures

1.1 Energy efficiency potential by sector (numbers taken from [61]). . . . . . 1
1.2 Non-integrated process. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Heat integrated process. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Favorable route for compression and expansion for a total of three pressure
manipulation stages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Timeline for developments within heat integration in process industries. . 10

4.1 Composite curves illustrating the pinch point and the utility requirements. 15
4.2 Heat balance for temperature interval k. . . . . . . . . . . . . . . . . . . 15
4.3 The heat cascade and the GCC for the stream data in Table 4.1. . . . . . . 17
4.4 Favourable compression. . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.5 Favourable expansion. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.1 Principle structure of GAs. . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 Terminology used in the field of GAs. . . . . . . . . . . . . . . . . . . . 24
5.3 The fitness is a function of real values in phenotype space. The real values

are decoded from the binary representation in genotype space. . . . . . . 24
5.4 Genotype and phenotype representation of eight possible values of x ∈

{0, 31}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.5 Fitness values of the individuals in Figure 5.4. . . . . . . . . . . . . . . . 27
5.6 Graphical illustration of three approaches to population initialization: (a)

random initialization, (b) uniform initialization and (c) biased initialization. 28
5.7 Tournament selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.8 Three common crossover methods: (a) single point crossover, (b) two

point crossover and (c) uniform crossover. . . . . . . . . . . . . . . . . . 32
5.9 Three common mutation methods: (a) interchanging mutation, (b) single

bit swap mutation and (c) flipping mutation. . . . . . . . . . . . . . . . . 33
5.10 Premature convergence is highly likely when e.g. in three dimensions all

individuals in the population occupies a two dimensional place. . . . . . . 35
5.11 Schema in a three dimensional search space. . . . . . . . . . . . . . . . . 38



xvi List of Figures

6.1 Stream split arrangement for pressure changing streams. . . . . . . . . . 44
6.2 Flow chart representation of the two-level optimization model. . . . . . . 46
6.3 Flow chart representation of the basic GA. . . . . . . . . . . . . . . . . . 51
6.4 Chromosome representation. . . . . . . . . . . . . . . . . . . . . . . . . 51
6.5 Influence of tournament size. . . . . . . . . . . . . . . . . . . . . . . . . 53
6.6 Flowchart representation of the GA with crowding . . . . . . . . . . . . 56

8.1 GCC for Case 9 without pressure change. . . . . . . . . . . . . . . . . . 64
8.2 Stream split arrangement for Case 9. . . . . . . . . . . . . . . . . . . . . 66
8.3 Common practice in the industry. . . . . . . . . . . . . . . . . . . . . . . 66
8.4 GCC for Case 9 with pressure change. . . . . . . . . . . . . . . . . . . . 66
8.5 GCC for Case 10 without pressure change. . . . . . . . . . . . . . . . . . 69
8.6 Stream split arrangements for Case 10. . . . . . . . . . . . . . . . . . . . 70
8.7 GCC for Case 10 solved with GA.v01. . . . . . . . . . . . . . . . . . . . 71
8.8 GCC for Case 10 solved with GA.v02. . . . . . . . . . . . . . . . . . . . 71
8.9 GCC for Case 11 without pressure change. . . . . . . . . . . . . . . . . . 73
8.10 Stream split arrangement for Case 11 solved with GA.v01. . . . . . . . . 74
8.11 Stream split arrangement for Case 11 solved with GA.v02. . . . . . . . . 75
8.12 Common practice in the industry. . . . . . . . . . . . . . . . . . . . . . . 75
8.13 GCC for Case 11 solved with GA.v01. . . . . . . . . . . . . . . . . . . . 75
8.14 GCC for Case 11 solved with GA.v02. . . . . . . . . . . . . . . . . . . . 76
8.15 GCC for Case 12 without pressure change. . . . . . . . . . . . . . . . . . 78
8.16 Stream split arrangement for Case 12 solved with GA.v01. . . . . . . . . 80
8.17 Stream split arrangement for Case 12 solved with GA.v02. . . . . . . . . 80
8.18 Common practice in the industry. . . . . . . . . . . . . . . . . . . . . . . 81
8.19 GCC for Case 12 solved with GA.v01. . . . . . . . . . . . . . . . . . . . 81
8.20 GCC for Case 12 solved with GA.v02 . . . . . . . . . . . . . . . . . . . 81

B.1 Stream split arrangement for Case 12 solved with GA.v01. . . . . . . . . 103
B.2 Stream split arrangement for Case 12 solved with GA.v02. . . . . . . . . 103

C.1 Search process for basic GA. . . . . . . . . . . . . . . . . . . . . . . . . 105
C.2 Search process for GA with crowding. . . . . . . . . . . . . . . . . . . . 106
C.3 Search process for basic GA. . . . . . . . . . . . . . . . . . . . . . . . . 106
C.4 Search process for GA with crowding. . . . . . . . . . . . . . . . . . . . 107
C.5 Search process for basic GA. . . . . . . . . . . . . . . . . . . . . . . . . 107
C.6 Search process for GA with crowding. . . . . . . . . . . . . . . . . . . . 108
C.7 Search process for basic GA. . . . . . . . . . . . . . . . . . . . . . . . . 108
C.8 Search process for GA with crowding. . . . . . . . . . . . . . . . . . . . 109
C.9 Search process for basic GA. . . . . . . . . . . . . . . . . . . . . . . . . 110
C.10 Search process for GA with crowding. . . . . . . . . . . . . . . . . . . . 111
C.11 Search process for basic GA. . . . . . . . . . . . . . . . . . . . . . . . . 111
C.12 Search process for GA with crowding. . . . . . . . . . . . . . . . . . . . 112



List of Figures xvii

C.13 Search process for basic GA. . . . . . . . . . . . . . . . . . . . . . . . . 112
C.14 Search process for GA with crowding. . . . . . . . . . . . . . . . . . . . 113
C.15 Search process for basic GA. . . . . . . . . . . . . . . . . . . . . . . . . 113
C.16 Search process for GA with crowding. . . . . . . . . . . . . . . . . . . . 114



xviii



xix

List of Tables

2.1 Significant GA parameters implemented for GAs in optimization of heat
integration in industrial processes. . . . . . . . . . . . . . . . . . . . . . 9

4.1 Stream data for a four-stream example. . . . . . . . . . . . . . . . . . . . 14
4.2 Heat residuals cascaded in Figure 4.3. . . . . . . . . . . . . . . . . . . . 16

5.1 Roulette wheel selection probabilities of individuals in Example 5.1. . . . 29
5.2 Binary tournament selection probabilities. . . . . . . . . . . . . . . . . . 30
5.3 Selection probabilities according to a linear ranking of fitness values. . . . 31
5.4 Orders of schema in a three dimensional space and the corresponding

number of instances of the schema. . . . . . . . . . . . . . . . . . . . . . 39
5.5 Survival of schema H after crossover. . . . . . . . . . . . . . . . . . . . 40

7.1 Implemented parameter values for the basic GA and the GA with crowding. 61

8.1 Stream data for Case 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.2 Results from Case 9. Results from the basic GA are listed under GA.v01

and results from the GA with crowding are listed under GA.v02. . . . . . 65
8.3 Stream split analysis for Case 9. . . . . . . . . . . . . . . . . . . . . . . 67
8.4 Stream data for Case 10. . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.5 Results from Case 10. Results from the basic GA are listed under GA.v01

and results from the GA with crowding are listed under GA.v02. . . . . . 70
8.6 Stream split analysis for Case 10. . . . . . . . . . . . . . . . . . . . . . . 72
8.7 Stream data for Case 11. . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.8 Results from Case 11. Results from the basic GA are listed under GA.v01

and results from the GA with crowding are listed under GA.v02. . . . . . 74
8.9 Stream split analysis for Case 11. . . . . . . . . . . . . . . . . . . . . . . 76
8.10 Stream data for Case 12. . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.11 Results from Case 12. Results from the basic GA are listed under GA.v01

and results from the GA with crowding are listed under GA.v02. . . . . . 79
8.12 Stream data for Case 12. . . . . . . . . . . . . . . . . . . . . . . . . . . 82



xx List of Tables

A.1 Parameter values for the basic GA and the GA with crowding. . . . . . . 93
A.2 Stream data for Case 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
A.3 Results from Case 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
A.4 Stream data for Case 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
A.5 Results from Case 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.6 Stream data for Case 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.7 Results from Case 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.8 Stream data for Case 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
A.9 Results from Case 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
A.10 Stream data for Case 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
A.11 Results from Case 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.12 Stream data for Case 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.13 Results from Case 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.14 Stream data for Case 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.15 Results from Case 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.16 Stream data for Case 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.17 Results from Case 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

B.1 Results from Case 12 with four allowable branches. . . . . . . . . . . . . 102



xxi

List of Algorithms

1 Crowding algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2 Decoding function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3 Elitist selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4 Tournament selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5 Uniform crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6 Flipping mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7 Generalized crowding algorithm . . . . . . . . . . . . . . . . . . . . . . 58



xxii



xxiii

Acronyms

DP Disjunctive programming

GA Genetic algorithm

GCC Grand composite curve

GDP General disjunctive programming

HEN Heat exchanger network

IEA International energy agency

LNG Liquefied natural gas

LP Linear programming

MINLP Mixed-integer nonlinear programming

MIP Mixed-integer programming

NLP Nonlinear programming

PA Pinch analysis

PTA Problem table algorithm

SA Simulating annealing



xxiv



xxv

Nomenclature

Symbol Unit Description
Q [kW] heat transfer (thermal energy)

W [kW] work

T [K] temperature

T0 [K] ambient temperature

∆T [K] temperature difference

m [kg/s] flow rate

cp [kJ/kg K] specific heat

Ex [kW] exergy

Subscripts and superscripts

Symbol Description
s stream

b stream branch

z stream segment

S supply

T target
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Symbol Description
H hot

C cold

HU hot utility

CU cold utility

P pressure change

CP constant pressure

in inlet

out outlet

k heat interval

p pinch

lb lower bound

ub upper bound



xxvii

List of Symbols
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Symbol Description
S upper case letters denote sets
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∀ "for all"
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R set of real numbers
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Chapter 1

Introduction

Climate change has become an inevitable reality and a global concern. New regulations
and environmental laws are being developed on an international level. According to the
International Energy Agency (IEA), energy efficiency must account for more than 50%
of the actions against global warming, highlighting the need for more energy efficient
solutions. As illustrated in Figure 1.1, unrealized energy efficiency potentials are still
high. The process industry1 typically includes the largest industrial consumers of energy,
such as petroleum refineries and chemical industries [68].

Figure 1.1: Energy efficiency potential by sector (numbers taken from [61]).

1Process industries are comprised of manufacturing businesses that produce end products through chemical
or mechanical means on a continual basis, with raw materials or feed-stock being converted in batch mode or
in a continuous flow stream. Process industries include chemicals, petroleum refining, coal liquefaction, gas
to liquids, petrochemicals (plastics, synthetic fibers, and synthetic rubbers produced from petroleum), food and
drink, pulp and paper, among others [69].
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Lately, there has been a great interest for heat integration in the process industry in order
to reduce energy consumption and total annual costs. In industrial processes there are
streams that need heating and streams that need cooling. One way to achieve this is to
use hot steam and cooling water, as illustrated in Figure 1.2. However, production of hot
steam is costly and energy demanding. By using hot streams to heat cold streams and cold
streams to cool hot streams, as illustrated in Figure 1.3, it is possible to reduce the need
for external heating and cooling considerably.

Figure 1.2: Non-integrated process. Figure 1.3: Heat integrated process.

Heat integration addresses the problem of maximizing heat recovery among process streams.
The problem involves determining optimal performance of the heat integrated system and
the optimal design of the heat exchanger network (HEN). Locating the optimal network
design is a complex task involving a difficult combinatorial problem. For a fixed number
of streams there are a great number of possible interconnections of process equipment.
However, the number of network configurations that satisfies the optimal performance of
the system is much smaller. This work is concerned with identifying the performance of
heat integrated systems, which may serve as a guideline in the design of the network. The
performance of the system is defined by minimum energy consumption for optimal heat
integration.

Despite the large interest in optimization of heat recovery there are limited sources in the
literature regarding pressure recovery in order to enhance the heat integration even further.
Handling pressure requires significant energy consumption and is especially important in
oil refineries and cryogenic processes2. In order to improve energy efficiency, it is of
great interest to study the interaction between heat and work related to pressure change of
process streams. Research on heat and work integration has hitherto focused on integration
of one compressing and one expanding stream. This work expands the problem involving
multiple compressing and expanding streams.

2Cryogenic processes take place at very low temperatures, such as production of liquefied natural gas (LNG).
Commonly, a gas is referred to as cryogenic if it can be liquefied at temperatures below 150 °C (123.15 K)
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An effective way to study the impact of heat and work integration is mathematical pro-
gramming. A mathematical formulation of heat and work integration requires a good way
to model the heat distribution among the process streams in which ensures thermody-
namically feasibility and efficient algorithms for finding the best solutions. The heat and
work integration problem frequently involve nonlinear behaviour. Unlike linear program-
ming (LP) problems, conventional solution methods for nonlinear programming (NLP)
problems are complex and not very efficient. For multiple compressing and expanding
streams, the complexity of the heat and work integration problem increases significantly.
Genetic algorithms (GA) have emerged as a powerful stochastic search and optimization
technique founded on the principle of natural evolution. GAs do not guarantee a global
optimal solution, but often locate very good solutions within reasonable time for problems
that are otherwise difficult to solve.

This work presents a two-level optimization model using GAs. The objective is to identify
the energy target for heat and work integration of multiple pressure changing streams.
The two-level optimization model decouples the optimization problem into two loops:
The outer loop uses a GA to fix the inlet temperatures to the pressure changing units.
Each evaluation of the heuristic optimizer in the outer loop requires solving an inner loop
problem by highly efficient linear programming. For increasing problem sizes, heuristic
search methods are more likely to outperform exact solution methods. The purpose of
the two-level optimization model is to combine the two methods in an effort to reduce
the number of decision variables that must be handled by the search algorithm. The new
contribution of this model is the ability to handle multiple compressing and expanding
streams.

Literature regarding heat integration is reviewed in Chapter 2. A detailed description of
the problem is given in Chapter 3. A brief introduction to previous methods and acquired
knowledge about heat and work integration is presented in Chapter 4. The model utilizes
GAs in the search process. In order to implement an efficient algorithm for the problem
under consideration, a thorough study of GAs has been carried out. An introduction to this
type of metaheuristic procedure is given in Chapter 5. The two-level optimization model
is presented in Chapter 6. In Chapter 7, implementation details are stated. A thorough
computational study of four new test cases is presented in Chapter 8. Chapter 9 concludes
the thesis and Chapter 10 presents suggestions for future research.





Chapter 2

Literature review

This chapter provides a brief review of published work regarding heat integration. Sec-
tion 2.1 summarizes previous studies of heat integration and different methods that has
been developed in order to solve the problem of optimal heat integration. Section 2.2
presents previous work regarding heat and work integration, whilst Section 2.3 gives a
brief overview of the use of GAs in the field of heat integration.

2.1 Heat integration

Heat integration in industrial processes has been subject to a significant amount of research
over the past 40 years, in order to increase energy efficiency and reduce annual costs.
Optimal heat integration consists of integrating hot and cold process streams in a network
of heat exchangers. A typical industrial process contains 30 to 80 streams leading to a
large number of possible network configurations. However, Hohmann [33] and Linnhoff
and Flower [45] recognized that the minimum energy consumption for optimal heat in-
tegration can be established prior to the actual network design, simplifying the problem
considerably; the number of configurations satisfying the energy target of minimum energy
consumption is much less than the total number of configurations.

Pinch analysis (PA) is a well-established methodology that provides a systematic proce-
dure of minimizing the energy consumption in industrial processes. PA was developed
in the late 1970s by the identification of the heat recovery pinch point, presented by
Linnhoff and Flower [45]. A similar concept was applied by Umeda et al. [66]. PA
uses thermodynamic concepts to determine the energy target for optimal heat integration
and provides methods to achieve this target in the network design. Linnhoff and Flower
[45] developed the problem table algorithm (PTA) in order to determine the energy target
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more efficiently. Thermodynamic insights and targets, developed by the authors men-
tioned above among others, have led to significant improvements in energy efficiency and
motivated algorithmic approaches to optimization of heat integration.

Cerda et al. [8] formulated an LP model based on the transportation problem, in order to
determine the energy target for optimal heat integration. Papoulias and Grossmann [60]
used a similar approach. They proposed various formulations of the transshipment model:
An LP problem was used to predict the energy target and thus the minimum utility costs.
A mixed-integer programming (MIP) model was developed to determine the matches and
the heat loads that would have to take place in the network in order to satisfy the cost
target. The MIP model provides information for deriving the network structure, but the
structure design had to be generated manually. Floudas et a. [15] extended this work to
automatically generate the network structure by combining the transshipment model with
a nonlinear procedure.

Later developments concern design of the HEN, in which satisfies the energy target for
optimal heat integration. Duran and Grossmann [12] presented an NLP model for simul-
taneous process optimization and heat integration. The NLP problem corresponds to a
nondifferentiable optimization problem, requiring smooth approximations. Grossmann et
al. [30] developed a disjunctive optimization method1 that uses binary variables and avoid
using smooth approximations. A mixed-integer nonlinear programming (MINLP) model
was developed, in which is reduced to an MIP problem when only isothermal streams are
present.

For further reading, an early review of process synthesis and heat integration was presented
by Nishida et al. [56]. Following, two thorough reviews on the topic of heat exchanger
networks were contributed by Gundersen and Naess [31] and Ježowski [35]. A comple-
mentary review was later presented by Furman and Sahinidis [20].

2.2 Heat and work integration

Optimal integration of heat and work may yield significant energy savings and thus reduce
annual costs. Aspelund [1] presented a heuristic graphical method for correct integration of
compressors and expanders. Wechsung et al. [71] used these heuristic rules and proposed
an MINLP model for optimization of HENs, wherein selected streams are subject to
pressure manipulation. They demonstrated that a favorable sequence for compression and
expansion can significantly reduce the energy consumption. The sequence is illustrated in
Figure 2.1. The hot stream is compressed, expanded and compressed again, whereas the
cold stream is expanded, compressed and then expanded. When expanded, the hot stream

1Disjunctive programming (DP) is optimization over disjunctive sets. A disjunctive set can be defined
as inequalities connected by the logical operations and and or. A excellent introduction to DP is found in
Bjørnqvists doctorial dissertation [5].
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temporarily behaves as a cold stream, while a compressed cold stream behaves as a hot
stream. Letting the streams go through multiple pressure manipulation stages, the streams
may temporarily act as utility streams.

Figure 2.1: Favorable route for compression and expansion for a total of three pressure
manipulation stages.

Assuming that supply and target temperatures and supply and target pressures of the
streams in Figure 2.1 are fixed, the intermediate inlet and outlet temperatures to the pres-
sure changing units and the intermediate pressures are subject to optimization.

Fu and Gundersen [16] derived a systematic graphical design procedure for integration of
a compressing stream with the HEN. A similar procedure was carried out for integration
of an expanding stream [17]. It was proved that the heuristic rules proposed by Aspelund
[1] do not always hold and a set of theorems for appropriate placement of the pressure
changing units was proposed. Because both heat and work are involved, the objective
is to minimize the exergy consumption. Fu and Gundersen [18] also derived a theorem
for integration of both a compressing and an expanding stream. Integration of multiple
compressing and expanding streams have not yet been considered. For multiple pressure
changing streams, a complicating factor is the generation of new pinch points and which
pressure changing unit should be considered first.

Onishi et al. [57] presented a superstructure for optimization of HENs, considering the
adjustment of pressure levels of process streams to enhance heat integration. The model
was formulated using generalized disjunctive programming (GDP) and re-formulated as
an MINLP model. The model utilizes the sequence structure developed by Wechsung
et al. [71], illustrated in Figure 2.1. The models allow for coupling between turbines
and compressors, and selection of turbines and valves to minimize the total annual costs.
The authors demonstrated that integration of heat and work can reduce the amount of
necessary utilities, lowering the costs involved in the process; however, the nonconvex
MINLP problem is difficult to solve for other than small problems.
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Dowling [11] explored mathematical programming-based equations of the rules for above
ambient compression developed by Fu and Gundersen [16]. An LP model for an optimal
compression strategy was presented, which minimizes a weighted combination of work
and hot utility. The major limitation regarding this model is the shortfall of not considering
the outlet temperatures from the compressors as potential pinch candidates. Dowling uti-
lized a superstructure representation for splitting of pressure changing streams. Maurstad
[52] extended this structure to include potential pinch point candidates generated by the
outlet temperatures from the pressure changing units. Maurstad [52] also developed an
MINLP model, in which do not rely on the rules developed by Fu and Gundersen [18].
This model considered, at the most, one compressing and one expanding stream.

2.3 Utilization of genetic algorithms in heat integration
problems

GAs were mostly developed in the 1970s as a stochastic search technique inspired by
natural evolution. GAs aim to improve the performance by sampling promising regions
in the search space, i.e. regions with high probability of good solutions. The first main
work is attributed to Holland [34]. A thoroughly review of the history of GAs and other
evolutionary algorithms is given by Bäck et al. [3]. The interest and utilization of GAs in
the field of heat integration is relatively recent. Heuristic search algorithms are in general
computationally expensive. The increased interest in GAs is facilitated by the increased
availability of high performance computers and improved guidelines for the specification
of the GA parameters.

Lewin et al. [41] developed an approach to optimization of HENs based on the use of GAs.
The approach consists of a two-level algorithmic structure; the upper level GA, which
generates HEN structures by applying genetic operators on the solution population and the
lower level optimization algorithm, which carries out parameter optimization for a given
HEN structure. Lewin [40] presented a modification of the algorithm in which stream
splitting is supported. Another application of GAs was presented by Wang et al. [70] for
optimization of separation sequences in distillation systems and their HENs. Ravagnani et
al. [63] used GAs for optimization of HENs based on a previous optimization of ∆Tmin
and the energy target. In this work, ∆Tmin is optimized using GAs together with PA
techniques. When ∆Tmin is identified, the optimal HENs above and below pinch are
obtained separately using GAs. Pettersson and Soderman [62] developed a method for
optimization of HENs, in which accounts for uncertainties in operating conditions. In this
method, a GA is combined with NLP.

Later developments in the application of GAs have utilized hybrid algorithms, in which
genetic operators are combined with other search techniques. Yu et al. [72] presented a GA
in combination with simulated annealing (SA) to search for the optimal HEN in large scale
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systems. The method was used to solve a problem involving 167 streams. Also Luo et al.
[48] combined genetic operators with SA and other strategies so that the structural search
ability of the algorithm is greatly improved. The algorithm was developed for design of
large scale HENs. Maehara and Shimoda [49] presented a hybrid method of GAs and
the Nelder-Mead algorithm in the search for the optimum chiller configuration for a heat
source plant. The Nelder-Mead algorithm was implemented in order to reduce the number
of calculations required to determine the optimum chiller configuration. The performance
of the combined algorithm improved the ability to find the optimal configuration.

For a more thoroughly analysis of the utilization of GAs in the field of heat integration,
Gosselin et al. [27] has contributed with an extensive review of when and how GAs have
been used in heat integration problems. This review concerns articles published through-
out the 1990s and 2000s. An overview of the algorithmic methods in the publications
presented in this section is listed in Table 2.1. The table shows the problem objectives
and significant GA parameter values. An interesting observation from Table 2.1 is the
significantly large mutation rates, in comparison with what is regarded as common values
(0.001-0.05).

Article Problem GA
Year Ref. Objective Bin/real Pcross Pmut Pop size Max. iter
2013 [49] Min. cost - 0.1 0.05 100 1320
2008 [48] Min. cost R 0.8 0.1 100 400
2007 [62] Min. cost R - 0.01 20 100
2004 [63] Min. cost R 0.8 0.1 5-57 50
2000 [72] Min cost - 0.3 0.4 80 400
1998 [70] Min. cost R 0.2 0.5 1000 160
1998 [40] Max. heat recovery R 0.6 0.01 - -
1998 [41] Max. heat recovery R 0.6 0.1-0.5 40-80 100

Table 2.1: Significant GA parameters implemented for GAs in optimization of heat
integration in industrial processes.

The articles presented above concern heat integration of constant pressure process streams.
To the author’s knowledge there has been no efforts in solving the heat and work integra-
tion problem using genetic search algorithm.

More recently, Li et al. [42] presented an efficient hierarchical optimization framework for
optimization of water distribution. There are two loops in this model: the outer loop uses
heuristic algorithms and the inner loop uses efficient LP. The choice of heuristic algorithm
in the outer loop can vary. Li et al. [42] used GAs, particle swarm optimization and
SA, among others. The purpose of such a model is to reduce the computational effort by
decreasing the number of variables that must be analyzed by the heuristic algorithm, and
formulate the specific problem so that the inner loop, with many decision variables, can be
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solved with highly efficient LP. A similar approach to heat and work integration has been
developed in this thesis.

Figure 2.2: Timeline for developments within heat integration in process industries.



Chapter 3

Problem description

This master’s thesis addresses energy targeting for optimal heat and work integration.
Work related to pressure changing streams is an energy form that are often available
in process plants. Pressure based energy can effectively be transformed to heating and
cooling duty and may significantly reduce the utility requirements. The problem can be
described as follows:

A set of hot streams are to be heated and a set of cold streams are to be cooled. All
streams have given supply and target temperatures, flow rates and fixed heat capacities. The
pressure changing streams have fixed supply and target pressures. The problem consists
in identifying maximum thermal integration of the system through efficient placement of
pressure changing units, in which the total energy consumption is minimal.

Placement of compressors and expanders are defined by the inlet temperatures to these
units. Common practice in the industry is to let the pressure changing streams be com-
pressed at ambient temperature and expanded at hot utility temperature, in order to mini-
mize compression work and maximize expansion work. However, compressors add heat
to the system and the cooling demand may increase if compressors operate at low tem-
peratures. Similarly, the heating required may increase if expanders are operating at
high temperatures. Thus, there is a trade-off between work consumption and demand
for external heating and cooling. One can achieve higher energy efficiency by letting
compression and expansion take place at a higher and a lower temperature, respectively.
The required heating and cooling may be significantly reduced in the expense of less
expansion work and more compressor work. Additionally, the pressure changing streams
may be split into branches so that parts of the stream enter separate units at different
temperatures. This may enhance the heat integration even further.

This work is concerned with identifying the inlet temperatures to the pressure changing
units in order to obtain the energy target for maximum heat and work recovery. Addition-
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ally, the number of branches necessary to obtain maximum recovery must be identified as
well as the optimal distribution of the flow rates through the compressors and expanders
on each branch.

Energy targeting is beneficial when the energy is the dominant cost item in the process.
Optimization of energy efficiency can lead to highly efficient processes, but on the other
hand be economically impractical. Stream splitting may lead to significant reduction
in energy consumption, but also implies additional pressure changing units, in which
engender considerable capital costs. Introducing pressure changing streams will therefore
require an appropriate trade-off between energy efficiency and investment costs. In order
to gain insight into energy efficient processes without unrealistic cost conditions, the
maximum number of branches is restricted to three. The objective of this work is to
develop a model to identify the minimum energy consumption for optimal heat and work
integration and consideration of costs are thus beyond the scope. Nevertheless, a brief
discussion about the investment cost implications for the generated solutions are provided.



Chapter 4

Heat and work integration

PA has laid the foundation for process optimization and heat integration. A short intro-
duction is given in Section 4.1, highlighting the most prominent features. Section 4.2
presents the heat cascade, which is a tool to calculate the overall heating and cooling
requirements in HENs. The optimization model developed in this thesis optimizes heat
and work integration using mathematical programming together with PA techniques.

Industrial processes involve multiple equipment units. A fundamental concept in PA is
correct integration of process equipment in order to enhance energy savings. Integration of
compressors and expanders are of recent interest and is the focus of this thesis. Section 4.3
introduces current knowledge about beneficial integration of compressors and expanders.
When integrating compressors and expanders into the HEN, two forms of energy of dif-
ferent quality are under consideration, mainly heat and work. Exergy provides a unit of
quality measurement for different forms of energy and is a suitable measure of the process
performance. Section 4.4 provides a brief description of the exergy term.

4.1 Pinch nnalysis

PA is a well established methodology for optimizing heat integration in industrial pro-
cesses. The method aim to maximize process-to-process heat recovery, while reducing the
need of external heating and cooling. The fundamental principle in PA is to match streams
requiring heat with streams rejecting heat. According to the first law of thermodynamics
[55], the amount of heat available for exchange associated with stream s is expressed with
Equation 4.1 and 4.2, for hot and cold streams, respectively.
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Qs = (mcp)s
(
TSs − TTs

)
, ∀s ∈ SH (4.1)

Qs = (mcp)s
(
TTs − TSs

)
, ∀s ∈ SC (4.2)

where TS and TT are the supply and target temperatures, m is the mass flow rate and
cp is the heat capacity of the fluid. Heat recovery is restricted by the shape of the stream
composite curves and the fact that heat can only be transferred from a higher temperature to
a lower temperature, defined by the second law of thermodynamics [55]. Composite curves
are graphical representations of enthalpy change of streams. The curves illustrate how
much heat is available and how much heat is required within certain temperature intervals.
The composite curves for a four-stream example presented in Table 4.1 is illustrated in
Figure 4.1.

Stream T S [◦ C] T T [◦ C] mcp [kW/◦ C]
H1 170 60 3
H2 150 30 1.5
C1 20 135 2
C2 80 140 4

Table 4.1: Stream data for a four-stream example.

The heat recovery is also restricted by the minimum temperature difference, ∆Tmin, which
is an economic parameter featuring a near-optimal trade-off between investment costs and
operating costs. A large ∆Tmin implies high energy consumption, whilst a small ∆Tmin
will require a large heat exchanger. Parallel composite curves allows for a high level
of heat recovery. The point of smallest vertical distance (∆Tmin) between the composite
curves represents a bottleneck for maximum heat integration and is referred to as the pinch
point. A key finding from PA is that for maximum heat integration, no heat is transferred
across the pinch temperature [46]. Thus, the pinch point divides the process into two
distinct regions; for heat exchange at temperatures above pinch there will be a deficit of
heat, whilst below pinch there will be an excess of heat [46].

Consider the four-stream example in Table 4.1. The composite curves in Figure 4.1 are
shifted horizontally until the pinch point is located. Further alignment of the composite
curves violates the ∆Tmin constraint. The minimum utility requirements are determined
by reading off the horizontal difference between the curves at the end points on the graph.
Maximum heat recovery within the process can thus be identified prior to the design of the
network. The utility requirement is a lower bound for the given process and may serve as
a guideline for what is achievable in the actual design of the HEN [71].
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Figure 4.1: Composite curves illustrating the pinch point and the utility requirements.

4.2 The heat cascade method

The heat cascade is a representation of the heating and cooling demands within a process.
The heat cascade requires a partitioning of the continuous temperature range into |K|
successive intervals. The temperature intervals are established based on stream supply
temperatures1. By employing the minimum temperature driving force ∆Tmin, each inter-
val will have two corresponding temperatures; THk at the hot side and TCk at the cold side.
Therefore, within each interval it is thermodynamically feasible to transfer heat from hot
streams to cold streams, and to subsequent lower intervals. A heat balance is required for
each interval k, illustrated in Figure 4.2.

Figure 4.2: Heat balance for temperature interval k.

1Based on investigation of the composite curves, Grimes et al. [29] discovered that the supply temperatures of
the process streams correspond to possible pinch points. In order to obtain a suitable partitioning so that no pinch
point is located inside a temperature interval, each supply temperature T S gives rise to a temperature interval,
T H

k , T C
k
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Heat residual rk−1 is the excessive heat from the previous interval, whilst rk is the heat
cascaded to the next interval. QHsk and QCsk are heat available by the hot streams and heat
required by the cold streams in interval k. Thus, the heat balance for an interval k is
calculated with Equation 4.3.

rk = rk−1 +
∑
s∈SH

QHsk −
∑
s∈SC

QCsk (4.3)

Constant pressure streams are continuously heated and cooled from the respective supply
temperatures to the target temperatures. QHsk and QCsk for each interval k can therefore be
calculated with Equation 4.4 and 4.5.

QHsk = (mcp)s
(
THk −max

[
THk+1, T

T
s

])
,∀s ∈ SH (4.4)

QCsk = (mcp)s
(
min

[
TCk , T

T
s

]
− TCk+1

)
,∀s ∈ SC (4.5)

Further elaboration of the heat cascade method is illustrated in Example 4.1 below.

Example 4.1. Consider the stream data in Table 4.1. The heat cascade requires two
iterations. First, the heat load entering the first interval equals zero. Subsequently, all the
residuals are calculated using Equation 4.3 as represented in the second column in Table
4.2. To avoid the negative residuals a heat load equal to the most negative residual must
be added to the first interval. The revised calculated residuals are shown in the column for
the second iteration. Hot utility equals the heat load entering the first interval and the cold
utility equals the heat load leaving the last interval. The pinch location is designated by a
zero-heat residual, in this example r3, with corresponding pinch temperatures 90°C/80°C.
The heat cascade together with the grand composite curve (GCC) for the revised heat loads
are shown in Figure 4.3.

Heat
residual

First
iteration [kW]

Second
iteration [kW]

r1(QHU ) 0 20
r2 60 80
r3 -20 0
r4(QCU ) 40 60

Table 4.2: Heat residuals cascaded in Figure 4.3.



Chapter 4. Heat and work integration 17

Figure 4.3: The heat cascade and the GCC for the stream data in Table 4.1.

The GCC illustrates the variation of heat supply and heat demand within a process. The
GCC clearly illustrates the pinch point and the minimum required heating and cooling. A
more thoroughly study of the GCC and the development of these curves can be found in
[39].

4.3 Correct integration of compressors and expanders

From PA it is known that for heat exchange above pinch there will be a deficit of heat,
whilst below pinch there will be an excess of heat. This implies that, for temperatures
above pinch, one should increase the amount of heat available from the hot streams and
reduce the amount of heat required by the cold streams. Likewise, for temperatures below
pinch, the heat provided by the hot streams should be reduced and the heat required by
the cold streams should be increased. This is commonly referred to as the Plus/Minus-
principle 2. With regard to the Plus/Minus-principle, a compressor adds heat to the system
and should preferably be placed above pinch [1]. Expansion provides cooling and should
preferably be placed below pinch [1].

2The Plus/Minus-principle is a consequence of having two distinct separated regions of heat deficit and heat
surplus. Linnhoff et al. [47] among others [44][67] have discussed the application of this outcome in various
ways.



18 4.3. Correct integration of compressors and expanders

In order to reduce work consumption, compressors should operate at low temperatures.
Common practice in the industry is for compressors to operate at ambient temperature in
order to save energy. Compressors add heat to the system and the cooling demand may
increase if compressors operate at low temperatures. Similarly, expanders produce more
work at higher temperatures. Expansion provides cooling to the system and may increase
the need of heating if expanders operate at high temperatures. Thus, there is a trade-off
between work consumption and demand for external heating and cooling. Wechsung et al.
[71] argued for beneficial compressing and expanding at pinch temperature. This implies
that expanders operate at the highest temperature in the region with an excess of heat, and
compressors operate at the lowest temperature in the region of heat deficit. New insight
have further clarified that if a pressure changing stream requires heat, the input temperature
should be at the cold pinch. Equivalently, if a stream supplies heat the input temperature
should be at the hot pinch [19].

Pinch compression and expansion is, however, only beneficial under certain conditions. Fu
and Gundersen [16] proposed a set of theorems for favorable compression and expansion.
The theorems require stream splitting and capital costs should therefore be taken into
consideration. The theorems are presented in their entirety by Fu and Gundersen [16]
[17]. In short, compression should take place at pinch temperature, at an intermediate
temperature below pinch, at ambient temperature or at a new pinch temperature. Similarly,
expansion should take place at pinch temperature, at an intermediate temperature above
pinch, at hot utility temperature or at a new pinch temperature. This is illustrated in Figure
4.4 and Figure 4.5. The challenge is to determine how much of the stream mass flow
should be compressed or expanded at each temperature.

Figure 4.4: Favourable compression. Figure 4.5: Favourable expansion.

The stream split arrangements in Figure 4.4 and Figure 4.5 include a branch for compres-
sion and expansion at new pinch points. The original pinch point is removed when the
generated compressor heat is more than the heat required. Similarly, a new pinch point
is created if the cooling effect from expansion is more than the cooling required by the
process. In some cases it will be optimal to place pressure changing units starting at these
new pinch points.
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4.4 Exergy

When introducing pressure manipulation to enhance energy efficiency the objective of heat
and work integration becomes twofold: In addition to minimize the utilities one would
aim to minimize the total energy consumption, i.e. minimize the work required by the
compressors and maximize the work produced by the turbines. Heat and work are two
forms of energy of different quality. Mechanical work is of high quality and can effectively
be converted to other forms of energy. Heat, however, is of low quality. A one-to-one
substitution of work to save heat is therefore undesirable.

Exergy is a measure of energy quality in the sense that different energy forms have differ-
ent capabilities to generate work [32]. Exergy is the useful energy and may be destroyed
by irreversibilities opposed to energy, which is always conserved. Thus, one would aim to
minimize the exergy destruction in a system. The exergy of heat at temperature T is the
maximum amount of work that can be extracted when the system is brought to equilibrium
with the surroundings. Equation 4.6 and Equation 4.7 express the exergy of an amount of
heat Q at temperature T , for T above and below surrounding temperature T0, respectively.
The exergy content of an amount of heat is the heat load multiplied with the Carnot-factor.

Ex = Q

(
1− T0

T

)
, T ≥ T0 (4.6)

Ex = Q
(T0

T
− 1
)
, T < T0 (4.7)

Exergy represents the ability to produce work. Electricity and mechanical energy can
be completely converted into work, neglecting minor losses that will always be present
in practice. Throughout this report, the work consumed by compressors and the work
produced by turbines are assumed to be 100% exergy.

Exergy captures all forms of potential to convert energy into work. By introducing exergy
to the objective function the optimization of heat integration is no longer limited to only
thermal sources of energy. Minimizing exergy consumption ensures maximum energy
efficiency.





Chapter 5

Genetic algorithms

This chapter is an introduction to genetic algorithms (GA). The purpose is to provide the
basic understanding of the general principles behind this type of search technique. This
chapter is mainly based on the books by Gen and Cheng [23] and Sivanandam and Deepa
[64], if not otherwise are being stated. The first section introduces the principle structure of
GAs. Encoding of variables is a primary concern in the design of these algorithms and will
be discussed in Section 5.2. Fitness evaluation is a fundamental component in GAs and
the following section shortly introduces the main tasks of the fitness evaluation process.
This step is highly problem dependent and a thorough study of the fitness environment
for the algorithms developed in this thesis is given i Chapter 6. GAs require a set of
initial feasible solutions, hence, Section 5.4 presents common initialization procedures.
The next four sections concern the generation of new and better solutions. These steps
are selection, crossover, mutation and replacement. Different search termination criteria is
listed in the following Section 5.9. In order to increase the robustness against convergence
to local optima, one of the algorithms developed in this thesis has implemented crowding.
Section 5.10 therefore provides the essentials of crowding techniques. The quality of
performance of GAs depend on the balance between exploration of the search space and
exploitation of favourable areas of the search space. Schema theory provides insight into
how GAs exploit the search space and is presented briefly in Section 5.11. Finally, GAs
are powerful search techniques for problems that are otherwise difficult to solve. However,
there are inherent limitations to such heuristic search methods. Advantages and limitations
are briefly discussed in Section 5.12.



22 5.1. Principle structure of genetic algorithms

5.1 Principle structure of genetic algorithms

GAs are powerful stochastic search techniques inspired by evolution and natural selection.
GAs are gradient-free methods, which makes them suitable for problems that are difficult
to solve for gradient-based methods; such as problems involving discontinuous functions,
discrete and mixed discrete-continuous design variables and multimodal problems.

GAs maintain a population of individuals P (t). Each individual represents a candidate
solution to the problem under consideration. Figure 5.1 illustrates a flow sheet represen-
tation of the principle steps in GAs. Two major processes are essential: the evaluation
process and the process of generating new populations. The value of an objective function
f(x) is termed the fitness and the evaluation process is referring to the process of evalu-
ating the objective function for different solutions. The evaluation process distinguishes
bad solutions from better ones in order to favor good solutions in the generation of new
populations.

Figure 5.1: Principle structure of GAs.

The process of generating a new population of fitter individuals consists of four opera-
tions: selection, crossover, mutation and replacement. The selection process withdrawal
a subgroup from the population, which possesses a higher average fitness than the current
population. The subgroup is often referred to as the mating pool. The individuals in the
mating pool undergo a stochastic recombination process through crossover and mutation.
Crossover combine parts from two individuals to form new ones and mutation creates new
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individuals from making random changes to a single individual. These steps are guided by
the fitness of the individuals. The new individuals are called the population of offsprings,
C(t). Individuals in the parent population P (t) are replaced by fitter individuals from
the population of offsprings in order to create a new population, P (t + 1). The process
continues until a predefined stopping criteria is reached.

GAs are a class of search methods combining directed and stochastic search techniques.
An appropriate balance between exploration of the search space and exploiting accumu-
lated information is essential in developing an efficient algorithm. Exploitation means that,
during the search, the algorithm uses information obtained in the past (about previously
visited points in the search space) in order to determine smaller regions that are promising
for future search. Exploration is the procedure that obtains new information; the algorithm
visits new regions in the search space in order to find promising subregions. In GAs,
the selection mechanism exploit the accumulated information by directing the search to-
wards promising regions. New regions are explored through the recombination processes.
Other importances while considering GAs are how the fitness of the individuals are being
measured and how the individuals are represented. Whilst the evaluation process and the
selection process are performed on real values, the crossover and mutation processes are
referred to as genetic operators as they perform on a gene representation of the solutions.
The following sections examine the basic components of GAs.

5.2 Encoding of variables

The hereditary information of an organism is called its genotype. The observable proper-
ties of the genotype is referred to as phenotype. The genetic information in your genes,
genotype, decides the colour of your eyes, phenotype. Similarly, in a GA the genes are
the encoded version of each set of design variables defining a candidate solution and the
encoding of the entire solution is termed genotype. The genotype representation of a
solution is often referred to as a chromosome. The real number representation of a solution
is called the phenotype, which is the solution set to the candidate solution. An illustration
of the terminology presented above is illustrated in Figure 5.2. Each chromosome is a
collection of genes which must be decoded into phenotype for a real value representation.

The fitness of an individual is expressed as a function of the phenotype, whilst the genetic
operators perform on genotypes. A key issue when using GAs is how solutions to a
problem are encoded into genotype. Traditionally, encoding is carried out using binary
strings. Binary representation is the encoding strategy used for both algorithms developed
in this thesis. In practice, encoding of variables means a discretization of the search space,
illustrated in Figure 5.3. Figure 5.3 shows the decoding process from binary representation
into real value representation and thus on to fitness evaluation.
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Figure 5.2: Terminology used in the field of GAs.

Figure 5.3: The fitness is a function of real values in phenotype space. The real values are
decoded from the binary representation in genotype space.

An illustration of binary encoding is given in the following example.

Example 5.1. Consider maximizing the objective function below (Sivanandam [64]),

f(x) = x2, x ∈ {0, 31}.
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25 = 32, hence 5 bits are required in order to represent the 32 possible solutions in
binary strings. Figure 5.4 illustrates eight random generated bit strings of size five. Each
gene represents a real number between 0 and 31. The real number representation is the
phenotype, illustrated in the blue column.

Figure 5.4: Genotype and phenotype representation of eight possible values of x ∈
{0, 31}.

In Example 5.1, the phenotype is the real number representation of the bit strings. In gen-
eral, one is required to define a decoding function that maps the chromosomes consisting of
genes into solutions represented by decision variables. The number of bits needed in order
to represent each variable must be decided according to a required precision. Example 5.2
illustrates a more general application of binary encoding.

Example 5.2. Consider Rastrigin’s function1,

R(x) = 20 + x2
1 + x2

2 − 10(cos2πx1 + cos2πx2), x ∈ [−5.12, 5.12] ∀i = 1, 2

Suppose that a precision of two decimal places for each variable is required. The resolu-
tion, ∆x = 10−2, depends on the upper and lower bounds on the decision variables and
the number of bits needed, nbits, such that

∆x ≤ xub − xlb
2nbits − 1 (5.1)

The number of bits required can then be calculated as follows

1Rastrigin’s function is a non-convex function often used to test the performance of genetic algorithms. It is
a typical example of non-linear multimodal function
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nbits ≥
ln(xub−xlb∆x − 1)

ln2 . (5.2)

That is, 11 bits are required to represent x1 and x2 and the total length of the chromosome
equals bit size 11 + 11 = 22. The string < 1001011011100100111011 > would be a
chromosome representing one possible solution< x1, x2 >. The value of x1 is determined
by decoding the first gene (the first 11 bits) and x2 the second gene (the last 11 bits). The
real values are decoded from the expression below,

xi = bi∆x+ xlb, ∀i = 1, 2 (5.3)

where bi is the real value of the binary string representing variable xi. Hence, x1 = 0.92
and x2 = −3.54

Binary encoding has been the traditional way to map characters from genotype to pheno-
type space. However, binary encoding encompasses several drawbacks. One is the dis-
cretization of the variable range. High precision of variable representation can be obtained
by increasing the number of bits. However, an increased number of bits will increase
the size of the search space. Another issue is the hamming cliff [23]. Two parameters
may have a large hamming distance2 while belonging to points in phenospace that are
very close. In Example 5.2, < 01111111111 > and < 10000000000 > are neighbouring
points in phenotype space, but they have maximum Hamming distance in genotype space.
For the pair to be equal in genotype space, all bits have to change simultaneously, which
is very unlikely to occur. Hence, binary encoding will not preserve the locality of points
in phenotype space. Other representation strategies have been suggested in the literature,
such as real number-encoding and data structure encoding, but will not be discussed here.
For further information about other encoding systems the reader are referred to the book
by Gen and Cheng [23].

5.3 Fitness evaluation

GAs are population based search techniques where all individuals within a population
are evaluated by the fitness function. If a GA is applied to Example 5.1, the fitness is
obtained directly by substituting the decoded variables into the objective function. The
fitness values of the population in Example 5.1 are displayed in Figure 5.5.

The fitness evaluation must be more sensitive than just detecting what is a good solution
as opposed to a bad solution. A quality measure is required to accurately score the

2The Hamming distance between two strings of equal length is the number of positions at which the
corresponding symbols are different. In other words, it measures the minimum number of substitutions required
to change one string into the other.
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Figure 5.5: Fitness values of the individuals in Figure 5.4.

solutions based on fitness values so that a complete solution can be distinguished from
a more complete solution. In complex optimization problems the evaluation process is
not a simple step. Often, the problem at hand must be adapted to a genetic algorithmic
approach. In this thesis, an LP model is defining the fitness function. In order to identify
optimal heat and work integration of process streams, the LP model requires information
about how pressure change affects the heat distribution in the process. This information
is delivered by the GA. A thorough review of the fitness evaluation in the algorithms
developed in this thesis is given in Chapter 6.

Because GAs are a stochastic search technique, many iterations are required. In each
iteration, all new individuals in the population are going through a fitness evaluation. Thus,
high computational speed is an important property of a fitness function.

5.4 Initialization of population

GAs require an initial population of individuals. The initial population should ideally
converge towards the best solution. Therefore, it is important to choose individuals in the
first population so that the algorithm will find the best final result, in terms of solution
quality and computational time. There are several ways of selecting the starting point
depending on the problem characteristics. This section briefly describes three general
approaches that are commonly used: random initialization, uniform initialization and
biased initialization.

The three approaches are illustrated in Figure 5.6. With random initialization a random
value is assigned to each gene. The value is chosen within the range of feasible values.
By choosing the values randomly, the whole solution space is represented. Additionally,
random initialization is simple to use and easy to implement. For more careful coverage of
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Figure 5.6: Graphical illustration of three approaches to population initialization: (a)
random initialization, (b) uniform initialization and (c) biased initialization.

the search space, one can implement a procedure to ensure that the population is uniformly
distributed, i.e. dividing the search space into subregions and make sure that at least one
sample is drawn from each subregion. If there exist prior knowledge about a favourable
region in the solution space, heuristics can be applied in order to bias the initial population
towards the promising region. The most beneficial combination of individuals in the
initial population depends on the characteristics of the search space and the problem under
consideration.

5.5 Selection

The balance between exploration of the search space and exploitation of the accumulated
information can be adjusted by the selective pressure [6]. The selection process is the
driving force of the exploitation of the accumulated information and directs the genetic
search towards promising regions in the search space. With too much force, the search will
terminate prematurely; with too little force, the progress will be slower than necessary.
It is therefore of great interest to know the distribution of the selection probabilities for
different selection methods.

In practice, selection is the process of choosing two parents from the current population
to create new individuals. Selection improves the quality of the population by assigning a
higher probability of selection to the individuals of high quality opposed to the individuals
of low quality. Many methods on how to perform the selection have been proposed.
Common types are as follows:
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• Roulette wheel selection
• Elitist selection
• Tournament selection
• Linear rank selection

Roulette wheel selection, often referred to as proportional selection, is one of the tradi-
tional selection strategies proposed by Holland [34]. The basic idea is to determine a
selection probability Pi for each individual i proportional to the fitness value,

Pi = f(ci)∑N
i=1 f(ci)

, (5.4)

where f(ci) is the fitness value of chromosome ci andN is the number of chromosomes in
the population. A roulette wheel model displays these probabilities. The selection process
is based on spinning the roulette wheel a number of times equal to the population size, each
time selecting a single chromosome to the new population. A slice of the roulette wheel
is assigned to each individual. The size of the slice, representing the selection probability,
is proportional to the fitness value of the respective individual. An individual with twice
as good fitness as another individual will have twice the likelihood to be selected. The
selection probabilities for the eight individuals in Figure 5.5 are illustrated in Table 5.1.

Individual 1 2 3 4 5 6 7 8
Fitness value 16 400 676 25 900 196 121 256
Pi 0.01 0.15 0.26 0.01 0.35 0.07 0.05 0.10

Table 5.1: Roulette wheel selection probabilities of individuals in Example 5.1.

Elitist selection is a deterministic selection procedure. The elitist operation preserves the
best solution(s) obtained so far at any stage and pass that on to the next generation in
order to ensure that the best achievement so far does not get lost during genetic operations.
Elitist selection is generally used in combination with other selection procedures. Both
algorithms developed in this thesis make use of elitist selection.

Other types of selection procedures contain random and deterministic features simulta-
neously. A typical example is tournament selection. Tournament selection from the
population in Figure 5.5 is illustrated in Figure 5.7. This method randomly chooses a set
of chromosomes from the population and keep the best chromosome for recombination.
The number of chromosomes chosen from the population is called the tournament size.
The most common value of the tournament size is 2, called binary tournament. Pairs
of chromosomes are drawn at random from the population. From the selected pair, the
chromosome with highest fitness is the tournament winner and is inserted in the mating
pool. This process continues until the mating pool is full. The mating pool will further be
subject to crossover and mutation in order to generate a new population.
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Figure 5.7: Tournament selection.

The selection pressure can be derived assuming the individuals are ordered according to
their fitness value, such that f(c1) ≤ f(c2) ≤ ... ≤ f(cN ). For a population of size N
and tournament size t, Bäck [2] derived the selection probability of individual i to be

Pi = N−t((N − i+ 1)t − (N − i)t). (5.5)

For the fitness values in Figure 5.5, Table 5.2 displays the ranking according to fitness
value and the corresponding selection probabilities, calculated using Equation 5.5. In this
case N = 8 and the tournament size equals 2.

Individual 1 2 3 4 5 6 7 8
Fitness value 16 400 676 25 900 196 121 256
Rank 8 3 2 7 1 5 6 4
Pi 0.02 0.17 0.20 0.05 0.23 0.11 0.08 0.14

Table 5.2: Binary tournament selection probabilities.

In comparison to the Roulette wheel selection procedure, the selection probabilities are
more evenly distributed in binary tournament selection, which means a more moderate
trade-off between exploration of the search space and exploitation of accumulated infor-
mation. The less fit individuals have a higher chance of getting selected. Increasing the
tournament size will reduce the chances of the less fit individuals to be selected to the
mating pool, leading to a decrease in diversity. The first algorithm developed in this thesis
utilizes a tournament selection process.

In the roulette wheel selection procedure the selection pressure is proportional to the
chromosome fitness. This exhibit undesirable properties when the fitness values among
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individuals in a population differ very much or very little. For example, in early gen-
erations one may experience a tendency of very fit individuals to dominate the selection
process. This can be observed in Table 5.1. The two most fit individuals are assigned
very high selection probabilities. The other chromosomes will have too few chances of
getting selected, resulting in rapid convergence. Linear ranking selection was introduced
by Baker [4] to mitigate this problem. In Linear ranking the individuals are stored and
ranked according to fitness values. Rank 1 is assigned to the best individual and rank N
to the worst individual. The selection probabilities are linearly assigned to each individual
according to their rank, given by

Pi = 1
N

(
η+ − (η+ − η−) i− 1

N − 1

)
, i ∈ {1, ..., N}. (5.6)

Here, i is the respective rank and the constants η+ and η− determine the slope of the linear
function. η− = 2 − η+ and η+ = c, for 1 < c ≥ 2, thus c controls the selection bias.
For c approaching 1 the selection probability becomes more uniformly distributed among
the individuals. The bias towards higher selection probabilities for individuals with higher
fitness increases with higher values of c. The value assigned to c depends on the desirable
degree of exploitation of favourable areas in the search space. Calculations of selection
probabilities for the eight individuals in Figure 5.5 are listed in Table 5.3 for c = 1.5.

Individual 1 2 3 4 5 6 7 8
Fitness value 16 400 676 25 900 196 121 256
Rank 8 3 2 7 1 5 6 4
Pi 0.06 0.15 0.17 0.08 0.19 0.12 0.10 0.13

Table 5.3: Selection probabilities according to a linear ranking of fitness values.

From Table 5.3 one can observe even more evenly distributed selection probabilities among
the individuals than for tournament selection. The weak individuals have a better chance
of being selected, leading to a higher diversity in the population.

5.6 Crossover

Crossover is the process of recombining the genetic material in parent chromosomes to
produce offsprings that share characteristics with the parents. The crossover operator
will have a dual effect on the search process. First, characteristics from the parents
passes on to the offsprings in an effort to preserve favourable characteristics. Second,
the recombination of gene material will direct the search into new regions. Crossover is
illustrated in Figure 5.8 for three commonly used methods: single point crossover, two-
point crossover and uniform crossover.
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Figure 5.8: Three common crossover methods: (a) single point crossover, (b) two point
crossover and (c) uniform crossover.

Single point crossover uses a randomly generated crossover point in order to perform
recombination. The two mating chromosomes, parent A and parent B, are cut once at
corresponding points. The sections after the cuts are exchanged, creating two new off-
springs. Apart from single point crossover, many different crossover algorithms have been
devised. Other methods often involve multiple crossover points. A two-point crossover
procedure is illustrated in Figure 5.8(b).

Uniform crossover is another crossover type, featuring multiple crossover points. In uni-
form crossover, the recombination is performed according to a random generated binary
mask of the same length as the chromosomes. For each bit position there will be a fifty
percent probability that the value in that position will be drawn from each parent, as shown
in Figure 5.8(c). Uniform crossover may potentially add a large number of crossover
points. Adding additional crossover points often reduces the performance of the algorithm
because gene patterns are more likely to be disrupted. This is more thoroughly explained
in Section 5.11. However, multiple crossover points lead to a more exploratory search of
the solution space, which in some cases may be beneficial. The crossover rate controls the
number of new individuals created through crossover and is usually kept high in order for
the algorithm to evolve towards better solutions.

5.7 Mutation

The main objective of mutation is to prevent the algorithm from being trapped in local
optima. Where crossover exploit the accumulated information in the population to create
better individuals, mutation enhance the exploration of the search space. In biology, mu-
tation is a random change in a DNA sequence that builds up a gene due to mistakes when
the DNA is copied. Similarly, in GAs, a mutation is a random alteration of bits changing
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a chromosome into a complete different candidate solution. The process simply consists
of flipping the bits, as illustrated in Figure 5.9. Traditionally, mutation is performed on
genotypes, but a number of algorithms have adopted crossover and mutation methods of
good performance operating on real values.

Figure 5.9: Three common mutation methods: (a) interchanging mutation, (b) single bit
swap mutation and (c) flipping mutation.

There are many ways to perform mutation on chromosomes. Figure 5.9 illustrates three
common mutation methods: interchanging mutation, single bit swap mutation and flipping
mutation. In interchanging mutation two bit positions in the string are chosen randomly.
The bits corresponding to these positions are interchanged. In single bit swap one bit
position is randomly chosen. The corresponding bit is then swapped. In flipping mutation
the mutation is based on a random generated mutation mask of the same length as the
chromosome. If a bit in the mutation mask takes on value 1, the corresponding bit in the
parent chromosome is flipped (0 to 1, or 1 to 0), producing an offspring.

The mutation rate is usually kept low. New individuals are produced from parents of high
quality. If the mutation rate is high and heavily disrupt the gene material, the offsprings
will not inherent the advantageous features of its parents. The search will therefore seek
towards a higher exploration rate in the expense of exploitation of the accumulated infor-
mation.

5.8 Replacement

During crossover and mutation new offsprings are produced. However, not all parents
and offsprings can return to the population of the next generation. Once offsprings are
produced, a method must determine which of the current members of the population
should be replaced by the new solutions. This process is called replacement. Common
replacement strategies are listed below:

• Random replacement replaces randomly chosen parent individuals with the off-
springs. This strategy provides high exploration rate as all individuals have equal
probability of surviving the next generation
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• Weak parent replacement replaces a weaker parent with a fitter offspring. Newly
generated offsprings will replace the weaker of its two parents if it has a better
fitness than the parents. This process improves the overall fitness if combined with
a selection strategy that selects both weak and fit parents for crossing, if not, the
opportunity to replace the weak will never occur.

• Both parents replacement replaces both parents in each generation with the off-
springs. E.g. two newly generated offsprings will replace both parents. This
strategy works well if not combined with a selection process that strongly favours
fit individuals. In such cases highly fit individuals may be lost in future generations.

5.9 Search termination

If GAs are ran indefinitely, the global optimum will eventually be found. However, in
practice, the algorithm perform a search within a finite range of time. Various stopping
conditions are being used depending on the specific problem and solution requirements. A
selection of various stopping criteria is listed below:

• Maximum generation is the most commonly used criteria to stop the algorithm. The
algorithm stops when a specified number of generations have evolved.

• Elapsed time terminates the search when a specific time have elapsed.

• Stall generation stops the algorithm if there is no improvement in the objective
function for a predefined sequence of consecutive generations.

• A best individual stopping criteria terminates the search once the fittest individual(s)
reaches a predefined convergence value. This criteria brings the algorithm to a fast
conclusion, guaranteeing at least one good solution.

• Worst individual stopping criteria is similar to the previous one. The search termi-
nates when the least fit individual in the population is not worse than a predefined
convergence criteria. This guarantees the final population to possess a certain stan-
dard, even though the best individual may not be significant better than the worst.

• A sum of fitness termination strategy will terminate the search when the fitness of
the entire population reach a convergence value. This strategy guarantees that all
individuals in the population will be within a particular fitness range.
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5.10 Crowding techniques

In the development of GAs, a major challenge is an appropriate balance between ex-
ploration of the search space and exploitation of accumulated information. Too much
emphasis on exploration may cause a waist of valuable effort on solutions that are less
likely to be good. On the other hand, increasing the exploitation rate may lead to premature
convergence to a local optimum. Premature convergence to local optima is a difficulty that
commonly arises when GAs are applied to complex problems.

Premature convergence occurs when individuals with higher fitness values attain domi-
nance in the population. In general this is due to the loss of diversity within the population
caused by unfavourable selection pressure, poor schema distribution and poor evolution
parameter settings. Premature convergence occurs in situations where all individuals in a
population occupies only a subspace of the search space, illustrated in Figure 5.10. If the
global optimum lies outside the subspace, GAs are likely to converge towards the local
optimum within the subspace.

Figure 5.10: Premature convergence is highly likely when e.g. in three dimensions all
individuals in the population occupies a two dimensional place.

To avoid premature convergence, one has to maintain the diversity within the population
during the evolution process. In practice, it is common to control certain parameters
[10]. The selection pressure can be adjusted to increase the exploitation of accumulated
information, whilst higher mutation rate increases the exploration of the search space.
A wide range of methods to avoid premature convergence is thoroughly studied in the
literature [59][59][22][53]. Crowding is a common technique preserving diversity within
a population and is applied to one of the algorithms developed in this thesis.
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The initial crowding method was developed by De Jong [36] and consists of pairing
offsprings with similar parent individuals. For each pair a decision is made as to which
of them will survive the next generation. The latter is commonly referred to as the re-
placement phase, whilst the former is the pairing phase. Comparing of individuals is
computationally demanding. Mahfoud [50][51] realized that the offsprings are likely to be
similar to their parents. Thus, offsprings competing for survival with their most similar
parent can be used to efficiently preserve the diversity in a population, requiring less
computational effort. An outline of this crowding method is illustrated in Algorithm 1.

Algorithm 1 Crowding algorithm

1: parent individuals are randomly paired
2: with probability Pc, the parents in each pair (p1, p2) are recombined. The two

resulting offsprings (c1, c2) are mutated with probability Pm
Each offspring competes with one of its two parents for survival. Let d(pi, ci) denote
the hamming distance between a parent and a child

3: if d(p1, c1) + d(p2, c2) < d(p1, c2) + d(p2, c1) then
4: p1 competes with c1
5: p2 competes with c2
6: else
7: p1 competes with c2
8: p2 competes with c1
9: end if

Depending on how the replacement phase is carried out, there are two main types of crowd-
ing: deterministic and probabilistic [53]. Deterministic crowding selects the fittest individ-
ual for the next generation. Probabilistic crowding selects the surviving individual from a
probabilistic formula based on relative fitness value. Deterministic crowding develops an
exploitative strategy which highly favors fit individuals. Let Pr denote the probability that
an offspring c replaces parent p in the population. In deterministic replacement Pr can be
expressed as follows:

Pr =
{ 1 if f(c) > f(p)

0.5 if f(c) = f(p)
0 if f(c) < f(p)

(5.7)

The fitter individuals will always survive, leading to a loss of the genetic material in the
less fit individuals. This may be a disadvantage if it leads to premature convergence. Prob-
abilistic crowding promotes higher exploration of alternative solutions, with a selection
probability depending on the fitness values such that,

Pr = f(c)
f(c) + f(p) . (5.8)
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For a more controlled trade-off between exploration of the search space and exploitation of
accumulated information, generalized crowding was introduced by Galan and Mengshoel
[22]. In generalized crowding the degree of exploration can be controlled by means of
a parameter φ, named the scaling factor. The scaling factor allows for a wide range of
selective pressures to be applied: For higher values of φ it is more likely that areas of
less good solutions in thesolution space are included in the search. Lower φ increases the
degree of exploitation of accumulated information. Galan and Mengshoel [22] established
the survivor between parent p and offspring c as follows,

Pr =
{ f(c)

f(c)+φ×f(p) if f(c) > f(p)
0.5 if f(c) = f(p)

φ×f(c)
φ×f(c)+f(p) if f(c) < f(p)

, (5.9)

where f is the fitness function and φ ∈ {R | φ ≥ 0} denotes the scaling factor. The
major advantage with generalized crowding is that φ can easily be adjusted, allowing for
a wide range of replacement rules. The optimal value of φ are problem dependent. A GA
with crowding is developed in this thesis and presented in Chapter 6.

The crowding technique aim to preserve population diversity and prevent premature con-
vergence by eliminating the most similar individual whenever a new one enters the pop-
ulation. The method has been widely used and found effective for problems of all levels
of difficulty [59]. Using crowding, one has been able to solve much harder problems
than those solvable with traditional hill-climbing techniques [59]. Maintaining bit wise
diversity is, however, a difficult issue. Ideally, the method should encourage the population
to arrive at a stable mixture of different solutions. However, crowding is a method which
strives to maintain the diversity of the pre-existing mixture in the population, which may
not be sufficient [50] [59].

5.11 Schema theory

Although survival of the fittest has seemed to work well in the real world there is still
a question about how the concept of GAs works in a computer. Various methods are
proposed to gain insight into the behaviour of GAs, such as schema theory, Markov chain
theory and dimensional analysis. The following section is considering schema theory,
since this is considered the fundamental theory. A study of other theories is provided by
Pandey et al. [59].

Schema theory was developed by Holland [34] in order to explain why GAs have the
tendency to converge towards optimal solutions. Schema representation is a useful nota-
tion for detecting similarities among individuals in a population. Holland [34] formulated
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the schema theorem for canonical3 GAs to demonstrate how schema evolve through suc-
cessive generations. The algorithms developed in this thesis are not canonical; however,
knowledge about schema theory may be found useful in order to gain a better understand-
ing of the underlying mechanisms of GAs. Holland [34] defined a schema as describing a
subset of genotype chromosomes with similarities at certain string positions. The strings
below

< 100 >
< 101 >

are similar in the sense that they are identical at which the last position is ignored. Re-
garding ∗ as a symbol for a position that may take value 1 or 0, the strings above can
be represented by [1 0 ∗]. H = [1 0 ∗] is said to be a schema, identifying the two strings
above. For further illustration, a schema can be viewed as a hyperplane4 in a `-dimensional
space, where ` is the length of the chromosome string. The schema mentioned above is in
the three-dimensional space and is illustrated in Figure 5.11.

Figure 5.11: Schema in a three dimensional search space.

The schema theorem, proposed by Holland [34], provides a model for the expectation
of schema survival to the next generation. Following is a consideration of the effect of
selection, crossover and mutation on a schema, leading to the schema theorem.

The effect of selection on a schema

H = [1 0 ∗] is said to be a schema identifying the two strings < 1 0 0 > and < 1 0 1 >.
Similarly, a string belonging to schema H is said to be an instance of H .

3Canonical GAs are algorithms with proportional selection, single point crossover and bit-wise mutation.
4A hyperplane is a subspace of one dimension less than its ambient space. In a 3-dimensional space the

hyperplanes are of 2 dimensions.
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Definition 5.1. Let x denote a decision variable vector. Then x is said to be an instance of
schema [1 0 ∗] if and only if x matches [1 0 ∗] at every position not containing ∗.

For example, string [1 0 0] is said to be an instance of schema [10∗] and [∗ ∗ 0], among
others. The number of instances of schema H in generation t, is commonly noted as
m(H, t). The number of instances of a specific schema depends on the order of the
schema.

Definition 5.2. Schema order o(H) is the number of fixed positions in a gene. For example
o([1 ∗ ∗]) = 1.

The order of a schema reveals information about how many instances of a schema exists
within a population. A schema of order o represents 2l−o different strings of length l.
Possible schema orders and the equivalent number of instances for a three dimensional
space are listed in Table 5.4. Hence, schema of higher order represents less strings than
one of lower order. This will be shown to have an impact on the ability of a schema to
survive the next generation.

o(H) No. of instances
of schema H

0 8
1 4
2 2
3 1

Table 5.4: Orders of schema in a three dimensional space and the corresponding number
of instances of the schema.

The average fitness of schema H at iteration t is denoted f(H, t) and can be calculated
from the sum of fitness values f(x) of the individuals being instances of schemaH divided
by the number of instances of schema H in generation t, m(H, t) such that,

f(H, t) =
∑
x∈H f(x)
m(H, t) . (5.10)

The degree of which a schema survives the selection process is measured as the expected
number of instances of schema H in the population at time t+ 1,

E[m(H, t+ 1] = m(H, t)f(H, t)
f̄

(5.11)

where f̄ is the average population fitness at time t. Equation 5.11 reveals that schema with
higher average fitness than the average population fitness are more likely to appear in the
next generation.
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The effect of crossover on a schema

The defining length of a schema provides information about the structure of the schema.
A schema with fixed positions located close to one another are more likely to survive to
the next generation during crossover.

Definition 5.3. Schema defining length d(H) is the distance between the two furthest fixed
bits in a schema. For example d( [1 ∗ ∗ ∗ 1 ∗ 0]) = 6.

Consider two parents, P1 and P2, where P1 is an instances of schemaH = [∗ 1 0 ∗ ∗] and
P2 is not. The two parents are subject to single point crossover, illustrated in Table 5.5. A
schema survives a crossover operation if one of the parents is an instance of the schema
and one of the offsprings is an instance of the schema. The schema will be broken by the
location of the crossover point, unless the second parent is able to repair the disrupt gene.

H = [* 1 0 * *]

P1 = [1 1 0 1 0] ∈ H C1 = [1 1 0 1 1] ∈ H
→ H survived

P2 = [1 0 1 1 1] /∈ H C2 = [1 0 1 1 0] /∈ H

P1 = [1 1 0 1 1] ∈ H C1 = [1 1 1 1 1] /∈ H
→ H destroyed

P2 = [1 0 1 1 1] /∈ H C2 = [1 0 0 1 1] /∈ H

Table 5.5: Survival of schema H after crossover.

The crossover point is selected randomly among ` − 1 possible positions, where ` is the
length of the chromosome string. The probability that the crossover point occurs within
the defining length, disrupting the schema, is therefore

d(H)
`− 1 (5.12)

A schema may be conserved if both parents happen to contain parts of the schema at the
correct places. Thus, the upper bound of the probability that schema H is being destroyed
is then,

Dc(H) ≤ Pc
d(H)
`− 1 (5.13)
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wherePc is the crossover probability. The probability of the schema surviving the crossover
then becomes,

Sc(H) = 1−D(H)c ≥ 1− Pc
d(H)
`− 1 (5.14)

Studying Equation 5.14, schema of lower order are more likely to survive a single point
crossover operation. This means that schema with fixed bit positions closely located are
less likely to be disrupted and will survive the next generation.

The effect of mutation on a schema

Mutation is applied bit-wise, which means that in order for a schema to survive, all fixed
bits in the schema must remain unchanged. The probability of a bit not changing is,

(1− Pm). (5.15)

The probability that all fixed bits in the schema do not change and the schema survives is
then,

Sm(H) = (1− Pm)o(H). (5.16)

Hence, schema of lower order are more likely to survive a bit-wise mutation process,
meaning that schema with less fixed bit positions are more likely to survive.

The schema theorem

The combining effect of selection, crossover and mutation on a schema H constitute the
schema theorem developed by Holland [34],

E[m(H, t+ 1)] ≥ m(H, t)f(H, t)
f̄

(
1− Pc

d(H)
1− `

)
(1− Pm)o(H) (5.17)

in which states that schema with low defining length, low order and above average popu-
lation fitness will be more likely to survive the next generation. Exploration will dominate
early stages in the search process, and over time the GA increasingly converge towards
what it has detected as the most fit schema. The fact that the GA can identify the fittest
part of the search space very quickly is a powerful property, however, since the GA always
operates on populations of finite size, there is inherently sampling errors in the search, and
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in some cases the GA can magnify a small sampling error, causing premature convergence.
Schema theory is not a fundamental theory of the behaviour of GAs, but rather an insight
into the mechanisms that brings the search towards promising regions in the search space.

5.12 Advantages and limitations of genetic algorithms

GAs are population based search techniques that do not require computations of gradients.
They can cover a large range of the search space, being less likely of getting stuck in local
optima than gradient-based methods. GAs are suitable when the search space is large,
complex and poorly understood. These methods can handle discrete, mixed discrete-
continuous variables and discontinuous functions. This make GAs particular applicable
to heat and work integration problems, which has proven to result in combinatorial, non-
differential and non-convex problems. GAs are also suitable for multiobjective optimiza-
tion.

Although GAs perform a more systematic search than completely random methods, they
still require a large number of function evaluations. An important property of GAs is that
they are easily parallelized. The objective function of several individuals in a population
could be calculated simultaneously on different processors. The algorithms developed in
this thesis do not utilize parallelization, but this is an inherent property that is suggested to
be taken advantage of in future work.

The main limitation using GAs, which also applies to other metaheuristic approaches, is
the inability to guarantee global optimum. For a minimization problem, a GA provides
an upper bound. One cannot prove optimality of the bound unless there exists a good
lower bound that matches the solution found. The quality of the solution, and whether or
not the algorithm will get stuck in a local optimum, are highly dependent on the control
parameter settings. The literature provides reasonable values to various parameters such
as the population size, selection pressure, crossover and mutation rate, but in practice these
values are chosen by trial and error.
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Methodology

This chapter presents a two-level optimization model for energy targeting of optimal heat
and work integration. The two-level model decouples the optimization problem into two
loops: The outer loop uses a heuristic search algorithm to fix the inlet temperatures to
the pressure changing units. Each evaluation of the heuristic optimizer in the outer loop
requires solving the inner loop problem by highly efficient linear programming. Two
genetic algorithms are developed for the outer loop; a basic GA and a GA with crowding.

The simultaneous heat and work integration problem involving multiple pressure chang-
ing streams is difficult to solve efficiently with one-level optimization. The challenge,
however, with a two-level optimization model is to formulate the problem into levels of
optimization that will be more efficient than one-level optimization. Section 6.1 presents
common characteristics of the heat and work integration problem. The following Section
6.2 discusses why a two-level optimization model is a suitable approach to the heat and
work integration problem. Section 6.3 presents the general structure of the model. The
two search algorithms developed for the outer loop are presented in the last Section 6.4.
The complete implementation of the algorithms are attached in Appendix D

6.1 Characteristics of heat and work integration

The objective of heat and work integration is twofold: In addition to minimize utility
consumption, one would aim to minimize the total energy consumption, i.e. minimize
the work required by the compressors and maximize the work produced by the turbines.
As discussed in Section 4.4, heat and work are two forms of energy of different quality;
a one-to-one substitution of work to save heat is undesirable. Therefore, regarding heat



44 6.1. Characteristics of heat and work integration

and work integration, optimization with respect to minimum exergy consumption is more
representative than optimization with respect to energy.

Introducing pressure changing streams entail two complicating factors: (1) pressure ma-
nipulation causes a sudden change in temperature of the fluid dividing the stream into
two segments; one segment before and one segment after the unit. The segments change
temperature continuously, but the transition between the two segments is discontinuous
[58], (2) the inlet and outlet temperatures to the pressure changing units are not restricted
to lie within the range of the supply and target temperatures. This implies that a cold
stream may act as a hot stream, and a hot stream may act as a cold stream [52].

In order to increase the energy efficiency, pressure changing streams may be split into
branches, allowing for pressure change at multiple temperatures. Each branch will gener-
ate two new stream segments. This stream split arrangement was presented by Dowling
[11], illustrated in Figure 6.1 for a pressure changing stream s.

Figure 6.1: Stream split arrangement for pressure changing streams.

Each branch b is assigned a fraction fsb of the mass flow rate of stream s. The inlet
temperatures to the pressure changing units become target temperatures of the new stream
segments before the unit. Equivalently, the outlet temperatures become supply temper-
atures of the new stream segments after the unit. Consequently, the pressure changing
streams can be modeled as a set of constant pressure stream segments. The identity of
the segments is determined by the supply and target temperatures, which is defined by the
inlet and outlet temperatures to the pressure changing units.
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For constant pressure streams the heat cascade method, in which ensures thermodynami-
cally feasibility, can be applied to locate minimum heating and cooling demands for heat
integration of a process. An introduction to the heat cascade was presented in Section
4.2. The pressure changing streams can be modeled as a set of stream segments with
continuous temperature change, thus, the heat available from the hot stream segments
and the heat required by the cold stream segments in each temperature interval k, can be
calculated with Equation 6.1 and 6.2.

QHskbz = fsb(mcp)s
(
THk −max

[
THk+1, T

T
s

])
(6.1)

QCskbz = fsb(mcp)s
(
min

[
TCk , T

T
s

]
− TCk+1

)
(6.2)

Each segment z belongs to a branch b, which is derived from a pressure changing stream
s. The fraction fsb determines the amount that flows through the pressure changing unit
on branch b. The heat balances for each temperature interval, for both constant pressure
streams and pressure changing streams, can then be calculated with Equation 6.3.

rk = rk−1 +
∑
s∈SH

QHsk +
∑
s∈SH

∑
b∈B

∑
z∈Z

QHskbz −
∑
s∈SC

QCsk −
∑
s∈SC

∑
b∈B

∑
z∈Z

QCskbz (6.3)

Equation 6.3 remains linear if the temperatures defining the intervals and the end states of
the stream segments are fixed.

6.2 Design thought of the two-level optimization model

Considering the heat cascade method to identify the energy target for optimal heat and
work integration: For variable unit inlet temperatures, the heat balance constraints become
bilinear. Also, additional heat balance constraints are required to ensure thermodynami-
cally feasibility. However, the problem remains linear when the unit inlet temperatures are
fixed. Being able to separate the placement of the pressure changing units from the heat
integration problem would considerably simplify the problem.

The motivation for this thesis is to identify the energy target for optimal heat and work
integration involving multiple pressure changing streams. However, for increased practical
value, future research should take costs into consideration. The objective of minimizing
exergy consumption and the objective of reducing the total costs contradict each other.
Considering the two objectives simultaneously may be resolved with multi-objective op-
timization. Multi-objective optimization can support the decision making with locating a
reasonable energy target for the least number of operating units.
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With the purpose of including pressure changing streams to enhance heat integration and
facilitate an expansion of the problem to include costs, a two-level optimization model is
developed. The model decouples the optimization problem of heat and work integration
into two loops: The inner loop decision variables define a linear optimization problem that
can be efficiently solved with linear programming when the outer loop decision variables
are fixed. The inner loop locates the minimum exergy consumption for optimal heat
and work integration for fixed unit inlet temperatures. The outer loop searches for the
optimal values of inlet temperatures to the pressure changing units. The outer loop requires
heuristic optimization, whilst the inner loop, with many decision variables, can be solved
with highly efficiently linear programming. Heuristic optimization algorithms are often
used when there is no efficient way to find a solution quickly and accurately. These
methods do not guarantee a global optimal solution, but often locate very good solutions
within reasonable time for problems that are otherwise difficult to solve.

6.3 Two-level optimization model for simultaneous heat
and work integration

Figure 6.2: Flow chart representation of the two-level optimization model.

Figure 6.2 shows the framework of the two-level optimization model. The outer loop of the
optimization process searches for the optimal inlet temperatures to the pressure changing
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units. The inner loop locates the energy target for optimal heat and work integration. The
outer loop generates a population of promising candidate solutions, P (t). Each candidate
solution is a set of inlet temperatures to the pressure changing units. The set of inlet
temperatures generates new stream segments to be heat integrated. Optimal heat and
work integration among the process streams is established in the inner loop, in which the
minimum exergy consumption is calculated. The inner loop determines the optimal stream
split arrangements with linear programming in order to minimize the exergy consumption.
Whilst the inner loop assigns a quality measure to the candidate solutions, fitness(P (t)),
the search algorithm identifies the best solution. The iterations continue until a termination
criteria is satisfied.

In general, various heuristic algorithms can be applied to the outer loop. The model
developed in this thesis was designed considering GAs. Two main reasons why GAs
was thought to be successful are: (1) simultaneous heat and work integration of pressure
changing streams can be modelled with linear programming as long as the inlet temper-
atures to the pressure changing units are fixed. Hence, the LP model can operate as a
suitable fitness function to a GA, (2) the search algorithm must efficiently handle a large
number of design variables and prevent the search from converge towards local optima.

6.3.1 Inner loop optimization

The inner loop consists of a preprocessing step and an LP model formulated by Maurstad
[52]. The LP model determines the minimum exergy consumption for optimal heat and
work integration, in which the heat cascade method is applied to ensure thermodynami-
cally feasibility. The model requires linear heat balance constraints for each temperature
interval. Applying the stream split arrangement illustrated in Figure 6.1, the supply and
target temperatures for the stream segments are fixed for fixed inlet and outlet temperatures
for the pressure changing units. Compression and expansion are modeled as polytropic
processes with 100% polytropic efficiency. Thus, for fixed pressure ratios, the outlet
temperatures are calculated with Equation 6.4,

T out = T in
(
P out

P in

)κ−1
κ

(6.4)

where P in and P out are the inlet and outlet pressures, and the temperatures are in unit
Kelvin. The heat available and the heat required by the hot and cold streams are calculated
in the preprocessing step. For the constant process streams, the heat loads are calculated
with Equation 4.4 and Equation 4.5. The heat available and the heat required by the
pressure changing streams are calculated with Equation 6.1 and 6.2. The LP model is
described as follows:
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Notation

Indices Description
s stream
b branch
z stream segment
k temperature interval

Sets Description
S set of streams
SP set of pressure change streams
K set of temperature intervals
B set of stream splits
Z set of stream segments

Parameters Description
QCPsk total heat supply/demand in interval k for constant pressure stream s ∈ S\

{
SP
}

QPskbz total heat supply/demand in interval k for stream segment z
T0 ambient temperature
THU hot utility temperature
TCU cold utility temperature
T insb inlet temperature to pressure changing unit on branch b
T outsb outlet temperature from pressure changing unit on branch b
(mcp)s heat capacity flow rate of stream s ∈ S

There are one main decision to be made, which is the fraction of the flow rate flowing
through each pressure changing unit. This is reflected in variable fsb. The hot and cold
utility requirements are the heat residuals entering and leaving the first and last intervals.

Variables Description
rk heat residual from interval k
qHU hot utility consumption
qCU cold utility consumption
fsb fraction of heat capacity mass flow rate through branch b
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Objective function

The objective function (6.5) minimizes exergy consumption. The hot and cold utilities,
qHU and qCU , are multiplied with the Carnot factor to provide the exergy content. The
fraction fsb associated with branch b, multiplied with the heat capacity flow rate and the
temperature difference over the pressure changing unit, constitute the work consumed
or produced in each unit. In total, these terms represent the exergy consumption of the
process.

min Ex =
(

1− T0

THU

)
qHU +

( T0

TCU
− 1
)
qCU +

∑
s∈SP

∑
b∈B

fsb(mcp)s
(
T insb − T outsb

)
(6.5)

Constraints

The objective function is subject to the following constraints:

r1 − qHU −
∑
s∈SP

∑
b∈B

∑
z∈Z

QPs1bzfsb =
∑

s∈S\{SP }

QCPs1 (6.6)

rk − rk−1 −
∑
s∈SP

∑
b∈B

∑
z∈Z

QPskbzfsb =
∑

s∈S\{SP }

QCPsk , k ∈ K\ {1, |K|} (6.7)

−r|K|−1 + qCU −
∑
s∈SP

∑
b∈B

∑
z∈Z

QPs|K|bzfsb =
∑

s∈S\{SP }

QCPs,|K| (6.8)

Constraint 6.6-6.8 are the heat balance constraints. QCPsk andQPskbz are the sum of the heat
available and the heat required by the constant pressure streams and the pressure changing
streams, respectively. Constraint 6.6 and Constraint 6.8 are the heat balances for the first
and the last interval. The required heat entering the first interval is equivalent to the hot
utility consumption, whilst the excess heat leaving the last interval corresponds to the cold
utility required.

∑
b∈Bs

fsb = 1, s ∈ SP (6.9)

fsb ≥ 0, s ∈ SP , b ∈ B (6.10)

rk ≥ 0, k ∈ K (6.11)
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Constraint 6.9 forces the sum of the fractions for each stream s to be 1, maintaining the
mass balance. Constraint 6.10 ensures that the streams are flowing in the right direction
and Constraint 6.11 maintains thermodynamically feasibility making sure that the heat is
only transferred from a higher temperature to a lower temperature.

The objective value Ex is the minimum exergy consumption, which can be obtained with
linear programming when the decision vector ~tinsb is fixed. The LP problem is solved
repeatedly for varying decision vectors ~tinsb provided by the outer loop. The results from
the inner loop provides a quality measure on a population of decision vectors, referred to
as fitness(P (t)) in Figure 6.2.

6.3.2 Outer loop optimization

The outer loop searches for promising decision vectors ~tinsb that will optimize the objective
function value Ex, with heuristic algorithms. Various heuristic algorithms can be applied
to the outer loop. The problem under consideration in this thesis has been adapted to GAs
as the method of search technique. Two algorithms have been developed and presented in
the following section.

6.4 Heuristic optimization algorithms for the outer loop

Two GAs are implemented for the outer loop. First, a basic GA was implement. One of
the main fallacies in using GAs is being trapped in a local optimum. In order to avoid
getting trapped, a GA with crowding was implemented, maintaining the diversity within
the population. Both algorithms are presented in this section.

6.4.1 Basic genetic algorithm

The basic GA consists of four main operations: selection, crossover, mutation and replace-
ment. A graphical representation of the structure of the algorithm is illustrated in Figure
6.3. The only input information to the algorithm is the stream data and the maximum
number of pressure changing units required by the process. The number of pressure
changing streams and the number of maximum allowable stream splits must therefore be
predetermined. The stream data contain supply and target temperatures, flow rates, heat
capacities and pressure ratios. Prior to the evolution loop, an initial population is randomly
generated, reducing the likelihood of biasing the results. The evolution loop generates new
populations until the stopping criteria is met. Following is an overview of the implemented
steps in the evolution loop.
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Figure 6.3: Flow chart representation of the basic GA.

Encoding

In both algorithms, binary representation is applied for encoding of chromosomes. The
number of pressure changing units determines the number of genes in each chromosome,
where each gene holds information about a unit inlet temperature. The chromosome
representation is illustrated in Figure 6.4. Through the decoding function in Algorithm
2, the genes are decoded into numerical values for the inlet temperatures. Population P (t)
of decoded variables is the input to the evaluation of fitness values, which is carried out in
the inner loop.

Figure 6.4: Chromosome representation.
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Algorithm 2 Decoding function

1: function GENOTYPEMAP(population genotype)
2: calculate resolution of variable range for all genes using Equation 5.1
3: for all genes in each chromosome do
4: num← numerical value of gene
5: calculate real value of gene using Equation 5.3
6: assign decoded gene to the phenotype population
7: end for
8: return phenotype population
9: end function

Selection

The basic GA combines a selection mechanism with elitist selection. Elitist selection is
implemented to prevent fit individuals from being lost through selection or destroyed by
crossover and mutation. The elitist selection procedure is combined with tournament se-
lection. Tournament selection was chosen over proportional selection in order to promote
diversity in the population. Tournament selection is also implemented very efficiently as
no sorting algorithm of the population is required, reducing the overall computational
speed. The implemented algorithms for elitist selection and tournament selection are
shown in Algorithm 3 and Algorithm 4.

Algorithm 3 Elitist selection

1: function ELITISTSEL(fitness(P(t)))
2: n← number of individuals to directly survive the next generation
3: sort population according to fitness value in descending order
4: assign the n first individuals to an elite population
5: return elite population
6: end function

Algorithm 4 Tournament selection

1: function TOURNAMENTSEL(fitness(P(t), t))
2: poolSize← size of mating pool
3: for i=1 to poolSize do
4: matingPool[i] = best individual among t randomly selected from P(t)
5: end for
6: return matingPool
7: end function
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Any selection mechanism intend to favour individuals of high quality, but also maintain
diversity within the population. During the selection process poor individuals are lost
and thereby also the gene material contained in the replaced individuals. The number of
individuals lost in the selection process contributes to a loss of diversity in the population.
Two factors may cause loss of diversity through tournament selection; some individuals
may not get sampled to participate in a tournament while others might not be selected for
the mating pool because they lost a tournament. The relation between loss of diversity and
the tournament size was derived by Blickle and Thiele [7]. The same authors derived
a mathematical relation between tournament size and selection intensity and selection
variance. Selection intensity measures the change in average population fitness, whilst
selection variance is the expected variance of the population fitness distribution. The
relation between tournament size and the factors described above is plotted in Figure 6.5.

Figure 6.5: Influence of tournament size.

A larger tournament size t implies that a smaller number of individuals contributes to
population diversity, making the search increasingly greedy in nature [6]. Figure 6.5 shows
that for higher values of t the average population fitness increases, however, the selection
variance decreases and the loss of diversity increases. A trade-off between increasing the
average fitness and maintaining population diversity is required. A tournament size of 2-3
is regarded as a suitable size for most problems [26] [14]. The search tend to converge too
slow for smaller sizes of t and too fast for larger sizes of t [14]. In combination with both
parent replacement, the basic GA has implemented binary tournament selection, t = 2, in
order to promote population diversity.
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Crossover

Crossover is the process by which the genetic material in two or more parent individuals
is combined to obtain one or more offsprings. Different crossover methods are discussed
in Section 5.6. Traditionally, GAs have relied on single point crossover. However, Spears
and De jong [65] analyzed the effects of crossover on GA performance. They showed
that, for a large search space, a GA using uniform crossover often outperforms a GA using
single-point crossover. In order to increase the exploration effect and the performance of
the search, uniform crossover was implemented. The implementation of uniform crossover
is illustrated in Algorithm 5.

Algorithm 5 Uniform crossover

1: function CROSSUNIFORM(matingPool, Pc)
2: popSize← population size
3: chromSize← length of chromosomes
4: i← 1
5: while i ≤ popSize -1 do
6: parentA← random individual chosen from the mating pool
7: if a random number is ≤ Pc then
8: parentB← random individual chosen from the mating pool
9: mask← random generated bit string of length chromSize

10: for m=1 to chromSize do
11: if mask[m] == 1 then
12: childA[m] = parentA[m]
13: childB[m] = parentB[m]
14: else if mask[m]==0 then
15: childA[m] = parentB[m]
16: childB[m] = parentA[m]
17: end if
18: end for
19: childA and childB are assigned to the population of offsprings
20: i← i+2
21: else
22: i← i+1
23: end if
24: end while
25: return population of offsprings
26: end function

Pc is the crossover rate. The crossover rate controls the capability of GAs in exploiting
a located hill to reach the local optimum. The higher the crossover rate, the quicker the
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exploitation proceeds. However, a crossover probability that is too large would disrupt
individuals faster than they could be exploited [43], in which favourable gene material get
lost. Typical values of the crossover probability are in the range 0.50-1.00 [43].

Mutation

Mutation introduces new genetic structures into the population by random modifications
to the gene values. Flipping mutation was implemented in an effort to reduce the high
convergence speed and increase the exploration rate. The mutation algorithm is illustrated
in Algorithm 6.

Algorithm 6 Flipping mutation

1: function MUTFLIPSWAP(population of offsprings, Pm)
2: popSize← population size
3: chromSize← length of each chromosome
4: for i=1 to popSize do
5: if a random number is ≤ Pm then
6: mutChrom← random generated bit string of length chromSize
7: for j = 1 to chromSize do
8: if mutChrom[j] == 1 then
9: for offspring i, alter the bit value at position j

10: end if
11: end for
12: else
13: no mutation
14: end if
15: end for
16: return mutated population of offsprings
17: end function

The mutation probability Pm is usually kept low. From selection and crossover operations,
new individuals are produced from parents of high quality. If the mutation rate is high
and heavily disrupt the gene material, the offsprings will not inherent the advantageous
features of its parents. The search will therefore seek towards a higher exploration rate of
the search space in the expense of exploitation of favourable areas. A low mutation rate,
however, may result in premature convergence. Typical values of the mutation rate are in
the range 0.001-0.05.
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6.4.2 Genetic algorithm with crowding

In order to prevent premature convergence to local optima, a GA with crowding was im-
plemented. Crowding is a niching technique, in which the algorithm aim to (1) converge to
multiple, highly fit and significantly different solutions and (2) to slow down convergence
in cases where only one solutions is required [54]. Generalized crowing was presented in
Section 5.10 and is the crowding technique implemented in the algorithm presented in this
section. A graphical representation of the structure of the algorithm is illustrated in Figure
6.6.

Figure 6.6: Flowchart representation of the GA with crowding

Equivalent to the previous algorithm, the GA with crowding applies binary representation
for the encoding of chromosomes. Uniform crossover and flipping mutation operations are
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utilized to generate new individuals. The main differences occur in the selection and the
replacement processes. Parent selection is usually not applied under crowding and every
individual in the population becomes a parent [22]. In order to prevent fit individuals from
being destroyed by crossover or mutation, elitist selection is implemented.

A pseuducode of the GA with crowding is illustrated in Algorithm 7. The parents are ran-
domly paired and each pair is subject to crossover. The offsprings generated by crossover
are subject to mutation. Then follows the replacement process. The GA with crowding de-
veloped in this thesis has implemented generalized crowding. With generalized crowding
one have the ability to adjust the scaling factor to influence the replacements. Equation
5.9 is applied to the replacement phase, where Pc denotes the probability that an offspring
c replaces parent p in the population. The scaling factor φ can be adjusted to the problem
under consideration.
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Algorithm 7 Generalized crowding algorithm

1: popSize← population size
2: genPop← random generated initial population
3: phenPop← genotypeMap(genotype population)
4: fitness(P(t)) received from the inner loop
5: while seach criteria not met do
6: elitePop← elitistSel(fitness(P(t)))
7: randomly pair all individuals
8: for i = 1 to number of pairs do
9: parentPop[i] = (p1, p2)

10: end for
11: for i = 1 to length of parentPop do
12: (c1, c2)← crossUniform(parentPop[i], Pc)
13: (c1, c2)← mutFlipSwap((c1, c2), Pm)
14: childPop[i]← (c1, c2)
15: end for
16: Evaluate Hamming distance between each offspring and both of its parents
17: Let pici be the Hamming distance between parent pi and offspring ci
18: for all pairs of parents and the corresponding two offsprings do
19: d1 = p1c1 + p2c2
20: d2 = p1c2 + p2c1
21: if d1 ≤ d2 then
22: p1 competes with c1
23: p2 competes with c2
24: else
25: p1 competes with c2
26: p2 competes with c1
27: end if
28: end for
29: phenChild← genotypeMap(genotype population of offsprings)
30: fitness(C(t)) received from the inner loop
31: for all competing parents p and offspring c do
32: if fitness(c) ≥ fitness(p) then
33: replace parent p with offspring c with probability Pr = f(c)

f(c)+φ×f(p)
34: else if fitness(c) == fitness(p) then
35: replace parent p with offspring c with probability Pr = 0.5
36: else if fitness(c) < fitness(p) then
37: replace parent p with offspring c with probability Pr = φ×f(c)

φ×f(c)+f(p)
38: end if
39: end for
40: end while



Chapter 7

Implementation

Different parameter values in GAs might lead to very different results. For an optimal
configuration, the algorithm may converge to the best solution in a short time, whilst
inferior settings may cause the algorithm to become trapped in a local optimum. The
GA parameters are mutually dependent, thus, optimal values are difficult to obtain. An
evaluation of adequate parameter values has been carried out in order to establish an initial
parameter configuration, followed by a trial and error fine-tuning of these parameters.
Section 7.1 introduces the software used in the implementation of the algorithms. The fol-
lowing section 7.2 states the hardware used for running the test cases. Section 7.3 provides
a discussion of adequate parameter values and the choice of values for the implementation
of the basic GA and the GA with crowding.

7.1 Software

The search algorithms and the optimization model are implemented in the programming
language Julia (latest version 0.5.0). Julia is a high-level, high-performance dynamic pro-
gramming language, primarily developed for scientific and technical computing [37]. Julia
was designed to combine the simplicity of Python with a more sophisticated compiler and
other improvements, that make the platform easier to use and better suited for numerical
computation. Also, a well written code can achieve performance that is comparable to C.

IJulia is a Julia-language backend combined with the Jupyter interactive environment (also
used by IPython) [24]. This combination allows you to interact with the Julia language
using Jupyter [24]. Jupyter is the graphical notebook in IPython, which combines code,
formatted text, math and multimedia in a single document [38]. There are other options of



60 7.2. Hardware

environments for editing and running Julia code, such as Juno and Atom; however, IJulia
and Jupyter have been utilized in this work.

Julia has a built-in package manager for installing add-on functionality [37]. JuMP is
a package for modeling optimization problems [25]. The similarities between the syn-
tax and the mathematical structure of the problem greatly simplifies the implementation.
Through JuMP, solvers, such as CPLEX, are efficiently connected with Julia. CPLEX is a
commercial solver for LP problems and MILP problems. The LP model in the inner loop
was modelled with JuMP and solved with the CPLEX solver. The existing (not particular
functional) abstract high-level GA packages in Julia, such as GeneticAlgorithms.jl, have
not been applied in any of the implementations. Also, plotting in Julia is available through
packages. For plotting and visualization, Gadfly [21] was applied in this work.

Julia is a young language, first released in 2012. The youth of Julia means that it is not
as mature or developed as more established languages. The official Julia documentation
is relatively good, however aimed primarily at developers and experienced programmers.
The major disadvantage experienced throughout this work is the absence of debugging
functionalities. Also, windows installation of IJulia was especially time consuming and
unintuitive. The book by Kwon [9] is strongly recommended to those who are new to
programming and aim to use Julia in operations research.

7.2 Hardware

The computations are carried out on a Dell laptop with Intel(R) Core(TM) i7 Processor
(2.70GHz) and 8 GB RAM, running Windows 10.

7.3 Parameter settings

GAs involve complex interactions among multiple parameters, which are highly depen-
dent on the function being optimized. Researchers have been trying to understand the
mechanisms behind the genetic parameter interactions by using various techniques, such
as empirical studies and Markov chain analysis. Although the internet has made it easier
to communicate experiences for a wide range of problems, the choice of parameter values
still relies mainly on trial and error. The GA parameter values that are implemented for
the test cases studied in the following chapter, is listed in Table 7.1.

The inlet temperatures to the pressure changing units are restricted to lie within the range
of ambient and hot utility temperature. Using GAs involves a trade-off between accuracy
and computational time. A bit string can only represent a finite number of values, thus,
the number of bits restricts the accuracy of the solution. For higher accuracy, more bits
are required. However, large bit strings increase the computational demand. Thus, there
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Parameter values
Parameter Basic GA GA crowding
lower bound on design variables T0 T0

upper bound on design variables THU THU

number of bits 11 11
population size 20×paraNum 20×paraNum
rate of elitism, ε 0.01 0.01
crossover probability, Pc 0.75 0.75
mutation probability, Pm 0.10 0.10
tournament size, t 2 -
scaling factor, φ - 0.15
generations 10,000 10,000

Table 7.1: Implemented parameter values for the basic GA and the GA with crowding.

must be a trade-off between accuracy and computational time. 11 bits was considered to
be sufficient in maintaining the accuracy of the solutions, thus enabling the algorithm to
perform 10,000 iterations within reasonable time.

The population size affects both the ultimate performance and the efficiency of the al-
gorithm. GAs generally do poorly with very small populations because the population
provides an insufficient sample size [28]. With regards to schema theory, a large popu-
lation is more likely to contain representatives from a large number of various schema.
Hence, a large population discourages premature convergence to local optima [28]. On
the other hand, larger populations require more evaluations in the inner loop for each
generation. Increased computational time may result in an unacceptably slow convergence
rate. Grefenstette [28] suggested a population size within the range of 10 to 160 individ-
uals. However, the population size is generally advised to be as large as possible while
maintaining a sufficient number of generations. In order to maintain diversity within the
population, the population size is increasing proportional to the number of design variables
(number of genes). The population size was chosen to be 20 times the number of design
variables, in which was considered sufficient to preserve the population diversity while
going through 10,000 generations within reasonable time.

The number of generations is related to improvements in the fitness values. The increase
in population fitness improves in early generations for then to decrease and asymptotically
approach an optimum. Since the global optimum cannot be verified with exact solution
methods for the presented test cases, the number of generations are kept high. In order to
stay within reasonable time while providing sufficient accuracy in the number of bits, both
algorithms was restricted to 10,000 iterations.
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The crossover probability influences the exploitation rate; for higher crossover proba-
bilities, the exploitation rate increases as more new individuals are created from high
quality parents. In an effort to exploit the accumulated information, whilst maintaining
the diversity within the population, a crossover probability of 0.75 has been applied.

An insufficient mutation rate will not provide the required coverage of the search space.
However, if the mutation rate is too high, the gene material in good candidate solutions
will be disrupted, generating unacceptable solutions. In combination with elitist selection,
the mutation rate is kept at 0.1 throughout the test cases. This is higher than what is
regarded as typical values for the mutation rate. However, in comparison with other GAs
developed for the heat integration problem, 0.1 is relatively low. The population size is
kept large, hence a rate of elitism of 0.01 is considered sufficient. Thus, 1% of the fittest
individuals will directly survive the next generation; for the test cases, this is equivalent to
1-4 individuals.

For the GA with crowding, the value of the scaling factor has to be adjusted to the problems
under consideration. For greater numbers of φ, a larger proportion of the population
occupies a less fit area of the search space. For low values of φ, areas of the search space
of higher quality solutions is represented by a higher percentage of the population. A high
value of φ early in the search process contributes to a higher exploration rate so that a larger
area of the search space are being sampled. As the search converges towards areas of high
quality solutions, emphasis on higher exploration rate becomes increasingly important in
identifying the local optimum. Thus, lower values of φ are required. A constant value of
0.15 is applied for all test cases, in order to provide sufficient exploration of the search
space early in the process and increase the competence in finding the local optimum as the
algorithm converge towards areas of high quality solutions.



Chapter 8

Computational study

This chapter is a computational study of the two-level optimization model for simultaneous
heat and work integration involving multiple pressure changing streams. The model aim
to assist in the establishment of correct placement of pressure changing units when inte-
grated in the HEN. In cooperation with Fu Chao from SINTEF Energy Research, four test
cases were designed. The optimization model identifies minimum exergy consumption for
optimal heat and work integration, which may serve as a guideline in designing the HEN.

Common practice in the industry is to let pressure changing streams be compressed at
ambient temperature and expanded at hot utility temperature, in order to minimize com-
pression work and maximize expansion work. The purpose of this study is to examine how
pressure changing units can be integrated in the HEN to reduce energy consumption. The
objective is to identify the exergy savings by allowing for stream splitting and pressure
change at different temperatures. The results from the two-level optimization model are
presented in comparison with common practice in the industry. Since the focus of this
study is solely on energy efficiency, the economical consequences of stream splitting
are not explicitly taken into consideration in the model. However, important economic
implications are briefly discussed.

Maurstad [52] solved eight test cases with exact solution methods for heat and work inte-
gration involving one compressing and one expanding stream. These results are compared
with the two-level optimization model, attached in Appendix A, in which the two-level
optimization model was able to locate optimal or near-optimal solutions. The test cases
presented in this chapter are derived from Case 7, increasing the number of pressure chang-
ing streams. Case 9 and Case 10 are conferred to Section 8.1 and Section 8.3, involving
one compressing and two expanding streams. Case 11 concerns two compressing and one
expanding stream. Finally, Case 12 studies heat and work integration of two compressing
and two expanding streams.
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8.1 Case 9

Case 9 is an extension of Case 7 adding one pressure changing stream. The stream data
is listed in Table 8.1. The added stream is hot stream H4, which are to be expanded from
3 to 1 bar. The contribution from this case is the presence of two expanding streams.
Correct integration of multiple expanding streams have not yet been studied. A solution
to this scenario is presented in this section. A stream split arrangement is identified by
the two-level optimization model and presented in comparison with a base case. The base
case is the case of common practice in the industry, in which compression starts at ambient
temperature and expansion starts at hot utility temperature.

Stream T S [°C] T T [°C] mcp [kW/°C] P S [bar] P T [bar] ∆ Tmin

H1 400 35 2 2 1 20
H2 320 160 4 - -
H3 110 35 3 - -
H4 400 35 1.5 3 1
C1 15 380 3 1 2
C2 190 250 10 - -

Table 8.1: Stream data for Case 9.

The process pinch point is illustrated on the GCC in Figure 8.1, for heat integration of
the process streams without pressure change. The pinch point is located at 210/190°C
and two potential pinch points are identified; one above pinch and one below pinch at
temperatures of 320/300°C and 110/90°C, respectively.

Figure 8.1: GCC for Case 9 without pressure change.
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Results

Case 9 is solved with the basic GA and the GA with crowding in the outer loop. The results
are presented in Table 8.2 in comparison with the base case. Close to the same solution
is observed for the two algorithms. By allowing for splitting of the streams and pressure
change to occur at multiple temperatures, the exergy savings are substantial. Integration
of the pressure changing units eliminates the need of external heating at the expense of
more compressor work and less expansion work. The negative exergy values imply that
the process is producing exergy.

Case 9 GA.v01 GA.v02 Base case
Exergy [kW] -142.93 -142.91 6.52
Hot utility[kW] 0.00 0.00 578.90
Work [kW] -385.90 -383.53 -513.90

242.98 243.04 189.33

Tin
s /Tout

s [°C] H1 400.00 / 279.06 400.00 / 279.06 400.00 / 279.06
210.06 / 123.25 210.04 / 123.23 -

H4 209.02 / 79.78 210.04 / 79.87 400.00 / 218.65
C1 189.80 / 291.20 189.35 / 290.65 -

90.02 / 169.56 89.86 / 169.36 -
15.00 / 78.12 15.00 / 78.12 15.00 / 78.11

mcp,s [kW/°C] H1 0.50 0.50 2.00
1.50 1.50 -

H4 1.50 1.50 1.50
C1 1.25 1.25 -

0.37 0.37 -
1.38 1.38 3.00

Table 8.2: Results from Case 9. Results from the basic GA are listed under GA.v01 and
results from the GA with crowding are listed under GA.v02.

From Table 8.2, the stream split arrangements for the pressure changing streams are iden-
tified. For both solutions, H1 has positive flow rates in two branches; the first involves
expansion at hot pinch temperature and the second involves expansion at hot utility tem-
perature. H4 is subject to expansion at hot pinch temperature, whilst C1 is split in three
branches; the first branch involves compression at cold pinch temperature, the second
involves new pinch compression and the third branch involves ambient compression. An
illustration of the proposed stream split arrangement is presented in Figure 8.2. In the
base case, compression occurs at ambient temperature and expansion occurs at hot utility
temperature, involving no stream splits, illustrated in Figure 8.3.
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Figure 8.2: Stream split arrangement for Case 9.

Figure 8.3: Common practice in the industry.

The GCC for the stream split arrangement in Figure 8.2 is illustrated in Figure 8.4. The
two new pinch points can be observed at 320/300°C and 110/90°C, respectively. The
cold utility requirement has no influence on the exergy consumption when the cold utility
temperature equals ambient temperature. However, Figure 8.2 shows that also the cold
utility requirement is reduced.

Figure 8.4: GCC for Case 9 with pressure change.
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The results are in accordance with the theorems presented by Fu and Gundersen [18],
discussed in Section 4.3. For optimal integration of compressors and expanders in above-
ambient HENs, their insight suggests that the inlet temperatures to the compressors should
be at pinch temperature, at new pinch temperature or at ambient temperature; and the inlet
temperatures to expanders should be at pinch temperature, at new pinch temperature or at
hot utility temperature.

Stream split analysis

The problem objective is to gain insight into how energy efficiency can be improved.
However, additional branches with positive flow rates imply additional pressure changing
units. Compressors and turbines are some of the most expensive equipment in the process
industry, surpassing the value of heat exchange equipment [58]. Also, additional branches
increase the size of the search space and thus the computational power required to find a
good solution. In order to gain insight into energy efficient processes without unrealistic
cost conditions, the maximum number of branches was restricted to three. However, it is
of great interest to study the influence of the number of available branches on the objective
value.

Case 9 has been solved for different maximum numbers of stream splits with both algo-
rithms. The results are listed in Table 8.3. The objective values Ex and the computational
times are recorded in the two rightmost columns. The implementation experienced issues
in displaying the results, hence the incomplete list of computational times. The highest
number of branches with positive flow rates among the pressure changing streams, is
listed under bmax. Recorded below utot is the total number of compressors and expanders
required by the solution.

GA.v01 GA.v02
|B| bmax utot Ex [kW] time [sec] bmax utot Ex [kW] time [sec]
1 1 3 -125.88 487.17 1 3 -124.76 2258.02
2 2 6 -141.62 1551.31 2 6 -142.04 -
3 3 6 -142.93 4043.89 3 6 -142.91 17811.48
4 3 6 -142.91 7432.52 3 6 -142.91 31505.26

Table 8.3: Stream split analysis for Case 9.

In the presented solution above, a maximum of three branches was available. C1 had
positive flow rates in all branches. Increasing the number of maximum branches to four
did not improve the objective value. Also, none of the pressure changing streams had
positive flow rates in more than three branches, suggesting that additional stream splits
will not improve the energy efficiency any further. Restricting the number of branches to
two yields a 12.50% and 13.85% increase in exergy production compared to no stream
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splitting, for the basic GA and the GA with crowding, respectively. However, the increase
in exergy production requires twice the number of pressure changing units. In the case
of no stream splitting, the objective value is significantly improved in comparison to the
base case. The system produces more exergy than is consumed with no additional pressure
changing units; however, additional heat exchangers will be required in order to reach the
inlet temperatures.

The objective of this work is to identify the energy target for maximum heat and work
recovery. Integrating compressors and expanders with the HEN leads to substantial savings
in exergy consumption. Stream splitting enhance the energy efficiency even further. The
stream split analysis above suggests that, for this case, no more than three branches are re-
quired to obtain maximum heat and work recovery. The inlet temperatures to the pressure
changing units are in accordance with the theorems presented by Fu and Gundersen [18]
for integration of one compressing and one expanding stream. Increasing energy efficiency
require investments in additional process equipment, in which the economic implications
must be considered in order to evaluate the practicality of the solution.

8.2 Case 10

Case 10 is similar to Case 9, the only difference being a decrease in flow rate for stream
C2. The stream data is listed in Table 8.4. Case 10 is considering a threshold process,
in which no pinch point is dividing the process into two parts; one region above pinch
having a deficit of heat and one region below pinch with an excess of heat. Characteristic
for threshold problems is that these problems either require hot utility or cold utility, and
not both. Threshold problems are, in fact, quite common in practice. In this case, the
pinch point can be considered located at the hot utility temperature, hence only cold utility
is required. The threshold is illustrated in Figure 8.5. The figure depicts the GCC for
the process streams in Table 8.4 in the case of all streams having constant pressure. The
flow rate of C2 is reduced, hence the considerable increase in demand for cold utility.
The pinch point location is considered at the hot end, at 400/380°C. Furthermore, three
potential pinch points can be identified at 320/300°C, 210/190°C and 110/90°C.

Stream T S [°C] T T [°C] mcp [kW/°C] P S [bar] P T [bar] ∆ Tmin

H1 400 35 2 2 1 20
H2 320 160 4 - -
H3 110 35 3 - -
H4 400 35 1.5 3 1
C1 15 380 3 1 2
C2 190 250 4 - -

Table 8.4: Stream data for Case 10.
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Figure 8.5: GCC for Case 10 without pressure change.

Results

Case 10 is solved with the basic GA and the GA with crowding in the outer loop. The
results are listed in Table 8.5 in comparison with a base case. The base case is similar to
that of Case 9, in which compression takes place at ambient temperature and expansion
takes place at hot utility temperature. In the base case, maximum work are produced in the
turbines, increasing the hot utility required. The two-level optimization model presents
two different solutions, in which both solutions eliminate the need of hot utility in the
expense of a loss in work generated by the turbines. In terms of energy efficiency, the
two-level optimization model clearly presents the most beneficial solutions, increasing the
exergy production with 35.69% and 35.70% for the basic GA and the GA with crowding,
respectively.

The GAs identified two different solutions. The variation in the objective values is very
small, however, the unit inlet temperatures are somewhat different. H1 has positive flow
rates in all three branches in both solutions. Two branches involve expansion at inter-
mediate temperatures below hot utility and above the new pinch at 320/300°C. The
third branch involves new pinch expansion at 210/190°C. Expansion of H4 occurs at the
highest new pinch point in both solutions, whilst C1 is compressed at ambient temperature.
A graphical illustration of the stream split arrangements is presented in Figure 8.6. The
GCCs for the two solutions are presented in Figure 8.7 and Figure 8.8. The shape of the
curves illustrate the small difference between the two solutions in the upper pocket. The
effect of the difference on the objective value is very small and both solutions require the
same number of heat exchangers and pressure changing units.

Fu and Gundersen [17] recognized that there are cases where expansion at some intermedi-
ate temperature (T p < T in < THU ) can achieve the same minimum exergy consumption
as if expansion would occur at hot utility temperature and pinch temperature. Running
the optimization model, in which expansion of H1 is restricted to occur at either hot
utility temperature or pinch temperature, generated an objective value of −241.04. One
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Case 10 GA.v01 GA.v02 Base case
Exergy [kW] -253.93 -253.94 -187.14
Hot utility[kW] 0.00 0.00 240.00
Work [kW] -443.26 -443.27 -513.75

189.33 189.33 189.33

Tin
s /Tout

s [°C] H1 390.97 / 271.65 368.46 / 253.19 400.00 / 279.06
330.22 / 221.82 329.83 / 221.49 -
210.60 / 123.69 210.02 / 123.21 -

H4 320.07 / 160.25 320.7 / 160.25 400.00 / 218.65
C1 15.00 / 78.12 15.00 / 78.12 15.00 / 78.12

mcp,s [kW/°C] H1 0.47 0.74 2.00
0.68 0.41 -
0.85 0.85 -

H4 1.50 1.50 1.50
C1 3.00 3.00 3.00

Table 8.5: Results from Case 10. Results from the basic GA are listed under GA.v01 and
results from the GA with crowding are listed under GA.v02.

Figure 8.6: Stream split arrangements for Case 10.

quarter of the flow rate enters the expander at hot utility temperature, whilst three quarters
flow through the expander at pinch temperature. These results suggests that expansion at
intermediate temperatures may be more energy efficient than expansion at hot utility and
pinch temperature.
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Figure 8.7: GCC for Case 10 solved with GA.v01.

Figure 8.8: GCC for Case 10 solved with GA.v02.

Stream split analysis

Similar to Case 9, Case 10 is solved for different numbers of maximum stream splits.
The results are listed in Table 8.6. In the solutions presented above, H1 had positive flow
rates in all three branches. Increasing the number of maximum branches to four did not
improve the objective value. Also, none of the pressure changing streams had positive flow
rates in more than three branches, suggesting that additional stream splits will not improve
the energy efficiency any further. The solutions presented above require five pressure
changing units. Restricting the number of branches to one, a 1.24% and 1.56% loss in
exergy production will save the investment costs of two pressure changing units, for the
basic GA and the GA with crowding respectively. In comparison with the base case, the
solutions from the basic GA and the GA with crowding for no stream splits, will increase
the exergy production with 34.01% and 33.57%, respectively.

In terms of energy efficiency, at least three branches are required to obtain maximum heat
and work recovery. However, the improvements in the objective value is not significant in
adding more stream splits. Thus, from an economically point of view, a solution requiring
less pressure changing units may be preferable.
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GA.v01 GA.v02
|B| bmax utot Ex [kW] time [sec] bmax utot Ex [kW] time [sec]
1 1 3 -250.78 498.90 1 3 -249.97 2285.06
2 2 5 -253.68 1519.58 2 5 -253.88 8601.86
3 3 5 -253.93 4421.31 3 5 -253.94 -
4 3 5 -253.92 6229.81 3 5 -253.93 38890.26

Table 8.6: Stream split analysis for Case 10.

8.3 Case 11

Case 11 is an extension of Case 7 with one added pressure changing stream. The stream
data is listed in Table 8.7. The added stream is cold stream C3, which are to be compressed
from 1 to 5 bar. The contribution from this case is the presence of two compressing
streams. Similar to multiple expanding streams, correct integration of multiple com-
pressing streams have not yet been studied. Two different solutions to this scenario are
presented in this section. The results are presented in comparison with a base case of
common practice in the industry, in which compression starts at ambient temperature and
expansion starts at hot utility temperature.

The process pinch point is illustrated on the GCC in Figure 8.9 for heat integration of the
process streams without pressure change. The pinch point is located at 110/90°C and two
potential pinch points are identified at 210/190°C and 320/300°C.

Stream T S [°C] T T [°C] mcp [kW/°C] P S [bar] P T [bar] ∆ Tmin

H1 400 35 2 2 1 20
H2 320 160 4 - -
H3 110 35 3 - -
C1 15 380 3 1 2
C2 190 250 10 - -
C3 90 250 2 1 5

Table 8.7: Stream data for Case 11.
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Figure 8.9: GCC for Case 11 without pressure change.

Results

Case 11 is solved with the basic GA and the GA with crowding in the outer loop. The
results are presented in Table 8.8 in comparison with the base case. The base case ensures
maximum expansion work and minimum compressor work, however, the utility demand
increase. The two-level optimization model eliminates the hot utility requirement in the
expense of a loss in generated expansion work and higher compressor work consumption.

The basic GA and the GA with crowding located two different solutions. The objec-
tive value is only slightly better for the GA with crowding, however, the stream split
arrangements are somewhat different. H1 is, in both solutions, split in two branches; one
branch with expander inlet at hot pinch temperature and one at new pinch temperature.
The compressing streams are split in different arrangements: In the solution found by the
basic GA, C1 has positive flow rates in three branches and C3 in one; in the solution
found by the GA with crowding, both C1 and C3 have positive flow rates in two branches.
The compressor inlet temperatures are conferred to cold pinch, new pinch and ambient
temperatures in both solutions. Thus, the results are in accordance with the theorems
presented by Fu and Gundersen [18].

Illustrations of the proposed stream split arrangements are presented in Figure 8.10 and
Figure 8.11. In the base case, compression occur at ambient temperature and expansion
occur at hot utility temperature, involving no stream splits. The base case is illustrated in
Figure 8.12.
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Case 11 GA.v01 GA.v02 Base case
Exergy [kW] 557.53 557.45 691.10
Hot utility[kW] 0.00 0.00 711.88
Work [kW] -170.44 -157.51 -241.88

727.97 714.96 525.82

Tin
s /Tout

s [°C] H1 210.60 / 123.69 210.04 / 123.23 400.00 / 279.06
111.30 / 42.23 110.00 / 41.15 -

C1 300.00 / 425.36 299.94 / 425.46 15.00 / 78.12
189.35 / 290.64 189.92 / 291.34 -
89.86 / 169.36 - -

C3 89.86 / 301.79 89.86 / 301.79 15.00 / 183.23
- 15.00 / 183.23 -

mcp,s [kW/°C] H1 1.81 1.10 2.00
0.19 0.90 -

C1 0.64 0.64 3.00
1.66 2.36 -
0.70 - -

C3 2 1.02 2.00
- 0.98 -

Table 8.8: Results from Case 11. Results from the basic GA are listed under GA.v01 and
results from the GA with crowding are listed under GA.v02.

Figure 8.10: Stream split arrangement for Case 11 solved with GA.v01.
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Figure 8.11: Stream split arrangement for Case 11 solved with GA.v02.

Figure 8.12: Common practice in the industry.

The GCCs curves for the two solutions are presented in Figure 8.13 and Figure 8.14. The
shape of the curves illustrate the difference between the two solutions. The cold utility
requirement has no effect on the exergy consumption, however, the GCCs reveal a higher
cold utility requirement for the solution generated with the basic GA.

Figure 8.13: GCC for Case 11 solved with GA.v01.
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Figure 8.14: GCC for Case 11 solved with GA.v02.

Stream split analysis

Case 11 has been solved for different maximum numbers of stream splits with both algo-
rithms. The results are listed in Table 8.9. In the solutions presented above for maximum
three branches, C1 had positive flow rates in all branches. Increasing the number of
branches to four did not improve the objective value. Also, none of the pressure changing
streams had positive flow rates in more than three branches, suggesting that additional
stream splits will not improve the energy efficiency any further. Restricting the number
of branches to two yields a 1.43% and 1.58% decrease in exergy consumption compared
to no stream splitting, for the basic GA and the GA with crowding, respectively. The
small decrease in exergy consumption requires twice the number of pressure changing
units. In the case of no stream splitting, the exergy consumption decrease with 17.99%
with the basic GA and 18.03% with the GA with crowding in comparison with the base
case, requiring no additional units. However, additional heat exchangers will be required
in order to reach the inlet temperatures.

GA.v01 GA.v02
|B| bmax utot Ex [kW] time [sec] bmax utot Ex [kW] time [sec]
1 1 3 566.75 495.03 1 3 566.47 2204.76
2 2 6 558.65 1460.62 2 6 557.54 8774.94
3 3 6 557.53 3450.82 3 6 557.45 18145.51
4 3 6 557.53 7287.98 4 6 557.46 31766.64

Table 8.9: Stream split analysis for Case 11.
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The objective of this work is to identify the energy target for maximum heat and work
recovery. Integrating compressors and expanders with the HEN leads to savings in exergy
consumption. Stream splitting enhance the energy efficiency even further. The stream
split analysis above suggests that, for this case, no more than three branches are required
to obtain maximum heat and work recovery. The inlet temperatures are in accordance
with the theorems presented by Fu and Gundersen [18], for integration of one compressing
and one expanding stream. However, increasing energy efficiency requires investments in
additional process equipment, in which the economic implications must be considered in
order to evaluate the practicality of the solutions.

8.4 Case 12

Case 12 is an extension of Case 7 adding one pressure changing stream and one expanding
stream. The stream data are listed in Table 8.10. The added streams are H4, which are
to be expanded from 3 to 1 bar and C3, which are to be compressed from 1 to 5 bar.
The contribution from this case is the presence of two compressing and two expanding
streams. Two different solutions to this scenario are presented in this section. The results
are presented in comparison with a base case of common practice in the industry, in which
compression starts at ambient temperature and expansion starts at hot utility temperature.

Stream T S [°C] T T [°C] mcp [kW/°C] P S [bar] P T [bar] ∆ Tmin

H1 400 35 2 2 1 20
H2 320 160 4 - -
H3 110 35 3 - -
H4 400 35 1.5 3 1
C1 15 380 3 1 2
C2 190 250 10 - -
C3 90 250 2 1 5

Table 8.10: Stream data for Case 12.

The process pinch point is illustrated on the GCC in Figure 8.15 for heat integration of
the process streams without pressure change. The pinch is located at 210/190°C and two
potential pinch points are identified; one above pinch at 320/300°C and one below pinch
at 110/90°C.
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Figure 8.15: GCC for Case 12 without pressure change.

Results

Case 12 is solved with the basic GA and the GA with crowding in the outer loop. The
results are presented in Table 8.11. Two different solutions are observed, in which the GA
with crowding identified a slightly better objective value than the basic GA. Compression
and expansion at ambient and hot utility temperature increase the hot utility requirement.
By allowing splitting of streams and pressure change to occur at multiple temperatures,
the exergy consumption decrease. Integration of the pressure changing units eliminates
the need of external heating at the expense of more compressors work and less expansion
work.

From Table 8.11, two stream split arrangements for the pressure changing units are iden-
tified. In the solution generated by the basic GA, H1 has positive flow rates in two
branches; one that is expanded at hot utility temperature and one that is expanded at hot
pinch temperature. In the solution generated by the GA with crowding, H1 is split in
one additional branch, expanding at a new pinch temperature. In both solutions, H4 is
expanded at the hot pinch temperature. The stream split arrangement for C1 is also similar
in the two solutions; one branch involves cold pinch compression, the second involves
new pinch compression and the third involves ambient compression. C3 is split in two
branches in the solution generated by the basic GA, in which compression occur at new
pinch temperature and ambient temperature. In the solution generated by the GA with
crowding, C3 is compressed at ambient temperature.
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Case 12 GA.v01 GA.v02 Base case
Exergy [kW] 241.73 241.68 411.64
Hot utility[kW] 0.00 0.00 698.90
Work [kW] -385.95 -377.51 -513.91

627.67 619.19 525.82

Tin
s /Tout

s [°C] H1 400.00 / 279.06 400.00 / 279.06 400.00 / 279.06
210.04 / 123.23 210.04 / 123.23 -
- 109.98 / 41.15 -

H4 210.04 / 79.87 210.04 / 79.87 400.00 / 218.65
C1 189.35 / 290.65 189.92 / 291.33 -

89.86 / 169.36 89.86 / 169.36 -
15.00 / 78.12 15.00 / 78.12 15.00 / 78.12

C3 89.67 / 301.49 - -
15.00 / 183.23 15.00 / 183.23 15.00 / 183.23

mcp,s [kW/°C] H1 0.50 0.50 2.00
1.50 1.03
- 0.47

H4 1.50 1.50 1.50
C1 2.11 2.42 -

0.51 0.04 -
0.38 0.54 3.00

C3 0.30 - -
1.70 2.00 2.00

Table 8.11: Results from Case 12. Results from the basic GA are listed under GA.v01 and
results from the GA with crowding are listed under GA.v02.

Illustrations of the proposed stream split arrangements are presented in Figure 8.16 and
Figure 8.17. In the base case, compression starts at ambient temperature and expansion
starts at hot utility temperature, involving no stream splits, illustrated in Figure 8.18. The
GCCs for the stream split arrangements are illustrated in Figure 8.19 and Figure 8.20. The
small difference in the two solutions can be observed in the lower pocket.

The results are in accordance with the theorems presented by Fu and Gundersen [18],
discussed in Section 4.3. For optimal integration of compressors and expanders in above-
ambient HENs, their insight suggests that the inlet temperatures to the compressors should
be at pinch temperature, at new pinch temperature or at ambient temperature; and the inlet
temperatures to expanders should be at pinch temperature, at new pinch temperature or at
hot utility temperature.
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Figure 8.16: Stream split arrangement for Case 12 solved with GA.v01.

Figure 8.17: Stream split arrangement for Case 12 solved with GA.v02.



Chapter 8. Computational study 81

Figure 8.18: Common practice in the industry.

Figure 8.19: GCC for Case 12 solved with GA.v01.

Figure 8.20: GCC for Case 12 solved with GA.v02
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Stream split analysis

Case 12 is solved for different values of maximum stream splits. The results are listed in
Table 8.12. The implementation experienced issues in displaying the results, hence the
incomplete list of computational times. In the solutions presented above, C3 had positive
flow rates in all three branches. Increasing the number of maximum branches to four
did not improve the objective value. Also, none of the pressure changing streams had
positive flow rates in more than three branches, suggesting that additional stream splits
will not improve the energy efficiency any further. However, an interesting observation is
that the total number of pressure changing units decrease; in which only seven units are
required. The solutions found in the case of maximum four stream splits represent slightly
less objective values saving the costs of one additional pressure changing unit. A complete
outline of the solutions are attached in Appendix B.

GA.v01 GA.v02
|B| bmax utot Ex [kW] time [sec] bmax utot Ex [kW] time [sec]
1 1 4 249.47 849.65 1 4 248.57 4063.82
2 2 7 242.73 - 2 7 241.86 14978.48
3 3 8 241.73 7670.75 3 8 241.68 33855.86
4 3 7 241.82 - 3 7 241.70 -

Table 8.12: Stream data for Case 12.

The objective of this work is to identify the energy target for maximum heat and work
recovery. Integrating compressors and expanders with the HEN leads to substantial savings
in exergy consumption. Stream splitting enhance the energy efficiency even further. The
stream split analysis above suggests that, for this case, no more than three branches are re-
quired to obtain maximum heat and work recovery. The inlet temperatures to the pressure
changing units are conferred to pinch, ambient and hot utility temperatures, which is in
accordance with the theorems presented by Fu and Gundersen [18] for integration of one
compressing and one expanding stream. However, increasing energy efficiency require
investments in additional process equipment, in which the economic implications must be
considered in order to evaluate the practicality of the solution.



Chapter 9

Concluding remarks

This master’s thesis studies energy targeting for optimal heat and work integration involv-
ing multiple compressing and expanding process streams. The problem of minimizing
energy consumption has been formulated as a two-level optimization model utilizing GAs
in the search process. The model decouples the problem in two loops; the outer loop
uses GAs to locate the optimal inlet temperatures to the pressure changing units and the
inner loop identifies the energy target for optimal heat and work integration. The work
aim to provide insight into optimal integration of multiple pressure changing streams so to
enhance the energy efficiency.

GAs is a heuristic search technique, in which the main limitation is the inability to guar-
antee a global optimum. The results from the test cases therefore present the hitherto best
solutions found. The computational study presents good candidate solutions and provides
suggestions for improvements of heat and work integration in the process industry.

The two-level optimization model has solved the test cases using two different GAs in
the outer loop, a basic GA and a GA with crowding. Crowding is a niching technique
that is suitable for locating the optimum for multimodal problems by allowing for sub-
populations to form, exploiting multiple promising areas in the search space. For each
test case, an illustration of the search process in finding an optimal solution is attached in
Appendix C. The average population fitness and the best fitness value among the individ-
uals are recorded in each generation. Illustrations of the complete search are presented
in C.2, whilst illustrations of the early search are presented in C.1. Both algorithms
strongly converge early in the search; the GA with crowding converges slightly slower
than the basic GA. The GA with crowding maintain a higher population diversity in early
generations. When the algorithm has converged towards an area(s) in the search space
with high quality solutions, the exploitative effect dominates. The basic GA converges
more quickly, and maintain a higher average fitness also later in the search. The GA
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with crowding provides slightly better solutions than the basic GA, however, it requires
significantly more computational time.

The results from the computational study in the previous section highlight the significant
improvements in energy efficiency in applying simultaneous heat and work integration of
process streams. In comparison with common practice in the industry, optimization of
heat and work integration may eliminate the need of external heating. The results further
suggests that compression and expansion at certain temperatures ensure minimum exergy
consumption. These temperatures are located at the pinch point, at new pinch points, at
ambient temperature and at hot utility temperature. This is in accordance with the theorems
presented by Fu and Gundersen [18]. The results from the threshold problem in Case 10,
however, suggest that there are cases in which expansion at intermediate temperatures lead
to lower exergy consumption.

The stream split analyses illustrate the benefit of stream splitting in terms of energy effi-
ciency. Pressure based energy can effectively be transformed to heating and cooling duty
and stream splitting provides an advantageous distribution of this heat in order to increase
the energy efficiency. Increasing the stream splits to more than three branches did not lead
to improvements in the objective value in any of the test cases, suggesting that more than
three branches will not improve the energy efficiency any further. However, the increase in
energy efficiency requires investments in additional pressure changing units. Compressors
and turbines are some of the most expensive equipment in the process industry, thus, highly
energy efficient solutions may be economically impractical. The economic implications of
the presented solutions are briefly discussed. An interesting observation from the stream
split analyses is that the two-level optimization model, adding the restriction of no stream
splits, provides significantly better objective values than the base case. Thus, integration
of the pressure changing units with the HEN, increasing the compressor inlet temperatures
and decreasing the expander inlet temperatures, yield higher energy efficiency without
additional pressure changing units.

The two-level optimization model has proved to be a valuable tool in approaching larger
problem sizes. The model efficiently provides good solutions for heat and work integra-
tion of multiple pressure changing streams. Additionally, the model has great potential
in being extended to include the costs related to the required process equipment. For
increased problem sizes, heuristic search methods are more likely to outperform exact
solution methods. Combining the two methods reduces the number of decision variables
that must be handled by the search algorithm. A distribution of tasks between heuristic
search algorithms and exact methods may be an efficient solution method in approaching
industrial size problems.



Chapter 10

Future research

There are many possible areas for future research into the heat and work integration
problem, and the two-level optimization model. For this thesis, the objective was to
identify the energy target for optimal heat integration of processes involving multiple
pressure changing streams. In order to enhance the energy efficiency, the model allows for
stream splitting, which requires additional operating units. Heat exchanger equipment and
pressure changing units are costly. The solutions presented by the two-level optimization
model are energy efficient, but may be economically impractical. Considering maximum
heat integration and minimum total costs simultaneously may be resolved with multi-
objective optimization, in which GAs are a suitable approach. This can make the solution
method more applicable for the decision makers in the process industry. Further work
should also concern the network design, satisfying the energy target identified by the two-
level optimization model.

The heat and work integration problem can be further extended by allowing for the pres-
sure ratios to be subject to optimization. Motivated by the work of Wechsung et al. [71],
another possibility is to let any stream go through a series of pressure changes with the
pressure ratios and the inlet temperatures as variables. In this case, the streams will
partially act as utilities. The LP model assumes constant heat capacities and neglect
any pressure loss over the heat exchangers. A more accurate model may take these
simplifications into consideration.

Another possible area of research is to improve the performance of the outer loop. GAs
are often used for large sized global optimization problems, but are not very efficient in
local search. Similar to GAs, the Nelder-Mead simplex algorithm do not use function
derivatives and deals with a population of points. However, this algorithm can only find
a local optimum close to the starting point [13]. In order to improve the local search, a
combined Nelder-Mead simplex and genetic algorithm may improve the performance of
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the two-level optimization model. The aim of the GA is to find promising areas for the
simplex algorithm whereas the latter will find the local optimum in this area. An individual
is generally coded by the variables of the problem, however, in a combined Nelder-Mead
simplex and genetic algorithm each individual can be defined as a simplex. The GA selects
and recombine good simplexes. In addition, a few steps of the Nelder-Mead algorithm are
executed at each generation to improve the local search.

The GAs developed in this work make use of binary representation, which is not always
well suited for real value decisions. There are several drawbacks to binary representation,
one being the discretization of the variable range. The number of bits representing each
gene has a large influence on the computational efficiency. With real-value encoding there
is no need to convert bit strings. Also, real-value encoding increases the precision in not
having to discretize the value range.

For further improvements of the GAs, the parameters can be automatically controlled
during execution as opposed to manually tuned in advanced. With automatic parameter
control the parameters can be adapted to the state of the search process; e.g., it is reason-
able to gradually reduce the degree of exploration during the search. Diversity-adaptive
control of the scaling factor φ uses feedback from the GA population to determine the
magnitude of the change in φ [53]. High values of φ in early generations prevent premature
convergence; low values of φ in the last generations favours regions close to local optima,
making sure these region are effectively exploited. In applying linear ranking selection,
the c parameter may be adapted to control the selection bias throughout the search. Self-
adapted mutation probability may also improve the search process.

For increasing problem sizes the use of GAs becomes computationally demanding. GAs
are easily parallelized, consisting of a number of independent tasks that can be calculated
simultaneously, which will reduce the computational time considerably.
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Appendix A

Benchmark cases

The results from the two-level optimization model, using a basic GA and a GA with
crowding in the outer loop, in comparison with the results presented in the master thesis
of Maurstad [52] are conferred to this appendix. The comparable methods are the graph-
ical procedure presented by Fu and Gundersen [16][17] and two exact solution methods
developed by Maurstad. The exact solution methods are an LP model using insight from
the theorems presented by Fu and Gundersen [16][17] and an MINLP model without the
use of insight. Eight cases were tested in total, whereof Case 7 and Case 8 were the only
two cases involving two pressure changing streams, one compressing and one expanding
stream. Case 8 investigate heat and work integration for below ambient temperatures. The
GA parameter values are listed in Table A.1

Parameter values
Parameter Basic GA GA crowding
lower bound on design variables T0(TCU ) T0(TCU )
upper bound on design variables THU (T0) THU (T0)
number of bits 11 11
population size 20×paraNum 20×paraNum
rate of elitism, ε 0.01 0.01
crossover probability, Pc 0.75 0.75
mutation probability, Pm 0.10 0.10
tournament size, t 2 -
scaling factor, φ - 0.15
iterations 1000 1000

Table A.1: Parameter values for the basic GA and the GA with crowding.
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A.1 Case 1

Stream T S [°C] T T [°C] mcp [kW/°C] P S [bar] P T [bar] ∆ Tmin

H1 400 60 3 - - 20
C1 300 380 2 3 1
C2 300 380 6 - -

Table A.2: Stream data for Case 1.

Case 1 Graphical MINLP LP GA.v01 GA.v02
Exergy [kW] 168.2 157.5 157.5 157.5 157.5
Hot utility [kW] 740.0 740.0 740.0 740.0 740.0
Work [kW] -255.0 -265.7 -265.7 -265.7 -265.7
Tin/Tout [°C] 200.0 / 72.5 220.0 / 87.1 220.0 / 87.1 220.0 / 87.1 220.0 / 87.1
mcp [kW/°C] 2.0 2.0 2.0 2.0 2.0

Table A.3: Results from Case 1.

A.2 Case 2

Stream T S [°C] T T [°C] mcp [kW/°C] P S [bar] P T [bar] ∆ Tmin

H1 400 110 2 - - 20
H2 400 280 3 2.5 1
C1 200 380 8 - -

Table A.4: Stream data for Case 2.
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Case 2 Graphical MINLP LP GA.v01 GA.v02
Exergy [kW] 143.3 152.3 134.6 134.6 134.6
Hot utility [kW] 923.1 853.4 853.5 853.5 853.5
Work [kW] -384.7 -336.3 -353.5 -353.5 -353.5
Tin/Tout [°C] 220.0/106.4 220.0/106.4 220.0/106.4 220.0/106.4 220.0/106.4

400.0/245.0 210.4/99.9 400.0/225.0 400.0/245.0 400.0/245.0
- - 126.4 / 34.4 195.4 / 87.5 198.4 / 89.8

mcp [kW/°C] 1.9 1.0 2.0 0.6 0.5
1.1 2.0 0.5 0.6 0.5
- - 0.5 1.8 2.0

Table A.5: Results from Case 2.

A.3 Case 3

Stream T S [°C] T T [°C] mcp [kW/°C] P S [bar] P T [bar] ∆ Tmin

H1 400 130 2 - - 20
H2 400 130 3 5 1
C1 200 380 8 - -

Table A.6: Stream data for Case 3.

Case 3 Graphical MINLP LP GA.v01 GA.v02
Exergy [kW] -205.8 -205.8 -205.8 -205.8 -205.8
Hot utility [kW] 691.0 691.0 691.0 691.0 691.0
Work [kW] - 601.0 - 601.0 - 601.0 - 601.0 - 601.0
Tin/Tout [°C] 400.0/151.9 270.3/70.0 400.0/151.9 396.4/149.6 396.4/149.6

220.0 / 38.2 - 220.0 / 38.2 244.1 / 53.4 244.1 / 53.4
mcp [kW/°C] 0.8 3 0.8 0.6 0.6

2.2 - 2.2 2.4 2.4

Table A.7: Results from Case 3.
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A.4 Case 4

Stream T S [°C] T T [°C] mcp [kW/°C] P S [bar] P T [bar] ∆ Tmin

H1 400 60 3 - - 20
H2 400 280 2 25 1
C1 200 380 8 - -

Table A.8: Stream data for Case 4.

Case 4 Graphical MINLP LP GA.v01 GA.v02
Exergy [kW] -203.3 -203.3 -203.3 -203.3 -203.3
Hot utility [kW] 1060.0 1060.0 1060.0 1060.0 1060.0
Work [kW] -809.6 -809.6 -809.6 -809.6 -809.6
Tin/Tout [°C] 400.0 / -4.8 400.0 / -4.8 400.0 / -4.8 400.0 / -4.8 400.0 / -4.8
mcp [kW/°C] 2 2.0 2.0 2.0 2.0

Table A.9: Results from Case 4.

A.5 Case 5

Stream T S [°C] T T [°C] mcp [kW/°C] P S [bar] P T [bar] ∆ Tmin

H1 400 60 3 3 1 20
H2 330 80 9 - -
C1 15 220 6 - -
C2 140 380 8 - -

Table A.10: Stream data for Case 5.
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Case 5 Graphical MINLP LP GA.v01 GA.v02
Exergy [kW] -206.4 -203.8 -206.3 -206.3 -206.3
Hot utility [kW] 350.0 350.0 350.0 350.0 350.0
Work [kW] -406.6 -404.0 -406.4 -406.4 -406.4
Tin/Tout [°C] 330.0/167.5 226.7/92.0 330.0/167.5 330.0/167.5 330.0/167.5

160.0 / 43.3 - 160.0 / 43.3 160.0 / 43.3 160.0 / 43.3
mcp [kW/°C] 1.2 3 1.2 1.2 1.2

1.8 - 1.8 1.8 1.8

Table A.11: Results from Case 5.

A.6 Case 6

Stream T S [°C] T T [°C] mcp [kW/°C] P S [bar] P T [bar] ∆ Tmin

H1 400 60 6 3 1 20
H2 330 80 9 - -
C1 15 220 6 - -
C2 140 380 8 - -
C3 40 380 3 - -

Table A.12: Stream data for Case 6.

Case 6 Graphical MINLP LP GA.v01 GA.v02
Exergy [kW] -470.2 -436.2 -470.4 -470.4 -470.4
Hot utility [kW] 819.0 738.8 818.5 818.5 818.5
Work [kW] -938.6 -858.8 -938.5 -938.5 -938.5
Tin/Tout [°C] 400.0/218.7 258.1/115.0 400.0/218.7 400.0/218.7 400.0 / 218.7

160.0 / 43.3 - 160.0 / 43.3 160.0 / 43.3 160.0 / 43.3
mcp [kW/°C] 3.7 6 3.7 3.7 3.7

2.3 - 2.3 2.3 2.3

Table A.13: Results from Case 6.
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A.7 Case 7

Stream T S [°C] T T [°C] mcp [kW/°C] P S [bar] P T [bar] ∆ Tmin

H1 400 35 2 2 1 20
H2 320 160 4 - -
H3 110 35 3 - -
C1 15 380 3 1 2
C2 190 250 10 - -

Table A.14: Stream data for Case 7.

Case 7 Graphical MINLP LP GA.v01 GA.v02
Exergy [kW] 175.6 178.1 175.6 175.6 175.6
Hot utility [kW] 37.6 27.7 37.5 37.5 37.5
Work [kW] -158.3 -189.7 -158.4 -158.4 -158.4

312.4 352.0 312.5 312.5 312.5
Tin/Tout [°C] 210.0/123.2 254.9/160.0 210.0/123.2 210.0/123.2 210.0/123.2

110.0/41.2 262.7/380.0 110.0/41.2 111.3/42.2 110.0/41.2
190.0/291.4 - 190.0/291.4 190.1/291.6 190.1/291.6
300.0/425.5 - 300.0/425.5 297.7/422.7 300.0/425.5

mcp [kW/°C] 1.15 2.0 1.15 1.14 1.15
0.85 3.0 0.85 0.86 0.85
2.66 - 2.66 2.56 2.66
0.34 - 0.34 0.34 0.34

Table A.15: Results from Case 7.

A.8 Case 8

Stream T S [°C] T T [°C] mcp [kW/°C] P S [bar] P T [bar] ∆ Tmin

H1 15 -149 2 3 1 20
H2 -21 -105 4 - -
C1 -135 11 3 1 2
C2 -75 -38 7 - -

Table A.16: Stream data for Case 8.
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Case 8 Graphical MINLP LP GA.v01 GA.v02
Exergy [kW] 54.6 63.0 52.7 53.0 52.8
Hot utility [kW] 13.0 6.9 23.2 23.7 23.6
Work [kW] -99.1 -97.1 -103.5 -104.5 -103.6

135.5 139.2 123.8 124.8 123.8
Tin/Tout [°C] -71.0/-125.4 -93.0/-141.5 -71.0/-125.4 -69.0/-124.0 -71.0/-125.4

-131.0/-169.3 -61.3/-14.9 -131.0/-169.3 -129.4/-168.1 -130.6/-169.0
-75.0/-31.6 - -75.0/-31.6 -75.0/-31.6 -75.0/-31.6
-25.0/27.2 - -135.0/-104.7 -134.6/-104.3 -75.0/-31.6

mcp [kW/°C] 1.4 2.0 1.7 1.7 1.7
0.6 3.0 0.3 0.3 0.3
2.5 - 2.5 2.6 2.5
0.5 - 0.5 0.4 0.5

Table A.17: Results from Case 8.
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Appendix B

Additional results from Case 12

Case 12 GA.v01 GA.v02
Exergy [kW] 241.82 241.70
Hot utility[kW] 0.00 0.00
Work [kW] -385.95 -377.51

627.67 619.19

Tin
s /Tout

s [°C] H1 399.25 / 278.44 400.00 / 279.06
210.04 / 123.23 210.04 / 123.23
- 111.30 / 42.23

H4 210.04 / 79.87 210.04 / 79.87
C1 188.60 / 289.73 189.92 / 291.33

89.10 / 168.44 -
18.01 / 81.78 15.00 / 78.12

C3 15.00 / 183.23 15.00 / 183.23
mcp,s [kW/°C] H1 0.50 0.50

1.50 1.00
- 0.50

H4 1.50 1.50
C1 2.47 2.42

0.51 -
0.02 0.58

C3 2.00 2.00

Table B.1: Results from Case 12 with four allowable branches.
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Figure B.1: Stream split arrangement for Case 12 solved with GA.v01.

Figure B.2: Stream split arrangement for Case 12 solved with GA.v02.





Appendix C

Illustration of search process

C.1 Illustration of early search process

Case 9

Figure C.1: Search process for basic GA.
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Figure C.2: Search process for GA with crowding.

Case 10

Figure C.3: Search process for basic GA.
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Figure C.4: Search process for GA with crowding.

Case 11

Figure C.5: Search process for basic GA.
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Figure C.6: Search process for GA with crowding.

Case 12

Figure C.7: Search process for basic GA.
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Figure C.8: Search process for GA with crowding.
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C.2 Illustration of complete search process

Case 9

Figure C.9: Search process for basic GA.
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Figure C.10: Search process for GA with crowding.

Case 10

Figure C.11: Search process for basic GA.
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Figure C.12: Search process for GA with crowding.

Case 11

Figure C.13: Search process for basic GA.
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Figure C.14: Search process for GA with crowding.

Case 12

Figure C.15: Search process for basic GA.
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Figure C.16: Search process for GA with crowding.



Appendix D

Julia source code

D.1 Basic genetic algorithm



GA

June 29, 2017

In [ ]: #Input stream data

#reading stream data is time consuming
#Therefore, placed in separate cell in order to load values from excel only once
#OBS! "using xxxxx" cannot be placed inside functions, hence call functions globally

using JuMP #use of package JuMP to formulate optimization problem
using CPLEX #use of package CPLEX to solve the LP problem

#[IMPORTANT]
#the algorithm is designed so that pressure changing streams must be listed first
#do not distinguish between hot and cold, can be found by comparing TS and TT
#the mapping is done such that the stream on location x in vector TS..
#..has corresponding values at location x in TT, mCp etc.

using ExcelReaders

f = openxl("Input_streamdata.xlsx")

#remember to update cell G2
nPr=readxl(f, "Streamdata!G2:G2"); nPr=Int(nPr[1]); #no. of dynamic streams
nSt=readxl(f, "Streamdata!I2:I2"); nSt=Int(nSt[1]); #no. of static streams

#remember to update cellnumbers
TS=readxl(f, "Streamdata!C5:C10"); #supply temp
TT=readxl(f, "Streamdata!D5:D10"); #target temp
Pr=readxl(f, "Streamdata!G5:G7"); #pressure ratio
mCp=readxl(f, "Streamdata!H5:H10"); #flow rate capacity

#remember to update values for below ambient cases
DTmin=readxl(f, "Streamdata!A2:A2"); DTmin=Int(DTmin[1]); #delta T min
Tamb=readxl(f, "Streamdata!B2:B2"); Tamb=Float64(Tamb[1]); #ambient temp
Thu=readxl(f, "Streamdata!C2:C2"); Thu=Float64(Thu[1]); #hot utility temp
Tcu=readxl(f, "Streamdata!D2:D2"); Tcu=Float64(Tcu[1]); #cold utility temp
=readxl(f, "Streamdata!E2:E2"); =Float64([1]); #kappa
=readxl(f, "Streamdata!F2:F2"); =Float64([1]); #polytropic efficiency
n=readxl(f, "Streamdata!H2:H2"); n=Int(n[1]); #number of stream splits
T=273.15; #kelvin temperature
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In [ ]: #decoding of genes from genotype to phenotype representation

function genotypeMap(genPop, paraNum, ub, lb)

popSize = length(genPop[:,1]); #population size equals number of chromosomes
phenPop = zeros(popSize, paraNum); #empty population in phenotype representation
stepSize = zeros(Float64, paraNum); #discretization of variable range

#calculate the resolution for each gene
for i=1:paraNum

stepSize[i] = (ub-lb)/((2^nBits)-1); #evenly distr density of variable range
end

#for all individuals calculate the phenotype representation of each gene
for i = 1:popSize

k = 1;
for j = 1:paraNum

phenPop[i,j] = (parse(Int64, genPop[i][k:k+nBits-1], 2))*stepSize[j]+lb
k = k+nBits

end
end
return phenPop #return a population of phenotype values
end

In [ ]: #fitness function/the innter loop

function computeFitness(phenPop)

#output values for comparison of solutions

exergy = zeros(length(phenPop[:,1])); #fitness value of individuals in pop p
Uhot = zeros(length(phenPop[:,1])); #hot utility of indiv solutions in pop p
Ucold = zeros(length(phenPop[:,1])); #cold utility of indiv solutions in pop p
mfr = zeros(nPr, n, length(phenPop[:,1])); #mCp of each stream split in pop p
TIN = zeros(nPr, n, length(phenPop[:,1])); #input temp to pressure changing units
TOUT = zeros(nPr, n, length(phenPop[:,1])); #output temp to pressure changing units
Work = zeros(nPr, n, length(phenPop[:,1])); #work from each pressure changing unit

#------------------------start preprocessing step------------------------

#for each individual solution in population p we calculate the fitness value
for i=1:length(phenPop[:,1])

#extrac info from genes and calculate pressure ratio and output temperatures
Tin = collect(reshape(phenPop[i,:], nPr, n));

PR = []; Tout = zeros(nPr, n);
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PR = collect((Pr[s])^((-1)/) for s=1:length(Pr));

for s = 1:nPr
for b = 1:n

Tout[s,b] = ((Tin[s,b]+273.15)/(PR[s]))-273.15;
end

end

#[split operator]
#generate new streams; one segment before unit, one after unit
#[OBS!] pressure changing streams must be listed first in stream data

TSnew = zeros(2*nPr*n);
TTnew = zeros(2*nPr*n);
mCpnew = zeros(2*nPr*n);
W = zeros(nPr, n);

k = 1;
for s = 1:nPr

for b = 1:n
TSnew[k] = TS[s]; #supply temp of segment before unit
TSnew[k+1] = Tout[s,b]; #supply temp of segment after unit
TTnew[k] = Tin[s,b]; #target temp of segment before unit
TTnew[k+1] = TT[s]; #target temp of segment after unit
mCpnew[k] = mCp[s]; #mCp of segment before unit
mCpnew[k+1] = mCp[s]; #mCp of segment after unit
k = k+2;

W[s,b] = (Tout[s,b]-Tin[s,b])*mCp[s]; #work in each unit
end

end

#for later simplicity we add the static streams to the new vectors

append!(TSnew, TS[nPr+1:end]);
append!(TTnew, TT[nPr+1:end]);
append!(mCpnew, mCp[nPr+1:end]);

#generate the heat cascade:
#1. the cold temperature side
#2. the hot temperature side
#3. number of temperature intervals

Tcold = []; Thot = []; K = [];
for j = 1:length(TSnew) #create heat casc from all supply temp

if TSnew[j] >= TTnew[j] #hot stream
push!(Tcold, TSnew[j]-DTmin); #adjust for delta Tmin
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else push!(Tcold, TSnew[j]) #cold stream
end

end

#to create the heat cascade we need to add the max/min temps in the system
push!(Tcold, min(Tamb,Tcu));

Tcold = reverse(sort(union(Tcold))); #sort the cold temp side
Thot = Tcold+DTmin; #create hot side
K = length(Tcold); #no. of temp intervals

#for testing/debugging of function:
#println("Tin: ", Tin)
#println("Tout: ", Tout)
#println("TSnew: ", TSnew)
#println("TTnew: ", TTnew)
#println("mCpnew: ", mCpnew)
#println("Work: ", W)
#println("Tcold: ", Tcold)
#println("Thot: ", Thot)
#println("K: ", K)

#for simplicity, the heat in each interval from the static streams..
#..and the pressure changing streams are calculated separately.

#STATAIC STREAMS
#heat from hot and cold streams to interval k in K

QS = zeros(nSt, K); q = 1;

for s = nPr+1:length(TS)
if TS[s] > TT[s]

for k = 1:K-1
if (TT[s]<=Thot[k+1]||(TT[s]<=Thot[k]&&TT[s]>=Thot[k+1]))&&TS[s]>=Thot[k]

QS[q,k] = mCp[s]*(Thot[k]- max(Thot[k+1], TT[s]))
end

end

elseif TS[s] < TT[s]

for k = 1:K-1
if TS[s]<=Tcold[k+1]&&(TT[s]>=Tcold[k]||(TT[s]<=Tcold[k]&&TT[s]>=Tcold[k+1]))

QS[q,k] = mCp[s]*(Tcold[k+1] - min(Tcold[k], TT[s]))
end

end
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end
q = q+1;
end

#for simplicity, sum heat in each interval

Qksum = zeros(K)
for k = 1:K

Qksum[k] = sum(QS[1:end,k])
end

#PRESSURE CHANGING STREAMS
#heat from pressure changing streams depends on the variable mass fraction
#we calculate the heat supply/demand beforehand -
#and multiply with a fraction variable 0<=f<=1 in the optimization model

#heat from hot and cold streams to interval k in K

QP = zeros(2*nPr*n, K); p = 1;

for s = 1:2*nPr*n

if TSnew[s] > TTnew[s]

for k = 1:K-1
if (TTnew[s]<=Thot[k+1]||

(TTnew[s]<=Thot[k]&&TTnew[s]>=Thot[k+1]))&&TSnew[s]>=Thot[k]
QP[p,k] = mCpnew[s]*(Thot[k]- max(Thot[k+1], TTnew[s]));

end
end

elseif TSnew[s] < TTnew[s]

for k = 1:K-1
if TSnew[s]<=Tcold[k+1]&&(TTnew[s]>=Tcold[k]||

(TTnew[s]<=Tcold[k]&&TTnew[s]>=Tcold[k+1]))
QP[p,k] = mCpnew[s]*(Tcold[k+1] - min(Tcold[k], TTnew[s]));

end
end

end
p = p+1;
end

#heat content of pressure changing stream segments are calculated above
#these are listed in the vector QP[p,k]

5



#p is the no. of stream segments and k is the no. of temp intervals
#segments belonging to the same branch has the same flow fraction, f
#hence, the array is reshaped to the form QP[z,n,nPr,k]
#for each interval k -
#sum for all pressure changing streams and all branches
#ex. sum(QP[z,1,1,1]*f[1,1] for z = {1,2}, s = 1, b = 1, k = 1)

#reshape QP so to be compatible with f[s,b]

Z = 2;
QPr = reshape(QP, Z, n, nPr, K);

#-------------------------end preprocessing step-------------------------

#LP-model

HeatCasc=Model(solver=CplexSolver())

@variable(HeatCasc, r[1:K] >= 0);
@variable(HeatCasc, Qhu >= 0);
@variable(HeatCasc, 0 <= f[s = 1:nPr, b = 1:n] <= 1);

@objective(HeatCasc, Min,
(1-(Tamb+T)/(Thu+T))*Qhu + ((Tamb+T)/(Tcu+T)-1)*r[K-1] +
sum(f[s,b]*W[s,b] for s=1:nPr, b=1:n));

@constraint(HeatCasc, FirstInt[k = 1],
r[k] - Qhu ==
sum(QPr[z,b,s,k]*f[s,b] for s=1:nPr, b=1:n, z=1:Z) + Qksum[k]);

@constraint(HeatCasc, ResInt[k = 2:K],
r[k] - r[k-1] ==
sum(QPr[z,b,s,k]*f[s,b] for s=1:nPr, b=1:n, z=1:Z) + Qksum[k] );

@constraint(HeatCasc, frac[s = 1:nPr], sum(f[s,b] for b = 1:n) == 1);

#avoid print put from the optimization
WW = STDOUT;
redirect_stdout();
solve(HeatCasc);
redirect_stdout(WW);

exergy[i] = getobjectivevalue(HeatCasc);
Uhot[i] = getvalue(Qhu);
Ucold[i] = getvalue(r[K-1]);
for s = 1:nPr

for b = 1:n
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mfr[s,b,i] = getvalue(f[s,b]);
Work[s, b, i] = W[s, b];
TIN[s, b, i] = Tin[s, b];
TOUT[s, b, i] = Tout[s, b];

end
end

#for testing/debugging of function:
#println("exergy: ",exergy)
#println("Qhu: ",Uhot)
#println("mfr: ",mfr)
#println("Work: ",Work)
#println("Tin: ",TIN)
#println("Tout: ",TOUT)

end

indEx = indmin(exergy);
bestfit_Uhot = Uhot[indEx];
bestfit_work = collect(Work[s,b,i] for s = 1:nPr, b = 1:n, i = indEx);
bestfit_TIN = collect(TIN[s,b,i] for s = 1:nPr, b = 1:n, i = indEx);
bestfit_TOUT = collect(TOUT[s,b,i] for s = 1:nPr, b = 1:n, i = indEx);
bestfit_mfr = collect(mfr[s,b,i] for s = 1:nPr, b = 1:n, i = indEx);

return exergy, Uhot, Work, TIN, TOUT, mfr; #return solution and fitness measure
end

In [ ]: #elitist selection
#the very best individuals directly survive to the next generation

function elitistSel(fitness, )

popSize = length(fitness[:,1]); #population size
M = maximum(fitness) + 100; #avoid choosing the same individual
n = Int(round(popSize*)); #number of "free survivors"
fitVal = collect(fitness);

E = zeros(Int, n)
for i=1:n

bestfit=indmin(fitVal); #returns a tuple of (val,indx)
E[i] = bestfit; #save the position of the best individual
fitVal[bestfit] = M; #remove best value to find second best one

end
return E

end

#how easily find the index of the n maximum values of a vector?!
#should be a function for this in julia, but cannot find any

7



In [ ]: #tournament selection

function tournamentSel(tourSize, fitness, )

popSize = length(fitness[:,1]);
indxPool = []; #indexes of winners from the tournament
n = Int(round(popSize*)); #number of "free survivors"

for i = 1:(popSize-n) #number of parents, , to be selected
indx = rand(1:popSize, tourSize); #randomly choose a sub group of the pop
tourfit = fitness[indx]; #assign fitness measure
winner = indmin(tourfit); #choose the fittest
push!(indxPool, indx[winner]); #the indiv with highest fitness selected

end
return indxPool #return the mating pool of indx values

end

In [ ]: #single point crossover operator

function crossSinglePoint(selPop, )

popSize = length(selPop); #population size
selVec = collect(1:popSize); #selection vector
crossPop = Array{String}(popSize); #population of offsprings

i = 1
while i <= popSize-1

indxA = rand(1:length(selVec)); #random parent chosen from mating pool
parentA = selPop[selVec[indxA]]; #parent subject to crossover only once
deleteat!(selVec, indxA);

if rand() <= #probability of crossover
indxB = rand(1:length(selVec));
parentB = selPop[selVec[indxB]]; #second parent chosen from mating pool
deleteat!(selVec, indxB); #parent subject to crossover only once

#location of pointer
pointer = rand(1:length(parentA));

#generate new individuals from parents
childA = parentA[1:pointer] * parentB[pointer+1:end];
childB = parentB[1:pointer] * parentA[pointer+1:end];

#place new individuals in new population
crossPop[i] = childA
crossPop[i+1] = childB
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i = i+2;
else crossPop[i] = parentA; #parent survive

i = i+1;
end

end

if isempty(selVec) == false
crossPop[popSize] = selPop[selVec[1]];

end

return crossPop #return new population
end

In [ ]: #uniform crossover operator

function uniformCrossover(selPop, )

popSize = length(selPop); #population size
selVec = collect(1:popSize); #selection vector
crossPop = Array{String}(popSize); #population of offsprings

i = 1
while i <= popSize-1

indxA = rand(1:length(selVec)); #random parent chosen from mating pool
parentA = selPop[selVec[indxA]]; #parent subject to crossover only once
deleteat!(selVec, indxA);

if rand() <= #probability of crossover
indxB = rand(1:length(selVec));
parentB = selPop[selVec[indxB]]; #second parent chosen from mating pool
deleteat!(selVec, indxB); #parent subject to crossover only once

#uniform crossover mask
mask = join(rand(0:1, nBits*nPr*n));

#generate new individuals from parents
newbornA = zeros(Int, length(mask));
newbornB = zeros(Int, length(mask));

for a = 1:length(mask)
if parse(Int, mask[a]) == 1

newbornA[a] = parse(Int, parentA[a]);
newbornB[a] = parse(Int, parentB[a]);

elseif parse(Int, mask[a]) == 0
newbornA[a] = parse(Int, parentB[a]);
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newbornB[a] = parse(Int, parentA[a]);
end

end

childA = join(newbornA);
childB = join(newbornB);

#place new individuals in new population
crossPop[i] = childA
crossPop[i+1] = childB
i = i+2;

else crossPop[i] = parentA; #parent survive
i = i+1;

end
end

if isempty(selVec) == false
crossPop[popSize] = selPop[selVec[1]];

end

return crossPop #return new population
end

In [ ]: #single bitswap mutation operator

function mutationSingleBitswap(crossPop, )

popSize = length(crossPop); #population size
chromSize = length(crossPop[1]); #chromosome size

for i = 1:popSize

if rand() <= #mutation probability

flip = rand(1:chromSize); #flip position

newGen = zeros(Int, chromSize);
for j = 1:chromSize

if j == flip
if parse(Int, crossPop[i][j]) == 0

newGen[j] = 1;
elseif parse(Int, crossPop[i][j]) == 1

newGen[j] = 0;
end

else
newGen[j] = parse(Int, crossPop[i][j]);

end
end
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crossPop[i] = join(newGen);

#else println("no mutation")
end

end

return crossPop #return mutated population
end

In [ ]: #flipping bitswap mutation operator

function mutationFlippingBitswap(crossPop, )

popSize = length(crossPop); #population size
chromSize = length(crossPop[1]); #chromosome size

for i = 1:popSize

if rand() <= #mutation probability

mutChrom = rand(0:1, chromSize); #mutation chromosome
newGen = zeros(Int, chromSize);
for j = 1:chromSize

if mutChrom[j] == 1

if parse(Int, crossPop[i][j]) == 0
newGen[j] = 1;

elseif parse(Int, crossPop[i][j]) == 1
newGen[j] = 0;

end
else

newGen[j] = parse(Int, crossPop[i][j]);
end

end

crossPop[i] = join(newGen);

#else println("no mutation")
end

end

return crossPop #return mutated population
end

In [ ]: #transition to next generation
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function nextGeneration(crossPop, Eindx, genPop)

crossSize = length(crossPop); #population size
newGenPop = Array{String}(length(genPop)); #new population

for i = 1:crossSize
newGenPop[i] = crossPop[i];

end

k = 1
for j = crossSize+1:popSize

newGenPop[j] = genPop[Eindx[k]];
k = k+1

end

return newGenPop #return new population in binary representation
end

In [ ]: #BGA MAIN FILE

tic() #start timing the computation

# ------------initialization of the GA-----------------------------------------
paraNum = nPr*n; #no. of decision variables featuring one solution
lb = Tamb; #lower bound on range for decision variables in paraNum
ub = Thu; #upper bound on range for decision variables in paraNum
nBits = 11; #number of bits needed to represent the variable range

#in binary numbers
= 0.01; #rate of elitism
= 0.75; #crossover probability
= 0.10; #mutation rate 1/(nBits*nPr*n)
tourSize = 2; #tournament size
popSize = 20*paraNum; #size of a population
genCount = 10000; #generation counter
#----------------------------------------------------------------------------

#initial population in chromosome representation

#genPop -> [Tin,sb] -> [Tin,11 Tin,21 Tin,12 Tin,22 Tin,13 Tin,23 for s=2, n=3]
genPop = Array{String}(popSize)
seed = 123;
for i = 1:popSize

srand(seed);
genPop[i] = join(rand(0:1, nBits*nPr*n));
seed = seed + i;

end

bestfit = [];
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averagefit = [];

#------------------------------start outer loop----------------------------------

for m = 1:genCount

#mapping of genotype to phenotype
phenPop = genotypeMap(genPop, paraNum, ub, lb);

#--------------------------inner loop------------------------------------

#compute fitness value of the individuals
fitness = computeFitness(phenPop);

#------------------------------------------------------------------------

#best solution found for this population
push!(bestfit, minimum(fitness[1]));
push!(averagefit, sum(fitness[1]/length(fitness[1])));

#selection
#directly winners to next generation
Eindx = elitistSel(fitness[1], );

#mating pool with higher average fitness values
matPool = tournamentSel(tourSize, fitness[1], );

#binary representation of selected individuals
selPop = genPop[matPool];

#crossover
crossPop = uniformCrossover(selPop, );

#mutation
crossPop = mutationFlippingBitswap(crossPop, );

#transition to next generation
genPop = nextGeneration(crossPop, Eindx, genPop);

#for testing/debugging of function:
#println("fitness: ",fitness)
#println("winners: ",winners)
#println("selPop: ",selPop)
#println("Elitism: ",E)
#println("crossPop: ", crossPop)
#println("genPop: ",genPop)
#println("iteration: ", m)
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if m == genCount

#for testing/debugging of function:
#println("exergy: ", fitness[1])
#println("hot utility: ", fitness[2])
#println("mass flow fraction: ", fitness[6])
#println("work: ", fitness[3])
#println("Tin: ", fitness[4])
#println("Tout: ", fitness[5])

bf = minimum(fitness[1]);
indVec = [];
for i = 1:length(fitness[1])

if fitness[1][i] == bf;
push!(indVec, i);

end
end

numSol = length(indVec);
println(" ")
println("Results from SGA last iteration m = ",m)
println(" ")
println("number of optimal solutions found: ",numSol)
println("__________________________________________________________________")
println(" ")
for i = 1:length(indVec)

println("Solution $i: ")
println(" ")
println("Exergy value: ", fitness[1][indVec[i]])
println("Hot utility: ", fitness[2][indVec[i]])
println("Work: ", fitness[3][:,:,indVec[i]])
println("Fraction of mass flow rate: ", fitness[6][:,:,indVec[i]])
println("Input temperature to unit: ", fitness[4][:,:,indVec[i]])
println("Output temperature from unit: ", fitness[5][:,:,indVec[i]])
println("______________________________________________________________")
println(" ")
println(" ")

end
end

end

#------------------------------end outer loop------------------------------------

toc() #end timing

In [ ]: #plot average population fitness and best fitness value throughout the search
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using Gadfly #for plotting
plot(x=1:genCount, y=bestfit, Geom.line)

using DataFrames

xs=1:genCount;

df_bestfit=DataFrame(x=xs, y=bestfit,
Properties="Highest fitness in population x")

df_averagefit=DataFrame(x=xs,y=averagefit,
Properties="Average fitness in population x")

df=vcat(df_bestfit, df_averagefit)
p=plot(df, x=:x, y=:y, color=:Properties, Geom.line,

Guide.title("Population fitness"),
Guide.xlabel("Population iterations"), Guide.ylabel("Fitness values") )

draw(SVGJS(25cm, 16cm), p)

0.1
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Appendix D. Julia source code 131

D.2 Genetic algorithm with crowding



CrowdingGA

June 29, 2017

In [ ]: #Input stream data

#reading stream data is time consuming
#Therefore, placed in separate cell in order to load values from excel only once
#OBS! "using xxxxx" cannot be placed inside functions, hence call functions globally

using JuMP #use of package JuMP to formulate optimization problem
using CPLEX #use of package CPLEX to solve the LP problem
using Distances #use package to calculate hamming distances

#[IMPORTANT]
#the algorithm is designed so that pressure changing streams must be listed first
#do not distinguish between hot and cold, can be found by comparing TS and TT
#the mapping is done such that the stream on location x in vector TS..
#..has corresponding values at location x in TT, mCp etc.

using ExcelReaders

f = openxl("Input_streamdata.xlsx")

#remember to update cell G2
nPr=readxl(f, "Streamdata!G2:G2"); nPr=Int(nPr[1]); #no. of dynamic streams
nSt=readxl(f, "Streamdata!I2:I2"); nSt=Int(nSt[1]); #no. of static streams

#remember to update cellnumbers
TS=readxl(f, "Streamdata!C5:C10"); #supply temp
TT=readxl(f, "Streamdata!D5:D10"); #target temp
Pr=readxl(f, "Streamdata!G5:G7"); #pressure ratio
mCp=readxl(f, "Streamdata!H5:H10"); #flow rate capacity

#remember to update values for below ambient cases
DTmin=readxl(f, "Streamdata!A2:A2"); DTmin=Int(DTmin[1]); #delta T min
Tamb=readxl(f, "Streamdata!B2:B2"); Tamb=Float64(Tamb[1]); #ambient temp
Thu=readxl(f, "Streamdata!C2:C2"); Thu=Float64(Thu[1]); #hot utility temp
Tcu=readxl(f, "Streamdata!D2:D2"); Tcu=Float64(Tcu[1]); #cold utility temp
=readxl(f, "Streamdata!E2:E2"); =Float64([1]); #kappa
=readxl(f, "Streamdata!F2:F2"); =Float64([1]); #polytropic efficiency
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n=readxl(f, "Streamdata!H2:H2"); n=Int(n[1]); #number of stream splits
T=273.15; #kelvin temperature

In [ ]: #mapping of genes from genotype to phenotype

function genMapping(genPop, paraNum, ub, lb)

popSize = length(genPop); #population size
phenPop = zeros(popSize, paraNum); #phenotype representation of population
stepSize=zeros(Float64, paraNum); #discretization of variable range

for i=1:paraNum
stepSize[i] = (ub-lb)/((2^nBits)-1); #evenly distr density of variable range

end

for i = 1:popSize
k = 1;
for j = 1:paraNum

phenPop[i,j] = (parse(Int64, genPop[i][k:k+nBits-1], 2))*stepSize[j]+lb
k = k+nBits

end
end

return phenPop #return a population of phenotype values
end

In [ ]: #fitness function/inner loop

function computeFitness(phenPop)

#output values to comparison of solutions

exergy = zeros(length(phenPop[:,1])); #fitness value of individuals in pop p
Uhot = zeros(length(phenPop[:,1])); #hot utility of indiv solutions in pop p
Ucold = zeros(length(phenPop[:,1])); #cold utility of indiv solutions in pop p
mfr = zeros(nPr, n, length(phenPop[:,1])); #mCp of each stream split in pop p
TIN = zeros(nPr, n, length(phenPop[:,1])); #input temp to pressure changing units
TOUT = zeros(nPr, n, length(phenPop[:,1])); #output temp to pressure changing units
Work = zeros(nPr, n, length(phenPop[:,1])); #work from each pressure changing unit

#for each individual solution in population p we calculate the fitness value
for i=1:length(phenPop[:,1])

#extract info from each gene and calculate pressure ratio and output temp
Tin = collect(reshape(phenPop[i,:], nPr, n));

PR = []; Tout = zeros(nPr, n);
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PR = collect((Pr[s])^((-1)/) for s=1:length(Pr));

for s = 1:nPr
for b = 1:n

Tout[s,b] = ((Tin[s,b]+273.15)/(PR[s]))-273.15;
end

end

#[split operator]
#generate new streams; one segment before unit, one after unit
#[OBS!] pressure changing streams must be listed first in stream data

TSnew = zeros(2*nPr*n);
TTnew = zeros(2*nPr*n);
mCpnew = zeros(2*nPr*n);
W = zeros(nPr, n);

k = 1;
for s = 1:nPr

for b = 1:n
TSnew[k] = TS[s]; #supply temp of segment before unit
TSnew[k+1] = Tout[s,b]; #supply temp of segment after unit
TTnew[k] = Tin[s,b]; #target temp of segment before unit
TTnew[k+1] = TT[s]; #target temp of segment after unit
mCpnew[k] = mCp[s]; #mCp of segment before unit
mCpnew[k+1] = mCp[s]; #mCp of segment after unit
k = k+2;

W[s,b] = (Tout[s,b]-Tin[s,b])*mCp[s]; #work from each unit
end

end

#for later simplicity we add the static streams to the new vectors

append!(TSnew, TS[nPr+1:end]);
append!(TTnew, TT[nPr+1:end]);
append!(mCpnew, mCp[nPr+1:end]);

#generate the heat cascade:
#1. the cold temperature side
#2. the hot temperature side
#3. number of temperature intervals

Tcold = []; Thot = []; K = [];
for j = 1:length(TSnew) #create heat casc from all supply temp

if TSnew[j] >= TTnew[j] #hot stream
push!(Tcold, TSnew[j]-DTmin); #adjust for delta Tmin
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else push!(Tcold, TSnew[j]) #cold stream
end

end

#to create the heat cascade we need to add the max/min temps in the system
push!(Tcold, min(Tamb,Tcu));

Tcold = reverse(sort(union(Tcold))); #sort the cold temp side
Thot = Tcold+DTmin; #create hot side of heat casc
K = length(Tcold); #no of temp intervals in heat casc

#for testing/debugging of function:
#println("Tin: ", Tin)
#println("Tout: ", Tout)
#println("TSnew: ", TSnew)
#println("TTnew: ", TTnew)
#println("mCpnew: ", mCpnew)
#println("Work: ", W)
#println("Tcold: ", Tcold)
#println("Thot: ", Thot)
#println("K: ", K)

#for simplicity, the heat in each interval from the static streams..
#..and the pressure changing streams are calculated separately.

#STATAIC STREAMS
#heat from hot and cold streams to interval k in K

QS = zeros(nSt, K); q = 1;

for s = nPr+1:length(TS)
if TS[s] > TT[s]

for k = 1:K-1
if (TT[s]<=Thot[k+1]||(TT[s]<=Thot[k]&&TT[s]>=Thot[k+1]))&&TS[s]>=Thot[k]
QS[q,k] = mCp[s]*(Thot[k]- max(Thot[k+1], TT[s]))
end
end

elseif TS[s] < TT[s]

for k = 1:K-1
if TS[s]<=Tcold[k+1] && ( TT[s]>=Tcold[k] || ( TT[s]<=Tcold[k] && TT[s]>=Tcold[k+1] ) )

QS[q,k] = mCp[s]*(Tcold[k+1] - min(Tcold[k], TT[s]))
end
end
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end
q = q+1;

end

#for simplicity, sum of heat in each interval for the static streams

Qksum = zeros(K)
for k = 1:K

Qksum[k] = sum(QS[1:end,k])
end

#PRESSURE CHANGING STREAMS
#heat from pressure changing streams depends on the variable mass fraction
#we calculate the heat supply/demand beforehand -
#and multiply with a fraction variable 0<=f<=1 in the optimization model

#heat from hot and cold streams to interval k in K

QP = zeros(2*nPr*n, K); p = 1;

for s = 1:2*nPr*n

if TSnew[s] > TTnew[s]

for k = 1:K-1
if (TTnew[s]<=Thot[k+1]||(TTnew[s]<=Thot[k]&&TTnew[s]>=Thot[k+1]))&&TSnew[s]>=Thot[k]

QP[p,k] = mCpnew[s]*(Thot[k]- max(Thot[k+1], TTnew[s]));
end
end

elseif TSnew[s] < TTnew[s]

for k = 1:K-1
if TSnew[s]<=Tcold[k+1]&&(TTnew[s]>=Tcold[k]||

(TTnew[s]<=Tcold[k]&&TTnew[s]>=Tcold[k+1]))
QP[p,k] = mCpnew[s]*(Tcold[k+1] - min(Tcold[k], TTnew[s]));

end
end

end
p = p+1;
end

#heat content of pressure changing stream segments are calculated above..
#..and listed in a vector QP[p,k].
#p is the no. of stream segments and k is the no. of temp intervals.
#Segments belonging to the same branch has the same flow fraction, f,..
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#..hence the array must be reshaped to the form QP[z,n,nPr,k].
#For each interval k,..
#..sum for all pressure changing streams and for all branches of these streams.
#ex. sum(QP[z,1,1,1]*f[1,1] for z = {1,2}, s = 1, b = 1, k = 1)

#reshape QP so to be compatible with f[s,b]
Z = 2;
QPr = reshape(QP, Z, n, nPr, K);

#LP-model
HeatCasc=Model(solver=CplexSolver())
@variable(HeatCasc, r[1:K] >= 0);
@variable(HeatCasc, Qhu >= 0);
@variable(HeatCasc, 0 <= f[s = 1:nPr, b = 1:n] <= 1);

@objective(HeatCasc, Min,
(1-(Tamb+T)/(Thu+T))*Qhu + ((Tamb+T)/(Tcu+T)-1)*r[K-1] +
sum(f[s,b]*W[s,b] for s=1:nPr, b=1:n));

@constraint(HeatCasc, FirstInt[k = 1],
r[k] - Qhu ==
sum(QPr[z,b,s,k]*f[s,b] for s=1:nPr, b=1:n, z=1:Z) + Qksum[k] );

@constraint(HeatCasc, ResInt[k = 2:K],
r[k] - r[k-1] ==
sum(QPr[z,b,s,k]*f[s,b] for s=1:nPr, b=1:n, z=1:Z) + Qksum[k] );

@constraint(HeatCasc, frac[s = 1:nPr], sum(f[s,b] for b = 1:n) == 1);

#to avoid print put from the optimization
WW = STDOUT;
redirect_stdout();
solve(HeatCasc);
redirect_stdout(WW);

exergy[i] = getobjectivevalue(HeatCasc);
Uhot[i] = getvalue(Qhu);
Ucold[i] = getvalue(r[K-1]);
for s = 1:nPr

for b = 1:n
mfr[s,b,i] = getvalue(f[s,b]);
Work[s, b, i] = W[s, b];
TIN[s, b, i] = Tin[s, b];
TOUT[s, b, i] = Tout[s, b];

end
end
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#for testing/debugging of function:
#println("exergy: ",exergy)
#println("Qhu: ", Uhot)
#println("mfr: ", mfr)
#println("Work: ", Work)
#println("Tin: ", TIN)
#println("Tout: ", TOUT)

end

indEx = indmin(exergy);
bestfit_Uhot = Uhot[indEx];
bestfit_work = collect(Work[s,b,i] for s = 1:nPr, b = 1:n, i = indEx);
bestfit_TIN = collect(TIN[s,b,i] for s = 1:nPr, b = 1:n, i = indEx);
bestfit_TOUT = collect(TOUT[s,b,i] for s = 1:nPr, b = 1:n, i = indEx);
bestfit_mfr = collect(mfr[s,b,i] for s = 1:nPr, b = 1:n, i = indEx);

return exergy, Uhot, Work, TIN, TOUT, mfr; #return solution and fitness measure
end

In [ ]: #elitist selection
#the very best individuals directly survive to the next generation

function elitistSel(fitness, )

popSize = length(fitness[:,1]); #population size
M = maximum(fitness) + 100; #avoid choosing the same individual
n = Int(round(popSize*)); #number of "free survivors"
fitVal = collect(fitness);

E = zeros(Int, n)
for i=1:n

bestfit=indmin(fitVal); #returns a tuple of (val,indx)
E[i] = bestfit; #save the position of the best individual
fitVal[bestfit] = M; #remove best value to find second best one

end
return E

end

#how easily find the index of the n maximum values of a vector?!
#should be a function for this in julia, but cannot find any

In [ ]: #pairing of parent individuals

function crowdingPairing(genPop)

pairSize = Int(length(genPop)/2);
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selVec = collect(1:length(genPop));

#pairing of parents
parents = Array{Tuple}(pairSize);
for i = 1:pairSize

indxA = rand(1:length(selVec));
parentA = selVec[indxA];
deleteat!(selVec, indxA);

indxB = rand(1:length(selVec));
parentB = selVec[indxB];
deleteat!(selVec, indxB);

parents[i] = (parentA, parentB);

end

return parents #return population of paired parent individuals
end

In [ ]: #uniform crossover

function crowdingCrossover(parents, genPop, )

pairSize = length(parents); #number of pairs
crossVec = zeros(Int, pairSize);

for i = 1:pairSize
if rand() <=

crossVec[i] = 1;
end

end

offsprings = Array{Tuple}(sum(crossVec));

j = 1;
for i = 1:pairSize

if crossVec[i] == 1 #crossover probability

parentA = genPop[parents[i][1]]; #random chosen individuals
parentB = genPop[parents[i][2]]; #random chosen individuals

mask = rand(0:1, length(genPop[1])); #uniform crossover mask

newbornA = zeros(Int, length(mask)); #generate new individuals
newbornB = zeros(Int, length(mask)); #generate new individuals
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for a = 1:length(mask)

if mask[a] == 1

newbornA[a] = parse(Int, parentA[a]);
newbornB[a] = parse(Int, parentB[a]);

elseif mask[a] == 0

newbornA[a] = parse(Int, parentB[a]);
newbornB[a] = parse(Int, parentA[a]);

end
end

childA = join(newbornA);
childB = join(newbornB);

#create new individuals from parents
offsprings[j] = (childA, childB);
j = j+1;
end

end

par = Array{Tuple}(length(offsprings));

j = 1;
for i = 1:length(crossVec)

if crossVec[i] == 1
par[j] = parents[i];
j = j+1;

end
end

return offsprings, par #return tuple of offsprings
end

In [ ]: #mutation of offsprings

function crowdingMut(offsprings, )

pairSize = length(offsprings); #number of pairs
chromSize = length(offsprings[1][1]); #size of chromosomes

for i = 1:pairSize

newGenes = zeros(Int, 2, chromSize);
for j = 1:2
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if rand() <= #mutation probability

mutChrom = rand(0:1, chromSize);

for k = 1:chromSize

if mutChrom[k] == 1

if parse(Int, offsprings[i][j][k]) == 0;
newGenes[j,k] = 1;

elseif parse(Int, offsprings[i][j][k]) == 1
newGenes[j,k] = 0;

end

else newGenes[j,k] = parse(Int, offsprings[i][j][k]);

end
end

else
for k = 1:chromSize

newGenes[j,k] = parse(Int, offsprings[i][j][k]);
end

end
end
offsprings[i] = (join(newGenes[1,:]), join(newGenes[2,:]))

end

return offsprings #return mutated population
end

In [ ]: #record hamming distance between parent genes and offspring genes

function DISTANCE(par, genPop, offsprings)

distArr = zeros(Int, 2, 2, length(offsprings));

for i = 1:length(offsprings)
for m = 1:2

for n = 1:2
parent = parse.(split(genPop[par[i][m]],""));
child = parse.(split(offsprings[i][n],""));
distArr[m,n,i] = evaluate(Hamming(), parent, child);

end
end
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end

return distArr #return array of hamming distances
end

In [ ]: #match each offspring with the most similar parent

function MATCH(distArr, offsprings, par)

match = Array{Tuple}(length(offsprings));
for i = 1:length(offsprings)

d1 = distArr[1,1,i] + distArr[2,2,i];
d2 = distArr[1,2,i] + distArr[2,1,i];
if d1 <= d2

match[i] = (par[i][1], offsprings[i][1]), (par[i][2], offsprings[i][2])
else match[i] = (par[i][1], offsprings[i][2]), (par[i][2], offsprings[i][1])
end

end

genOff = Array{String}(length(offsprings)*2);
k = 1;
for i = 1:length(match)

for j = 1:2
genOff[k] = match[i][j][2]
k = k+1

end
end

return match, genOff #return the matches
end

In [ ]: #replacement; generalized replacement rule

function replacement(genPop, phenPop, fitness, genOff, phenOff, fitOff, match, , elit)

k = 0;
for i = 1:length(match)

for j = 1:2

k = k+1

indxP = match[i][j][1];
Pf = fitness[1][indxP];
Cf = fitOff[1][k];

if Cf < Pf
Pc = Cf/(Cf + *Pf);

elseif Cf == Pf
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Pc = 0.5;
elseif Cf > Pf

Pc = (*Cf)/(*Cf + Pf);
end

indx = indmax(fitness[1]);
N = 0;
for n = 1:length(elit)

if indxP == elit[n]
N = 1;

end
end

if rand() <= Pc && (N != 1 || (N == 1 && indx == indxP))

genPop[indxP] = genOff[k];
phenPop[indxP,:] = phenOff[k,:];
fitness[1][indxP] = fitOff[1][k];
fitness[2][indxP] = fitOff[2][k];
for f = 3:6

fitness[f][:,:,indxP] = fitOff[f][:,:,k];
end

elseif N == 1 && indx != indxP
genPop[indx] = genPop[indxP];
phenPop[indx,:] = phenPop[indxP,:];
fitness[1][indx] = fitness[1][indxP];
fitness[2][indx] = fitness[2][indxP];
for f = 3:6

fitness[f][:,:,indx] = fitness[f][:,:,indxP];
end

if rand() <= Pc
genPop[indxP] = genOff[k];
phenPop[indxP,:] = phenOff[k,:];
fitness[1][indxP] = fitOff[1][k];
fitness[2][indxP] = fitOff[2][k];
for f = 3:6

fitness[f][:,:,indxP] = fitOff[f][:,:,k];
end

end
end

end
end

return genPop, phenPop, fitness
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end

In [ ]: #GA with crowding
#MAIN FILE

tic() #start timing

# ------------initialization of the GA-----------------------------------------
paraNum = nPr*n; #no. of decision variables featuring one solution
lb = Tamb; #lower bound on range for decision variables in paraNum
ub = Thu; #upper bound on range for decision variables in paraNum
nBits = 11; #number of bits needed to represent the variable range

#in binary numbers
= 0.01; #rate of elitism
= 0.15; #scaling factor
= 0.10; #mutation rate 1/(nBits*nPr*n)
= 0.75; #crossover probability
popSize = 20*paraNum; #size of a population must be an even number
genCount = 10000; #generation counter
#-----------------------------------------------------------------------------

#initial population in chromosome representation
genPop = Array{String}(popSize)
seed = 123;
for i = 1:popSize

srand(seed);
genPop[i] = join(rand(0:1, nBits*nPr*n));
seed = seed + i;

end

#initial mapping to phenotype representation
phenPop = genMapping(genPop, paraNum, ub, lb);

#initial fitness evaluation
fitness = computeFitness(phenPop);

#------------------------------start outer loop----------------------------------
bestfit = [];
averagefit = [];
for m = 1:genCount

#print of found optimum
push!(bestfit, minimum(fitness[1]));
push!(averagefit, sum(fitness[1])/length(fitness[1]));

#elitism
elit = elitistSel(fitness[1], );
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#----------------crowding-------------------------------
#random pairing of parents
parents = crowdingPairing(genPop);

#crossover: uniform crossover
outCross = crowdingCrossover(parents, genPop, );
offsprings = outCross[1];
par = outCross[2];

#mutation: Flipping based on mutation mask
mutOff = crowdingMut(offsprings, );

#calculate distance
distArr = DISTANCE(par, genPop, offsprings);

#matching of most similar parent/child
matching = MATCH(distArr, offsprings, par);
match = matching[1];
genOff = matching[2];

#assign fitness to offsprings
phenOff = genMapping(genOff, paraNum, ub, lb);

#--------------------------inner loop------------------------------------
fitOff = computeFitness(phenOff);
#------------------------------------------------------------------------

#---------Replacement----------------------------------------------------
#local tournament
outRep = replacement(genPop,phenPop,fitness,genOff,phenOff,fitOff,match,,elit);
genPop = outRep[1];
phenPop = outRep[2];
fitness = outRep[3];
#------------------------------------------------------------------------

#for testing/debugging of function:
#println("parents: ",parents)
#println("offsprings: ",offsprings)
#println("par: ",par)
#println("mutOff: ",mutOff)
#println("distArr: ",distArr)
#println("match: ",match)
#println("genOff: ",genOff)
#println("phenOff: ",phenOff)
#println("fitOff: ",fitOff)
#println("iteration: ", m)
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#print of found optimum
#push!(bestfit, minimum(fitness[1]));
#push!(averagefit, sum(fitness[1]/length(fitness[1])))

if m == genCount

#for testing/debugging of function:
#rintln("exergy: ", fitness[1])
#rintln("mass flow fraction: ", fitness[6])
#rintln("hot utility: ", fitness[2])
#rintln("work: ", fitness[3])
#rintln("Tin: ", fitness[4])
#rintln("Tout: ", fitness[5])

bf = minimum(fitness[1]);
indVec = [];
for i = 1:length(fitness[1])

if fitness[1][i] ==bf;
push!(indVec, i);

end
end

numSol = length(indVec);
println(" ")
println("Results from GA CROWDING last iteration m = ",m)
println(" ")
println("number of optimal solutions found: ",numSol)
println("____________________________________________________________________")
println(" ")
for i = 1:length(indVec)

println("Solution $i: ")
println(" ")
println("Exergy value: ", fitness[1][indVec[i]])
println("Hot utility: ", fitness[2][indVec[i]])
println("Work: ", fitness[3][:,:,indVec[i]])
println("Fraction of mass flow rate: ", fitness[6][:,:,indVec[i]])
println("Input temperature to unit: ", fitness[4][:,:,indVec[i]])
println("Output temperature from unit: ", fitness[5][:,:,indVec[i]])
println("________________________________________________________________")
println(" ")
println(" ")

end
end

end

#------------------------------end outer loop------------------------------------
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toc() #end timing

#printing of population evolution

#println("bestfit: ",bestfit)
#println("averagefit: ",averagefit)
#using Gadfly #for plotting
#plot(x=1:genCount+1, y=bestfit, Geom.line)
#plot(x=1:genCount+1, y=averagefit, Geom.line)

#using DataFrames
#xs=1:genCount+1;
#df_bestfit = DataFrame( x=xs, y=bestfit, Properties="Highest fitness in population x")
#df_averagefit = DataFrame(x=xs, y=averagefit, Properties="Average fitness in population x")
#df=vcat(df_bestfit, df_averagefit)
#p = plot(df, x=:x, y=:y, color=:Properties, Geom.line,
# Guide.title("Population fitness"),
# Guide.xlabel("Population iterations"), Guide.ylabel("fitness values") )

#draw(SVGJS(20cm, 12cm), p)

In [ ]: #plot average population fitness and best fitness value throughout the search

using Gadfly #for plotting
using DataFrames

xs=1:genCount;
df_bestfit = DataFrame( x=xs, y=bestfit,

Properties="Highest fitness in population x")
df_averagefit = DataFrame(x=xs, y=averagefit,

Properties="Average fitness in population x")
df=vcat(df_bestfit, df_averagefit)
p = plot(df, x=:x, y=:y, color=:Properties, Geom.line,

Guide.title("Population fitness"),
Guide.xlabel("Population iterations"), Guide.ylabel("Fitness values") )

draw(SVGJS(25cm, 16cm), p)

0.1

In [ ]:
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