
Fare inspection optimization in train 
networks

Lars Bakke Krogvig

Master of Science in Physics and Mathematics

Supervisor: Helge Holden, MATH

Department of Mathematical Sciences

Submission date: June 2014

Norwegian University of Science and Technology



 



Abstract

In this thesis we present the inspector scheduling problem set in the local train net-
work around Oslo serviced by Norges Statsbaner (NSB). We review current literature
on the subject and present our own solution method adapted to NSB’s inspection
policy. By using mathematical optimization and specifically column generation we
construct an optimal set of patrols plans and a corresponding probability distribu-
tion. Inspections are randomized by sampling patrols each work day. Solving the
optimization problem presents computational challenges and we present a heuristic
method for finding approximate solutions. The solution method is validated through
several numerical experiments using example train networks inspired by the actual
NSB local train network. The results suggest that our method is viable for practical
applications although some work remains before this can be realized.

i



ii



Sammendrag

I denne masteravhandlingen presenterer vi problemet som er å planlegge optimale
reiseplaner for billettkontrollører p̊a NSBs lokaltog rundt Oslo. Vi gjennomg̊ar ek-
sisterende litteratur om temaet og presenterer v̊ar egen løsningsmetode tilpasset
NSBs retningslinjer for billettkontroller. Ved hjelp av matematisk optimeringsteori
og nærmere bestemt kolonnegenerering kan vi konstruere et optimalt sett av reise-
planer og en tilhørende sannsynlighetsfordeling. Tilfeldige reiseplaner kan trekkes ut
fra settet hver dag ved hjelp av sannsynlighetsfordelingen. Det tilhørende optimer-
ingsproblemet har en stor grad av kompleksitet som kan gjøre det nødvendig å bruke
heuristiske fremgangsmåter for å finne gode løsninger. Vi presenterer en slik metode
og utfører en serie av numeriske eksperimenter for å validere metoden. I eksperi-
mentene benytter vi oss av konstruerte eksempelnettverk inspirert av lokaltognettet
rundt Oslo. Resultatene indikerer at metoden v̊ar har potensiale til å kunne brukes
i praksis men at det fremdeles gjenst̊ar noe arbeid før dette kan bli gjennomførbart.

iii



iv



Preface

This master’s thesis concludes my study at the Master’s Degree Programme in Ap-
plied Physics and Mathematics with specialization in Industrial Mathematics at The
Norwegian University of Science and Technology.

I would like to thank Truls Flatberg at SINTEF Technology and Society for pro-
viding me with the opportunity to write this thesis and for helping me through the
course of the semester. I would also like to thank my supervisor Helge Holden from
the Department of Mathematical Sciences for guiding me along the way. Thanks
also to Trond Inge Berg at Norges Statsbaner (NSB) for answering my questions
and giving me helpful insight into the work of fare inspectors.

Lars Bakke Krogvig
Trondheim, June 19, 2014.

v



vi



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Sammendrag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 Introduction 1

2 TRUSTS 3

2.1 Fare Inspection Optimization . . . . . . . . . . . . . . . . . . . . . . 3

2.2 The LA Metro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 TRUSTS Problem setting . . . . . . . . . . . . . . . . . . . . . . . . 4

2.4 Linear optimization problem (LP) formulation . . . . . . . . . . . . . 9

2.5 Constraining patrol duration . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Explicit formulation 15

3.1 NSB local train network . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Differences from the LA Metro . . . . . . . . . . . . . . . . . 16

3.2 Train Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Inspection model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Optimization modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.1 Master problem . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.2 Dual problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.3 Column Generation . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.4 Subproblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Solution methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Heuristics and acceleration strategies 31

4.1 Interpreting the subproblem . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Acceleration strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Heuristic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Numerical results 40

5.1 Basic example network . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Acceleration strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 Scalability and behaviour . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4 Heuristic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

vii



6 Concluding remarks and further work 53
6.1 Model improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 Heuristic improvements . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.3 Other further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Bibliography 56

A Primal and dual problem 57

B Algorithms 60

C Python code 64

viii



Chapter 1

Introduction

In most public transport systems passengers are required to purchase tickets to
travel. As physically restricting ticketless passengers from entering the system often
requires costly infrastructure and personnel, many transportation companies opt to
use the honour based proof-of-payment system to collect passenger fares. In a proof-
of-payment system passengers are free to enter the system without being checked
for tickets, but risk being inspected and fined along the way by fare inspectors.

The main disadvantage of the proof-of-payment approach is that revenue may be
lost when passengers choose to not purchase tickets and avoid being inspected during
their journeys. If on the other hand fare evading passengers are inspected they
must pay a fine that is usually much more expensive than tickets. Transportation
companies must assign fare inspectors to discourage passengers from fare evading
and to recover lost revenue. When successfully applied, the revenue lost due to fare
evasion is less than the costs of implementing and maintaining systems that would
restrict passengers from travelling without tickets.

The degree of success of a proof-of-payment system relies heavily on the ef-
fectiveness of the fare inspections. In realistic situations the capacity of the fare
inspection staff is limited, and only a fraction of the total passenger volume can
be inspected each day. Ticket sales often constitute a large share of the total rev-
enue for transportation companies, and thus designing and executing well-planned
inspections is of great importance. Unfortunately designing inspection plans can
be a challenging task. It is desirable to discourage as many passengers as possible
from fare evading, but any regularity in the execution of fare inspections is likely to
be noticed and exploited by passengers that travel regularly. Finding the balance
between effectiveness and unpredictability is key.

There are many different ways of attacking the problem of scheduling fare inspec-
tions. The problem itself is hard to universally formulate, as different transportation
systems have different features that present different challenges to service operators
that in turn may have different interests. It is also difficult to uncover exactly how
passengers behave and respond to inspections, and this uncertainty makes it hard
to declare any method of scheduling inspections superior to another.

In this master thesis we will consider the problem of planning inspections in gen-
eral train networks. Our main goal will be to develop a procedure to schedule fare
inspections for train company Norges Statsbaner (NSB) for use in the local train net-

1



work surrounding Oslo, shown in Figure 1.1. Even so we will make our approach in
general terms to broaden the applicability and adaptability of the resulting method
as much as possible.

We will start by giving a brief overview of the relevant scientific literature that
currently exists on the topic and present a recent solution approach to similar prob-
lem, namely a method of scheduling fare inspections for the Los Angeles Metro Rail
system. Then we will move on to presenting the NSB setting and build a frame-
work for describing the problem in detail. We subsequently present an alternate
solution approach and discuss some of the practical aspects of the solution method.
Finally we present the results of a few numerical experiments designed to validate
and explore the potential of our approach.

Figure 1.1: Local trains around Oslo, Norway, operated by NSB.

2



Chapter 2

TRUSTS

2.1 Fare Inspection Optimization

The problem of scheduling fare inspections in trains is wide and ambiguous, and only
one of many complex train-related problems that warrant the use of mathematical
analysis. Mathematical optimization is currently a central tool in this field which has
been applied successfully to a number of problems in the past. Several examples that
underline this can be found in [1]. The inspector scheduling problem is not found
here as it is currently not a well-established train optimization problem. While
issues related to fare evasion in proof-of-payment transportation systems certainly
have been studied before, measures to alleviate the problem can be found using
different schools of thought. The optimization angle to scheduling inspectors is one
of these and the one that we will be pursuing in the following.

Currently there is little available scientific literature that deal specifically with
the inspector scheduling problem, let alone from a mathematical optimization per-
spective. To prepare for our treatment of the problem we will present in detail a
paper by Yin et al. [9] that presents an inspector scheduling application for the
Los Angeles Metro rail system called Tactical Randomization for Urban Security in
Transit Systems (TRUSTS). The application applies mathematical optimization to
generate daily travel plans for inspectors with restricted working hours. A refine-
ment of TRUSTS applied to the same setting is presented by Jiang et al. [5]. In this
paper the possibility of unforeseen events and delays are taken into consideration,
and means to adapt travel plans dynamically are introduced. So-called execution
uncertainty will be beyond the scope of this master thesis and we will focus on [9]
in the following.

TRUSTS will be our starting point for handling the inspector scheduling prob-
lem set in the NSB local train network, and a presentation of its solution approach
will be given shortly. We will assume throughout that readers have a basic under-
standing of linear optimization problems (linear programming) and refer to Chvátal
[2] for background material. More technical details will be explained along the way
whenever necessary. To start off we present the LA Metro setting that TRUSTS is
developed for. We then go on to explain the problem formulation in more mathe-
matical terms. Key features and assumptions made along the way will be explained
and clarified as much as possible. To round off the chapter we include a short dis-

3



cussion of the solution technique and its viability for different settings like the NSB
local train network we consider in subsequent chapters.

2.2 The LA Metro

The LA Metro system is a proof-of-payment urban rail system consisting of six
different lines. Passengers can purchase tickets from machines outside any station
but are free to enter the system as they please. The price for a single trip on any
one line is fixed and independent of its origin and destination. Day passes, weekly
passes and other special tickets are offered as well, but only single-trip tickets are
considered in the following.

Fare inspectors work in teams called patrol units, and each day several units
operate within the system. Ticket inspections are carried out either on board the
trains or in the stations. During on-train inspections patrol units move through
trains inspecting passengers sequentially along the way. The patrol units may inspect
only parts of the train before departing. When performing in-station inspections
patrol units stand by station exits inspecting passengers for tickets as they leave.
Passengers that are caught by any form of inspection without tickets receive a fine
that is much greater than the ticket price.

2.3 TRUSTS Problem setting

The lines in the LA metro only a handful of transfer points between then, and single-
trip tickets are valid for travel with a single line only1. Because of this TRUSTS
treats each line in the LA metro as independent, and only one is considered at a
time. Each line is occupied by trains travelling back and fourth according to a daily
schedule.

The Transition Graph

To represent the train schedule the directed transition graph G = (V,E) is intro-
duced. A vertex v = (s, t) in the transition graph is a pair of a station s and a time t
that corresponds to a train stop. In G there are two types of edges e = (vv′), namely
train edges and waiting edges. There is a train edge between vertices v = (s, t) and
v′ = (s′, t′) if and only if s and s′ are consecutive stops for a train at times t and t′

respectively. Train edges correspond to displacements of trains and thus constitute
the basis for passenger journeys. Waiting edges are edges that correspond to waiting
in train stations between stops of different trains. There is a waiting edge between
vertices v = (s, t) and v′ = (s, t′) if two trains stop at station s at times t and t′

and no trains stop at the same station in between. A basic example of a transition
graph is given in Figure 2.1. Trips that passengers or patrol units take in the train
system can be represented by paths in the transition graph.

1See http://www.metro.net/riding/fares/ for terms.

4

http://www.metro.net/riding/fares/


s1

s2

s3

s4

s5

t

v = (s, t), v′ = (s′, t′), e = (vv′)

Figure 2.1: A transition graph for a train line with five stations, s1 to
s5, with two trains travelling back and fourth. Time increases towards
the right. Vertices are shown as black dots, train edges as diagonal
blue arrows and waiting edges as grey arrows.

The Passengers

The ticket price for a single journey is fixed and denoted by ρ. Fare evaders that
are caught during their journeys must pay a fine β > ρ. Passengers can travel
between any two stations on the metro line at many different times per day whenever
trains are available. To differentiate between similar journeys at different times,
passenger types are introduced. A passenger type λ ⊂ E is a path inG corresponding
to a distinct journey with a particular train. Passengers that travel between the
same two stations at different times are thus considered to be of different types.
Paths that represent passenger types consist of one or more consecutive train edges
and ends with a single waiting edge. The final waiting edge corresponds to the
passenger exiting its destination train station where an in-station inspection may be
in progress. The set of passenger types is denoted by Λ.

The Patrols

Fare inspections are scheduled by assigning transition graph paths or patrols Pi ⊂ E
to each patrol unit. The total number of patrol units is denoted by γ. A patrol is a
complete description of the patrol unit’s planned movements for the entire work day.
Each patrol starts and ends in one of several designated times and places. The sets
of vertices where patrols may start and end are denoted by V + and V − respectively,
both subsets of V . For algorithmic convenience source and sink vertices v+ and v−

are added to V , along with dummy edges from v+ to each starting vertex v ∈ V +

and from each ending vertex v ∈ V − to source vertex v−. In this way, any transition
graph path that starts in v+ and ends in v− is a valid patrol. A complete daily
patrol schedule is a collection of patrols P = (P1, . . . , Pγ), one for each patrol unit.

It is assumed that patrol units are able to inspect a constant number of passengers
per minute. We denote this number by µ. The inspection effectiveness fe is the
number of passengers inspected during an inspection on edge e divided by the total
number of present passengers, or in other words, the relative fraction of present
passengers that is inspected. To compute the effectiveness we use the edge duration

5



he, which is the time difference between the two vertices belonging to the edge:

he := t′ − t, where e = ((s, t), (s′, t′)) .

We also need to know the number of present passengers on each edge, which we
refer to as the passenger volume and denote by ue. The inspection effectiveness can
be computed in different ways depending on which model is used, the simplest of
which would be

fe := min

{
µ ·

he
ue
, 1

}
. (2.1)

In the LA metro trains consist of two cars that inspectors can not switch between
while the train is moving and in [9] the inspection effectiveness is capped at 0.5 to
reflect this. It is also assumed here that a patrol unit can inspect µ = 10 passengers
per minute.

Inspection probability

Given a daily patrol schedule P passengers are inspected during their journeys with
different probabilities depending on their passenger type, i.e. when or where they
travel. We denote the inspection probability given P for a passenger of type λ by
qλ|P.

In addition to the patrols in use the inspection probability also depends on
the operating procedure of the patrol units. We work under the assumption that
passengers are inspected sequentially as inspectors move through trains as opposed
to being selected at random during inspections. When the entire train has been
covered, the inspectors can continue the inspection by re-inspecting the train and
new passengers that may have boarded the train during the inspection. In TRUSTS
the following model for the inspection probability is used:

qλ|P := min

{ γ∑
i=1

∑
e∈Pi∩λ

fe, 1

}
. (2.2)

For passengers of type λ the inspection probability is given by the total inspection
effectiveness over edges occupied by both the passengers and patrol units, upper
bounded by 1. The model is based on the assumption that passengers of each type
are distributed evenly in the trains and that inspection contributions from multiple
patrol units can be added. The latter assumption is realistic when the number of
overlapping teams is small and the units can cooperate.

We illustrate the model with an example: Suppose a patrol unit performs an
inspection on two consecutive train edges e1 and e2. There are three types of pas-
sengers: λ1 uses both e1 and e2, λ2 uses only e1 and λ3 uses only e2. During the
inspection on e1 the patrol unit inspects µ ·he1 passengers which is equivalent to a
fraction fe1 of all ue1 passengers on board the train. As passengers of different types
are distributed evenly, the same fraction fe1 of passengers of type λ1 and λ2 are
inspected. On the next edge e2, an additional fraction fe2 of passenger of type λ1

are inspected along with the same fraction of passengers type λ3. These two steps
are shown in Figure 2.2 for the situation when fe1 + fe2 < 1.

6



Step 1 Step 2

0 1

fe1

λ1

λ2 qλ2|P = fe1

0 1

fe1 fe2

λ1 qλ1|P = fe1 + fe2
λ3 qλ3|P = fe2

Figure 2.2: Inspection effectiveness is added to find the inspection
probability.

The inspection probability is upper bounded by 1 to ensure its validity as a
probability. The sum in (2.2) can exceed 1 when patrol units stay on trains over
multiple edges or several teams inspect the same edge. In Figure 2.3 we see an
illustration of the previous example, this time with fe1 + fe2 > 1. Inspections
continue at the same rate even when all passengers of some type are inspected.

Step 1

0 1

fe1

λ1

λ2 qλ2|P = fe1

Step 2

0 1

fe1 fe2

λ1 qλ1|P = 1

λ3 qλ3|P = fe2

Figure 2.3: The inspection probability can not exceed 1.

We have now seen a justification of the probability model for train edges. In [9]
the same reasoning is also applied to in-station inspections. Each passenger type
include only one waiting edge at the end of its journey, and only one in-station
inspection is encountered.

Income

A central assumption made in the TRUSTS model is all passengers have fixed travel
plans regardless of their inspection probability. Passengers can be thought of as
commuters that travel between pre-determined stations at pre-determined times.
Being regular users of the Metro, passengers are further assumed to be able to esti-
mate their probability qλ|P of being inspected. It is also assumed that passengers are
economically rational, by which we mean that they always minimize their expected
cost of travelling. This means that passengers will not purchase tickets when the
long-run cost of doing so is higher than the cost evading fares and paying fines occa-
sionally. The expected cost of travelling without a ticket for a single journey is equal

7



to the fine size β times the inspection probability qλ|P for that journey. Only when
this expected cost is higher than the ticket price will a rational passenger purchase
a ticket. Thus, the income per passenger of type λ given a fixed patrol schedule P,
uλ|P, is given by

uλ|P := min{ρ, β · qλ|P}. (2.3)

Randomization

To keep passengers from noticing and exploiting regular patterns in the execution
of fare inspections, the use of patrols paths must somehow be randomized. The
set of all possible daily patrol schedules P is denoted by P , and the probability of
selecting daily schedule P on a given day is denoted by πP.

Determining the optimal probabilities πP for all possible patrol plans P ∈ P
would be impractical as the number of possible paths in the transition graph is vast.
This can be avoided by instead searching for the optimal marginal coverage xe on
for each edge e ∈ E. The marginal coverage for an edge can be interpreted as the
expected number of patrol units using that edge per day given some probability
distribution π over a restricted set Pr ⊂ P of possible patrol schedules. It is defined
as follows:

xe :=
∑
P∈Pr

πP

γ∑
i=1

θ(Pi, e), (2.4)

where

θ(Pi, e) :=

{
1 if e ∈ Pi
0 otherwise.

Finding optimal values for xe is feasible as the number of variables is equal to the
number of edges in the transition graph. When the optimal values are obtained,
constructing a set of patrol schedules that match the marginal coverage is simple.
We will see how the marginal coverage can be determined and subsequently how
patrols can be constructed shortly.

The passenger inspection probability resulting from a patrol schedule probabil-
ity distribution π is denoted by qλ|π and can be expressed using the law of total
probability:

qλ|π :=
∑
P∈Pr

πP qλ|P. (2.5)

By inserting Equation (2.2) into (2.5) and using that
∑

e∈P∩λ =
∑

e∈λ θ(P, e), we

8



can obtain an upper bound for qλ|π:

qλ|π =
∑
P∈Pr

πP min

{
1,

γ∑
i=1

∑
e∈Pi∩λ

fe

}

≤
∑
P∈Pr

πP

γ∑
i=1

∑
e∈λ

θ(Pi, e)fe

≤
∑
e∈λ

fe
∑
P∈Pr

πP

γ∑
i=1

θ(Pi, e)︸ ︷︷ ︸
xe

≤
∑
e∈λ

fexe. (2.6)

The definition of the marginal coverage (2.4) is also inserted. We can use this upper
bound to obtain a similar upper bound for the income per passenger given a patrol
probability distribution. We denote the true income per passenger of type λ given
π by uλ|π and its upper bound by uλ. We write:

uλ|π := min{ρ, β · qλ|π} ≤ min

{
ρ, β ·

∑
e∈λ

fexe

}
=: uλ. (2.7)

2.4 Linear optimization problem (LP) formula-

tion

Finding the optimal marginal coverage is referred to as the compact formulation,
as the number of variables to be determined is far less than the number of possible
patrol schedules. We now consider how the optimal values for x := [xe]e∈E can be
determined.

When we say that a marginal coverage vector x is optimal we could mean different
things depending on what we are trying to accomplish. The goal of the train operator
is usually to recover as much of the revenue lost to fare evasion as possible, and thus
an optimal marginal coverage is one that maximizes revenue. To find the optimal
marginal coverage we turn to mathematical optimization. At this point we would
like to formulate a linear optimization problem that maximizes the total revenue.
Maximizing the total revenue is equivalent to maximizing the income of a random
passenger, which can be expressed as a sum over passenger types in the following
way: ∑

λ∈Λ

pλuλ|π.

Here pλ is the probability that a random passenger is of type λ, which crucially is
assumed to be known.

The true income for a random passenger does not depend on xe, but rather on
qλ|π. However, its upper bound uλ does. If we maximize instead the upper bound

9



we can find hopefully near-optimal values for xe. To do this we solve the following
LP:

maximize
x,u

∑
λ∈Λ

pλuλ (2.8a)

subject to uλ ≤ ρ, ∀ λ ∈ Λ, (2.8b)

uλ ≤ β
∑
e∈λ

fexe, ∀ λ ∈ Λ, (2.8c)∑
v∈V +

x(v+,v) =
∑
v∈V −

x(v,v−) ≤ γ, (2.8d)∑
(v′,v)∈E

x(v′,v) =
∑

(v,v′)∈E

x(v,v′), ∀ v ∈ V, (2.8e)

0 ≤ xe ≤ α, ∀ e ∈ E. (2.8f)

Here we have used the vector form u := [uλ]λ∈Λ. The objective function (2.8a) is
the sum of passenger type income upper bounds times passenger type probabilities,
which is equal to the expected income of a random passenger. Equations (2.8b) and
(2.8c) ensures that uλ behaves according to (2.7). Each uλ will always find itself at
one of the two upper bounds in an optimal solution, as the objective function is a
positive linear combination of the uλ-variables. The marginal coverage xe behaves
as a flow through the transition graph between the source and sink vertices v+ and
v−. Equations (2.8d) and (2.8e) ensure flow conservation as well as source and sink
conditions of x. Finally equation (2.8f) forces x to be positive and less or equal to
a parameter α. The α-parameter is set somewhere in the range [1, γ], and could
prevent edges from being overly covered. This is done to reduce the likelihood of
having many teams use the same edge at the same time, in which case the probability
model in Equation (2.2) may no longer be valid.

Solving linear optimization problems are done using classic algorithms like the
Simplex method. More modern methods also exist. We will not dwell on how LPs
are solved, and refer to Chvátal [2] for a background on the Simplex method. After
solving the above optimization problem the resulting optimal marginal coverage x∗

can be used to construct explicit patrol schedules. While there is no guarantee that
maximizing the income upper bound will yield optimal patrol schedules in practice,
numerical results presented in [9] suggest that the resulting schedules give a total
income of 96 % or better of the theoretical upper bound.

A weighted set Υ of patrol paths can be constructed using Algorithm 1. A com-
plete patrol schedule can created daily by sampling independently from Υ random
patrols for each patrol unit. A patrol is sampled with a probability equal to the
normalized patrol weight. The patrols provided by Algorithm 1 all start and end at
prescribed times and places but are otherwise unconstrained. A potential problem
lies in that patrol paths can vary in length when different start and end times are
possible. For the practical execution of patrol schedules it will often be necessary
to impose certain conditions on the patrol paths. In the next subsection we look
at how the problem formulation above can be altered to accommodate a maximum
duration condition for the individual patrol paths.

10



Algorithm 1 Constructing patrol paths from x = [xe]e∈E

Construct the empty weighted set Υ of patrol paths
while mine∈E{xe} > 0 do

Find a path P from v+ to v− such that xe > 0 for all e ∈ P
. If this is not possible, then xe = 0 for all e ∈ E due to (2.8e)

Add to Υ path P with weight x̃ = mine∈P{xe}
Let xe ← xe − x̃ for all e ∈ P

end while
Normalize path weights

2.5 Constraining patrol duration

A patrol is only usable if it can be executed within the fare inspectors designated
working hours. For this reason it is often necessary to impose a duration restriction
on the patrol paths. Algorithm 1 finds a set of patrols that match the optimal
marginal coverage and can not readily be modified to accommodate duration re-
strictions on paths. Fortunately this can be facilitated within the given framework
by altering the transition graph.

v+ v−1

1

(a) Basic transition graph

v+ v−

1

1

1

1

Subgraph 1

Subgraph 2

(b) History-duplicate transition graph

Figure 2.4: In (a), a trivial transition graph where all non-dummy
edges have duration 1. For maximum patrol length κ = 1, the HDT
graph in (b) is constructed. The vertices in edges in gray are left out
of the graph to avoid long patrols.

Let us suppose that no patrol is allowed to have a duration that exceeds κ time
units. If there exists two vertices vstart ∈ V + and vend ∈ V − with time distance
greater than κ, Algorithm 1 could conceivably produce a patrol between these two
vertices that violate the duration requirement. This can be prevented by introducing
the history-duplicate transition graph (HDT graph) G = (V , E) to replace the basic
transition graph. The HDT graph consists of multiple restricted copies of the original
transition graph, one for each potential starting time. We refer to one of these copies

11



as a subgraph. We could say that vertices in the HDT graph carries one extra piece of
information, namely the patrol starting time. For a subgraph corresponding to the
potential start time tstart, only vertices v = (s, t) with t such that 0 ≤ t− tstart ≤ κ
are kept. The sets of vertices where patrols may start an end are now denoted by
V+ and V− respectively. A trivial transition graph with edges of duration 1 and an
accompanying HDT graph for κ = 1 is illustrated in Figure 2.4.

Roughly the same procedure as before can now be used on the HDT graph
to find the marginal coverage that maximizes the income upper. The notation is
slightly changed by letting the marginal coverage of an edge e ∈ E in the HDT
graph be denoted by ye, and y := [ye]e∈E . Sets containing the copies of edges e
from the original transition graph in the HDT graph are denoted by Γ(e) ⊂ E . The
actual marginal edge coverage xe is thus equal to

∑
e′∈Γ(e) ye for all e ∈ E, and the

near-optimal marginal coverage can be found by solving the LP:

maximize
x,y,u

∑
λ∈Λ

pλuλ (2.9a)

subject to uλ ≤ ρ, ∀ λ ∈ Λ, (2.9b)

uλ ≤ β
∑
e∈λ

fexe, ∀ λ ∈ Λ, (2.9c)∑
v∈V+

y(v+,v) =
∑
v∈V−

y(v,v−) ≤ γ,≤ γ (2.9d)∑
(v′,v)∈E

y(v′,v) =
∑

(v,v′)∈E

y(v,v′), ∀ v ∈ V , (2.9e)

xe =
∑
e′∈Γ(e)

ye ∀ e ∈ E, (2.9f)

0 ≤ ye, ∀ e ∈ E , (2.9g)

0 ≤ xe ≤ α, ∀ e ∈ E. (2.9h)

Here the objective function (2.9a) and uλ-constraints (2.9b), (2.9c) are unchanged
from the previous LP. Constraints (2.9d) and (2.9e) are analogous to constraints
(2.8d) and (2.8e), this time for the ye-variables. Constraint (2.9f) enforces the afore-
mentioned relationship between xe and ye, and constraints (2.9g) and (2.9h) keeps
the variables within the acceptable ranges as before. Patrol schedules can again be
generated by using Algorithm 1.

The HDT graph is at most a factor |V +| (the number of possible starting vertices)
larger than the transition graph. The new LP (2.9) should still be solvable by any
current LP solver. Adding new restrictions on patrol paths can be done if the graph
can be modified in such a way that all possible paths satisfy them. The trade-off is
usually that the size of the graph increases. In [9] one additional feature is added
by modifying the transition graph. The fare inspectors of the LA Metro prefer
simple patrol path that do not involve excessive amounts of train switches or short
in-station inspections. By modifying the HDT graph and including a penalty term
for switches a balance between revenue-maximizing and simple patrol paths can be
found. Numeric test results are presented in [9].

A game theoretic refinement of the above approach is presented and applied to
the LA Metro setting by Jiang et al. [5]. The main idea of this paper is to make

12



patrols robust to unforeseen events that force patrols to deviate from their paths.
A smart phone application based on [5] lets patrol units register deviations and get
updated patrols during their working days. While dynamic updating of patrols is
beyond the scope of this master thesis, we refer to Luber et al. [6] for details on the
smart phone application and to Fave et al. [4] for recent real-world testing results.

2.6 Discussion

Before we proceed to the next chapter where we consider the inspector scheduling
problem in the NSB local train network we will first discuss some of the assumptions
made in TRUSTS during the problem modelling.

TRUSTS is designed for train networks consisting of lines that are largely inde-
pendent such as the LA Metro. In networks that are more intertwined the possibility
of transferring between lines becomes more relevant. This area is mentioned as a
topic for future work in [9], and we will consider this in the next chapter.

A key assumption made above is that passengers behave rationally and minimize
their expected travel costs. In real life passengers are different, some accepting more
risk than others. To get a more detailed view passengers can be divided into groups
that respond differently to their inspection probabilities. This is indeed done in
[9]. Furthermore passengers are assumed to be able to estimate their inspection
probability. This is only be realistic for passengers that take the same journey
often. A possible addition to the model could be passengers that are unaware of
their specific inspection probability, but know the overall rate of inspection and base
their ticket purchasing choices on this. This would only be a minor addition to the
model that we will not pursue any further.

More deserving of additional discussion is the probability model given in Equa-
tion (2.2). The model is based on the assumptions that patrol units inspect pas-
sengers in sequence such that the inspection fractions can be added rather than
multiplied, as would be the case if passengers were sampled at random. We refer
again to Figure 2.2.

The situation becomes less intuitive when a patrol unit has covered the entire
train, and it is unclear exactly how inspectors should behave to comply the proba-
bility model. For example, let us consider Figure 2.3. After the inspection on edge
e1 the patrol unit has covered over half of the train. On the next edge the unit
has the capacity to inspect more than the remaining part of the train. When the
unit reaches the end of the train the inspectors could turn around and continue
inspecting. If a fraction fe2 of passengers of type λ3 are to be inspected the unit
would have to remember where in the train they started after e1 and continue their
inspection there. Alternatively the unit could split up before the inspection at e2.
If the model is to hold then inspectors now moving backwards in the train must
re-inspect passengers of type λ1, being unable to distinguish between inspected and
newly arrived passengers. If inspectors could somehow avoid re-inspecting passen-
gers then the effective number of passengers on board the train is reduced, and new
passengers could be inspected with a higher efficiency. In the current model this is
not reflected, and including it would most likely be impossible without destroying
the linearity of the model.

13



Another point worth considering is how in the current model each passenger
type path ends with a single waiting edge that corresponds to the exiting of the
destination stations. During in-station inspections fare inspectors are posted at the
station exits, inspecting passengers as they leave. If a passenger encounters both an
on-train inspection and an in-station inspection their contributions are added even
though these two inspections are independent. Also, the length of the single final
waiting edge in each passenger type path can influence the inspection probability
in an undesirable way. Consider Figure 2.5. Here a passenger type ends in a short
waiting edge in the middle of a long and ongoing in-station inspection. While the
patrol passenger should surely be inspected by a unit when exiting the station if
no passengers can slip past the inspectors, the model inspection probability will be
small due to the short duration of the waiting edge.

s3

s4

s5

t

Patrol PPassenger type λ0

f0e

q0λ|P = f0e

(a) Short final waiting edge

s3

s4

s5

t

Patrol PPassenger type λ1

f1e

q1λ|P = f1e > f0e

(b) Longer final waiting edge

Figure 2.5: The length of the final waiting edge influences the inspec-
tion probability when it should not.

While we have now raised some concerns about the probability model, the effects
of the items we have mentioned may be small in practice. It is important to note
that some model must be used for the inspection probability, as in the real world
there are two many variables to determine the probability exactly. The decisive
advantage of the current probability model lies in its linearity which allows for
efficient computation of the optimal marginal coverage.

In the next chapter we consider a transportation system different form the LA
Metro in many ways, and a slightly different approach will be required. As we will
see, TRUSTS will provide a solid starting point and many elements will remain
unchanged.

14



Chapter 3

Explicit formulation

We now turn to the problem of scheduling optimal inspections for NSB’s local trains
around Oslo. Unfortunately there are certain differences between the LA Metro and
the NSB local train system that makes applying TRUSTS directly problematic.
First and foremost, the local trains around Oslo travel much less frequently than
the trains in the LA Metro. Secondly, many train lines overlap by sharing the same
train tracks, and passengers can change between lines on the same ticket. Studying
each train line separately is not as meaningful in this case. Additionally, NSB have
a different inspection policy that calls for a revised problem formulation.

In this chapter we will attempt to solve the inspector scheduling problem for a
train network as opposed to a single line, and we will devote an entire section to
introducing terminology and notation suited to this setting. We begin the chapter
with a description of the NSB’s current fare inspection policy and working procedure,
and explain in greater detail why the method described in the previous chapter is
difficult to apply. Finally the basis of a different solution approach is given.

3.1 NSB local train network

Like the LA Metro the NSB local train network is a proof-of-payment system, and
passengers can purchase tickets in different ways. Primarily passengers are encour-
aged to purchase tickets before boarding the train on dedicated machines at stations
or using a smart phone application. Single-trip tickets, multi-trip tickets or tickets
that allow for unlimited travel for certain periods of time are available. Alterna-
tively, passengers may also purchase single-trip tickets from a guard on board the
train in certain cars. The trains consist of connected cars of two different types,
’Serviced’ (Betjent) cars and ’Unserviced’ (Ubetjent) cars. The majority of cars are
unserviced. Passengers are free to use unserviced cars, but are obliged to purchase
a tickets in advance.

NSB’s fare inspectors work in teams of 6–7 inspectors and have shifts that are
5–10 hours long, often including a lunch break in break rooms available at certain
stations. Contrary to in the in LA metro, inspections are only carried out on board
trains between stations. Inspections are normally only performed in the unserviced
cars as the train guard are responsible for the serviced ones.

During inspections teams move through the trains while inspecting passengers

15



sequentially along the way. Each train car is only inspected once to disturb passen-
gers as little as possible. This means that if a team of inspectors has covered the
entire train once before the team is scheduled to disembark, then the inspection is
finished and inspectors remain idle until leaving the train. New passengers that may
have boarded the train since the beginning of the inspection will not be inspected
due to the policy of not re-inspecting passengers.

If passengers are found without valid tickets they are given a choice between
paying a fine immediately or receiving a slightly larger fine later in the mail. In
any case processing the fine takes a few minutes and delays further inspections for
the inspector issuing the fine. NSB estimates that on average it takes a team of six
inspectors 2–3 minutes to inspect a car with 100 passengers, which equates to an
inspection rate of 5–9 passengers per minute per inspector.

3.1.1 Differences from the LA Metro

As we are now considering a network of lines rather than a single train line we
have to take train transfers for passengers and inspectors into consideration. This is
not supported by TRUSTS. Another crucial difference lies in the differing inspection
policies. In the LA metro fare inspectors are allowed to re-inspect trains as new pas-
sengers embark during inspections, an assumption which is built into the inspection
probability model in Equation (2.2). For example, a patrol unit could conceivably
stay on a train from one terminal station to another, continuously inspecting new
passengers that board the train along the way. The inspectors on NSB’s trains are
generally not allowed inspect passengers more than once and will avoid re-inspecting
cars, making it unfavourable for patrol units to stay on board trains for extended
periods of time. This makes switching trains often more desirable and we need a
model that reflects this aspect.

The inspection policy also makes it disadvantageous to assign multiple patrol
units to the same trains or have overlapping patrols. In TRUSTS patrols are sampled
independently for each team each day, something which could lead to interfering
patrols in our case. One could apply some rejection based sampling technique to
avoid patrol interference, but this could potentially change the effective marginal
coverage of certain edges and lead to sub-optimal results.

To handle all these difficulties we will in the following sections try to develop
an alternate approach to solving the inspector scheduling problem. In an attempt
to be rigorous we will in the next section build a framework for describing train
networks in a more general perspective. However, the notation and definitions we
will introduce are adapted to the particular problem we will be considering in this
thesis and not necessarily in line with any established train terminology.

3.2 Train Networks

We will now be considering general train networks. Instead of concerning ourselves
with actual rail road infrastructure like tracks and switches, we will regard the
network from the perspective of the user. Passengers and fare inspectors only see
stations and trains travelling between them according to a given train schedule, and

16



this is exactly the level of detail we need when considering the inspector scheduling
problem.

Stations and lines

In our train network we have a set of stations. We let the number of stations be
denoted by Ns, and define the station set :

S := {si}Nsi=1 . (3.1)

Here si identifies a particular station just like a station name would, such as for
example ’Trondheim Central Station’.

Trains travel in the network along different train lines. A train line is sequence
of stations that trains visit in order. Trains regularly travel back and fourth along
one designated line each according to a daily schedule. The two stations at each
end of a line are called the terminal stations of the train line. We let the number of
train lines in the train network be denoted by N`, and define the set of train lines

L :=
{
`j
}N`
j=1

. (3.2)

Here train line `j is a of a sequence of nj stations:

`j :=
〈
sjk
〉nj
k=1

, (3.3)

where sjk refers to the kth station along line `j. Note that the station sequence could
be reversed without changing the definition of the line. Also note that the subscript
k refers to the order of the station along the line when a superscript line index is
present. When we write si with just a subscript we mean a specific station.

A pair of a station set and a corresponding set of lines (S, L) is what we will
refer to a train network in the following. Train networks can be illustrated with
train maps, similar to those usually found in train stations and on trains in real life
train networks. Often each train line is given an identifying color and number or
letter combination. A very simple example of an illustrated train map is given in
Figure 3.1. A more elaborate real-world example is the map of local trains around
Oslo that is shown in Figure 1.1.

Train traffic

Trains travel along their respective train lines according to a daily time table. We
do not concern ourselves with the practical realization of the train time table, we
only consider the scheduled arrivals and departures of trains that are available to
the passengers. We do not keep track of the actual train vehicles, and the time
table will always be given and beyond our control. For the sake of simplicity we
assume that every train operating on the same line spends the same amount of time
between two stations, and that all trains wait for the same amount of time at each
station. A complete time table can then be specified by lists of when trains leave
which terminal stations for each line.

17



s1 s2 s5

s3 s4

`1

`2

`1 = 〈s1, s2, s3, s4〉 `2 = 〈s1, s2, s5〉

Figure 3.1: A train map with five stations and two lines. Both lines
start in s1, thus s1

1 = s2
1 = s1. The third station of line `1 is s3 and the

third station of line `2 is s5, thus s1
3 = s3 and s2

3 = s5.

We let the travel time between stations s and s′ for a train on line ` be given by
τ(s, s′, `) where

τ : S × S × L→ R+

is the travel time function. All trains wait for the same amount of time twait at each
station between arrival and departure regardless of which line they travel on. In the
previous chapter waiting times at stations were not included.

We define a departure d to be the event of a train leaving a terminal station of
a train line at a scheduled time. Sometimes we also refer to a specific train as a
departure. The set of all departures D is a subset of all possible departures:

D ⊂
{
d = (`, t, σ) : ` ∈ L, t ∈ R+, σ ∈ {−1, 1}

}
. (3.4)

Here ` is the line the train is operating on and t the time at which the train starts.
The travel direction of the train is given by σ. If the train starts at the last station
of the train line and travels in the reverse direction then σ = −1, otherwise σ = 1.

Transition graph

To model the movement of trains in the train network we again introduce a transition
graph G = (V,E), similar to the one found used in TRUSTS. The event of a train
either arriving at or departing from a station at a certain time corresponds to a
vertex or node v in the vertex set V . A vertex v ∈ V is a unique pair of a station
and a time, thus

V ⊂
{
v = (s, t) : s ∈ S, t ∈ R+

}
. (3.5)

In addition to the vertices that correspond to departures and arrivals of trains we
often also include start and end vertices (s, 0) and (s, tmax) for each station s in S.
Here

tmax = max ({t : (s, t) ∈ V })

is the end time.

18



Like in the previous chapter edges e ∈ E represent possible movements in the
network. Train edges are edges that correspond to a train travelling between two
stations. For example, a train departing from station s at time t and arriving at
station s′ at time t′ corresponds to train edge e = (vv′) = ((s, t)(s′, t′)). We also
have waiting edges that correspond to staying at stations between two train related
events, like a train arriving at or departing from the station. The edges in the
transition graph are directed as it is only possible to move forward in time. We have

E ⊂ {e = (vv′) = ((s, t), (s′, t′)) : v, v′ ∈ V, t < t′} . (3.6)

An example of a transition graph is given in Figure 3.2. Here vertices are shown
as black dots. Waiting edges are grey arrows and waiting edges are arrows coloured
according to the train line they belong to. To construct a complete transition graph
for a train network (S, L), all we need is a set of departures D along with the relevant
travel time function τ . The exact procedure we use to construct the transition graph
is given in Algorithm 6 in Appendix B.

s1

s2

s3

s4

s5

t

Figure 3.2: A transition graph using the train network in Figure 3.1.
Time increases towards the right. Eight departures are illustrated, two
in each direction on both lines.

Passengers

All passengers in the network travel from one specific station to another, possibly
switching trains during their journey. Like before the travel plans of passengers are
fixed, and we say that a passenger type λ is a path in the transition graph that
correspond to a possible journey. A few examples of passenger type paths can be
found in Figure 3.3. Note that we are now dealing with networks, and passengers
may transfer between trains during their journey.

We denote the number of passengers of type λ by dλ, and often refer to this as the
demand of λ. Approximate values for the demand can often be deduced from real
world data. The passenger type set Λ contains all sensible journeys that passengers
may take. We define a journey from v = (s, t) to v′′ = (s′′, t′′) to be sensible if no

19



shorter alternative exits, i.e. there is no path from some v′ = (s′, t′) to v′′ with t′ > t.
Since passenger types are paths, we have that λ ⊂ E. To find all sensible passenger
types in some transition graph G we use Algorithm 7 given in Appendix B.

Each passenger need purchase only a single ticket that depends only on the start
and end station of the journey, that may include train transfers. The ticket price is
given by the ticket price function

ρ : Λ→ R.

Passengers may also opt to not purchase a ticket before travelling, in which case
they travel for free unless inspected by fare inspectors. When passengers are caught
without tickets they must pay a fine β. In contrast to the ticket price, the fine size
equal for all passengers. After paying the fine a fare evading passenger continues his
or her journey. Passengers can receive one fine per train, meaning that passengers
on journeys that involve train transfers risk receiving more than one fine. Even
though passengers could possibly purchase tickets for only parts of their journeys,
we do not include this in our model.

s1

s2

s3

s4

s5

λ0

λ1

λ2

t

Figure 3.3: The transition graph from Figure 3.2. Highlighted in red
are three different passenger types λ0, λ1 and λ2.

Inspectors

Fare inspectors employed by the train service operator also travel within the train
network as they inspect passengers. The fare inspectors work in teams we call patrol
units, and there are usually multiple patrol units operating within the system at the
same time. We want to make sure that the inspection plans of the patrol units are
not in conflict with each other and work well together every work day. Instead of
treating each unit separately we look for good collections of patrols, one for each
team. We will refer to such a collection of patrols as a joint patrol.

Let us denote a joint patrol by ψi and suppose we have a restricted set

Ψr := {ψi}Ni=1, (3.7)

20



containing N different joint patrols

ψi := [ψi,j]
T
j=1 . (3.8)

Here ψi,j is the patrol used by team j in joint patrol i. The number of patrol units
is T .

In the previous chapter, patrols were simply paths in the transition graph that
represented to the travel plans of constantly inspecting patrol units. In this chapter
patrol units must stop their inspections when all train cars are inspected, and we
will now incorporate this in the model. We allow patrol units to travel with trains
without inspecting passengers by defining a patrol as a transition graph path with
an accompanying specification of action for each edge in the path.

Suppose we have a patrol path, which is just the transition graph path correspond-
ing to a patrol. The path can be represented as a collection x(ψi,j) := [x(ψi,j, e)]e∈E
of indicator variables:

x(ψi,j, e) :=

{
1 if e is used in patrol ψi,j

0 otherwise.

On each train edge e the patrol unit may plan to inspect a number of passenger
between zero and their maximum capacity heµ, where again he is the duration of
the edge. We let the planned number of inspected passengers on an edge e divided
by the total number of passengers on board the train at this edge be the inspection
fraction which we denote by w(ψi,j, e). We also define w(ψi,j) := [w(ψi,j, e)]e∈E.
If the unit inspects passengers at its maximum capacity then w(ψi,j, e) = fe, the
inspection effectiveness for that edge. We can write

ψi,j ∈ Ψj ⊂ {0, 1}|E| × R|E|

and
ψi ∈ Ψ ⊂ Ψ1 × . . .×ΨT ,

where |E| is the number of edges in the transition graph. Here Ψj is the set of all
valid patrols for unit j and Ψ the set of all valid joint patrols. The restricted set
Ψr is a subset of Ψ.

3.3 Inspection model

It is now time to choose a model for the inspection probability. Let us first enumerate
the set of passenger types by writing

Λ := {λk}Mk=1, (3.9)

where M is the number of different passenger types. Again, we have that

λk ⊂ E.

The probability of being inspected varies between the passenger types and depends
the joint patrol used. When joint patrol ψi is used, a passenger of type λk is

21



inspected with a certain probability. As passengers can receive one fine per train
they use during their journeys we instead consider the expected number of times
passengers are inspected. We denote the expected number of times a passenger is
inspected given that joint patrol ψi is used by ri,k and refer to this as the inspection
rate.

Assuming that passengers are distributed randomly within the trains we express
the inspection rate as a sum inspection fractions:

ri,k :=
∑
j

∑
e∈λk

w(ψi,j, e). (3.10)

The difference from the previous model in Equation (2.2) is that instead of taking
the sum of inspection effectiveness parameters fe we take the sum of the inspection
fractions 0 ≤ w(ψi,j, e) ≤ fe. It can be helpful to think of the inspection fractions
as the fraction of the trains length that is covered in an inspection rather than the
fraction of passengers, as the total number of passengers varies from edge to edge.
When passengers are evenly distributed in the train inspecting a fraction x of the
total passengers is equivalent to covering the same fraction x of the length of the
train.

We think of inspection patrol units as moving from one end of the train to the
other. When the other end is reached, we must have that the sum of inspection
fractions is equal to 1, as the whole length of the train is covered. Thus, we require
that ∑

j

∑
e∈Γ(d)

w(ψi,j, e) ≤ 1 for all departures d, (3.11)

i.e. that the sum of inspection fractions is less or equal to 1 for each train departure.
Here where Γ(d) is the set of transition graph edges corresponding to departure d.
Provided that (3.11) holds, we know that ri,k is less or equal to the number of trains
used by passenger type λk.

Step 1 Step 2

0 1

w(ψi,j, e1)

ϕ1

ϕ2

0 1

w(ψi,j, e1) w(ψi,j, e2)

ϕ1

ϕ3

Never inspected

Figure 3.4: Trains are only inspected once, leaving some passengers
that board the train during an inspection uninspected.

The new situation is illustrated in Figure 3.4. A patrol unit moves from one end
of the train to the other. Passengers that enter the train behind the patrol unit

22



will not be inspected. As trains can only be covered once, the timing of inspections
becomes more important than in the previous chapter. In the next section we
consider how optimal joint patrols can be constructed and applied.

3.4 Optimization modelling

As previously mentioned it is important to prevent passengers from recognizing and
exploiting any regularity in the fare inspections by introducing some random element
in the procedure. In the previous chapter we saw a method of generating random
patrol routes day by day. In this chapter we have stricter patrol requirements, and
we will instead sample joint patrols each day from some pool of acceptable joint
patrols. We call this the explicit formulation as we treat patrols directly.

Our main challenge is to construct such a pool or set of joint patrols and to de-
termine the optimal probability distribution for the joint patrol sampling. The näıve
approach would be to include all possible joint patrols with the hope of assigning a
probability to each one. Unfortunately the space of possible transition graph paths
increases exponentially with the size of the graph, and the number of possible joint
patrol paths is simply too vast in almost all cases. Furthermore the accompanying
inspection rates are continuous variables, making the set of possible joint patrols
infinite.

However, of all the possible joint patrols there is only a handful that is worthy
of our consideration. The key is to identify a sufficient subset joint patrols such
that an optimal inspection strategy can be realized. In the following we will outline
an approach of finding such a subset based on an iterative optimization technique
called column generation. The basic idea of column generation is to iteratively
generate useful joint patrols until an optimal subset is be found. Column generation
is explained in [2], and we explain the procedure step by step with our problem in
mind below.

3.4.1 Master problem

In column generation the main optimization problem to be solved is often referred
to as the master problem, and the problem of finding a variable (in this case a joint
patrol) to be added to the subset is called the subproblem. When the master problem
is solved for a restricted set of variables this is referred to as the restricted master
problem. Before we can discuss the subproblem we need to clearly define the master
problem.

The master problem in our case is to determine the optimal sampling proba-
bilities for a set of joint patrols such that fare evasion is minimized. Suppose for
now that we have a subset Ψr with N distinct joint patrols. The to-be-determined
probability of choosing joint patrol ψi is denoted by by qi. We define the vector
form

q := [qi]
N
i=1 .

Using the law of total probability we can state the effective inspection rate rλk for

23



passenger type λk given Ψr and a corresponding probability distribution q:

rλk :=
N∑
i=1

ri,k qi. (3.12)

The average amount paid by a rational passenger of type λk is thus

uk := min

{
ρk, β

N∑
i=1

qi ri,k

}
, (3.13)

where ρk := ρ(λk) is the ticket price for passenger type λk. Rational passengers are
passengers that minimize their expected cost as explained in Section 2.3. We define
the vector form

u = [uk]
M
k=1 .

The probabilities q that maximize overall income can be found by solving the
following LP:

maximize
q,u

M∑
k=1

dkuk (3.14a)

subject to
N∑
i=1

qi = 1, (3.14b)

uk ≤ β
N∑
i=1

ri,k qi, ∀ k, (3.14c)

uk ≤ ρk, ∀ k, (3.14d)

qi ≥ 0, ∀ i, (3.14e)

uk ≥ 0, ∀ k. (3.14f)

The objective (3.14a) is the expected total income per day, where dk are the known
demand of λk-passengers. Constraint (3.14b) ensures that the sum of all probabilities
is 1. Equations (3.14c) and (3.14d) sets the upper bounds for the passenger type
income uk, which always takes on the value of the lowest upper bound in an optimal
solution. All variables are kept positive through the constraints in Equations (3.14e)
and (3.14f).

An optimal solution of (3.14) is a probability distribution over the (current) set
Ψr of joint patrols that gives the highest income. However, they may exist a different
set Ψ′r that makes a higher income possible. We refer to the true optimum as the
best possible solution of (3.14). This can be found either by including all possible
joint patrols by using Ψ (which would be impractical), or by finding an optimal
subset Ψ∗r that can be proved to be sufficient. Solving this optimization problem is
a relatively easy task for any LP-solver as long as the number of different passenger
types is manageable.

24



3.4.2 Dual problem

To generate new joint patrols we need to formulate and solve the subproblem. The
first step towards formulating the subproblem is to express the dual of the master
problem. In mathematical optimization, duality is a concept that lets optimization
problems be viewed from two perspectives: Any linear optimization problem, called
a primal problem, has a unique corresponding dual problem. If a bounded optimal
solution exist for either problem then there also exists one for the other, and the
optimal objective values for both problems are equal. This statement is widely
known as The Duality Theorem, which can be found for example in [2]. If the
primal is a minimization problem then the dual is a maximization problem and vice
versa.

The dual problem arises when trying to find an upper bound for the objective
value of a maximization problem (Or the lower bound for a minimization problem).
For illustration let us now derive the dual to (3.14). We start by making a linear
combination of the constraints in Equations (3.14b)–(3.14d). The constraint in
Equation (3.14) is multiplied with a coefficient yq, and the constraints in Equations
(3.14c) and (3.14d) are multiplied with the non-negative1 coefficients yβk and yρk
respectively for k ∈ {1, . . . ,M}. Taking the sum of all constraints we get

yq
N∑
i=1

qi +
M∑
k=1

yβkuk +
M∑
k=1

yρkuk ≤ yq +
M∑
k=1

yβkβ
N∑
i=1

ri,k qi +
M∑
k=1

yρkρk.

By rearranging terms we obtain

N∑
i=1

qi

(
yq − β

M∑
k=1

yβk ri,k

)
+

M∑
k=1

uk

(
yβk + yρk

)
≤ yq +

M∑
k=1

yρkρk. (3.15)

We may now take a look at the primal objective function in Equation (3.14a) and
realize that if yq − β

∑N
i=1 yβk ri,k ≥ 0 and yβk + yρk ≥ dk, then we have found the

upper bound we were looking for:

M∑
k=1

dkuk ≤
N∑
i=1

qi

(
yq − β

M∑
k=1

yβk ri,k

)
︸ ︷︷ ︸

≥ 0

+
M∑
k=1

uk

(
yβk + yρk

)
︸ ︷︷ ︸

≥ dk

≤ yq +
M∑
k=1

yρkρk. (3.16)

Finding the coefficients yβk , yρk and yq that give the lowest upper bound for the primal
objective function value is known as the dual problem:

minimize
yq ,yβ ,yρ

yq +
M∑
k=1

ρk y
ρ
k (3.17a)

subject to yβk + yρk ≥ dk, ∀ k, (3.17b)

yq − β
M∑
k=1

ri,k y
β
k ≥ 0, ∀ i, (3.17c)

yβk , y
ρ
k ≥ 0, ∀ k. (3.17d)

1To not reverse the inequalities

25



Here we have used vector forms

yβ :=
[
yβk

]M
k=1

and yρ := [yρk]
M
k=1 . (3.18)

The objective function in Equation (3.17a) is the upper bound for the primal prob-
lem. To make the objective an upper bound the conditions in (3.17b) and (3.17c)
must be satisfied, as shown in Equation (3.16). The yβk and yρk coefficients must also
be positive, as enforced by (3.17d).

The Duality Theorem states that lowest upper bound found in this way (the
optimal solution to the dual problem) is equal to the highest possible objective
fuction value in the primal problem (the optimal solution to the primal). This
means that for the optimal solution of (3.17), the constraints (3.17b) and (3.17c) all
hold with equality. In addition, if either solution is known then finding the other
is trivial. The dual problem in (3.17) can also be obtained by writing the primal
on a standard form and using a known primal-dual problem pair. This is done in
Appendix A.

3.4.3 Column Generation

Solving the primal problem defined in (3.14) yields the so-called dual variables yq,
yβk and yρk corresponding to the optimal primal solution q0,u0. Let us denote the
corresponding primal objective function value by P0 and the dual objective function
value by D0. From the duality theorem we have that P0 = D0.

Suppose we now add one joint patrol with related inspection rates rN+1,k to
our subset Ψr and let the corresponding sample probability qN+1 be zero. We call
this the updated problem. This gives us a feasible solution q1 = [q0, 0],u1 = u0 and
objective value P1 = P0 to the updated primal problem. Note that the dual variables
are unchanged until we re-solve the primal problem. We now ask the question: Is
this new primal solution q1,u1 optimal? If so, adding the new joint patrol did not
lead to a possible increase in the primal objective value, and there was seemingly
no point in adding that particular joint patrol. If on the other hand it turns out
that q1,u1 is a sub-optimal solution to the updated problem, then adding the new
joint patrol was beneficial as we can re-solve the primal to obtain a better objective
value.

To check whether the new primal solution is optimal or not, we consider the dual
problem. Adding the new joint patrol introduces one additional constraint to the
dual, namely

yq − β
M∑
k=1

rN+1,k y
β
k ≥ 0. (3.19)

This can be seen from Equation (3.17c). Note that the values of rN+1,k belong to
the new joint patrol and are known. Let consider the two possible cases:

1. The constraint holds. Then we see from (3.16) that the new dual objective
value D1 is unchanged since qN+1 = 0. We have D1 = D0 = P0. Thus by the
Duality theorem, the new solution is still optimal.

26



2. The constraint does not hold. Then yq, yβk and yρk do not correspond to
an optimal solution of the primal problem, and the primal solution may be
sub-optimal.

We can conclude that when looking for a new joint patrol to add to our subset, we
should choose one with inspection rates rN+1,k such that constraint (3.19) is violated.
Moreover, if no such joint patrol exists we have a sufficient subset of joint patrols to
find the true optimum of the master problem.

3.4.4 Subproblem

Before formulating the subproblem we make one final observation. Supposing still
that we have an optimal solution of the primal (and dual) problem, the left-hand
side of (3.19) corresponds to the negative derivative of the primal objective function
with respect to the variable qN+1. To see this, we consider equation (3.15) and recall
that for an optimal solution equations (3.17b) and (3.17c) hold with equality. After
adding the new joint patrol we get

M∑
k=1

dkuk = yq +
M∑
k=1

yρkρk − qN+1︸︷︷︸
= 0

(
yq − β

M∑
k=1

yβk rN+1,k

)
︸ ︷︷ ︸

l.h.s. of (3.19)

.

Here we see that if qN+1 is increased from zero (without considering constraint
(3.14b)) then the momentary increase in the primal objective function value is equal
to the left-hand side of (3.19) times −1. Hence, we should add the joint patrol that
violate constraint (3.19) the most as the primal objective value increases the most
in this direction.

To find the new joint patrol we must solve the following optimization problem:

minimize
x,w,rN+1

yq − β
M∑
k=1

rN+1,k y
β
k (3.20a)

subject to
∑

e∈δ+(v)

xj,e + aj,v =
∑

e∈δ−(v)

xj,e ∀ j, v, (3.20b)

wj,e ≤ fe xj,e ∀ j, e, (3.20c)

T∑
j=1

∑
e∈Γ(d)

wj,e ≤ 1 ∀ d, (3.20d)

rN+1,k =
T∑
j=1

∑
e∈λk

wj,e ∀ k, (3.20e)

wj,e ≥ 0 ∀ j, e, (3.20f)

xj,e ∈ {0, 1} ∀ j, e. (3.20g)

Here we have used the following shorthand notation:

xj,e := x(ψN+1,j, e) and wj,e := w(ψN+1,j, e) (3.21)

27



with vector forms

x := [xj,e]j=1,...,T,e∈E and w := [wj,e]j=1,...,T,e∈E. (3.22)

The objective function (3.20a) is the left-hand side of dual problem constraint
(3.17c), which is the negative derivative of the primal objective function with respect
to the new joint patrol. Constraint (3.20b) enforces flow conservation such that x
defines continuous paths in the transition graph between the designated start and
end vertices of each patrol. We use δ±(v) to denote the sets of edges that enter or
leave vertex v, and define

aj,v :=


1 if unit j is to start at vertex v,

−1 if unit j is to end at vertex v,

0 otherwise.

(3.23)

The variables in w are the inspection fractions belonging to the patrol paths. If
edge e is not in use by team j the inspection fraction must be zero, and if it is
then it can not exceed fe as discussed in Section 3.3. This is enforced by constraint
(3.20c). The condition that each train only can be inspected once is contained
in constraint (3.20d). Lastly the inspection rates rN+1 := [rN+1,k]

M
k=1 follows the

previously discussed probability model by constraint (3.20e). Constraints (3.20f)
and (3.20g) makes wj,e and xj,e non-negative and binary respectively.

3.5 Solution methods

Using the procedure we present algorithmically in Algorithm 2 we are theoretically
able to find the true optimal solution of the master problem in (3.14) without con-
sidering all possible joint patrols. Starting with an arbitrary joint patrol, we can
iteratively generate new joint patrols that improve the primal objective value until
the optimal solution of the subproblem in (3.20) has a non-negative subproblem
solution. When this happens there are no joint patrols that can improve the primal
objective value, and we know that the solution is optimal.

As we have mentioned the master problem is a linear optimization problem
and solvable when the number of joint patrols is reasonable. The subproblem on
the other hand is not a standard linear optimization problem as it contains binary
variables, but a so-called mixed integer optimization problem (MIP). To solve the
subproblem we can apply a general MIP-solver. Like for LPs we will not go into
detail on general solution algorithms in this thesis, and refer to Wolsey [8] for a
guide to different approaches. The problem with MIPs is that they in general are
solved in exponential time, meaning that the computation time needed to solve the
problem increases exponentially with the problem instance size. What this means
to us is that solving the subproblem may only be feasible when the transition graph
is small, as we will see evidence of in the next chapter.

Fortunately, we do not need to solve the subproblem exactly to improve the
primal objective function value in every iteration. Solving the subproblem yields
the joint patrol which looks to improve the function value the most, but we could

28



add any joint patrol that violate (3.19) and still improve the solution. Finding such
a good joint patrol using heuristic methods can often be done significantly faster
than finding the optimal solution. Heuristics may also be the only feasible way to
solve to solve the subproblem for larger transition graphs. When this is the case we
can not hope to find the true optimal subset Ψ∗r, but we may be able to find a good
approximation. We will study a few basic heuristics later.

Another problem with Algorithm 2 is that the number of iterations needed to find
the optimal solution is unknown and potentially large. As solving the subproblem
is computationally expensive we should take steps to reduce the required number of
iterations as much as possible. In our case there are no single superior strategy to
do this, but there are a few simple techniques we can employ that will turn out to
reduce the overall computation time considerably.

In the next chapter we look at some of the different acceleration strategies and
heuristic methods for solving the subproblem, before we in the subsequent chapter
gauge their performance by presenting some relevant numerical results.

29



Algorithm 2 Finding an optimal subset Ψ of joint patrols and corresponding prob-
abilities q using column generation

Ψ← ∅
ψ ← arbitrary joint patrol
D ← −∞
while D < 0 do

Ψ← Ψ ∪ {ψ}
(yq,yβ,yρ)← Master problem dual(Ψ)
(ψ, D)← Subproblem(yq,yβ,yρ)

end while
(q,u)← Master problem primal(Ψ)
Optimal solution is found.

function Master problem dual(Ψ)
(yq,yβ,yρ)← optimal solution of the master problem dual (3.17) using Ψ
return (yq,yβ,yρ)

end function

function Subproblem(yq,yβ,yρ)
(x,w)← optimal solution of the subproblem (3.20) with current yq,yβ,yρ

D ← optimal value of subproblem objective function (3.20a)
ψ ← (x,w)
return (ψ, D)

end function

function Master problem primal(Ψ)
(q,u)← optimal solution of the master problem primal (3.14) with current Ψ
return (q,u)

end function

30



Chapter 4

Heuristics and acceleration
strategies

As we have now discussed we find the true optimal solution of the master problem by
iteratively generating joint patrols using column generation. We have also mentioned
that while the restricted master problem is linear and easy to solve, the subproblem
is a mixed integer optimization problem that is likely to be very time consuming
to solve in many cases. Speeding things up may not only be desirable but also
necessary.

When we discuss ways to speed up the algorithm we distinguish between heuris-
tics and acceleration strategies. We refer to techniques that reduce the number of
required iterations and/or reduce the total computation time needed to find a true
optimal solution as acceleration strategies. Techniques used to find approximations
to the true optimal solution are called heuristics or heuristic methods. Acceleration
strategies usually only lead to modest time savings, but are generally useful as the
only associated cost is the work required to implement them. Heuristics on the other
hand can lead to substantial and necessary time savings, but should be used with
more care as they primarily give sub-optimal results.

4.1 Interpreting the subproblem

Many acceleration strategies and heuristics are products of practical insights about
the relevant problem, and thus it can be helpful for us to re-formulate the subproblem
in a more familiar form. We will do this in the following.

Let us consider the sum in the second term of the subproblem objective function
(3.20a), and insert for rN+1,k using (3.20e). We can then write the objective as a
sum over edges instead of passenger types with the help of the indicator function

θ(λk, e) :=

{
1 if e ∈ λk,
0 otherwise.

31



We rewrite:

M∑
k=1

rN+1,jy
β
k =

M∑
k=1

T∑
j=1

∑
e∈E

θ(λk, e)wj,e y
β
k

=
∑
e∈E

T∑
j=1

wj,e

M∑
k=1

θ(λk, e) y
β
k︸ ︷︷ ︸

:= ye

=
∑
e∈E

T∑
j=1

wj,e ye, (4.1)

where we have defined edge weights

ye :=
M∑
k=1

θ(λk, e) y
β
k . (4.2)

The edge weights reflect the dual variables. Inserting back into the objective function
yields

minimize
x,w

yq − β
∑
e∈E

T∑
j=1

wj,e ye. (4.3)

Naturally a joint patrol that minimizes the function (4.3) also maximizes the sum
in the following objective:

maximize
x,w

∑
e∈E

T∑
j=1

wj,e ye. (4.4)

By now we see that the subproblem is set in the more familiar setting of a
weighted graph, as each edge transition graph edge can be given a weight ye. Many
well-studied graph problems revolve around finding paths with certain properties
in weighted graphs. When we design heuristic methods we try to decompose our
problem into smaller sub-problems that hopefully resemble some more well-known
problem for which an algorithm exits.

A classical example of a well-studied graph problem is the Shortest path problem,
which is the problem of finding a path between two vertices in a graph such that the
sum of weights over edges in the path is minimized. As long as the graph does not
contain a negative cycle1, the shortest path problem is solvable and can be solved in
polynomial time2 (quickly). A related problem is the Longest path problem, which is
finding a path between two vertices such that the path weights are maximized. The
longest path problem is more complex than the shortest path problem. While the

1A sequence of vertices starting and ending in the same vertex, such that there are edges from
each vertex to the next consecutive vertex (a cycle) and the sum of edge weights are negative (a
negative cycle). If a negative cycle exists, a path could be infinitely short.

2The number of required steps is O(nk) for some integer k where n is the input size, for example
number of vertices or edges.

32



problem is solvable as long as a positive cycle does not exist, it can only be solved
in polynomial time in directed acyclic graphs3 (DAGs).

We may now draw some similarities between our subproblem (3.20) and the
longest path problem. First of all we note that transition graphs are DAGs, as all
edges point forwards in time and no cycles can exist. The longest path between
two vertices in a transition graph is a path that maximizes the sum of edge weights
ye over path edges. On the other hand the solution of the subproblem is an edge
weighted-path (a patrol), that is a path (a patrol path) in which each edge has an
associated weight (the inspection fraction). Instead of maximizing the sum of edge
weights ye over path edges, we maximize weighted sum over path edges. The sum
is weighted by inspection fractions wj,e for the path edges, as we can see from (4.4).
We recall that wj,e are non-zero only if edge e is used in patrol path e.

If the requirement that each train only can be inspected once was to be dis-
regarded, individual patrols could be found independently by solving longest path
problems. We refer to this requirement simply as the inspection requirement in
the following. Without the requirement patrol units should always inspect at their
maximum capacity, i.e. wj,e = fe xj,e. Inserting this into (4.4) we get

∑
e∈E

T∑
j=1

wj,e ye =
∑
e∈E

T∑
j=1

xj,e fe ye (4.5)

The objective function is then the right hand side of (4.5), which clearly makes the
problem equivalent to T longest path problems where fe ye are the edge weights.

To find patrols we find paths between source and sink nodes v+
j and v−j that

maximize the sum in (4.5) for each patrol unit. A longest path algorithm is given
as a function Longest path in Algorithm 8, found in Appendix B. The algorithm
is based on the classical DAG shortest path algorithm that can be found in [3].

When the inspection requirement is included the problem becomes much more
complex. Let us suppose for simplicity that there is only one patrol unit (T =
1) such that patrols can not interfere with one another. An optimal patrol path
allows the sum of accompanying inspection fractions wj,e times edge weights ye to
be maximized. Finding such a patrol is more involved than solving a longest path
problem in the transition graph and an interesting problem of its own.

If more then one patrol unit are present (T > 1) the situation is complicated
further. The responsibility for inspecting different trains must now be delegated
between patrol units and patrol paths must be coordinated such that the objective
is maximized. It seems unrealistic that this problem is solvable in polynomial time,
but we will not prove this claim.

4.2 Acceleration strategies

We are ready to look at ways to speed up the solution approach to the inspector
scheduling problem we presented in Algorithm 2. When attempting to improve
the performance of LPs and especially MIPs a natural first step is to reduce the

3Directed graphs that does not contain cycles.

33



number of variables as much as possible. A very simple time-saving measure is to
insert equation (3.20e) into the subproblem objective (3.20a) to eliminate the rN+1,k

variables, as these are easily re-computed after the problem is solved. Another
potential measure is to experiment with adding different redundant constraints to
the optimization problem. Sometimes adding additional constraints to MIPs can
help solvers find the optimum faster. In our case such formulation improvements
may be possible to implement, but we will not focus on this area in the following.

Instead we will focus on reducing the number of required subproblem iterations.
In each iteration of the algorithm a joint patrol that corresponds to an optimal
subproblem solution is included in the subset Ψr. Often there are more than one
optimal solution of the subproblem. Adding a different optimal solution than the
one initially returned by the subproblem solver may lead to faster convergence.
Optimal solutions of the subproblem are joint patrols that give the highest possible
momentary increase in the primal objective function, and are in that sense all equally
desirable. Yet, by using common sense we can say that some optimal joint patrols
are better than others. We can not know in advance which optimal joint patrol to
add to get the fastest possible convergence, but we can use our knowledge of the
problem setting to potentially improve joint patrols suggested by the solver.

For example, suppose our subproblem solver suggests joint patrol ψ∗ = (x∗,w∗).
If ye = 0 for some edge e, then from the perspective of the subproblem solver there
is no point to performing inspections on this edge, even if the edge is used in the
suggested optimal joint patrol. This happens for edges that are sufficiently covered
such that passengers purchase tickets given the current primal solution. From our
perspective it is always better to inspect than not to inspect, and as such we would
always like to increase the inspection levels. If we can increase w∗e for some train
edge without violating constraints then ψ∗ can be augmented. We increase w∗ in
a manner that maximizes some secondary objective function. For example we can
maximize the total number of inspected passengers by solving the following LP:

maximize
w

∑
e∈E

T∑
j=1

wj,e ue (4.6a)

wj,e ≤ fe x
∗
j,e ∀ j, e, (4.6b)

wj,e ≥ w∗j,e ∀ j, e, (4.6c)

T∑
j=1

∑
e∈Γ(d)

wj,e ≤ 1 ∀ d. (4.6d)

Here (x∗,w∗) is the given optimal solution of (3.20). The objective function (4.6a) is
the total number of inspected passengers as ue is the passenger volume or the number
of passengers using edge e, and wj,e the fraction that is inspected. Constraint (4.6b)
prevents units from inspect beyond their capacity and is analogous to (3.20c). To not
spoil the optimality of the solution all inspection fractions in the augmented version
must be greater or equal than in the suggested optimal solution. This is ensured
by constraint (4.6c). Finally the inspection condition remains and is contained in
(4.6d).

Another situation that can occur when ye = 0 for some edge or edges is that joint

34



ye = 1.0

ye = 0.0
ye = 0.0

ye = 0.0
ye = 0.0

ye = 0.0

ye = 1.0

ye = 1.0

ψ∗

we = 0.5

we = 0.7

we = 0.5

we = 0.0

s0

s1

s2

t

(a) A suggested optimal joint patrol ψ∗

ye = 1.0

ye = 0.0
ye = 0.0

ye = 0.0
ye = 0.0

ye = 0.0

ye = 1.0

ye = 1.0

ψ∗∗1

we = 0.5

we = 0.7

we = 0.5

we = 0.3

s0

s1

s2

t

(b) An augmented version ψ∗∗1 of joint patrol ψ∗

ye = 1.0

ye = 0.0
ye = 0.0

ye = 0.0

ye = 0.0

ye = 0.0

ye = 1.0

ye = 1.0

ψ∗∗2

we = 0.5we = 0.7

we = 0.7 we = 0.5

we = 0.5

we = 0.5

s0

s1

s2

t

(c) A contorted and augmented version ψ∗∗2 of joint patrol ψ∗

Figure 4.1: An optimal patrol suggested by the subproblem solver
and two improved versions, one augmented and one contorted. In
this example fe = 0.7 for all e ∈ E. All three patrols give the same
objective value, but patrols in (b) and (c) are subjectively better.

35



patrols suggested by the solver contain unnecessary waiting edges. We prefer to have
patrol units inspecting on edges with ye = 0 rather than waiting, and would like to
alter the patrol paths to increase the number of inspected passengers if possible. To
do this we can solve the MIP given by:

maximize
x,w

∑
e∈E

T∑
j=1

wj,e ue (4.7a)

xj,e ≥ δ(ye > 0)x∗j,e ∀ j, e, (4.7b)

wj,e ≥ δ(ye > 0)w∗j,e ∀ j, e, (4.7c)

wj,e ≤ fe xj,e ∀ j, e, (4.7d)

T∑
j=1

∑
e∈Γ(d)

wj,e ≤ 1 ∀ d, (4.7e)

∑
e∈δ+(v)

xj,e + aj,v =
∑

e∈δ−(v)

xj,e ∀ j, v, (4.7f)

xj,e ∈ {0, 1} ∀ j, e. (4.7g)

The objective (4.7a) is again the total number of inspected passengers. In constraints
(4.7b) and (4.7c) we use the indicator function δ(ye > 0) which is 1 if ye > 0 and zero
otherwise. If ye = 0 and e is used in the suggested joint patrol then this edge is fixed,
otherwise the path is free to be changed. Similarly the inspection fraction is lower
bounded by w∗j,e only if ye > 0 to ensure that optimality is conserved. Constraints
(4.7d), (4.7e), (4.7f) and (4.7g) are analogous to (4.6b), (4.6d), (3.20b) and (3.20g)
and have all been explained previously.

Unfortunately (4.7) is a MIP and therefore as complicated as the subproblem
itself. We should therefore avoid spending time on solving this problem unless it
reduces the number of required iterations substantially. Alternatively an approxi-
mate solution could be found using heuristic methods, but we leave this as an area
of future work. A contorted patrol ψ∗∗2 is shown in Figure 4.1c.

In the next chapter we will test the methods we have now described on a few
constructed examples to evaluate their performance. We note that there likely are
many other avenues worth exploring to improve the performance of the algorithm
and reduce the number of required iterations. Without dwelling further we move on
to consider heuristic methods in the next section.

4.3 Heuristic methods

We now consider ways of solving the subproblem approximately. As indicated in
Section 4.1 where the problem was interpreted as a weighted graph problem, solving
the problem is made complex by the inspection requirement. We also indicated that
without this requirement the subproblem is reduced to T longest path problems that
can be solved in polynomial time due to the fact that the transition graph is a DAG.

We will use a similar approach also when the requirement is included. Our plan
is decompose the problem by treating each patrol unit separately and construct a

36



joint patrol by assigning patrols to units one by one in such a way that the inspection
requirement is not violated. In this way we sacrifice optimality to find a decent joint
patrol significantly faster than we could solve the subproblem.

Before we begin we create an empty joint patrol ψ := (x,w) where x := [xj]
T
j=1

and w := [wj]
T
j=1. We write a single patrol as ψj := (xj,wj), where xj := [xj,e]e∈E

and wj := [wj,e]e∈E. We let the function Initialize joint patrol initialize ψ and
set all xj,e and wj,e to zero. Patrols (xj,wj) are later updated iteratively as they are
determined.

Single patrol

First we consider a heuristic for finding a patrol ψj := (xj,wj) for a single unit j.
Edges in the transition graph receive weights y := [ye]e∈E as defined by (4.2) in each
iteration. When we find patrols we use relevant edge weights denoted ȳ := [ȳe]e∈E.
These are updated several times while we construct the joint patrol as we will explain
later. To obtain a single patrol path, we disregard the inspection requirement and
find a path between source and sink vertices for unit j. The path can be found using
the longest path algorithm in Appendix B with current relevant edge weights ȳ. We
find the path by calling the function Longest path with ȳ ,vsource and vsink as
inputs. The function returns a vector xj that represents the path. Again, we have
that

xj,e :=

{
1 if edge e is used in patrol j,

0 otherwise.

A path found in this manner is likely to be sub-optimal due to prolonged stays on
trains as the algorithm is unaware of the inspection requirement. The best possible
inspection fractions wj to go along with xj can be found by a similar procedure as
we explained in the previous section. Initially we can set all wj,e to zero and augment
the patrol with respect to relevant edge weights ȳ. By this we mean finding wj such
that the sum ∑

e∈E

wj,e ȳe

is maximized. Instead of solving an LP similar to (4.6) we can apply our own
procedure given as a function Augment patrol in Algorithm 10 in Appendix B.
The function returns an updated vector of inspection fractions wj. For reasons we
come back to shortly the function takes three inputs: The path xj, the relevant
edge weights ȳ and a vector z̄ := [z̄d]d∈D. We here use 0 ≤ z̄d ≤ 1 which is fraction
of departure d that is currently uninspected by the joint patrol ψ = (x,w) under
construction.

The steps we have outlined for finding a patrol for a single unit is presented in
Algorithm 3. We present the procedure as a function Heuristic patrol that takes
as input the relevant edge weights ȳ, the current uninspected fractions of departures
z̄ and the patrol number j. The resulting patrol ψ = (xj,wj) is returned.

37



Algorithm 3 Find an approximation to the best patrol for unit j

function Heuristic patrol(ȳ, z̄, j)
xj ← Longest path(ȳ, v+

j , v
−
j ) . Algorithm 8

wj ← Augment patrol(xj, ȳ, z̄) . Algorithm 10
return (xj,wj)

end function

Joint patrol

After finding a single patrol using Heuristic patrol we repeat the procedure for
the next patrol unit. When we commit to using a certain patrol we say that the
patrol is fixed. Other patrols must then be designed to complement previously fixed
patrols by avoiding previously covered trains as these can not be inspected again. To
discourage the path finding algorithm of using edges corresponding to these trains
we update the relevant edge weights ȳ using the function Update parameters
in Algorithm 9. In the same function the uninspected fractions of departures z̄ are
updated. Relevant edge weights ȳe are set to feye multiplied with the uninspected
fraction z̄d for their corresponding departure. If the departure is entirely uninspected
then z̄d = 1 =⇒ ȳe = feye, the maximal contribution from this edge as we can see
from (4.5). If the departure is completely inspected then z̄d = 0 =⇒ ȳe = 0, and
the incentive to use this edge is removed. The algorithm is given in Algorithm 9
in Appendix B. The function takes edge weights y and current inspection fraction
vector w as inputs, returning relevant edge weights ȳ and uninspected fractions
z̄ := [z̄d]d∈D.

Applying Heuristic patrol for all T patrol units we get a joint patrol ψ =
(x,w). In each repetition a new patrol is designed to complement previously fixed
patrols. If patrol units have different working hours and/or starting places, the order
in which patrols are fixed can influence the result. To determine the order patrols
is fixed we employ the simple strategy of always fixing the patrol that provides
the biggest increase in the objective function. In each iteration we find suggested
patrols (x̂j, ŵj) for all remaining units that have not yet been assigned patrols,

and fix the one with the highest utility Ûj. Heuristic patrol is thus called
T + (T − 1) + . . .+ 1 = 1

2
T (T − 1) times.

The complete heuristic method is presented in Algorithm 4 as the function
Heuristic joint patrol. The function takes edge weights y as input and re-
turns the joint patrol ψ = (x,w). We can use this heuristic in the place of the
subproblem solver in each iteration of Algorithm 2 to obtain a sub-optimal subset
Ψ, see Algorithm 5. As the heuristic joint patrol give a sub-optimal subproblem
objective function value the algorithm terminates before the optimum is found.

Before we proceed to numerical experiments in the next chapter we point out
that the heuristic given in this chapter is basic, and that more advanced heuristic
methods could be developed in the future. This is an interesting field of study that
we unfortunately are not able to explore further in this master thesis.

38



Algorithm 4 Find an approximation to the optimal joint patrol ψ = (x,w)

function Heuristic joint patrol(y)
(x,w)← Initialize joint patrol
Q← {1, . . . , T}
while |Q| > 0 do

(ȳ, z̄)← Update parameters(y,w)
for j ∈ Q do

(x̂j, ŵj)← Heuristic patrol(ȳ, z̄, j)

Ûj ←
∑

e∈E ŵj,e ye . The utility of suggested patrol (x̂j, ŵj)
end for
j ← arg maxj∈Q{Ûj}
(xj,wj)← (x̂j, ŵj)
Q← Q \ {j}

end while
ψ ← (x,w)
return ψ

end function

Algorithm 5 Finding a sub-optimal subset Ψ of joint patrols and corresponding
probabilities q using column generation and a heuristic method to solve the sub-
problem

Ψr ← ∅
ψ ← arbitrary joint patrol
D ← −∞
while D < 0 do

Ψr ← Ψr ∪ {ψ}
(yq,yβ,yρ)← Master problem dual(Ψr)
y← Edge weights computed from yβ according to (4.2)
ψ ← Heuristic joint patrol(y)
D ← Value of ψ computed by inserting into (4.3)

end while
(q,u)← Master problem primal(Ψr)
Sub-optimal solution is found.

39



Chapter 5

Numerical results

It is now time to test and evaluate the solution approaches to the inspector schedul-
ing problem we presented in the preceding chapters. We will perform various ex-
periments to examine the behaviour of the column generation procedure and to
determine when finding optimal solutions is computationally feasible. To evaluate
our heuristic method we will compare the heuristic solutions with their optimal
counterparts.

For our experiments we will use three different example networks inspired by
the NSB local train network in Figure 1.1. The networks are designed to expose
strengths and weaknesses of our solution method and will have varying levels of
detail and realism. We implemented our solution in Python using the GNU Linear
Programming Kit (GLPK)1 to solve optimization problems with the PyMathProg
modelling language2. The code is found in Appendix C. All experiments were per-
formed on Intel(R) Xeon(R) CPU X7542 @ 2.67 GHz processors. When we present
computation times of optimization problems we count the time spent setting up and
solving the problems.

5.1 Basic example network

The first example network we consider is the relatively simple train network shown
in Figure 5.1. We call this the basic example network. In this example there
are six stations that correspond to stations in the south eastern part of the NSB
network. The three train lines `0, `1, `2 represent real world lines L14, L21 and L22
respectively. As this simple network is only meant to give us a basic sense of how
the procedure performs we have left out several stations and parts of the train lines.

For all example networks in this chapter we use train time tables based on current
time tables for non-peak hours found on NSB’s home page3. We let all trains wait
for twait = 1 minute at each stop. The time tables we use are only close to the actual
time tables but serve a realistic examples. All trains travel at regular intervals of
either 10, 20, 30 or 60 minutes such that all time tables are repeated hourly. We will
study the example for different durations as this affects the size of the transition

1http://www.gnu.org/software/glpk/
2http://pymprog.sourceforge.net/
3www.nsb.no

40

http://www.gnu.org/software/glpk/
http://pymprog.sourceforge.net/
www.nsb.no


s0

(Lillestrøm)

s1

(Oslo)

s2

(Holmlia)

s3

(Kolbotn)

s4

(Ski)

s5

(Moss)

`0 = 〈s1, s0〉
`1 = 〈s1, s2, s4〉
`2 = 〈s1, s3, s4, s5〉

Figure 5.1: The basic example network, inspired by the real-world
network in Figure 1.1. There are six station s0, . . . s5 and three lines
`0, `1, `2.

Table 5.1: An hourly train time table used with the example network
in Figure 5.1.

Line Direction Departure time Departure frequency
`0 +1 xx:04 20 minutes
`0 −1 xx:06 20 minutes
`1 +1 xx:18 60 minutes
`1 −1 xx:31 60 minutes
`2 +1 xx:31 60 minutes
`2 −1 xx:38 60 minutes

t = 0 t = 60 t = 120 t = 180

s1

s2

s3

s4

s5

s6

t

Figure 5.2: The transition graph corresponding to the train network
in Figure 5.1 and three repetitions of the time table in Table 5.1.

41



graph and space of possible patrols. In Figure 5.2 we see the transition graph
corresponding to three repetitions of the time table given in Table 5.1.

Passenger types λk are found using Algorithm 7 in Appendix B and correspond-
ing demands dλk are set to realistic values as real world data is unavailable to us.
The ticket pricing structure used by NSB is hard to mimic, and in all our examples
we use a fixed ticket price ρ = 1 for any journey. We will try different fine sizes β
and observe the effects. We let patrol units consist of teams of three inspectors that
each can inspect seven passengers per minute, i.e. µ = 3 · 7 = 21. The inspection
effectiveness fe follows the simple model in (2.1). Unless stated otherwise we always
use two patrol units (T = 2). In the basic example units have overlapping working
hours, both starting in v+ = (s1, 0) and ending in v− = (s1, tmax).

5.2 Acceleration strategies

To validate the acceleration strategies presented in Section 4.2 we run the column
generation procedure from Algorithm 2 on the basic test problem with time windows
of 3, 4 and 5 hours. (The transition graph for three hours is the one shown in Figure
5.2.) To test the acceleration strategies we find the optimum with three different
strategies:

• None: No acceleration strategy is applied.

• Augment: Augmenting joint patrols by solving (4.6).

• Contort/Aug.: Contort joint patrols by solving (4.7) until stagnation, then
use Augment.

Our initial experiments revealed that a pure contortion strategy can cause the algo-
rithm to stagnate. This happens when a newly added contorted joint patrol gets a
sampling probability of zero in the restricted master problem. When this happens
the solution is effectively unchanged from the previous iteration, returning identical
dual variables. This causes the subproblem solver to generate the same joint patrol
again in the next iteration, at which point the same thing happens again. Why this
occurs is unclear to us as contortion does was verified to not affect the subproblem
objective value. To avoid this behaviour we switch from contortion to augmentation
whenever qN = 0 in the master problem solution.

The results from all three strategies are shown in Table 5.2, and we a sample joint
patrol is illustrated Figure 5.3. We see from the table that both acceleration strate-
gies reduce the number of iterations and computation time required to find optimal
solutions. Using the augmentation strategy almost halves the required number of
iterations and more than halves the total computation time in all three cases. The
contortion strategy yields slightly higher iteration numbers and computation times
in two of three experiments and does slightly better in the experiment with a four
hour time window. Given the overall performance of the strategy we are lead to
conclude that the contortion strategy is inferior to the augmentation strategy. We
will use augmentation in all the following numerical tests.

42



Table 5.2: Testing acceleration strategies on the basic example network
with β = 3 and three different durations.

Hours Strategy Iterations Comp. time Optimal value

3
None 66 23.7 s 4842.4
Augment 35 10.8 s 4842.4
Contort/Aug. 36 11.1 s 4842.4

4
None 109 170.0 s 6824.0
Augment 56 66.2 s 6824.0
Contort/Aug. 54 66.0 s 6824.0

5
None 139 1851.8 s 8807.2
Augment 77 711.6 s 8807.2
Contort/Aug. 103 1004.4 s 8807.2

t = 0 t = 60 t = 120 t = 180

s0

s1

s2

s3

s4

s5

0.34/0.59

0.83/0.83

0.66/0.66

0.92/0.92

0.66/0.66

1.0/1.00.71/0.71

0.34/0.67

0.81/0.81

1.0/1.0
0.91/0.91 1.0/1.0

0.19/0.81 0.34/0.59

0.66/0.66

1.0/1.0

t

Figure 5.3: A joint patrol for the basic example problem with a three
hour time window. Two units are illustrated, one in red and one in
blue. Inspection fractions wj,e and their upper bounds (the edge effec-
tiveness) fe are presented in the format ”wj,e/fe”.

5.3 Scalability and behaviour

Another observation that can be made from Table 5.2 is that the time required to find
optimal solutions greatly increases when the size of the transition graph increases.
When time window is increased from three to five hours, the size of the transition
graph (the number of edges) almost doubles. At the same time we notice that the
computation time increases from 10.8 seconds to 711.6 seconds. This indicates that
the computation time is exponential, and we will most likely hit a computational
wall when we increase the problem size. We will examine the scalability of the
solution approach further below.

In Table 5.3 we present iteration numbers and computation times for the basic
example with durations of 3 to 5 hours with one to three patrol units. Units always
start and end their patrols at the same times and places. We also present the number
of joint patrols that are given nonzero sampling probabilities, denoted by |Ψ>0|.

43



Table 5.3: Testing different numbers of patrol units and time windows
in the basic example network with β = 3.

Hours |E| Patrol units Iter. |Ψ>0| Comp. time Optimal value

3 140
1 13 3 2.0 s 3967.8
2 35 19 10.8 s 4842.4
3 15 13 6.6 s 4957.0

4 188
1 23 6 6.2 s 5537.8
2 54 29 55.1 s 6824.0
3 72 25 599.3 s 7034.5

5 236
1 51 8 23.0 s 7106.6
2 77 36 707.5 s 8807.2
3 121 30 27446.1 s 9109.7

In all cases the number of joint patrols used in the optimal solution is considerably
lower than the number of iterations. The unused joint patrols have served their
purpose by helping the column generation find an optimal solution an can now be
discarded from Ψr as they are no longer needed.

Again we see the trend that computation times increase drastically as the prob-
lem size increases. We have included number of transition graph edges |E| in each
experiment to see how it plays a role. The number of patrol units T appears to
be critical for the complexity of the problem. Computing the optimal solution for
T = 3 with a five hour duration took over seven hours. Interestingly when the time
window is three hours the optimum is found faster for T = 3 than for T = 2. This
is due to the fact that the network is adequately saturated when three patrol units
are present, i.e. there are no fare evaders on edges patrol units can reach.

We prove this last claim by running the experiment with T = 2 for different the
fine sizes. The results of this experiment are shown in Table 5.4. For a three hour
duration we see that as the fine size increases the optimal value converges to the
same value as for T = 3, β = 3. As the fine size increases the impact of the patrol
units increases until eventually all passengers pay for their tickets. The fact that
the objective value does not increase when the fine size increases indicates strongly
that the maximum value has been reached.

We can also notice from the results that the computation time varies significantly
for different fine sizes. The fine size we have used in the above experiments appears
to cause the longest computation times. When the impact of the inspectors are
either very low or very high (as measured by the expected cost of fare evading) the
computation is completed relatively quickly. The closer the optimal value is to the
theoretical maximum the longer the computation takes as larger numbers of joint
patrols are needed. When the fine size is higher than necessary to discourage all
fare evaders the problem becomes easier to solve as few or no joint patrols have to
be discarded.

To find out what causes the high computation times we take a closer look at how
the procedure performs iteration by iteration. We run the algorithm on the basic
example with two patrol units and fine size β = 3 for different time windows. The
master problem and subproblem objective values and computation times in each

44



Table 5.4: Testing different fine sizes and time windows for the basic
network with T = 2.

Hours |E| Fine size β Iter. |Ψ>0| Comp. time Optimal value

3 140

1 15 7 3.9 s 2928.7
2 12 8 3.2 s 4297.4
3 35 19 10.8 s 4842.4
4 28 15 7.2 s 4946.2
5 10 8 2.0 s 4957.0
6 7 7 1.4 s 4957.0

4 188

1 17 10 11.2 s 4116.9
2 25 11 19.9 s 6287.3
3 54 29 57.8 s 6996.5
4 57 26 52.3 s 7043.0
5 14 12 4.3 s 7043.0
6 7 7 2.0 s 7043.0

5 236

1 20 13 52.8 s 5300.8
2 44 15 194.8 s 8077.2
3 77 36 705.6 s 8077.2
4 59 29 382.6 s 9046.7
5 25 22 14.1 s 9129.0
6 8 8 5.1 s 9129.0

iteration are illustrated in Figure 5.4.

The master problem objective values are given in Figure 5.4a. We see that
the value increases quickly at first before flattening out significantly. Almost all
the progress are made in the first few iterations, close inspection reveals that the
objective value is within 98 % of the optimum after just 5 iterations in all four
cases. The objective increases very slowly towards the en until finally reaching the
optimum. In Figure 5.4b we can see the subproblem objective values which exhibit
a similar but more erratic behaviour. The values vary from iteration to iteration
but are tending towards zero from below.

In Figure 5.4c we see that the master problem computation times. The compu-
tation time increases almost linearly with the iteration number (the number of joint
patrols). In this example the longest master problem computation time is close to
1.5 seconds. On the other hand the longest observed subproblem computation time
is just above 450 seconds, as we can see from Figure 5.4d. We see that the com-
putation time varies from iteration to iteration and behaves unpredictably. In the
final experiment with a six hour time window the computation time rises sharply
towards the end.

To summarize, most of the progress in the column generation procedure is made
in the first few iterations. The computation time per iteration may also increase
drastically towards the end. To illustrate the situation further we present in Table
5.5 the computation time until 99 % of the optimum is reached. Compared to
the time required to find optimal solutions close-to-optimal solutions are found very
quickly. We do also notice that the time required to find 99 % optimal solutions seem

45



(a) Master problem objective values (b) Subproblem objective values

(c) Master problem computation times (d) Subproblem computation times

Figure 5.4: Performance data for column generation procedure applied
to the basic example with T = 2, β = 3 and four different time win-
dows.

Table 5.5: Time required to find a solution within 99 % of the optimal
solution in the basic example with T = 2, β = 3 for different time
windows.

Hours Optimal value 99 % optimal time Total time Time fraction
3 4842.4 2.6 s 10.7 s 24.2 %
4 6824.0 4.1 s 57.6 s 7.2 %
5 8807.2 5.7 s 705.6 s 0.8 %
6 10789.8 35.4 s 7499.1 s 0.5 %

46



to increase quite fast with the transition graph size, but not relative to the total
computation time. This means that the tailing off effect observed for the master
problem objective values becomes more severe when the problem size increases,
increasing the number of required iterations. Finding near-optimal solutions by
performing only a few iterations may eventually also become infeasible.

The results we have presented so far indicate that the complexity of the subprob-
lem is substantial, and it appears that applying the procedure directly to real-world
scenarios where the level of detail is much greater will be problematic. The computa-
tion time varies depending on a number of factors and has a generally unpredictable
nature. We see that near-optimal solutions can be found with only a few column
generation iterations, but we fear that the computation time of even a single itera-
tion will increase beyond acceptable limits as the problem size increases. Heuristic
methods are necessary to solve these problems.

5.4 Heuristic methods

We will now measure the performance of the heuristic method presented in Chapter
4. First we compare heuristic results with optimal solutions from the previous
section. We apply the heuristic to the same basic example problem with two patrol
units and fine size β = 3 for different durations. The results are presented in
Table 5.6. Here optimal refers to finding solution using the augment acceleration
strategy from Section 5.2 and Heuristic to the heuristic method.

Table 5.6: Testing the heuristic on the basic example network with
T = 2, β = 3 and different time windows.

Hours |E| Solver Iter. |Ψ>0| Comp. time Value % optimal

1 44
Optimal 3 3 0.2 s 824.0
Heuristic 3 3 < 0.1 s 824.0 100 %

2 92
Optimal 13 8 1.8 s 2857.0
Heuristic 15 10 0.4 s 2856.9 > 99.9 %

3 140
Optimal 35 19 10.8 s 4842.4
Heuristic 15 10 0.9 s 4801.5 99.2 %

4 188
Optimal 56 29 66.2 s 6824.0
Heuristic 29 15 3.1 s 6771.5 99.0 %

5 236
Optimal 77 36 771.6 s 8807.2
Heuristic 35 21 5.9 s 8706.0 98.9 %

6 284
Optimal 102 42 7499.1 s 10789.7
Heuristic 30 23 5.5 s 10666.8 98.9 %

7 332
Optimal N.A. N.A. > 7 hours N.A.
Heuristic 46 28 13.8 s 12569.6 N.A.

8 380
Optimal N.A N.A. N.A N.A.
Heuristic 84 37 54.3 s 14573.9 N.A.

The results reveal that the heuristic works well on the basic example, finding
solutions that are around 99 % of optimal in very reasonable amounts of time. Un-

47



fortunately finding the optimal solution for durations of seven hours or longer turned
out to be infeasible, and we can not evaluate the performance of the heuristic ob-
jectively in these cases. We see that the heuristic uses fewer iteration and produces
fewer joint patrols than the optimal solver in each experiment. This is because the
algorithm terminates early when the heuristic is unable to find a negative solution
of the subproblem.

To expose shortcomings of the heuristic we perform new test on two more elab-
orate example networks. The first network consists of the line L1 and the east half
of line L13 from Figure 1.1, and is illustrated in Figure 5.5. We refer to the network
as the medium sized example network, and show the transition graph for two hours
in Figure 5.6. The time table mimics the real time table currently in use on these
lines. The third network includes all regular stations east of Oslo S on lines L1,
L12, L13, L14 and R10 from Figure 1.1. We call this the large example network.
For space reasons we omit the train map and only show the transition graph for one
hour in Figure 5.7. In both examples there are two patrol units, both starting and
ending their patrols in t = 0 and t = tmax. One unit starts and ends at s0 (Oslo S)
while the other starts and ends at s12 (Lillestrøm).

In Table 5.7 we present optimal and heuristic solutions for both networks. This
time the optimal solution can only be computed for very modest time durations as
the level of detail is higher. To verify that the heuristic indeed also works on longer
time windows, we perform test with eight and twelve hour durations. This gives us
an idea of how the heuristic performs, but we can not measure its degree of success
in these cases.

Table 5.7: Testing the heursitic on more detailed example networks
with T = 2, β = 4 and different time windows. Comparisons are made
when optimal solutions can be found.

Network Hours |E| |Λ| Solver Iter. Time Value % opt.

Medium

1 421 709
Opt. 34 23.0 s 1227.0
Heur. 8 1.5 s 1212.6 98.8 %

2 843 2567
Opt. 93 864.8 s 3563.4
Heur. 10 8.6 s 3357.9 94.2 %

8 1993 6500 Heur. 24 356.1 s 15832.8 N.A.
12 2985 9956 Heur. 23 705.5 s 24235.0 N.A.

Large

1 421 709
Opt. 16 15.1 s 2368.9
Heur. 11 4.1 s 2328.0 98.3 %

2 843 2567
Opt. 68 2015.7 s 7713.0
Heur. 10 25.1 s 6403.6 83.0 %

8 3375 16094 Heur. 7 474.9 s 28229.1 N.A.
12 5063 25182 Heur. 16 2704.6 s 43794.0 N.A.

First we consider the results from the medium sized example network. For both
small time windows the heuristic finds a solution relatively quickly. When the time
window is two hours the heuristic solution value is within 94.2 % of the optimal
value. When we use time window of eight and twelve hours the computation time
increases up to 705.5 seconds. For the large example network we see similar results.

48



`0 = 〈s0, . . . , s12〉
`1 = 〈s0, s12, . . . , s20〉

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11
s12

s13

s14

s15

s16

s17

s18

s19

s20

(O
sl

o
S

)

(B
ry

n
)

(A
ln

a)

(N
y
la

n
d

)

(G
ro

ru
d

)

(H
a
u

ge
n

st
u

a
)

(H
øy

b
r̊a

te
n

)

(L
ør

en
sk

og
)

(H
an

a
b

or
g
)

(F
je

ll
h

a
m

a
r)

(S
tr

øm
m

en
)

(S
ag

d
al

en
)

(L
il

le
st

rø
m

)

(Leirsund)

(Frogner)

(Lindeberg)

(Kløfta)

(Jessheim)

(Nordby)

(Hauerseter)

(Dal)

Figure 5.5: The medium example network.

t = 0 t = 60 t = 120

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

s13

s14

s15

s16

s17

s18

s19

s20

t

Figure 5.6: Transition graph for two hours of the time table corre-
sponding to the medium example network in Figure 5.5.

49



t = 0 t = 60

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

s13

s14

s15

s16

s17

s18

s19

s20

s21

s22

s23

s24

s25

s26

s27

s28

s29

s30

s31

s32

s33

s34

s35

s36

s37

s38

s39

s40

t

Figure 5.7: Transition graph for one hour of the time table correspond-
ing to the large example network.

50



The heuristic solutions are found within seconds for small time windows, but when
the time window is twelve hours the computation time rises to about 45 minutes. We
also notice that the heuristic does poorly for the two hour time window, achieving a
value that is 83 % of the optimum. Although we were unable to judge the optimality
of the heuristic solutions for the larger examples, we can always shed light on the
quality of solutions by for example computing the resulting fare evasion rates or the
average income per passenger.

The reason for the observed drop in performance for the large example network
is unclear, but could be related to the path finding procedure used in the heuristic.
When paths are generated in the heuristic method the inspection requirement is
neglected. This can cause patrols to stay on trains longer than they should when
trains only can be inspected once. In the basic example network train lines are very
short and thus the effects of this are minimal. We will discuss a potential way of
dealing with this issue in the next chapter.

To find the source of the higher heuristic computation times we plot the master
problem and subproblem values and computation times in each iteration for the
experiments on the large example problem. The results are illustrated in Figure
5.8. The objective values for both problem are shown in Figures 5.8a and 5.8b
and behave similarly to when the optimal solver is applied. We do however notice
that the subproblem objective value spikes in the last iteration in the last two
experiments. The heuristic is unable to generate good joint patrols here, causing a
premature termination of the column generation procedure.

In Figures 5.8c and 5.8d the computation times for both problems in each itera-
tion is shown. This time it is the master problem that is the most time consuming
to solve. The cause of this is most likely the high number of passenger types |Λ| in
this network. We must point out that in our implementation the master problem
must be set up from scratch in every iteration, and this causes the computation time
to be artificially high. Using more elegant solvers this problem can be avoided.

As for the subproblem we see that even for the largest transition graph the
problem is solved in less than half a second, suggesting that there is a considerable
amount of leeway for more advanced heuristic methods. It is worth pointing out that
our chosen optimization problem solver is currently among the slowest MIPs solvers
available according to Mittelmann [7]. We see that commercial solvers outperform
GLPK which is freely available. We expect this trend to hold true for LPs as well,
and that finding heuristic solutions for large transition graphs is possible with the
appropriate tools.

The results presented in this section indicate that solving the inspector scheduling
problem using heuristic methods is a viable option. We were able to generate joint
patrols for a section of the NSB local train network with realistic levels of detail,
but we have refrained from attempting to find solutions for the entire network or
a complete working day. It is uncertain whether this would be computationally
feasible even with the simple heuristic we have presented.

51



(a) Master problem objective values (b) Subproblem objective values

(c) Master problem computation times (d) Subproblem computation times

Figure 5.8: Performance data for column generation procedure with the
heuristic subproblem solver applied to the large example with T = 2,
β = 4 and four different time windows.

52



Chapter 6

Concluding remarks and further
work

In this thesis we have presented the inspector scheduling problem and a recent
solution method applied in the Los Angeles Metro Rail system. With the aim of
solving the same problem in the NSB local train network in the south eastern part of
Norway we have suggested a different solution method based on column generation.
To deal with the computational complexity of finding optimal solutions we have
developed and presented a heuristic method. Both methods have been tested on
three different example network with promising results.

6.1 Model improvements

The procedure we have presented can be used as the foundation for a future inspector
scheduling application. In its present state the solution approach is very basic
but there are many additional features that could be incorporated to widen its
applicability. Due to the fact that patrols are represented explicitly we can add
different kinds of restrictions with relative ease. As a few examples we list support
for lunch breaks, time buffers between inspections and flexibility in starting and
ending positions for patrol units.

Our method can also serve as a decision making tool for service operators. Pa-
rameters can be varied in experiments to investigate the effects of for example differ-
ent patrol unit constellations and fine sizes. Passenger behaviour can be made more
realistic by introducing different groups of passengers as mentioned in Chapter 2.
We could also apply different objective functions to design patrols with other goals
in mind.

We have only given passengers the choice of either purchasing single tickets or
fare evading in this thesis, but other types of tickets could also be included. For
example a commuter would base his or hers decision of purchasing a subscription
ticket on the expected cost of fare evading over a period of time rather than for a
single trip. Giving passengers different ticket options may be possible by introducing
different passenger types for different tickets.

53



6.2 Heuristic improvements

The key area of future work lies in ensuring that high quality solutions can be found
in realistic settings. To achieve this we feel that more advanced heuristic methods
should be developed. A weakness of the current heuristic is the way in which patrol
paths are determined. To find patrol paths the inspection requirement is neglected,
potentially leading to inadequate paths. We have seen that the performance of the
heuristic drops on networks with realistic levels of detail and suspect that this is a
contributing cause.

We suggest a way of dealing with this issue. Paths are currently found using a
version of the DAG shortest path algorithm applied on the weighted transition graph.
Edges are given weights based on the restricted master problem dual variables, and
paths that maximize the sum of weights are suggested as patrol paths. We would
like the path finder algorithm to take the inspection requirement into consideration
to prevent patrol units from needlessly staying on inspected trains.

s0

s1

s2

s3

t

Figure 6.1: An altered transition graph where long edges and exiting
vertices (in red) replace ordinary train edges (dashed blue edges). The
path finding algorithm could be applied to this graph instead of the
ordinary transition graph to potentially obtain better results.

To do this we propose applying the same path finding algorithm on an altered
transition graph. An example of such a graph is given in Figure 6.1. Suppose we
are considering a vertex v in the transition graph that corresponds to a specific
departure d. The main idea is replacing the train edges with long edges from v to
all consecutive vertices v′ that correspond to arrivals of the same train. These are
shown in red in the figure. The long edges represent stays of different duration and
can be given weights according to the optimal inspection on corresponding edges in

54



the original transition graph. In this way the inspection requirement is incorporated.
To prevent patrol units of using more than one long edge per departure we introduce
exiting vertices along side regular vertices corresponding to train departures. Exiting
vertices are connected to the next consecutive vertices for their respective stations
as indicated in Figure 6.1, where the exiting vertices are illustrated as red dots.
Ordinary train edges are shown as dashed blue arrows.

By letting all long edges start in regular vertices and end in exiting vertices, using
more than one long edge per departure is impossible. After using the path finding
algorithm on the altered transition graph we can translate the path back to the
original transition graph, hopefully obtaining a better patrol path. The downside
of this approach is that the number of transition graph edges increases drastically.
It may also be time consuming to assign the correct weights to all edges. However,
given that the computational bottleneck of the current heuristic is solving the master
problem and not the subproblem, the impact of this drawback may not be very big
in practice.

Another possible cause of poor performance for the heuristic could be that patrols
are not coordinated very well. A potential improvement to consider would be a
mechanism that lets patrol units cooperate to a larger extent when generating patrol
paths. Currently patrols are generated greedily one by one by letting each new patrol
work around previously fixed patrols, and it may be possible to device some way for
patrols to be adapted to one another dynamically.

6.3 Other further work

As we commented in the introduction of this thesis, the inspector scheduling problem
is ambiguous and approachable from different angles. We have assumed that pas-
sengers know the probability of being inspected and make rational decisions based
on this knowledge. The former assumption is rather strong, and can only hold true
when the same scheduling scheme is used over long periods of time. An interesting
idea would be to device a system for registering fare evasion levels and dynamically
shifting inspection levels to different areas as needed. Alternatively one could model
the perceived probability of being inspected and let passengers base their actions on
this instead.

A problem related to scheduling inspections is challenge of designing a work
schedule for a crew of inspectors. We assumed that patrol unit starting times and
places were fixed, but this requirement could be relaxed. Usually working hours are
determined separately as working hours are regulated by strict laws. Combining this
problem with the inspector scheduling problem is conceivable and could potentially
lead to better results.

55



Bibliography

[1] A. Caprara, L. Kroon, M. Monaci, M. Peeters, and P. Toth. Passenger railway
optimization. In C. Barnhart and G. Laporte, editors, Handbook in OR & MS,
volume 14, pages 129–187. Elsevier B. V., 2007.

[2] V. Chvátal. Linear Programming. W. H. Freeman and Company, 1983. ISBN
9780716715870.

[3] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction To Algorithms.
MIT Press, 2001. ISBN 9780262032933.

[4] F. M. D. Fave, M. Brown, C. Zhang, E. Shieh, A. X. Jiang, H. Rosoff, M. Tambe,
and J. Sullivan. Security Games in the Field: an Initial Study on a Transit
System. In Proc. of the 13th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), May 2014. Available at: http://teamcore.
usc.edu/papers/2014/dellefave_aamas_2014_camera_ready.pdf.

[5] A. X. Jiang, Z. Yin, C. Zhang, M. Tambe, and S. Kraus. Game-theoretic Ran-
domization for Security Patrolling with Dynamic Execution Uncertainty. In
Proc. of the 12th International Conference on Autonomous Agents and Multia-
gent Systems (AAMAS), May 2013. Available at: http://teamcore.usc.edu/

papers/2013/aamas13-execution.pdf.

[6] S. Luber, Z. Yin, F. D. Fave, A. X. Jiang, M. Tambe, and J. P. Sullivan. Game-
theoretic Patrol Strategies for Transit Systems: the TRUSTS System and its
Mobile App (Demonstration). In Proc. of the 12th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), May 2013. Available at:
http://teamcore.usc.edu/papers/2013/AAMAS_2013_camera_ready.pdf.

[7] H. Mittelmann. Mixed integer linear programming benchmark (miplib2010),
March 2014. URL http://plato.asu.edu/ftp/milpc.html.

[8] L. Wolsey. Integer Programming. Wiley Series in Discrete Mathematics and
Optimization. Wiley, 1998. ISBN 9780471283669.

[9] Z. Yin, A. X. Jiang, M. P. Johnson, M. Tambe, C. Kiekintveld, K. Leyton-
Brown, T. Sandholm, and J. P. Sullivan. TRUSTS: Scheduling Randomized
Patrols for Fare Inspection in Transit Systems. In Proc. of the 24th Conference
on Innovative Applications of Artificial Intelligence (IAAI), 2012. Available at:
http://teamcore.usc.edu/papers/2012/iaai12-trusts.pdf.

56

http://teamcore.usc.edu/papers/2014/dellefave_aamas_2014_camera_ready.pdf
http://teamcore.usc.edu/papers/2014/dellefave_aamas_2014_camera_ready.pdf
http://teamcore.usc.edu/papers/2013/aamas13-execution.pdf
http://teamcore.usc.edu/papers/2013/aamas13-execution.pdf
http://teamcore.usc.edu/papers/2013/AAMAS_2013_camera_ready.pdf
http://plato.asu.edu/ftp/milpc.html
http://teamcore.usc.edu/papers/2012/iaai12-trusts.pdf


Appendix A

Primal and dual problem

In this section we derive the dual LP to the primal LP defined by (3.14). To do this
we first write the primal on the standard form

max
x

cTx

such that Ax = b,

x ≥ 0.

(A.1)

The dual of a maximization problem in standard form is given by

min
y

yT b

such that yTA ≤ cT .
(A.2)

To explicitly state the dual of (3.14) we start by rewriting the inequality con-
straints (3.14c) and (3.14d) as equality constraints by introducing slack variables sβk
and sρk such that

uk + sβk = β

M∑
k=1

ri,k qi ∀ k, (A.3)

uk + sρϕ = ρk ∀ k. (A.4)

The slack variables have vector forms

sβ =
[
sβk

]M
k=1

and sρ = [sρk]
M
k=1

and must all be positive for the original constraints to be satisfied:

sβk , s
ρ
k ≥ 0 ∀ k.

The variable vector x and the cost vector c in (A.1) can now be specified as

x =


u
q
sβ

sρ

 and c =


d

0N×1

0M×1

0M×1

 , (A.5)

57



where

d := [dk]
M
k=1 (A.6)

and 0m×n is matrix of zeros with dimensions m × n, in this case a column vector.
We now have that x, c ∈ RNx with Nx := N + 3M and

cTx =
M∑
k=1

dkuk.

The next task is to write the constraints (3.14b), (A.3) and (A.4) on the form
Ax = b. We begin by introducing

A1 :=
[
01×M 11×N 01×M 01×M

]
and b1 := [1],

where similarly 1m×n is a matrix of ones with dimensions m× n, in this case a row
vector. This way A1x = b1 is equivalent to (3.14b). Next we write (A.3) in matrix
form

[
IM×M 0M×N IM×M 0M×M

] 
u
q
sβ

sρ

 =
[
0M×M βP 0M×M 0M×M

] 
u
q
sβ

sρ

 .
Here we have used

R :=

 r1,1 . . . rN,1
...

. . .
...

r1,M . . . rN,M

 ∈ RM×N . (A.7)

Moving everything over to the left hand side we can write

A2 :=
[
IM×M −βR IM×M 0M×M

]
and b2 :=

[
0M×1

]
such that A2x = b2 is equivalent with (A.3). Finally we define

A3 :=
[
IM×M 0M×N 0M×M IM×M

]
and b3 := [ρ]

where

ρ := [ρk]
M
k=1 , (A.8)

such that A3x = b3 is equivalent to (A.4). Using

A =

A1

A2

A3

 =

01×M 11×N 01×M 01×M

IM×M −βR IM×M 0M×M
IM×M 0M×N 0M×M IM×M

 and b =

b1

b2

b3

 =

 1
0M×1

ρ

 (A.9)

we finally have that Ax = b and x ≥ 0 is equivalent to the original constraints given
by Equations (3.14b) - (3.14f). We can now write out the dual problem (A.2) using

58



the A-matrix in (A.9):

minimize
yq ,yβ ,yρ

yq +
M∑
k=1

ρk y
ρ
k (A.10a)

subject to yβk + yρk ≥ dk, ∀ k, (A.10b)

yq − β
M∑
k=1

ri,k y
β
k ≥ 0, ∀ i, (A.10c)

yβk , y
ρ
k ≥ 0, ∀ k. (A.10d)

59



Appendix B

Algorithms

Algorithm 6 Constructing V,E

V ← ∅ . Start with empty sets
E ← ∅
for (`j, t0, σ) ∈ D do

t′ ← t0
if σ = +1 then

sjm ← sjk for m = k from 1 to nj . Keep the station order
else if σ = −1 then

sjm ← sjnj+1−k for m = k from 1 to nj . Reverse the station order
end if
for m from 1 to nj − 1 do

v ← (sjm, t
′)

v′ ← (sjm+1, t
′ + τ(s, s′, `j)

V ← V ∪ {v, v′}
E ← E ∪ {(vv′)}
t′ ← t′ + twait

end for
end for
V ← V ∪ {(s, 0) : s ∈ S} ∪ {(s, tmax) : s ∈ S} . Adding start/end vertices
for si ∈ S do . Adding waiting edges

Vi ← {v = (s, t) : v ∈ V, s = si}
T̃i ← {t : (s, t) ∈ Vi}
t1 ← 0
repeat |Vi| − 1 times

T̃i ← T̃i \ {t1}
t2 ← min

(
{t : t ∈ T̃i}

)
E ← E ∪ {(vv′) = ((si, t), (si, t

′)) : v, v′ ∈ V, t = t1, t
′ = t2}

t1 ← t2
end repeat

end for

60



Algorithm 7 Constructing Λ

Λ← ∅
Vsorted ← {vk = (sk, tk) : k = 1, . . . |V |, vk ∈ V, tk ≥ tk+1}

. Reverse topological sort of V
for k = 1, . . . , |Vsorted| do . Iterate over vertices in backwards order

for s′ ∈ S \ {sk} do . Find paths to all other stations
λ← shortest path from (sk, tk) to some v′ = (s′, t′)
if there is a λ′ ∈ Λ starting in some v = (sk, t) ending in v′ then

Do nothing . λ is not sensible
else

Λ← Λ ∪ {λ}
end if

end for
end for

61



Algorithm 8 Find the longest path from vsource to vsink in the transition graph
G = (V,E) with edge weights ȳ

function Longest path(ȳ, vsource, vsink)
Vsorted ← {vi = (si, ti) : i = 1 . . . , n, vi ∈ V, ti ≤ ti+1, v0 = vsource, vn = vsink}

. Topological sort of vertices
for i = 1, . . . , n do

distvi ← −∞ . Distance from source v+
j to vi

predvi ← (÷) . Predecessor to vertex vi, if unknown then (÷)
end for
dist0 ← 0
pred0 ← (+) . No predecessor to the source, signify by (+)

for i = 0, . . . , n do
for e = (vi, u) ∈ δ+(vi) do

if distu < distvi + ȳe then
distu ← distvi + ȳe
predu ← vi

end if
end for

end for
u← vn
while predu 6= (+) do . Constructing the path backwards from predecessors

e← (predu, u)
path← [ e | path ]
u← predu

end while
xj ← [δ(e ∈ path)]e∈E
return xj

end function

Comments:
Note that a longest path problem in a DAG G is equivalent to the shortest path
problem in −G, where all edge weights are multiplied with −1. Also, in this algo-
rithm vertices are topologically sorted in Vsorted. A topological sort is an ordering of
vertices such that for any vertex in the ordering none the preceding vertices can be
reached. That is, there exits no path from this vertex to preceding vertices in the
topological sort.

62



Algorithm 9 Update edge weights ȳ = [ȳ]e∈E and uninspected fractions w̄ =
[w̄d]d∈D

function Update parameters(y,w)
for d ∈ D do

z̄d ← 1−
∑

e∈Γ(d)

T∑
j=1

wj,e

for e ∈ Γ(d) do
ȳe ← fe ye z̄d

end for
end for
return (ȳ, z̄)

end function

Algorithm 10 Find the optimal inspection fractions ŵj for a patrol path x̂j by
maximizing the sum of ȳ = [ȳe]e∈E

function Augment patrol(x̂j, ȳ, z̄)
ŵj ← 0
for d ∈ D do

Q← {e ∈ Γ(d) ∩ {e : x̂j,e = 1}
ẑd ← z̄d . Temporary uninspected fraction of departure d
while ẑd > 0 and |Q| > 0 do

e← arg maxe∈Q{ȳe}
Q← Q \ {e}
w̃ ← min{ẑd, fe − ŵj,e} . Maximum legal increase in ŵj,e
ẑd ← ẑd − w̃ . Update temporary uninspected fraction ẑd
ŵj,e ← ŵj,e + w̃ . Update potential inspection fraction ŵj,e

end while
end for
return ŵ

end function

63



Appendix C

Python code

Here we include the Python code written to perform the numerical experiments. We
have the following files:

1. solve single.py – The main script.

2. optimization.py – Solving of optimization problems, used by 1

3. heuristics.py – The heuristic method, used by 1

4. classes.py – Objects used in 2 and 3

5. NSBbasic.py – Initializes the basic example network, used in 1

6. NSBmedium.py – Initializes the medium sized example network, used in 1

7. NSBlarge.py – Initializes the large example network, used in 1

8. mapconstruct.py – Constructs transition graphs, used by 4, 5 and 6.

solve single.py

import pickle

import time

import sys , os

# Local:

import optimization as opt

import heuristics as heu

# Maps

import NSBbasic

import NSBmedium

import NSBlarge

# Output levels

showlvl = 0

printlvl = 0

if showlvl > 0: import trainplot as tplot

def main():

fine = 3 # Fine size

reps = 3 # Number of hours

insp = 3 # Number of inspectors per unit

ntms = 2 # Number of teams for the basic network

64



# Solver: ’opt’ or ’heur’

solver = ’opt’

# Acceleration strategy: ’none ’, ’augment ’ or ’contort ’

strategy = ’contort ’

# Network: ’basic ’, ’medium ’ or ’large’

network = ’basic’

solve(fine , reps , insp , ntms , solver , strategy , network)

def solve(fine , reps , insp , ntms , solver = ’heur’, strategy = ’augment ’, network =

’basic’):

postfixstr = ""

warning = ""

# Get the map

if network == ’basic’:

postfixstr += "B" + str(ntms) + "_"

(M,G,Dlists ,Tlists ,Phi ,lookup ,param) = NSBbasic.get_map(fine , reps , insp , ntms)

elif network == ’medium ’:

postfixstr += "M_"

(M,G,Dlists ,Tlists ,Phi ,lookup ,param) = NSBmedium.get_map(fine , reps , insp)

elif network == ’large’:

postfixstr += "L_"

(M,G,Dlists ,Tlists ,Phi ,lookup ,param) = NSBlarge.get_map(fine , reps , insp)

else:

raise Exception("Invalid map name!")

Psi = []

P = []

x0 = [[0] * param.num_edges for i in xrange(param.num_teams)]

w0 = [[0] * param.num_edges for i in xrange(param.num_teams)]

bpsi = [ (x0[t],w0[t]) for t in xrange(param.num_teams) ]

p = [0] * param.num_types

candidate_bpsi = [bpsi]

candidate_p = [p]

# Master problem

loop = True

it = 0

mpval , spval , mptime , sptime = [],[],[],[]

t0 = time.time()

told , tnew = 0, 0

while loop:

# Updating sets

for i in xrange(len(candidate_bpsi)):

Psi.append(candidate_bpsi[i])

P.append(candidate_p[i])

told = time.time()

(qval ,mpobj ,yb,yq) = opt.masterproblem(Psi , P, Phi , param , printlvl = printlvl)

tnew = time.time()

mptime.append(tnew -told) # Time spent solving the master problem

mpval.append(mpobj) # Value of the master problem objective

told = time.time()

if solver == ’opt’: (bpsi ,p,spobj ,status) = opt.subproblem(G, Dlists , Tlists ,

Phi , lookup , param , yb, yq, post = strategy , printlvl = printlvl )

if solver == ’heur’: (bpsi ,p,spobj ,status) = heu.subproblem(G, lookup , Tlists ,

Dlists , Phi , param , yb, yq )

tnew = time.time()

sptime.append(tnew -told) # Time spent solving the subproblem

spval.append(spobj) # Value of the subproblem objectuve

65



if status.flag == 0:

print "Exiting main loop: ", status.message

break

candidate_bpsi = [bpsi]

candidate_p = [p]

# Print status

print it , ", Master: ", mpobj , ", Sub: ", spobj , "nz: ", sum([int(i>1e-10) for

i in qval])

# Emergency brake

if qval[-1] == 0 and strategy == ’contort ’:

status.message += "Contort caused stalling , switched to augment. "

print "Warning: Switched from contort to augment"

strategy = ’augment ’

warning = ’stall’

it += 1

print ""

print "Val: ", mpobj

print ""

t1 = time.time()

print "Time spent: ", t1-t0

pass

if __name__ == ’__main__ ’:

main()

optimization.py

import pymprog

import time

# Local

import classes

def masterproblem(Psi , P, Phi , param , printlvl = 3):

""" Solve the restricted master problem with subset Psi """

mp = pymprog.model(’masterproblem ’)

u = mp.var(xrange(param.num_types),’U’)

q = mp.var(xrange(len(P)),’Q’,bounds =(0 ,1))

mp.max( sum(u[j]*Phi.demand[j] for j in xrange(param.num_types)) )

constraint = []

# q-constraints

qsum = mp.st( sum(q[j] for j in xrange(len(P))) == 1 )

tt = time.time()

# u-constraints

for i in xrange(param.num_types):

mp.st( u[i] <= param.ticket )

c = mp.st( u[i] <= param.fine*sum(q[j]*P[j][i] for j in xrange(len(P))) )

constraint.append(c)

mp.solve ()

mpobj = mp.vobj()

qval = [ q[i]. primal for i in xrange(len(P)) ]

# Dual variables

yb = [constraint[i].dual for i in xrange(param.num_types)]

yq = qsum.dual

return(qval , mpobj , yb, yq)

def subproblem(G, Dlists , Tlists , Phi , lookup , param , yb, yq , post = ’augment ’,

printlvl = 3):

""" Solve the subproblem for dual variables yb, yq"""

status = classes.StatusMessage ()

# Find y_e

ye = [0] * param.num_edges

for k in xrange(param.num_types):

for i in Phi.Plists[k]:

66



ye[i] += yb[k]

# Define problem and variables

sp = pymprog.model(’subproblem ’)

x = sp.var(xrange(param.num_teams),’X’)

w = sp.var(xrange(param.num_teams),’W’)

for t in xrange(param.num_teams):

x[t] = sp.var(xrange(param.num_edges),kind=bool)

w[t] = sp.var(xrange(param.num_edges),bounds =(0,1))

# sum of y not greater than 1 on each departure

for i in [a for a in xrange(len(Dlists)) if len(Dlists[a].d) > 0 ]:

sp.st( sum(sum(w[t][j] for j in Dlists[i].d) for t in xrange(param.num_teams))

<= 1 )

# w is less than x and f

for i in xrange(param.num_edges):

for t in xrange(param.num_teams):

sp.st( w[t][i] <= lookup.effect[i]*x[t][i] )

# x defines a path

for t in xrange(param.num_teams):

for i in xrange(param.num_nodes):

sp.st( sum(x[t][j] for j in lookup.e_in[i]) + int(Tlists[t][0] == i) - int(

Tlists[t][1] == i) == sum(x[t][j] for j in lookup.e_out[i]) )

# Primary objective function

sp.min( yq - param.fine * sum( sum(w[t][i] * ye[i] for i in xrange(param.

num_edges)) for t in xrange(param.num_teams) ) )

tt = time.time()

sp.solve ()

spobj = sp.vobj()

tol = 1e-9

# Check whether solution is worth adding to Psi or not

if sp.vobj() < -tol:

status.flag = 1

status.message = "Found negative subproblem solution"

if post == ’augment ’:

## Augment the joint patrol

# Secondary objective

sp.max( sum( sum(w[t][i] * lookup.evolume[i] for i in xrange(param.num_edges)

) for t in xrange(param.num_teams) ) )

# Additional constraints

[ sp.st( w[t][i] >= w[t][i]. primal for t in xrange(param.num_teams) for i in

xrange(param.num_edges) if w[t][i]. primal < 1 ) ]

[ sp.st( w[t][i] == 1 for t in xrange(param.num_teams) for i in xrange(param

.num_edges) if w[t][i]. primal >= 1 ) ]

[ sp.st( x[t][i] == x[t][i]. primal for t in xrange(param.num_teams) for i in

xrange(param.num_edges) ) ]

tt = time.time()

sp.solve ()

elif post == ’contort ’:

## Contort the joint patrol

ye = [ int( lookup.e2d[i] != -1 ) * sum( yb[k] for k in lookup.e2t[i] ) for i

in xrange(param.num_edges)]

# Secondary objective

sp.max( sum( sum(w[t][i] * lookup.evolume[i] for i in xrange(param.num_edges)

) for t in xrange(param.num_teams) ) )

# Additional constraints

[ sp.st( w[t][i] >= int( ye[i] > 0 ) * w[t][i]. primal for t in xrange(param.

num_teams) for i in xrange(param.num_edges) if w[t][i] < 1 ) ]

[ sp.st( w[t][i] == 1 for t in xrange(param.num_teams) for i in xrange(param.

num_edges) if w[t][i]. primal >= 1 and ye[i] > 0 ) ]

[ sp.st( x[t][i] >= int( ye[i] > 0 ) * x[t][i]. primal for t in xrange(param.

num_teams) for i in xrange(param.num_edges) ) ]

tt = time.time()

sp.solve ()

# Get the solution on the right form

xvec = [ [x[t][i]. primal for i in xrange(param.num_edges) ] for t in xrange(

param.num_teams) ]

wvec = [ [w[t][i]. primal for i in xrange(param.num_edges) ] for t in xrange(

param.num_teams) ]

bpsi = [ (xvec[t],wvec[t]) for t in xrange(param.num_teams) ]

67



pvec = [ sum( sum(w[t][i]. primal for i in Phi.Plists[k] ) for t in xrange(param

.num_teams) ) \

for k in xrange(param.num_types) ]

else:

status.flag = 0

status.message = "Positive solution of subproblem"

bpsi , pvec = -1, -1 # Return _something_

return (bpsi ,pvec ,spobj ,status)

heuristics.py

from heapq import heappush , heappop , heapify

from sys import maxint

import copy

# Local

import classes

import trainplot as tplot # Used to make plots

def subproblem(G, lookup , Tlists , Dlists , Phi , param , yb, yq ,):

""" Find a heuristic solution to the subproblem """

status = classes.StatusMessage ()

# Find y_e

ye = [ int( lookup.e2d[i] != -1 ) * sum( yb[k] for k in lookup.e2t[i] ) for i in

xrange(param.num_edges)]

# Initialize variables

bpsi = [ ([0] * param.num_edges , [0] * param.num_edges) for t in xrange(param.

num_teams)]

Q = set(range(param.num_teams))

while Q:

H = [] # Empty heap

for t in Q:

# Source and sink

iv_so = Tlists[t][0]

iv_si = Tlists[t][1]

# Update parameters

(ybar , zbar) = update_parameters(lookup , param , Dlists , bpsi , ye)

# Heuristic path

xj = dagshortestpath(G, lookup , param , iv_so , iv_si , ybar)

wj = augment_patrol(param , lookup , Dlists , xj, ybar , zbar)

psi = (xj, wj)

Uj = sum( wj[i] * ye[i] for i in xrange(param.num_edges)) # Find utility

of psi

# Push into heap

heappush(H, (-Uj, psi , t))

# Find the psi with highest utility

(dummy , psi , a) = heappop(H)

# Add this psi to bpsi

bpsi[a] = copy.deepcopy(psi) # Fix the psi

Q.remove(a)

# Objective value

spobj = yq - param.fine * sum( sum( bpsi[t][1][i] * ye[i] for i in xrange(param.

num_edges) ) for t in xrange(param.num_teams) )

# Find probability

pvec = [ sum( sum(bpsi[t][1][i] for i in Phi.Plists[k] ) for t in xrange(param.

num_teams) ) for k in xrange(param.num_types) ]

if spobj > -1e-10:

status.flag = 0

status.message += "Positive heuristic solution of subproblem"

else:

status.flag = 1

status.message = "Found negative heuristic subproblem solution"

return (bpsi , pvec , spobj , status)

def update_parameters(lookup , param , Dlists , bpsi , ye):

zbar = [ 1 - sum(sum(bpsi[t][1][i] for t in xrange(param.num_teams)) \

for i in Dlists[nd].d) for nd in xrange(param.num_deps) ]

ybar = [0] * param.num_edges

for nd in xrange(param.num_deps):

for i in Dlists[nd].d:

r = 0

68



ybar[i] = zbar[nd] * ( r * ye[i] + (1-r) * ye[i] * lookup.effect[i] )

return (ybar , zbar)

def augment_patrol(param , lookup , Dlists , xj, ybar , zbar):

# Paths in bpsi

pathset = set([i for i in xrange(param.num_edges) if xj[i] == 1])

wj = [0] * param.num_edges

for nd in xrange(param.num_deps):

Q = pathset.intersection( set(Dlists[nd].d) )

zhat = zbar[nd]

while zhat > 0 and Q:

(dummy , ie) = max( sorted ([( ybar[i], i) for i in Q]) )

Q.remove(ie)

use = min(zhat , lookup.effect[ie])

zhat -= use

wj[ie] += use

return wj

def dagshortestpath(G, lookup , param , start , stop , ybar):

first = lookup.order.index(start)

last = lookup.order.index(stop)

dist = {}

pred = {}

for iv in lookup.order:

dist[iv] = -maxint

pred[iv] = -1

dist[lookup.order[first ]] = 0

for iv in lookup.order[first:last]:

for ie in lookup.e_out[iv]:

iu = lookup.v2i[G.Elist[ie][1]]

addition = ybar[ie]

if dist[iu] < dist[iv] + addition:

dist[iu] = dist[iv] + addition

pred[iu] = iv

# Backtrace the path

node = stop

path = [stop]

while not pred[node] == -1:

node = pred[node]

path.append(node)

path.reverse ()

# Make edge path from vertex path

path_edge = [ lookup.e2i[(G.Vlist[path[i]],G.Vlist[path[i+1]])] for i in xrange(

len(path) -1)]

# Make x_j -vector from edge path

xj = [int(i in path_edge) for i in xrange(param.num_edges)]

return xj

classes.py

class StatusMessage(object):

def __init__(self):

self.flag = -1

self.message = ""

class Job(object):

def __init__(self ,level ,value ,fixstatus ,fixedpaths):

self.level = level

self.value = value

self.fixstatus = fixstatus

self.fixedpaths = fixedpaths

class TrainLine(object):

def __init__(self ,l,c):

self.l = l

self.c = c

class TrainDeparture(object):

def __init__(self ,d,c):

self.d = d

self.c = c

class TrainMap(object):

69



def __init__(self ,S,L):

self.S = S

self.L = L

class TransitionGraph(object):

def __init__(self ,Vlist ,Elist):

self.Vlist = Vlist

self.Elist = Elist

class Lookup(object):

def __init__(self):

self.e_out , self.e_in , self.v2i , self.e2i , self.e2d , self.e2t , self.evolume ,

self.effect , self.order = [], [], [], [], [], [], [], [], []

class Parameters(object):

def __init__(self):

self.num_edges , self.num_teams , self.num_types , self.num_nodes , self.num_stats ,

self.num_deps , self.ticket , self.fine , self.insprate , self.tmax , self.

twait = [], [], [], [], [], [], [], [], [], [], []

class PassengerInfo(object):

def __init__(self):

self.Plists = []

self.demand = []

NSBbasic.py

# Local

import classes

import mapconstruct

def get_map(finesize , repetitions , inspectors , nteams , printlvl = 0):

S = range (6)

busyness = [7, 10, 5, 3, 5, 6]

l21 = classes.TrainLine ([1,3,4,5], [0 ,116 ,157])

dl21 = [12 ,11 ,26]

l22 = classes.TrainLine ([1,2,4], [162 ,131 ,175])

dl22 = [10 ,11]

lx = classes.TrainLine ([1,0], [240 ,178 ,55])

dlx = [10]

L = [l21 ,l22 ,lx]

Ldist = [dl21 ,dl22 ,dlx]

M = classes.TrainMap(S,L)

ticket = 1

fine = finesize

tau = {}

for il,l in enumerate(L):

for i in xrange(len(l.l) -1):

tau[(l.l[i], l.l[i+1], l)] = Ldist[il][i]

tau[(l.l[i+1], l.l[i], l)] = Ldist[il][i]

tw = 1

D = []

starthour = 8

endhour = starthour + repetitions

for i in xrange (-2,3*(endhour -starthour)):

D.append ((lx , 14+i*20, 1)) #L13

D.append ((lx , 6+i*20, -1)) #L13

for i in xrange (-2,1*(endhour -starthour)):

D.append ((l21 , 18+i*60, 1)) #L21

D.append ((l21 , 31+i*60, -1)) #L21

D.append ((l22 , 31+i*60, 1)) #L22

D.append ((l22 , 38+i*60, -1)) #L22

insprate = 7* inspectors

starttime = 0

endtime = 60 * repetitions

(G,lookup ,param ,Dlists ,Phi) = mapconstruct.build_G(S, D, tau , tw, starttime ,

endtime , printlvl = printlvl)

(Phi ,lookup) = mapconstruct.populate_G(G, lookup , param , D, Dlists , Phi , insprate

, busyness , printlvl = printlvl)

70



param.ticket = ticket

param.fine = fine

# Make teams

T = [ ((1, 0) ,(1, param.tmax)) for t in xrange(nteams) ]

Tlists = []

for t in xrange(len(T)):

Tlists.append( (lookup.v2i[T[t][0]], lookup.v2i[T[t][1]]) )

param.num_teams = len(Tlists)

return (M,G,Dlists ,Tlists ,Phi ,lookup ,param)

NSBmedium.py

import numpy as np

# Local

import classes

import mapconstruct

def get_map(finesize , hours , inspectors , printlvl = 0):

ticket = 1

fine = finesize

S = range (21)

sizes = {0:10, 1:2, 2:2, 3:1, 4:3, 5:1, 6:1, 7:1, 8:1, 9:1, 10:1, 11:1, 12:5,

13:1, 14:1, 15:1, 16:3, 17:3, 18:1, 19:1, 20:3}

L1 = classes.TrainLine ([0,1,2,3,4,5,6,7,8,9,10,11,12], [222 ,81 ,146])

dL1 = [4,3,3,2,2,2,2,2,2,2,2,3]

L13 = classes.TrainLine ([0,12,13,14,15,16,17,18,19,20], [231 ,129 ,51])

dL13 = [10,7,3,3,4,9,2,3,7]

L = [L1 ,L13]

Ldist = [dL1 ,dL13]

M = classes.TrainMap(S,L)

tau = {}

for il,l in enumerate(L):

for i in xrange(len(l.l) -1):

tau[(l.l[i], l.l[i+1], l)] = Ldist[il][i]

tau[(l.l[i+1], l.l[i], l)] = Ldist[il][i]

tw = 1

D = []

starthour = 8

endhour = starthour + hours

for i in xrange (-2,2*(endhour -starthour)):

D.append ((L1 , 11+i*30, 1))

D.append ((L1 , 10+i*30, -1))

D.append ((L13 , 14+i*30, 1))

D.append ((L13 , 23+i*30, -1))

insprate = 7 * inspectors

starttime = 0

endtime = 60 * hours

(G,lookup ,param ,Dlists ,Phi) = mapconstruct.build_G(S, D, tau , tw, starttime ,

endtime)

(Phi ,lookup) = mapconstruct.populate_G(G, lookup , param , D, Dlists , Phi , insprate

, sizes)

param.ticket = ticket

param.fine = fine

# Make teams

T1 = ((0,0) ,(0,param.tmax))

T2 = ((12 ,0) ,(12,param.tmax))

T = [T1,T2]

Tlists = []

for t in xrange(len(T)):

Tlists.append( (lookup.v2i[T[t][0]], lookup.v2i[T[t][1]]) )

71



param.num_teams = len(Tlists)

return (M,G,Dlists ,Tlists ,Phi ,lookup ,param)

NSBlarge.py

import numpy as np

# Local

import classes

import mapconstruct

def get_map(finesize , hours , inspectors , printlvl = 0):

ticket = 1

fine = finesize

S = range (41)

sizes = {0:10, 1:1, 2:1, 3:1, 4:2, 5:1, 6:1, 7:2, 8:1, 9:1, 10:1, 11:1, 12:7,

13:1, 14:1, 15:1, 16:3, 17:3, 18:1, 19:5, 20:1, 21:1, 22:1, 22:4, 23:1, 24:1,

25:3, 26:3, 27:1, 28:1, 29:4, 30:1, 31:1, 32:1, 33:2, 34:1, 35:1, 36:1,

37:1, 38:1, 39:1, 40:5}

L1 = classes.TrainLine ([0,1,2,3,4,5,6,7,8,9,10,11,12], [222 ,81 ,146])

dL1 = [4,3,3,2,2,2,2,2,2,2,2,3]

R10 = classes.TrainLine ([0,12,17,19,20,21,22,23,24,25], [163 ,17 ,48])

dR10 = [10,13,11 ,26,10,9,15 ,12,24]

L12 = classes.TrainLine ([0,12,17,18,19], [215 ,22 ,42])

dL12 = [10,13,8,4]

L13 = classes.TrainLine ([0,12,13,14,15,16,26,27,28,29], [231 ,129 ,51])

dL13 = [10,7,3,3,4,9,2,3,7]

L14 = classes.TrainLine ([0 ,12 ,30 ,31 ,32 ,33 ,34 ,35 ,36 ,37 ,38 ,39 ,40] ,[240 ,178 ,55])

dL14 = [10,6,3,2,10,5,3,2,3,7,14,13]

L = [L1 ,R10 ,L12 ,L13 ,L14]

Ldist = [dL1 ,dR10 ,dL12 ,dL13 ,dL14]

M = classes.TrainMap(S,L)

tau = {}

for il,l in enumerate(L):

for i in xrange(len(l.l) -1):

tau[(l.l[i], l.l[i+1], l)] = Ldist[il][i]

tau[(l.l[i+1], l.l[i], l)] = Ldist[il][i]

tw = 1

D = []

starthour = 8

endhour = starthour + hours

for i in xrange(-3, 2*( endhour -starthour)):

D.append ((L1 , 11+i*30, 1))

D.append ((L1 , 10+i*30, -1))

D.append ((L12 , 54+i*30, 1))

D.append ((L12 , 31+i*30, -1))

D.append ((L13 , 14+i*30, 1))

D.append ((L13 , 23+i*30, -1))

for i in xrange(-3, 1*( endhour -starthour)):

D.append ((R10 , 34+i*60, 1))

D.append ((R10 , 10+i*60, -1))

D.append ((L14 , 4+i*60, 1))

D.append ((L14 , 34+i*60, -1))

insprate = 20

starttime = 0

endtime = 60 * hours

(G,lookup ,param ,Dlists ,Phi) = mapconstruct.build_G(S, D, tau , tw, starttime ,

endtime)

(Phi ,lookup) = mapconstruct.populate_G(G,lookup ,param ,D,Dlists ,Phi ,insprate ,sizes

)

param.ticket = ticket

param.fine = fine

# Make teams

72



T1 = ((0,0) ,(0,param.tmax))

T2 = ((12 ,0) ,(12,param.tmax))

T = [T1,T2]

Tlists = []

for t in xrange(len(T)):

Tlists.append( (lookup.v2i[T[t][0]], lookup.v2i[T[t][1]]) )

param.num_teams = len(Tlists)

return (M,G,Dlists ,Tlists ,Phi ,lookup ,param)

mapconstruct.py

import os

import pickle

import copy

from operator import itemgetter

from sys import maxint

from heapq import heappush , heappop

import numpy as np

from scipy.optimize import minimize

import pymprog

# Local

import classes

def build_G(S, D, tau , tw, starttime , endtime , printlvl = 0):

""" Construct the transition graph """

lookup = classes.Lookup ()

param = classes.Parameters ()

param.num_stats = len(S)

param.num_deps = len(D)

Vset = set ([])

Eset = set ([])

Dedges = [] # Dlists , containing edges

if printlvl >= 3: print "Starting part 1"

tmax = 0

# Algorithm 1

for (line , t2, dway) in D:

seq = copy.deepcopy(line.l)

dedge = [] # List of edges (v1,v2) in the departure

if dway == -1:

seq.reverse ()

for i in xrange(len(seq) -1):

# Make vertices v1 , v2 and edge e

s1, s2 = seq[i], seq[i+1]

t1, t2 = t2, t2 + tau[s1, s2, line]

v1, v2 = (s1, t1), (s2, t2)

e = (v1 , v2)

if t1 >= starttime and t2 <= endtime:

Vset.add(v1)

Vset.add(v2)

Eset.add(e)

dedge.append(e)

if t2 > tmax: tmax = t2 # Update tmax

t2 = t2 + tw # Add waiting time

# Add the departure edge list

73



Dedges.append(dedge)

param.tmax = tmax

param.twait = tw

if printlvl >= 3: "Starting part 2"

# Adding start time and end time vertices

for i in xrange(param.num_stats):

Vset.add((i,0))

Vset.add((i,param.tmax))

# Adding waiting edges

for i in xrange(param.num_stats):

times = sorted ([y for (x,y) in Vset if x == i])

for j in xrange(len(times) -1):

v1 = (i,times[j])

v2 = (i,times[j+1])

e = (v1 ,v2)

Eset.add(e)

param.num_nodes = len(Vset)

param.num_edges = len(Eset)

if printlvl >= 3: "Starting part 3"

# Assign indices to vertices and edges , make dictionaries

v2i = {}

e2i = {}

Vlist = []

Elist = []

for i,v in enumerate(Vset):

v2i[v] = i

Vlist.append(v)

e_out = [set ([]) for i in xrange(param.num_nodes)]

e_in = [set ([]) for i in xrange(param.num_nodes)]

for i,e in enumerate(Eset):

# Edge

e2i[e] = i

Elist.append(e)

# Vertex

(u,v) = e

iu, iv = v2i[u], v2i[v]

e_out[iu].add(i)

e_in[iv].add(i)

G = classes.TransitionGraph(Vlist , Elist)

lookup.v2i = v2i

lookup.e2i = e2i

lookup.e_out = e_out

lookup.e_in = e_in

if printlvl >= 3: "Starting part 4"

# Find the indices of the ordered edges for each departure

Dlists = []

e2d = [-1] * param.num_edges

for nd,dedge in enumerate(Dedges):

(line , t2, dway) = D[nd]

dedge_idx = []

for i,e in enumerate(dedge):

ie = e2i[e]

dedge_idx.append(ie)

e2d[ie] = nd

dlist = classes.TrainDeparture(dedge_idx , line.c)

Dlists.append(dlist)

lookup.e2d = e2d

74



if printlvl >= 3: "Starting part 5 (find paths)"

# Make types with transfers

sortVlist = sorted(G.Vlist ,key=itemgetter (1))

# Save the chronological order for later

order = [ v2i[sortVlist[i]] for i in xrange(param.num_nodes) ]

lookup.order = order

sortVlist.reverse ()

journeymap = {}

for io,v in enumerate(sortVlist):

if printlvl >= 4: "Iteration ", io, "/", len(sortVlist)

(s0 , t0) = v

iv = v2i[v]

# Find potential paths

path = shortest_train_rides(G, lookup , param , iv)

# Filter paths

for s1,p in enumerate(path):

add = True

if len(p) > 0: # There is a path

# keys to previously existing paths between s0 and s1

prekeys = [(a,b,c) for (a,b,c) in journeymap if a == s0 and b == s1]

# r are those paths

# if the last edge in new path p is equal to the last edge in an existing

# path , do not add.

if p[-1] in [r[-1] for r in [journeymap[k] for k in prekeys ]]:

add = False

else: # Empty path , do not add

add = False

if add:

journeymap[s0,s1,t0] = p

if printlvl >= 3: "Starting part 5.5 (append paths)"

Plists = []

for key in journeymap:

path = journeymap[key]

trainpath = [ ie for ie in path if not e2d[ie] == -1 ]

Plists.append(trainpath)

param.num_types = len(Plists)

e2t = [ [k for k in xrange(len(Plists)) if i in Plists[k]] for i in xrange(len(

Elist)) ]

lookup.e2t = e2t

Phi = classes.PassengerInfo ()

Phi.Plists = Plists

return (G,lookup ,param ,Dlists ,Phi)

def populate_G(G,lookup ,param ,D,Dlists ,Phi ,insprate ,busyness , printlvl = 0):

if printlvl >= 3: "Starting part 6 (determine passenger type demand)"

param.insprate = insprate

demand = [ max(1, round (0.2 * (( busyness[G.Elist[Phi.Plists[k][0]][0][0]] *

busyness[G.Elist[Phi.Plists[k][ -1]][1][0]]) ** 1.5 ))) for k in xrange(param.

num_types) ]

evolume = [0] * param.num_edges

effect = [0] * param.num_edges

for i in xrange(param.num_edges):

75



etime = G.Elist[i][1][1] - G.Elist[i][0][1]

if not lookup.e2d[i] == -1:

evolume[i] = sum( demand[k] for k in lookup.e2t[i] )

effect[i] = min(1, (insprate * etime)/float(evolume[i]) )

# Assigning edge passenger volumes

lookup.evolume = evolume

lookup.effect = effect

Phi.demand = demand

return (Phi ,lookup)

def shortest_train_rides(G, lookup , param , iv_start):

""" Find the shortest path from a vertex other stations """

(stat_start , time_start) = G.Vlist[iv_start]

dist = [maxint] * param.num_nodes

pred = [-1] * param.num_nodes

statdist = [maxint] * param.num_stats

statdist[stat_start] = 0

endnode = [-1] * param.num_stats

dist[iv_start] = 0

statdist[stat_start] = 0

Q = []

heappush(Q,(0, iv_start))

while Q:

q = heappop(Q)

iu = q[1]

curdist = G.Vlist[iu][1] - time_start

if max(statdist) <= curdist:

# Found all other stations

break

for ie in lookup.e_out[iu]:

iv = lookup.v2i[G.Elist[ie ][1]]

nustat = G.Vlist[iv][0]

nutime = G.Vlist[iv][1]

nudist = nutime - time_start

if dist[iv] > nudist:

dist[iv] = nudist

pred[iv] = iu

heappush(Q,(nudist ,iv))

if statdist[nustat] > nudist:

statdist[nustat] = nudist

endnode[nustat] = iv

vpath = [[] for i in xrange(param.num_stats)]

epath = [[] for i in xrange(param.num_stats)]

for i in xrange(param.num_stats):

iu = endnode[i]

if iu != -1:

vpath[i]. append(iu)

while iu != iv_start:

iu = pred[iu]

vpath[i]. append(iu)

vpath[i]. reverse ()

for j in xrange(len(vpath[i]) -1):

epath[i]. append(lookup.e2i[G.Vlist[vpath[i][j]],G.Vlist[vpath[i][j+1]]])

return epath

76


	Abstract
	Sammendrag
	Preface
	Introduction
	TRUSTS
	Fare Inspection Optimization
	The LA Metro
	TRUSTS Problem setting
	Linear optimization problem (LP) formulation
	Constraining patrol duration
	Discussion

	Explicit formulation
	NSB local train network
	Differences from the LA Metro

	Train Networks
	Inspection model
	Optimization modelling
	Master problem
	Dual problem
	Column Generation
	Subproblem

	Solution methods

	Heuristics and acceleration strategies
	Interpreting the subproblem
	Acceleration strategies
	Heuristic methods

	Numerical results
	Basic example network
	Acceleration strategies
	Scalability and behaviour
	Heuristic methods

	Concluding remarks and further work
	Model improvements
	Heuristic improvements
	Other further work

	Bibliography
	Primal and dual problem
	Algorithms
	Python code

