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Abstract
A reservoir manager at a hydropower plant has to decide whether or not to release water in
order to produce electricity, and the level at which to produce. These production levels have
different related efficiencies as well as other related technical aspects. Often, the plant will
produce at the most efficient, i.e. release water at a rate that produces the highest amount
of electricity per unit of water. In this thesis, a structural estimation model was applied to
an undisclosed hydropower plant in the Norwegian electricity price zone NO5, in order to
discover the managers’ preferences related to the different production levels. This model
is based on time series models in order to replicate the managers’ expectations of future
conditions. The results show a greater willingness of the manager to produce at levels
below than above the best efficiency point, which we argue is mainly due to the increased
level of cavitation. They also imply that the reservoir managers’ preferences have changed
over time, showing an increased willingness to produce at production levels both above
and below the most efficient level.
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Sammendrag
En produksjonsplanlegger ved et vannkraftverk må bestemme når det skal slippes ut vann
for å produsere elektrisitet og på hvilket nivå det skal produseres. Produksjonsnivåene har
forskjellige effektivitetsnivå, i tillegg til andre tekniske aspekter som kavitasjon. Vannkraftver-
ket vil ofte produsere på det mest effektive nivået, det vil si at det slippes ut vann ved en
hastighet som produserer den største mengden elektrisitet per enhet vann. Det kan allikevel
observeres at dette ikke alltid stemmer. I denne oppgaven blir en strukturell estimerings-
modell brukt på et vannkraftverk i det norske prisområdet NO5 for å avdekke produksjon-
splanleggerens preferanser relatert til de forskjellige produksjonsnivåene. Denne modellen
er basert på tidsseriemodeller for å gjenskape planleggerens forventninger om framtidige
forhold. Resultatene viser en større tilbøyelighet til å produsere på nivåer under enn over
nivå et med høyest effektivitet, hvilket vi argumenterer for at hovedsakelig er på grunn av
økte kavitasjonsskader på disse nivåene. Resultatene antyder også at planleggerens prefer-
anser har endret seg over tid ved en økt tilbøyelighet til å produsere på både høyere og
lavere nivåer enn det mest effektive.
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Chapter 1
Introduction

A manager of a hydropower plant has the choice of releasing water and generating elec-
tricity or saving this water for later and, hopefully, making a greater return. His choices
depend on his current conditions and on his expectations for future conditions, such as in-
flow, the water collected in the reservoir from nearby areas, and the price of electricity. In
hydropower production, water can be considered the fuel used for generating electricity.
This fuel, however, is not bought and filled into the reservoir at a time of convenience.
Rather, it is determined by the precipitation in nearby areas and the melting of snow.

Hydropower plants use different forecasting methods to predict the future expected con-
ditions and determine a production schedule which will provide them with the greatest
returns. The forecasted conditions are essential to the choices being made by the reservoir
manager. By making our own expectations of the future conditions and applying a struc-
tural estimation model, we attempt to analyze these choices. By comparing the choices
made, the current surrounding conditions, and the expected future conditions, parameters
related to the manager’s preferences can be estimated. The main goal of this model is
to describe and analyze the choices the producer makes and the power plant’s production
policy, rather than improve returns.

The Nordic countries have a deregulated market for trading of electrical energy. In addi-
tion to a deregulated market, a hydropower producer also faces technical difficulties as to
which production level to choose in order to make the end return as high as possible. A
turbine has a specific efficiency curve that incentivizes production at the best efficiency
point (BEP). However, producing at a higher level when prices are high might result in
a higher total return despite the loss of efficiency. Likewise, producing at a lower level
in order to store water when anticipating a rising price level, might also result in higher
returns. Further, the production efficiency curve changes over time due to damages to the
turbine. In addition, some levels of production entail certain problems, such as increased
maintenance costs, cavitation etc. The production policy that the operator uses might hide
economic preferences which are not explained by the mechanical loss of efficiency itself.
Discovering these preferences can be valuable in the analysis of a hydropower plant, both
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for outsiders and for the reservoir managers themselves. The results can be used in internal
discussions of whether they reflect the intended operational policy of the plant.

In this thesis we apply structural estimation theory of Markov decision processes to a
hydropower planning problem in order to discover and describe the behaviour and pref-
erences of the reservoir manager at a hydropower plant. The model is based on previous
work by Su and Judd (2012), Fleten et al. (2015), and Boger and Vestbøstad (2016). The
model is applied on two different hydropower plants located in the Norwegian electricity
price zones NO4 and NO5. The results show how the producer prioritizes the production
levels.

Structural estimation was first applied to a switching problem by Rust (1987). The prob-
lem considered the optimal switching of bus engines for the maintenance department. He
analyzed the action made by the decision maker, which were either to replace the engine,
incurring the connected cost, or to wait. Waiting resulted in an increased risk of engine
failure, which in itself incurred a cost in addition to damages to customer goodwill. Rust
approached the decision-making problem inversely. Rather than using specific assump-
tions about the objective function and the stochastic process, he tried to infer these from
the data. This way it was possible to uncover unobservable preferences and expectations
of the decision-maker. According to Rust (1994), structural estimation models are able to
predict more accurately the impacts of policy changes than reduced form models.

In order to estimate the structural parameters in a stochastic dynamic programming prob-
lem, Rust used an algorithm called the Nested Fixed Point (NFXP) algorithm. This al-
gorithm is separated in two loops. The inner loop solves the stochastic dynamic pro-
gramming model and the outer loop searches for structural parameters that maximizes the
likelihood of the data. Su and Judd (2015) found the NFXP-algorithm computationally
demanding due to iterating over all structural parameter values and then solving the under-
lying stochastic dynamic programming problem for each structural parameter value. They
proposed a constrained optimization model referred to as the Mathematical Program with
Equilibrium Constraint (MPEC) approach. This approach does not have an inner loop that
runs for each iteration of the outer loop, but uses instead the stochastic dynamic program-
ming model as a constraint in the maximization of the likelihood. Using this approach,
the only stochastic dynamic programming model to be solved accurately is the one corres-
ponding to the final estimate of the structural parameter. MPEC’s computational advantage
over NFXP is the reason why it is utilized when applying the structural estimation model
in this thesis.

The planning problem of a hydropower producer can be treated as a dynamic problem,
since a certain decision changes the level of the reservoir, thereby affecting future po-
tential production. The problem is stochastic because of the uncertainty in the variables
influencing the decisions, such as inflow and electricity price. The result is a stochastic
dynamic problem (SDP), suitable for the MPEC approach by Su and Judd (2012). Mod-
elling the hydropower planning problem as an SDP has earlier been done by Fosso et al.
(1999), Mo et al. (2001), Fleten et al. (2002) and Wolfgang et al. (2009).
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A parametric approach is used for the transition probabilities between the states in the
structural estimation model, as suggested by Fleten et al. (2016). A state is characterized
by the current electricity price, the inflow, the reservoir level, the deviation from cumulat-
ive inflow, and the deviation from the aggregate reservoir level. The parametric approach
involves time series modeling of the state variables as Markovian processes, where the
next state is only dependent on the previous one. The goal is to capture the dynamics
of these state variables in order to successfully apply the structural estimation model. The
state variables in this thesis are modeled in a similar way as done by Kolsrud and Prokosch
(2010) and Boger and Vestbøstad (2016).

Structural estimation has earlier been utilized on a wide number of different problems.
Rust and Rothwell (1995) and Rothwell and Rust (1997) applied it to electricity related
problems, like regulatory shifts and optimal lifetime for a nuclear power plant. Rapson
(2014) studied the timing of appliance investment, Kellog (2014) applied structural es-
timation to well drilling and Lin and Thome (2013) used it for corn-ethanol plant invest-
ment. In 2016, Fleten et al. applied it to maintenance and switching costs of peak power
plants. Structural estimation was applied to hydropower planning by Boger and Vestbøstad
(2016).

The next chapter presents the Nordic energy market and the technical basics of hydropower
production. Further, structural estimation, Markov Decision processes and the state space
transitions are explained. We then elaborate on the underlying time series models for the
state variables and how they are connected. The results of the model in terms of marginal
water value and production preferences are then presented and analyzed.
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Chapter 2
Hydropower and the Nordic energy
market

2.1 The Nordic energy market
The Nordic countries decided in the 1990’s to deregulate the market for trading elec-
trical energy, leaving behind the landscape of a traditional monopolistic and government-
controlled power sector (Weron and Misiorek, 2008). As of today, Nord Pool is Europe’s
leading power market. Nord Pool offers trading, clearing, and settlement in both day-
ahead markets and intraday markets across nine European countries. The Elspot market,
also referred to as the day-ahead market, is the primary market for power trading. Agree-
ments are made between sellers and buyers for the delivery of power, hour-by-hour the
following day. The intraday market, also called the Elbas market, supplements the Elspot
market and helps secure the necessary balance between supply and demand. In this market,
hourly contracts are continuously traded in the period between clearance in the day-ahead
market and up to one hour before the hour of operation (IBP, 2015).

A power market needs a connected and well-developed grid with access for all players
to be effective. The operation and management related to the grid is monopolistic, and
there is no competition within these sectors (Weron and Misiorek, 2008). To prevent grid
companies to exploit this position, authorities have put in place strict regulations on their
operations as monopolies. As of today, Statnett is the main grid operator and owner in
Norway.

The power market distinguishes between wholesale and end-users. In the wholesale mar-
ket, large volumes are bought and sold between power producers, power suppliers, brokers,
energy companies and large scale consumers. In the Nordic countries, these players trade
on Nord Pool Spot. In the end-user market, individual consumers enter agreements to
purchase power from a supplier of their own choice. The end-user market in Norway
consists of one third household customers, one third industry and one third medium sized
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consumers. By medium sized consumers, we consider hotels and chain stores (NordReg,
2014).

2.1.1 Price Formation
Electricity differs from other commodities, because it cannot be easily stored. This implies
that a constant balance between supply and demand is required, in order to have power
system stability (Kaminski, 2012). The market price of power is determined each day on
the Nord Pool Spot exchange. Players who wish to buy or sell power on the Elspot power
market send their orders to Nord Pool Spot before noon the day before the power is to
be delivered to, or withdrawn from, the power grid. At Nord Pool spot, purchase orders
are aggregated to a demand curve and sale offers are aggregated to a supply curve. The
intersection of these two curves indicate the market price of power for a specific hour,
as shown in figure 2.1. This way of calculating the price is referred to as double action,
because both buyers and sellers submit orders. At most other auctions, only the bidder
places orders.

Figure 2.1: Supply and demand Curve (NordPool, 2017)

The rising supply curve indicates the amount of power that producers are willing to pro-
duce at different prices, thereby reflecting the marginal production cost of power in each
type of plant. Hydropower, wind power and nuclear power have the lowest marginal costs
in the Nordic region and are offered at low prices. Gas, biopower, and coal-based power
have higher marginal costs and are therefore located further to the right on the supply
curve. The electricity spot price for each period is set by the most expensive generator
required to satisfy demand (Hagfors et al., 2016).

2.1.2 Area Prices
Nord Pool Spot operates with one system price and several area prices. The system price
is determined by the balance between total supply and demand in the Nordic market. The
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price does not consider the physical capacity constraints in the transmission networks,
which is why Nord Pool Spot also operates with area prices. As of today, Norway is
divided into five areas where the prices are determined by area-specific market character-
istics. Some areas have a surplus of power, while others have a deficit. Power system
stability is determined by the balance between import and export across the different bid-
ding areas. Insufficient capacity in the grid system for import or export results in different
prices between price zones, and are referred to as bottlenecks. If there were no restrictions
in power flow, all bidding areas in the Nordic region would have the same price.

Figure 2.2: The price areas for Nord Pool (Nord Pool, 2017)

2.1.3 Power production in Nord Pool

Table 2.1 shows the average production split from 2002-2014. Hydropower is the single
largest contributor to the power distributed through Nord Pool. Norway is the largest pro-
vider of electricity generated by hydropower with 32.16% of the total production. Hydro-
power contributes with 52.9% of the total power distributed through Nord Pool (NordPool,
2012).
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Country Denmark Finland Norway Sweden Sum Share of
Energy Source total generation
Hydropower 0.0 12.3 121.4 65.8 199.4 52.9
Nuclear power 0.0 22.3 0.0 58.0 80.3 21.3
Fossil fuels 21.8 24.2 4.8 5.4 56.1 14.9
Wind power 8.9 0.5 1.3 6.1 16.7 4.4
Other renewables 2.4 10.5 0.0 11.2 24.1 6.4
Non-identifiable 0.0 0.7 0.0 0.0 0.7 0.2
Total production 33.1 70.4 127.4 146.4 377.4 100.0

Table 2.1: Production Split 2004-2012 (Nord Pool, 2017)

2.2 Hydropower planning
As previously mentioned, hydropower is the main source of electricity distributed through
Nord Pool. The value of the water stored in the reservoirs is determined by calculating
the opportunity cost of using water immediately as opposed to storing it for later use. The
uncertainties are approached with complex stochastic dynamic optimization tools. These
tools are used to calculate water values, optimize power production, manage the reservoir,
and to forecast prices. The objective is to maximize the profits in the spot market and the
value of water at the end of the planning period. The optimization problem is often solved
with stochastic dynamic programming (SDP) and stochastic dual dynamic programming
(SDDP), as in Fleten and Wallace (2003). Often, the planning period for these models is
a couple of years with a resolution of one week. The most important values are marginal
water values and production schedule (Botterud et al., 2002).

The optimization models used for hydropower planning depend on different factors due to
the size, complexity, and revenue of the power company. Models may depend on weather
forecasts for precipitation, wind and temperature, reservoir levels, inflow forecasts, the
value of future and current snow pack, hydro balance, fuel and emission prices, power
plant transmission outages, market prices, in-house and external price forecasts and im-
port/export expectations. The technical specifications and conditions for each power plant
also affect the production schedule. The efficiency of the turbines changes through the life
of the power plant. Production levels and their related efficiencies, that is, the electricity
produced per m3 of water released, is also an important aspect of the production schedule
to maximize profits (Botterud et al., 2002).

2.3 Basics of hydro power production
A Hydropower turbine converts water pressure into mechanical shaft power, which can be
used to drive an electricity generator. The power available is proportional to the product
of volume flow rate and pressure head. The general formula for a hydro system‘s power
output is
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P = ⌘⇢gQH

Where P is the mechanical power produced at the turbine shaft, ⌘ is the efficiency of the
turbine, ⇢ is the density of water (kg/m3), g is the acceleration due to gravity (m/s2),
Q is the volume flow rate passing through the turbine (m3/s), and H is the effective
pressure head of water across the turbine (m). Some of the best turbines can have hydraulic
efficiencies of 80 to 90% (Paish, 2002).

When comparing turbine types, an important aspect is their efficiency at different flow
rates. The operator of the power plant will consider the combined efficiency of the turbine
and the generator when planning the production schedule. The turbines show declined
performance after few years of operation as they get severely damaged. One main reason
is erosive wear of the turbines due to high content of abrasive material during floods and
cavitation (Kumar and Saini, 2010).

Figure 2.3: Efficiency curves for different turbines (Okot, 2012)

Impulse and reaction turbines are the two main categories of turbines in hydropower pro-
duction (U.S. Department of Energy, 2017). According to Kjøll (2003), the selection of
turbine for a hydropower project is determined on the head, flow of water, how deep the
turbine must be set, efficiency, and cost. Damages concerning water turbines are caused
mainly by cavitation problems, material defects, sand erosion, and fatigue. Damages occur
primarily in turbines with a head of 250 m and above. These damages are consequences of
high pressure, pressure variations, and high water velocities. Impulse turbines are hard to
operate at production plants where the head is relatively low and discharge is medium or
high because of the necessary speed of the flow in order to drive the generator. Reaction
turbines are preferred for medium and low head plants. However, these turbines are more
prone to cavitation. A zone in the operating range is heavily affected by cavitation, and
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is therefore considered a ”forbidden production zone” (Kumar and Saini, 2010). This is
especially true for Francis turbines.

According to Kumar and Saini (2010), small bubbles of vapors are formed when the pres-
sure in a part of the turbine drops below the evaporation pressure. Vortexes that contain
voids or bubbles may appear as a result of streams of water cutting their paths short. These
bubbles, formed by low pressure, are carried by the stream to parts with higher pressure
and the bubbles suddenly collapse, since the vapor are condensed to liquid again. This
results in formation of cavity and the surrounding liquid rush in to fill the gap. The stream
of liquid arriving from different location to fill this gap collides at the center point of cavit-
ation and gives rise to a high local pressure, this might be as high as 7000 atm. This
formation of cavity and high pressure is repeated many thousand times per second. This
causes pitting on the metallic surfaces of the runner blades and the material fails by fatigue
(Kumar and Saini, 2010).

By applying our structural estimation model to the time series for the two power plants,
we are able to investigate their production preferences. These preferences are influenced
by the economic incentives and downsides related to the mechanical specifications of the
plant. The time series for the power plants range approximately 20 years each, so when
comparing production preferences for the beginning of the time series and the end of the
times series, we are able to identify how these preferences change over time.
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Chapter 3
Structural Estimation of Markov
Decision Processes

3.1 Introduction
This thesis is largely based on the work on structural estimation of Discrete Choice Dy-
namic Programming (DCDP) models by John Rust. Rust (1987) estimates structural para-
meters in a problem of optimal replacement of bus engines. He analyzes the actions made
by decision-maker Harold Zurcher, which are either to replace an engine and incurring the
connected costs or to wait. Waiting results in an increased risk of engine failure, which in
itself incurs costs in addition to damages to customer goodwill.

A key insight of Rust (1987) is the inverse way of approaching the decision-making prob-
lem. Rather than using specific assumptions about the objective function and the stochastic
process in order to derive an optimal strategy, we try to infer the objective function and the
stochastic process from the data. This way, we can uncover the unobservable preferences
and expectations of the decision-maker (Rust, 1988). Rust (1987) also introduces the ana-
lysis of counterfactuals in structural estimation models: ...we obtain a rich behavioural

model that can be used to answer a wide range of what if? policy questions. According to
Rust (1994), structural models are able to predict more accurately the impacts of policy
changes than reduced-form models.

Reduced-form models can be used to uncover an agents historical decision rule. When pre-
dicting future behaviour, the environment needs to be stationary in order for this decision
rule to be applicable. Therefore, the reduced-form models do not account for the changes
in an agents preferences when subject to policy changes in the same way as structural
models:

The hope is that the changes in ✓ induced by policy changes will occur slowly, and that

conditional forecasting based on tracking models will therefore be roughly accurate for a
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few periods. This hope is both false and misleading. (Lucas, 1976)

3.2 Markov Decision Processes
We call d

t

the choice of the decision-maker at time t, and x
t

the observed state vari-
ables of the decision maker at time t. We model {d

t

, x
t

} as a stochastic process and use
an assumption of expected discounted profit maximization. That is, we assume that the
decision-maker is profit maximizing and that future reward is discounted according to a
discount factor �. The process {d

t

, x
t

} is then generated from a solution to a dynamic
programming problem. This solution can only be found recursively, using Bellmans prin-
ciple of optimality (Rust, 1987). The process is Markovian because the decision rule �
only depends on the current state and not on previous decisions. However, this does not
mean that the decisions that are made do not influence the expectation of the next state.
The next state x

t+1 depends both on the current state x
t

and on the decision d ✓ D that is
made.

Our problem is a single-agent MDP. The utility function g(s
t

, d
t

) represents the agent’s
preferences at time t, the Markov transition probability p(s

t+1|st, dt) represents her beliefs
about future states, and � the rate at which she discounts future vs. present value. This
way, the agent can be represented by her primitives g, p and �. The goal is to estimate
hidden, structural parameters that characterize these primitives.

Using the notation of Rust (1994), the discrete-time MDP consists of:

Table 3.1: Components of the Markov Decision Process

t 2 {0, 1, 2, ..., T}, T 6 1 Time index
S State space
D Decision space

{D
t

(s
t

) ✓ D} Constraint sets
{p

t+1(·|st, dt) : B(S) ) [0, 1]} Transition probabilities
{g

t

(s
t

, d
t

)} Utility function
� Discount rate

3.2.1 Observable vs. Unobservable state variables
We make a distinction in the state variables between those which are observed by both the
agent and the researcher, x

t

, and those which are observed only by the agent "
t

. This way,
the complete state s

t

= (x
t

, "
t

). The "
t

may also be referred to as the error term, and
represents the variation which we cannot explain. If we had complete information about
s
t

, there would be no need for the error term "
t

, and the behaviour of our decision-maker
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would be completely deterministic. Since this is an unobtainable goal, the error term has
to be included. It explains why the agent, who we assume is a rational decision-maker,
may decide differently when in two states which seem identical to us.

3.2.2 Stationary MDPs and infinite horizon
Notice how the time horizon may be finite or infinite. When the utility functions and
transition probabilities are not dependent on the time t, and the discount rate � is set to
a constant 2 [0, 1), the MDP is said to be stationary. When we have a stationary MDP
with infinite horizon, simplifications can be made because the future looks the same given
that the state is the same. The current state is therefore the only variable that affects the
optimal decision rule and the corresponding value function.

In our case the data contains seasonal effects, which implies that the time of year will
actually play a role in the decision-making process. This is solved by using the week as an
additional state variable and adding the seasonal effect to the other state variables based
on which week it is. This is explained in chapter 4.

3.2.3 Framework and assumptions
There are 6 important assumptions that are necessary to make in order to use the framwork
developed by Rust (1987). This model has also been called the ”dynamic programming
conditional logit model” (Aguirregabiria and Mira, 2009). These are:

AS Additive separability: The utility function can be separated and the com-
ponents can be added together. That is, G(d

t

, x
t

, "
t

) = g(d
t

, x
t

) + "
t

.

IID Independently, identically distributed unobserved state variables "
t

CI-X Conditional independence of x: The next observable state variables x
t

are
not dependent on the current unobserved state variables "

t

.

CI-g Conditional independence of g: The payoff variable g is independent of
the unobserved state variables.

CLOGIT Conditional logit: The unobserved state variables "
t

are independent of the
different possible decisions d

t

and have an extreme value type 1 distribu-
tion.

DIS The observed state variables x
t

must be discretely supported and there
must be a finite number of possible states.

3.2.4 Bellman equation
As pointed out in section 3.2.2, the optimal decision rule is only affected by the current
state. Bellman equations are used to find the optimal policy of Markov processes. These
equations are based on suboptimality and solved recursively.
The optimal policy is then:
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�(s) = argmax

d2D



g(s, d) + �

Z

V (s0)p(ds0|s, d)
�

(3.1)

And the value achieved is:

V (s) = max

d2D



g(s, d) + �

Z

V (s0)p(ds0|s, d)
�

(3.2)

Equation (3.2) is the Bellman equation. It shows that we are selecting decision d in every
state such that the total value of the immediate profit and the continuation value is max-
imized. We are integrating over the value function for the next state, V (S0

), multiplied by
the transition probability of landing in that state given the current state and the decision
made, p(ds0|s, d). In other words, when making a decision we are taking into account:

1. The immediate profit achieved by making decision d in the current state, s.

2. The payoffs that we can achieve in future states, s0.

3. The probability of reaching these future states p(ds0|s, d).

4. How much we value future vs. immediate earnings, �.

We can write the Bellman equation as done by Fleten (2016):

V (x) = max

d2D

⇣

g (x; d) + �E
d

�

V (X1) |X0 = x
�

⌘

(3.3)

We know from section (3.2.1) that we need to include an error term because of the un-
observable state variables. The additive separability assumption allows us to express the
immediate profit as a combination of the observable and unobservable states:

g(x, "; d) = g(x; d) + "(d) (3.4)

where " is an idiosyncratic shock. Continuing with Rust’s framework (p. 3103, 1994), we
use assumption CI-X and factor the state transition probability:

⇡(dx
t+1, d"t+1|xt

, "
t

, d
t

) = E(d"
t+1|xt+1)p(dxt+1|xt

, d
t

) (3.5)

Where ⇡(·) is the total state transition probability, E(·) is the transition probability of ",
and p(·) is the transition probability of the observed part, as above in (3.2). We now have
to include the error term in the value function (3.3). Using assumption AS, the first term
in the maximization is straightforward: g(x; d) + "(d) as in (3.4). The � is, of course,
unchanged and the term inside the expectation is factored using assumption CI-X. We are
left with the value function:

V (x, ") = max

d2D

{g(x; d) + "(d) + �E
d

✓

Z

V (X1, "1)E(d"1|X1)

�

�

�

�

X0 = x

◆

} (3.6)

Following Fleten (2016), we define the expected value function,
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v(x, d) := E
d

✓

Z

V (X1, "1)E(d"1|X1)

�

�

�

�

X0 = x

◆

, (3.7)

so that the value function can be written:

V (x, ") = max

d2D

g(x; d) + "(d) + � · v(x, d) (3.8)

We need a fixed point equation for v. This can be obtained by inserting V (x, ") into the
expected value function in (3.7):

v(x, d) = E
d

✓

Z

max

d2D

{g(X1; d) + "1(d) + � · v(X1)}E(d"1|X1)

�

�

�

�

X0 = x

◆

(3.9)

3.2.5 Gumbel distribution
Rust (1994) uses the restriction that " is an IID extreme value process. This is reasonable
because of the maximization in the expected value function v(x, d). Using this restriction,
our choice probability formula is the according to the logit model:

P (d|x) =
exp

n

g(x,d)+�EV (x,d)
b

o

P

d

02D(x) exp
n

g(x,d0)+�EV (x,d0)
b

o (3.10)

As Fleten (Working paper, NTNU, 2016) remarks, the Gumbel distribution is closed under
maximization. The closed form formula is given by:

Z

max

d2D

("(d) + c
d

)E(d"|x) = b · log
 

X

d2D

exp

⇣c
d

b

⌘

!

(3.11)

Where b is the scale parameter i.e. a number which can be interpreted as the degree of
uncertainty. We observe that we can substitute " with "1, c

d

with g(X1; d)+� ·v(X1) and
E(d"1|X1) with E(d"|x). Using the closed form formula, we can then write the expected
value function in (3.9) as:

v(x, d) = E
d

 

b · log
 

X

d

02D

exp

✓

g(X1; d
0
) + � · v(X1)

b

◆

!

�

�

�

�

�

X0 = x

!

(3.12)

For notational convenience we define the operator

t
✓

(v)(x, d) := E
d

 

b · log
 

X

d

02D

exp

✓

g(X1; d
0
) + � · v(X1)

b

◆

!

�

�

�

�

�

X0 = x

!

(3.13)

This way we can write the fixed point Bellman equation as

v = t
✓

(v) (3.14)
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3.2.6 Estimation of the conditional expectation
Simplifying the conditional expectation
What remains is now to evaluate the conditional expectation. v(x, d) is currently an ex-
pectation conditional on X0 = x. In order to use v(x, d) as a constraint in the structural
estimation formulation, we need to have a closed form formula of v(x, d). We are using
the parametric approach suggested by Fleten et al. (2016). This involves using an autore-
gressive scheme with one lag (AR1-processes) in a time series model. We can only have
one lag in order for the model to maintain the Markovian property. The autoregressive
scheme

X
0

k+1 = µ+ ⇢X
0

k

+ �N
t

(3.15)

has independent, random variables N
t

as the error term. To simplify the conditional ex-
pectation to a simple expectation, we can write:

E(f(X
0

k+1)|X
0

k

= x) = Ef(µ+ ⇢x+ �N
t

) (3.16)

State space transition
We can extend this to our case by denoting the state transition:

x
t+1 = f(x

t

, d
t

) = Ax
t

+Be+ c (3.17)

That is, when in state x
t

, choosing action d
t

will result in state x
t+1 through the function

f . This function is specified by matrices A, B, e, and c. Matrix A contains the parameters
for the state vector, e contains the error terms of independent random variables, B contains
the parameters for the error terms, and c contains the seasonal components.
In order to simplify notation, we denote:

h(x) := b · log
 

X

d2D

exp

✓

g(x; d) + � · v(x)
b

◆

!

(3.18)

Since the state variables follow an AR scheme, we can extend the simplification in (3.13)
and (3.14) by Fleten et. al. (2016) to the value function in (3.12):

t
✓

(v) = E
d

(h(X1)|X0 = x) = Eh(Ax+ c+BLe) (3.19)

Further simplification through discretization of error terms
In order to avoid the expectation in the expression altogether, we need to discretize the
error terms in e, and give appropriate probability weights to the different discrete levels.
Using N state variables, the value function is then:

t
✓

(v) ⇠
M1
X

i1=1

· · ·
MN
X

iN=1

w
i1 · · ·wiNh(Ax+ c+BLẽ)), (3.20)

M1 represents the number of discretization levels for ẽ
i1 , M2 represents the number of

discretization levels for ẽ
i2 etc., while w

i1 is the probability weight on ẽ
i1 , w

i1 is the
probability weight on ẽ

i2 etc. There is one error term for each state variable, i.e.:
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ẽ =

2

6

6

6

6

4

ẽ
i1

·
·
·

ẽ
iN

3

7

7

7

7

5

(3.21)

The expected value function now has a closed form solution, so that it can be used as a
constraint in the constrained optimization.

3.3 Structural estimation
The structural parameters are estimated using the approach by Su and Judd (2012). Instead
of guessing the structural parameters and then solving the corresponding endogenous vari-
ables with high accuracy, Su and Judd formulated the maximum-likelihood estimation
problem as a constrained optimization problem. This involves using the Bellman equation
as a constraint.

The likelihood-function l is based on the structural parameters, the value function and the
state for every observation n 2 N :

l(✓, v
✓

, (X
n

, d
n

)

N

n=1) =

N

Y

n=1

P
v

(d
n

|X
n

) (3.22)

We use the choice probability formula P
v

(d
n

|X
n

) from equation (3.5). The likelihood
function should reflect the likelihood of all of the observations combined. The probabilities
are therefore multiplied with each other. Using the log-transform on the expression will
yield:

L(✓, v
✓

, (X
n

, d
n

)

N

n=0) =

N

X

n=1

log(P
v

(d
n

|X
n

)), (3.23)

Where L is the log-likelihood function, which is computationally much easier to solve.
The log-transform is monotonically increasing, and the log-likelihood function will there-
fore have a maximum value in the same point as the likelihood function. As a result, L
will yield the same values for ✓ as l.

The constrained optimization problem can be summarized by:

maxi
✓

mize L(✓, v
✓

, (X
n

, d
n

)

N

n=1)

s.t. v
✓

= t
✓

(v
✓

)

(3.24)

Structural parameters to be estimated The vector ✓ collects the structural parameters
that we are interested in estimating, in our case ✓1 and ✓2, which correspond to the left and
right side penalties for deviating from the most efficient production level, as explained in
section 4.8. The parameters in ✓ are set in such a way that the our data set has the highest
possible likelihood.
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State space transition While we introduce the state variables used in this section, the
derivations of their underlying time series models are found in chapter 4. An overview of
the state transitions can be found in (A.3). The state variables are:

I
t

Inflow

C
t

Deviation from normal cumulative local inflow

R
t

Deviation from normal overall reservoir level

P
t

Price level

S
t

Local reservoir level

These are collected in the state vector x
t

, so that the state transition when going to state
x
t+1 can be denoted:

x
t+1 = f(x

t

, d
t

) = (I
t+1, Ct+1, Rt+1, Pt+1, St+1) (3.25)

We then use the closed form formula in (3.20) for these state variables in order to get our
specific expected value function:

t
✓

(v)(x, d, t) ⇠
Mi
X

i=1

Mr
X

r=1

Mp
X

p=1

w
i

w
r

w
p

h(A
t

x+ c
t

+BLẽ)), (3.26)

Expanding h, we get:

t
✓

(v)(x, d, t) ⇠
Mi
X

i=1

Mr
X

r=1

Mp
X

p=1

w
i

w
r

w
p

b · log
✓

X

d

02D

exp

✓

g(A
t

x+ c
t

+BLẽ; d) + � · v(A
t

x+ c
t

+BLẽ)

b

◆◆

(3.27)

The only remaining part of the expected value function is then the immediate profit func-
tion, g(x; d).

Profit function, g(·) By multiplying the current system price with the amount of elec-
tricity produced by the power plant, we can formulate a simple profit function:

g(X
t

; d
t

) = P
t

u(X
t

, d
t

) (3.28)

This formulation relies on the assumption that there are no marginal production cost, no
start-up cost, that the head is constant, and that the power producer is a price taker.P

t

is
the system price in EUR, and u(X

t

, d
t

) is the release of water as a function of the current
state and decision.
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Release, u(·) The release of water from the reservoir is a function of the choice d
t

,
scaled with a production factor Q. In addition, we use an efficiency function that takes the
structural parameters ✓1 and ✓2 that we are trying to estimate, as inputs.

u(X
t

, d
t

) = min{d
t

QE(✓1, ✓2, ⇠), St

� Smin

+ I
t

} (3.29)

If there is not enough water in the reservoir for the desired production level, the amount
released is the available water that is above the minimum reservoir level, as seen on the
right hand side in the min-operator.

Efficiency function, E(·) The efficiency function is included in order to analyze the
power producer’s resistance to deviating from the best efficiency point (BEP). The effi-
ciency function is dependent on three factors: the BEP, ⇠, the efficiency for production
levels beneath the BEP, ✓1, and the efficiency for production levels above the BEP, ✓2.
For production levels below the BEP, d

t

< ⇠ the following equation applies:

E(✓1, ⇠) = (1� (⇠ � d
t

)✓1), (3.30)

and for production levels above the BEP, the efficiency function is:

E(✓2, ⇠) = (1� (d
t

� ⇠)✓2) (3.31)

To test different prioritization, the production efficiency is implemented in 3 different
ways: Linear, square root, and squared.

Linear production efficiency: E(✓1, ✓2, ⇠)

Square root production efficiency:
p

E(✓1, ✓2), ⇠

Squared production efficiency: (E(✓1, ✓2), ⇠))
2

These equations are later included in the profit function so the lost efficiency is relative to
the chosen production level.
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Figure 3.1: Example of efficiency and production curves with ✓1 and ✓2 = 0.3, ⇠ = 5

Figure 3.1 shows an example with ⇠ = 5 and ✓1 = ✓2 = 0.3. The left plot in the figure
shows the efficiency for the three different efficiency functions. The plot to the right shows
the production as a result of the efficiency. The production is discretisized to a number
between 1 and 6. Where 1 is no production and 6 is maximum production. The actual
efficiency and production curves are shown in the results and analysis section.
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Final expected value function Expressing the expected value function in terms of the
state variables results in:

t
✓

(v)(x, d, t) ⇠
5
X

i=1

5
X

r=1

5
X

p=1

w
i

w
r

w
p

b · log
✓

X

d

02D

exp

✓

(A
(4)
t

x+ c
(4)
t

+ (BL)(4)ẽ) · u(A
t

x+ c
t

+BLẽ, d0)

b

+

� · v(A
t

x+ c
t

+BLẽ)

b

◆◆

, (3.32)

Where P
t

is expressed as A
(4)
t

x + c
(4)
t

+ (BL)(4), since the price is represented by the
fourth row in the matrices in the appendix, A.3.
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Chapter 4
Data description and state variables

The empirical estimation and analysis in this chapter is based on information from two
disclosed hydropower plants. Power plant A is located in price zone NO5. The power
plant has a reservoir of 35 Mm3 and a production capacity of 10 MW . Egre and Milewski
(Egre and Milewski, 2002) categorize hydropower plants as small when their production
is less than 10 MW. The second power plant, B, has two turbines and two generators, a
reservoir capacity of 180 Mm3 and a production capacity of 128 MW . This plant is
located in price zone NO4. Since both hydropower plants are approached with the same
methods, there will only be a detailed elaboration for power plant A in this chapter. Some
details for power plant B are elaborated due to the differences between the two.

The state variables presented in this chapter are based on a model developed by Kolsrud
and Prokosch (2010) and later modified by Boger and Vestbøstad (2016).

Figure 4.1: Model overview
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Energy Coefficient Production Capacity Reservoir Capacity Average Inflow
[KWh/m3] [MW ] [Mm3] [m3/s]

A 0.94268 10 35 3
B 1.2385 128 180 15

Table 4.1: Power plant coefficients for power plant X and Y

4.1 Inflow, It
The time series for inflow was given with an hourly resolution and later aggregated to a
weekly resolution. The data has a high grade of uncertainty as it contains negative values
for inflow, still after aggregating to a weekly resolution. To eliminate the negative values,
these are set to zero in the time series. This leads to a higher average than was originally
observed. By lowering the seasonal component we can counteract the risen mean. The
time series for inflow is from 1.1.1993 to 31.12.2014 and is shown in figure 4.2.

M
m
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Observed Inflow

Figure 4.2: Observed weekly inflow for power plant A

4.1.1 Seasonality
The figure shows clear tendencies for seasonal variations as well as high peaks during
spring floods. When the temperature is below 0°C, the precipitation is in the form of
snow, which does not move through downhill terrain like water, resulting in local snow
packs. The snow that is located at higher altitude will affect the reservoirs inflows when
they melt. The melting of snow will often result in a spring flood, which explains the high
peaks. This often happens between easter and summer, but is not deterministic in time, it
is dependent on temperature.

To include and model the anticipated seasonal fluctuations in the observed inflow data, a
seasonal function has been applied. This function is a second order Fourier transform, that
has been fitted to best capture the seasonality. The data has a weekly resolution, hence a
frequency of 52. The coefficients are estimated using the nonlinear least squares method
in R and can be found in the appendix. Equation 4.1 shows the function for the seasonal
component.
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f I

(t) = AI

1 cos(
2⇡

52

t+ �I

1) +A2
2 cos(

4⇡

52

t+ �I

2) +D1 (4.1)
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Figure 4.3: Observed weekly inflow and seasonal component for power plant A

As shown in figure 4.3, the seasonal function seems to capture some of the inflow. The
peaks are not captured by the model and are underestimated or smoothed. This can poten-
tially be a result of the unpredictable timing of the spring flood.

4.1.2 Stationarity and Independence
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Figure 4.4: Deseasonalized weekly inflow for power plant A

Figure 5.3 shows the remains of the inflow after the seasonal component is subtracted.
As shown by the figure, remains of the original seasonal component is still visible. This
is because the seasonal component suggested in the previous section did not capture the
extreme peaks of the inflow.

The model requires the Markov property, where the next term is only dependent on the
previous. An autoregressive process with one lag, an AR(1)-process, satisfies this property.
These processes require stationary time series.
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Figure 4.5: ACF and PACF for deseasonalized inflow for power plant A, 95% siginificance level

Test Value Critical Value Assumption satisfied
ADF-test -18.355 -1.95 +

Table 4.2: Test values for stationarity for Inflow

The data series was subjected to an Augmented Dickey-Fuller test. Table 4.2, shows sta-
tionarity for a significance level of 95%. The stationarity requirement is satisfied and
details of this test is further elaborated in the appendix.

Order of autoregressive terms

Figure 4.5 shows the auto-correlation function (ACF) and the partial auto-correlation func-
tion (PACF) for the deseasonalized inflow. The autocorrelation function shows correlation
between the time series and lags of itself. The partial autocorrelation function shows par-
tial correlation coefficients between the series and lags of itself.
Robert Nau (2017), explains partial autocorrelation as:

”... the amount of correlation between a variable and a lag of itself that is not explained

by correlations at all lower-order-lags.”

The PACF-plot in figure 4.10 shows a significant spike only at lag 1, meaning that all
the higher-order autocorrelations are effectively explained by the lag-1 autocorrelation,
indicating that an AR(1)-model should be used.

24



4.1.3 Autoregressive process, XI
t

The seasonal component is subtracted from the observed inflow and the rest is submitted
to an autoregressive process with one lag.

XI

t+1 = �XI

t

+ ✏I
t+1 (4.2)

� is the AR-coefficient, and ✏I
t

is the random error term. The random error has a mean of 0
and a standard deviation of �I . The parameters are estimated by using the Arima-function
in R. The negative observations from Inflow is set to zero as there can be no negative
observations in the model. As a consequence, the mean will rise slightly. To counteract
the risen mean, we have lowered the mean for the seasonal function slightly.

4.1.4 The model
I
t+1 = f I

(t+ 1) +XI

t+1 (4.3)

By adding the autoregressive process and the seasonal component, a simple model of the
inflow is obtained. Equation 4.3 shows the model for inflow. Figure 4.6 shows the seasonal
component together with a simulation of the AR(1)-process in red and the observed inflow
in black. The model is unable to reach the isolated tops due to very large peaks in inflow
and the inconsistency in the timing of these. By increasing �I , the variance for ✏I , we
would be able to reach the peaks, but this would negatively affect the overall fit of the
model. The descriptive statistics in A.2 shows the mean, standard deviation, minimum
value, maximum value and the median for both the observed inflow time series and the
simulated time series.
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Figure 4.6: Observed and modeled weekly inflow for power plant A

4.1.5 State variable
Using the alternative form of (4.3):

I
t

= f I

(t) +XI

t

(4.4)
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Rearranging and expressing by Xt

t

:

XI

t

= I
t

� f I

(t) (4.5)

Inserting (4.5) into (4.1), the state variable transition expressed only in terms of itself, is
obtained:

I
t+1 = �I

t

+ ✏I
t+1 + f I

(t+ 1)� �f I

(t) (4.6)

4.2 Deviation from cumulative inflow, Ct

There is a high correlation between the Nord Pool spot price, the local inflow and the
overall reservoir level in Norway. Kolsrud and Prokosch (2010) present a model which
includes this relationship. In their model, they use the deviation from cumulative inflow.
This tells the reservoir manager if he has received more or less inflow the last f weeks
than what is to be expected of this period.

Boger and Vestbøstad (2016) defined the cumulative inflow as:

i
t

:=

1
X

j=1

⇢j�1I
t�j

(4.7)

In equation 4.7, i
t

is the cumulative local inflow. I
t

� j is the inflow at time t� j and ⇢ is
a weighting factor deciding how much influence the cumulative inflow of last week should
affect this weeks level. Equation 4.7 can be written as:

i
t

= I
t�1 + ⇢i

t�1 (4.8)

i
t

should optimally reflect a period that yields a high correlation with the national reservoir
deviation, denoted R. The length of this period is adjusted by f , which we estimated to be
20.

i⇤
t

=

f

X

k=1

I
t�k

(4.9)

⇢ in equation 4.8 is estimated by using equation 4.9. f is set previously and for each f ,
one ⇢ is calculated based on correlation between the data sets given by equation 4.8 and
equation 4.9. These data sets can be compared to the deviation from the aggregate national
reservoir level by making different data sets for f . RStudio was used to estimate f equal
to 20 and ⇢ to 0.936. i and i⇤ with f = 20 is plotted in figure 4.7.

¯i
t

is the historical cumulative average inflow for each week. The deviations from historical
cumulative average is showed in equation 4.10.

C
t+1 :=

i
t+1 �¯i

t+1

¯i
t+1

(4.10)

Using equation 4.10, inserting equation 4.8 and use i
t

= C
t

⇤¯i
t

�¯i
t

, one obtains:
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Figure 4.7: Weekly cumulative inflow with f=20

C
t+1 =

I
t

+ ⇢C
t

¯i
t

+ ⇢¯i
t

¯i
t+1

� 1 (4.11)

Equation 4.11 gives the state variable transition for C
t

, expressed only in terms of itself.

Figure 4.8 shows the simulated and observed deviation from cumulative inflow.
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Figure 4.8: Simulated and observed deviation from cumulative weekly inflow for power plant A, C

4.3 Deviation from aggregate Reservoir level, Rt

The reservoir level used to calculate R
t

is Norway’s national reservoir level, which is an
aggregation for all reservoir levels in Norway. The data series is provided by The Norwe-
gian Water Resource and Energy Directorate and given in a weekly resolution. In section
2.1.3 the power production in Nord Pool is shown. Norwegian hydropower contributes to
32.16% of total electricity distributed through Nord Pool. Deviation from the historical
national aggregated reservoir level will, therefore, have a correlation with the Elspot price,
as the aggregated reservoir level is a large driver for the supply side of the market. In the
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previous section, a relationship between the deviation from average reservoir level and the
deviation from cumulative inflow was presented. Equation 4.12 shows R

t

as the deviation
from the average reservoir level.

R
t

=

r
t

� r̄
t

r̄
t

(4.12)
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Figure 4.9: Deviation from aggregate reservoir level, Rt

The aggregate national reservoir level is r
t

, while r̄
t

is the average national reservoir level
for that particular t. An important note is that r

t

is the aggregated reservoir level for all of
Norway combined and not just price zone 5. Figure 4.9 shows deviation from aggregated
average national reservoir level, R

t

4.3.1 Stationarity and independence
As with inflow, a requirement for using an AR(1)-process is that the data series is sta-
tionary. The deviation from the aggregated reservoir level is subjected to an ADF test for
stationarity. The value is below the critical value for a significance level of 95%, indicating
stationarity. This seems reasonable as there is no observable trend in the data series shown
in figure 4.9.

Test Value Critical Value Assumption satisfied
ADF-test -5.1118 -1.95 +

Table 4.3: Test values for stationarity for deviation from aggregated reservoir level

Order of AR terms

Figure 4.10 shows the autocorrelation function and the partial autocorrelation function for
the deviation from aggregate reservoir level. The autocorrelation function shows signific-
ant correlations for a large number of lags. To test the amount of lags necessary in the
autoregressive process, the time series is subjected to a PACF-test. When testing the par-
tial correlation, high correlations with the first two lags are found. This indicates that an
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AR(2) model would be better, but it would violate the Markov Property. In order to model
the deviation from aggregated reservoir level, an AR(1)-process is used.

Figure 4.10: ACF and PACF for deviation from aggregated reservoir level

4.3.2 Autoregressive process with an exogenous component
Figure 4.11 shows both R

t

and C
t

. The correlation between the data series is 0.602. The
high correlation enables the incorporation of C

t

in the modelling of R
t

.
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Figure 4.11: R and C with a correlation of 0.602.

Using an autoregressive process, while adding an exogenous term for the cumulative in-
flow, yields a process with an autoregressive component for itself and the exogenous term
C

t

, equation 4.13. An autoregressive process with a one-lagged exogenous component, an
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Figure 4.12: Simulated and observed deviation from aggregated reservoir level.

ARX(1) model, depends on today’s deviation from the aggregate reservoir level, R
t

and
today’s deviation from the cumulative inflow, C

t

. The C
t

works as an additional predictor.
�1 is the autoregressive coefficient and �2 is the coefficient for the predictor C

t

. The error,
✏R
t+1, is a normal random variable with mean 0 and standard deviation �R, estimated to be
0.005.

R
t+1 = �1Rt

+ �2Ct

+ "R
t+1 (4.13)

Using the Arima-function in R, the estimates for �1 and �2 were found to be 0.99 and
0.04, respectively. This is shown in figure 4.12. The simulation of the ARX(1)-process
seems to capture some of the dynamics. Descriptive statistics for the simulation and the
observed R

t

can be found in the appendix.

4.4 Price, Pt

The electricity price that directly influences the hydropower plant’s revenues is the local
area price. As mentioned, hydropower plant A is located in price zone NO5 and plant
B is located in zone NO4. Therefore, these respective prices are used in the structural
estimation model.
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Figure 4.13: Elspot price, Ln(Elspot price) and Ln(Elspot price) with a seasonal component

4.4.1 Seasonality
The logarithm of the Elspot price is subjected to a seasonal component. The seasonal
component for the price is captured by a third order Fourier series, presented in equation
4.14.

fP

(t) = AP

1 cos(

2⇡

52

t+ �P

1 ) +AP

2 cos(

4⇡

52

t+ �P

2 ) +AP

3 cos(

6⇡

52

t+ �P

3 ) +DP (4.14)

The parameters are estimated using the non linear least squares method in R. The resulting
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coefficients are listed in A.2. The results shown in the bottom of figure 4.13 show the
seasonal component obtained, which is clearly not as prominent as with inflow.

4.4.2 Stationarity and independence

The logarithm of the price was first subtracted the seasonal component, fP

(t), before
tested for stationarity with an Augmented Dickey-Fuller test. Based on the results from
the test shown in table 4.4, the requirement of stationarity is satisfied.

Order of AR terms

The logarithm of the price was subjected to an ACF and a PACF-test with a significance
level of 95%, shown in figure 4.14. The autocorrelation test shows significant correlations
with the first 30 lags. The results from the PACF-test indicates that an AR(1) should be
used.

Figure 4.14: ACF and PACF for the price

Test Value Critical Value Assumption satisfied
ADF-test -4.4765 -1.95 +

Table 4.4: Test values for stationarity for Pt
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Figure 4.15: Log Elspot price and R

4.4.3 Autoregressive process

Aggregated reservoir level is a fundamental driver for power prices in Norway, as stated
by Kaaresen and Husby (Kaaresen and Husby, 2000), Haldrup and Nielsen (Haldrup and
Nielsen, 2006) and Povhet al. (Povh et al., 2010). The logarithm of the price and the
deviation from aggregate reservoir level have a correlation of -0.4217 and are plotted in
figure 4.15.

The correlation between the price and the deviation from aggregate reservoir level is incor-
porated in the model by using an ARX(1)-process, like the one used for R

t

. The exogenous
component is R

t

and the process is autoregressive with one lag. The process is shown in
equation 4.15:

XP

t+1 = ↵1X
P

t

+ ↵2Rt

+ ✏P
t+1 (4.15)

↵1 and ↵2 are estimated to be 0.95025 and -0.09516, respectively. The negative parameter
↵2 makes sense due to the negative correlation between the price and the deviation from
aggregate reservoir level. The error, ✏P , is a normal random error with mean 0 and standard
deviation �P , estimated to be 0.05.

4.4.4 The model

By adding the seasonal component and the autoregressive process, the model for the price,
shown in equation 4.16 is achieved. The model is shown in figure 4.16 together with the
observed price.

P
t+1 = XP

t+1 + fP

(t+ 1) (4.16)
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Figure 4.16: Observed and simulated Elspot price

4.4.5 State variable transition
Starting with the equation for the model:

P
t+1 = XP

t+1 + fP

(t+ 1)

Using:
XP

t

= P
t

� fP

(t)

The latter can be inserted into equation 4.15, which yields:

XP

t+1 = ↵1(Pt

� fP

(t)) + ↵2Rt

+ ✏P
t+1

Inserting this into the first equation results in the final model:

P
t+1 = ↵1(Pt

� fP

(t)) + ↵2Rt

+ fP

(t+ 1) + ✏P
t+1 (4.17)

Equation 4.17 shows the price, P
t

, as a Markovian process which only depends on the
previous state of itself and of the exogenous component.

4.5 Local Reservoir level, St

The local reservoir level is calculated endogenously and is dependent on the production
and inflow. When the plant manager chooses to produce, water is released from the local
reservoir and goes through a power producing turbine. Water is added to the reservoir by
the local inflow. Equation 4.18 explains this relationship where S

t

has a unit of Mm3.
Since the reservoir level can not exceed the maximum level, Smax, S

t

will be the smallest
value of the level after inflow and production, S

t

+ I
t

�u(d
t

), and the maximum reservoir
level, Smax.

S
t+1 = min{S

t

+ I
t

� u(X
t

, d
t

), Smax} (4.18)

Smin  S
t

 Smax (4.19)
Equation 4.19 describes the relationship between the minimum and maximum level of the
reservoir.
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4.6 Production, dt

The production data was given in MWh with an hourly resolution, and is shown in figure
4.17. As shown by the figure, production levels seem to concentrate around 8 MWh or no
production at all. There seems to be a tendency of increased distribution at around 8 MWh
over time. That is, the production seems more binary at the beginning than at the end of
the period.
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Figure 4.17: Production data for power plant A

4.6.1 Aggregating and discretizing the production levels

The production level is considered the decision variable in our MDP. The model is, as
mentioned, a DCDP, and the production data must, therefore, be discretized. When trying
to discover the structural parameters linked to the loss of efficiency when deviating from
the efficient production level, it is important to consider how the aggregation and discret-
ization of the production levels will affect the results. When aggregating from an hourly to
a weekly resolution, a lot of information may be lost. If the power plant is starting up and
shutting down many times during one week, it may appear as if it is producing at a lower
level than the efficient one.

For example, if the efficient production level is at 8 MW and the decision-maker is switch-
ing every hour between releasing water at the efficient level and releasing no water, it will
seem like the power plant was producing at 4 MW the entire week after aggregation. In
our case, the discretized, aggregated levels should have similar occurrences to the corres-
ponding production levels from before aggregation. We discretize to 6 levels to be able to
assign one of these levels as the efficient one. Most likely, the efficient level will be around
8 MW, which will approximately correspond to the discretized production level 5. After
aggregating to a weekly resolution and discretizing the production into 6 levels, we obtain
the following histogram of the occurrences:
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Figure 4.18: Discretized production levels used for power plant A

We want to investigate if this is really reflecting the levels at which the power plant operates
on an hourly basis. Using bin sizes of 0.5 MWh, a histogram of the actual production with
an hourly resolution is given:

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

Production, MWh

Figure 4.19: Histogram of production levels with hourly resolution, power plant A

The occurrences when the production is zero have been excluded since this number is very
large and would make the other levels difficult to observe. We note that the preferred level
of production is around 8 MWh, as expected. To see if we capture the actual production
levels after aggregation, we also discretize the production on an hourly level and compare
the two histograms:
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Figure 4.20: Comparison between hourly (left) and weekly (right) discretized production levels,
power plant A

We observe that the production levels are quite similar. This is because the production
level is generally quite stable, and does not have fast-moving fluctuations. Had this been
the case, it would have been difficult to uncover the decision maker’s preferences, since
our data set would not be representative of the underlying, hourly production. In order
to emphasize the importance of having a simple hydropower plant, we perform the same
aggregation and discretization for power plant B, displayed in figure 4.21
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Figure 4.21: Comparison between hourly (left) and weekly (right) discretized production levels,
power plant B

This demonstrates one of the main advantages in using a smaller hydropower plant with
only one turbine. Production level data from larger hydropower plants with several tur-
bines and generators will get distorted when aggregating to a higher level. Power plant
B has two turbines. Therefore, after discretizing to six levels, both level 3 and 6 can be
considered best efficiency points. This is because the power plant can produce at the ef-
ficient level in one turbine while the other is not producing. The other efficient point is
when both turbines are producing at their efficient levels. The efficient points, however,
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are only visible with an hourly discretization. After discretizing to a weekly resolution,
the efficient production levels completely disappear, as can be seen in figure 4.21.
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Chapter 5
Results and analysis

The model was implemented in AMPL (A Mathematical Programming Language), (Fourer
et al., 1985). The environment that was used was the AMPL IDE, and the solver used was
the Artelys Knitro solver. The Knitro solver is used in large-scale nonlinear optimization,
and it was not limited in memory usage. The computers had 32GB of memory installed,
which allowed us to discretize the production sufficiently so that we could capture the dif-
ferences between efficient and non-efficient production levels. The model had a total of
25442 variables and 25440 constraints. The two extra variables are ✓1 and ✓2. The CPU
was an Intel Core i7-6700 with a maximum speed of 3.40GHz. Solving the model for a
manually set value of ✓1 and ✓2 takes approximately 40 seconds. Alternatively, solving the
model with variable values for ✓1 and ✓2 will take between 5 and 12 hours.

We present the three main results obtained from the model. These are related to the implied
efficiency loss, the changes in ✓-values over time, and the power plant’s implied water
values. We present a discussion for each of the results, what they imply and whether or
not they make intuitive sense.

5.1 Efficient production level - ⇠
When discretizing the production levels for power plant A in section 4.6.1, the level with
the most occurrences was production level 5, corresponding to 83 percent of maximum
production. It is natural to assume that the production level with the most occurrences is
the most efficient one. In order to test if the model also finds production level 5 as the
most likely BEP, it was tested for the highest obtainable likelihoods for different BEPs.
By setting the BEP to a certain level, iterating over different ✓-values and then selecting
the highest log-likelihood value for each, we obtain the results summarized in table 5.1.
We observe that production level 5 has the highest likelihood value for power plant A.

The same process was applied to the second power plant, B. As explained in section 4.6.1,
the efficient production levels completely disappear as a result of discretizing to weekly
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resolution. We therefore provide no further analysis of power plant B.

Log-likelihood value
⇠ Power plant A Power plant B
2 -1774.73 -1675.18
3 -1755.23 -1670.92
4 -1766.13 -1868.87
5 -1625.95 -1788.13
6 -1784.50 -1692.87

Table 5.1: Efficient production levels and corresponding likelihoods

5.2 Choice of efficiency function
In the previous section the most preferred production level was established as production
level 5 for power plant A. Before we analyze the ✓s that return the highest likelihoods, we
have to identify the best fitting efficiency function for our data set. We apply a linear, a
square root, and a squared efficiency function. These are elaborated in section 4.8, and
yield the following log-likelihood values:

⇠ Square root Linear Squared
Plant A 5 -1633.25 -1625.95 -1641.37

Table 5.2: Log-likelihood values for the three different efficiency functions

The results tell us how the producer values the different production levels relative to the
distance from the best efficiency point. That is, a squared efficiency function would punish
small deviations from the BEP more than a square root function, with a linear function
being in between. We observe that a linear relationship yields the highest likelihood and
base the remaining analysis on the assumption that this relationship is correct. The linear
efficiency function is therefore used when estimating ✓1 and ✓2.

5.3 Implied efficiency loss - ✓
1

and ✓
2

The main goal of our research is to investigate the loss of efficiency that is implied from
the data. The results let us analyze how the producer values the different production levels,
or conversely, to what degree the producer is penalized for deviating from the BEP. The
reader should keep in mind that ✓1 and ✓2 are coefficients of efficiency loss for production
levels below and above the BEP, respectively.

By comparing the implied efficiency levels to the anticipated mechanical efficiency of
the plant, we are able to discuss and discover hidden economic parameters related to the
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producer-specific preferences. First, we show how the values were obtained. We then
present a discussion of possible explanations for the estimated variables and how they
deviate from a purely mechanical efficiency loss.

5.3.1 Manual case
In order to avoid being stuck in a local optimum, we want to examine the likelihood values
for many different combinations of values for ✓1 and ✓2. We manually set these values
in the range [0, 0.85] and with a step size of 0.05. Setting the ✓-values manually implies
solving the model 324 times and results in the likelihood values given by the plots in figure
5.1.

Figure 5.1: Log-likelihood values for ✓1 and ✓2

As indicated by the figure, the likelihood has a maximum around ✓1 = 0.15 and ✓2 = 0.5.
The log-likelihood value at this point is -1625.95. As the model has to be solved 324 times,
each taking 40 seconds, the total solve time was approximately 3.5 hours.

5.3.2 Variable case
The model should, hopefully, return similar values for ✓1 and ✓2 when setting these as
variables in order to discover more precise values. Therefore, we solve the model with ✓1
and ✓2 as variables, the efficient production level, ⇠ = 5, and we use the linear efficiency
function. The variable solution yields:

✓1 = 0.1702

✓2 = 0.505242

The results seem to confirm that we are not getting stuck in a local optimum and that
these are, in fact, the most likely values for ✓1 and ✓2 when in their logical range. ✓s
outside of this range would not make intuitive sense. For example, a negative ✓ value
would imply an extra reward for deviating from the most efficient production. ✓ > 1
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would imply that when deviating from the point of efficient production, we are producing
negative electricity, which also would not make sense.

The likelihood value of -1625,100426 seems to indicate that we have found values for the
✓0s which are somewhat improved from the manual case, as expected. The estimation
requires 1287 iterations and has a run-time of 6.5 hours, which is almost twice as long as
solving the model manually 324 times. In return, it yields more accurate values for ✓1 and
✓2.

5.3.3 Discussion
The ✓-values that were found for power plant A indicate that the reservoir managers require
a 51% higher reward for deviating one production level above the BEP, i.e. producing
at 100% instead of 83% of maximum production. They require a 17% higher reward
for deviating one production level below the BEP, i.e. producing at 67% of maximum
production. Further, since the relationship is assumed to be linear, they require a 2 ·17% =

34% higher reward for deviating two production levels below the BEP, i.e. producing at
50% of maximum production, and so on.

The implied efficiency loss of producing above the BEP is clearly larger than the loss when
producing below the BEP. Since the efficiency of the turbine-generator scheme probably
does not lose as much as 51% when producing at maximum, there has to be some other
economic parameter behind the producer’s choice. A plot of the implied penalty is shown
in figure 5.2, together with the efficiency curve of a Francis turbine. The efficiency curve
of a Francis turbine is included in the plot, as this is the most used turbine for hydropower
plants that share the same technical specifications as power plant A.
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Figure 5.2: Comparison between the implied efficiency and the efficency of a Francis turbine

It is important to keep in mind that the ✓s discovered represent the behavior of the reser-
voir managers, given that the model is correct. The implied efficiency does not have to
match the mechanical efficiency of the turbine-generator scheme but can include other
hidden economic incentives that explain the dissimilarities between the two curves. There
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can be several reasons why a power producer does not want to produce at other produc-
tion levels. Examples of these are increased maintenance cost, lowered durability, and
cavitation problems.

The results of the implied efficiency seen in figure 5.2 can be the basis for internal discus-
sions at the hydropower plant as to whether or not the extra required reward reflects their
operating policy and if their current policy is reasonable. The implied efficiency should be
the result of potential mechanical failure and related costs, the production efficiency and
the mechanical fatigue this production implies. Ultimately, the power producer wants to
produce power at levels and at times which generate the highest total profits.

5.3.4 Explaining the implied efficiency
Establishing the turbine used by the plant
We earlier assumed that the turbine used in the power plant is a Francis turbine, but will in
this section elaborate on this assumption.

By using the general formula for a hydro system’s power output from section 2.2.1, we are
able to find the effective head of water across the turbine:

P = ⌘⇢gQH

8.8MWh = 1000 · 0.8 · 9.81 · 3 ·H
H = 373.77m

A Francis turbine is typically used for hydropower plants with heads of water between 30
m and 600 m. The rough calculations give an effective head of 374 m, which matches
these specifications. Further, the Francis turbine is the most commonly used turbine in
Norwegian hydropower plants. A third argument for why we believe our plant is using
this turbine can be drawn from their electricity capacity and their related prevalence in
Norwegian hydropower plants. Keeping in mind that our hydropower plant has a 10 MW
capacity, table 5.3 shows that Francis turbines are used by 73% of small (1-10 MW) hy-
dropower producers in Norway.

Turbine type Total number Quantity above 100 MW Quantity between 1 - 10 MW
Francis turbine 685 45 345
Pelton turbine 190 20 70
Kaplan turbine 95 2 45
Bulb turbine 20 - 8

Table 5.3: Turbine types and their quantities in Norwegian hydropower plants

Cavitation as a potential explanation
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Cavitation was introduced earlier in section 2.3. If we assume that the turbine used by
the hydropower plant is, in fact, a Francis turbine, cavitation could explain the implied
efficiency related to ✓2, considering the large deviation from the producer’s implied loss
of efficiency and the actual mechanical loss of efficiency in such a turbine.

According to Kumar and Saini (2009), the point of critical cavitation is above the BEP. The
implied efficiency suggests a BEP of production at 83%. As seen in figure 5.3, the critical
cavitation point is denoted �

c

, efficiency is along the y-axis, and Thoma’s cavitation factor
� is along the x-axis. The important implication of this is that producing at a higher level
than the BEP leads to a much higher cavitation than producing at or below the BEP. As
such, it is obviously not just the pure efficiency loss that is being taken into account by the
decision-makers at the plant. Damage to the turbine becomes an important factor when
deciding whether or not to produce above the BEP. This may explain why the reservoir
managers require such a high reward for doing so. Damaging the turbine can be costly,
and as a result, the compensation must be high.

Figure 5.3: Variation of efficiency with respect to cavitation factor, �

5.4 Examining changes in ✓-values over time
The data series used to estimate the ✓s for the power producer contains over 20 years of
production data. To examine if the plant’s preferences have changed over time, the data
series was split in half and the model was solved for the first and second halves with the
results displayed in table 5.4. The goal was to identify if the willingness to deviate from
the efficient production level has changed during this time.

First half Second half
✓1: 0.5456 0.0794
✓2: 1 0.398
Log-likelihood: -579.69 -676.54

Table 5.4: Changing values of ✓1 and ✓2 for power plant A over time
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Figure 5.4: Discretized production levels for the first and second half of observation, power plant
A.

The results displayed in Table 5.4 show that the willingness to deviate from the BEP has
increased over the years, as both ✓s are lower for the second half than the first half. A
potential explanation is the change in monitoring technology. It is possible that the power
plant had a much stricter policy for production at levels above the BEP due to uncertainty
regarding the potential economic downside. A ✓2 value of 1 signifies that the producer
should not want to produce above the BEP, as this would mean that the producer receives
no power in return for the released water. A potential scenario is that the precision of
monitoring technology related to turbine maintenance and wear was increased. The results
of such monitoring may have changed their willingness from being completely unwilling
to produce at levels above the BEP in fear of, among other things, cavitation, to producing
at levels above the BEP if the economic relative gain was above 39,8%.

The histograms displayed in Figure 5.4 show the discretized production levels for the first
and the second halves of our time series. They confirm that the amount of production
regarding production level 6 has doubled and that production on level 4 also has increased.
Production on the best efficient point has as a consequence decreased.

5.5 The marginal value of water
The marginal value of water for the producer tells us the price that the reservoir manager
requires for one unit of water. If he values his water lower than the current price of power,
he will release and gain an immediate profit. Otherwise, he will continue to store water
and release it at a more profitable time. To see how the reservoir level and seasonality
influences the marginal water values, the 3D plot displayed in Figure 5.5 and Figure 5.6
was made. The water value is the expected marginal value of the energy stored in the
reservoir. This value is found by dividing the change in expected value by the change in
reservoir level.
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Figure 5.5: Marginal water values

The figure shows the reservoir level on one axis. This is an important validation of the
model because the producer should value the water relative to the amount of available
water in the reservoir. The reservoir level dynamics are best seen in figure 5.6. The
relationship between the reservoir level and the water value is not linear.

The weeks are displayed on the other axis, in order to show the marginal water value in
comparison with seasonal changes. The season influences the expectation for both power
prices and inflow, which directly affects the marginal value of water. The figure is in ac-
cordance with knowledge of the Norwegian hydropower market, as the time around week
18 is when we would usually expect the spring flood. This is the time when the snow
packs in the mountains at higher altitudes melt and fill up the reservoirs for hydropower
producers. One unit of water at this time has very little value, since the expectation of
large amounts of inflow gives little incentives for having water stored in the reservoirs.
According to Olsson et al. (2015), long-term hydrological forecasts are used by the hy-
dropower industry to make sure there is sufficient remaining capacity to handle sudden
inflows, where the spring-flood forecast is considered the most important one.

In the autumn temperatures drop and the precipitation is in the form of snow instead of

46



Figure 5.6: Marginal water values

rain. Since snow does not move through terrain in the same way as water, the reservoir
receives less water. This makes the marginal value of water for the producer increase
since the expectations for future inflow in this period is low. As a result, the value of the
remaining water increases drastically as seen in the figure. These seasonal changes vary
each year, but will often begin around weeks 40-50. This is in accordance with the results
displayed in figure 5.5, which shows that the highest water values are found in week 45.

The water value decreases with higher reservoir levels, which is in accordance with in-
tuition. Further, the curve of the water values along the reservoir level is dependent on
the season. The water value has a steeper slope closer to both edges of the reservoir level
around week 45. Around week 18, however, the slope of the water value gets gradually
less steep as the reservoir level increases. The decrease in the water value when increasing
an already high reservoir level is higher for weeks when the inflow is low than for weeks
when the inflow is high.

.
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5.6 Further development
Model validation When the model estimates ✓-values it uses 989 observations for each
of the state variables. To see how large the variance for these ✓-values actually are, 20 data
series were made. These 20 data series each consisted of 50 randomly picked observations.
The model was then solved for each of the data series. The model had an average run-time
of 18 hours with these data sets, which is noticeably longer than the 5-12 hours it takes
with the original data set. This could be due to inconsistencies as a result of the power
plant’s changing policy over time. Due to the increased run-time, the model was not run
with the 20 data sets, but only 5. The results are displayed in table 5.5.

Mean St.dev Min Max Median
✓1 0.128 0.091 0.006 0.282 0.114
✓2 0.421 0.257 0.014 0.664 0.504

Table 5.5: Descriptive statistics for model validation

As further development we suggest that the model validation is run with all of these 20
data sets or more in order to validate the ✓’s.

Increasing the resolution of the state variables With a daily or even hourly resolution
for the state variables, it would be possible to estimate ✓-values with even greater pre-
cision. As mentioned earlier, the hydropower plant can start and stop production several
times within one week. Even though the histogram of weekly occurrences of different pro-
duction levels is similar to the histogram of the hourly occurrences, as shown in section
4.6.1, we assume that some precision has been lost in the aggregation. We imagine that
it would be possible to keep the weekly resolution of the seasonal component in order to
avoid an increase in dimensionality.

Including more observed state variables Hydropower producers often make expect-
ations for the spot price in-house or buy forecasts from analytic companies. To better
capture the producers’ expectations for the spot price, adding more price drivers could be
beneficial. Some important drivers for the Nord Pool area price are: local temperature, the
amount of production from fossil fuels, nuclear power production, and the EU ETS carbon
price.
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Chapter 6
Conclusion

In this thesis, a structural estimation model has been applied to data series from two dis-
closed hydropower plants in Norway. This has been done in order to discover certain as-
pects of the reservoir managers’ preferences related to the production levels at which they
operate. Time series models have been developed for the data series in order to replicate
the managers’ expectations of future conditions.

Specifically, the discovered preferences were related to the producer’s willingness to pro-
duce at other levels of than the production level with the highest efficiency. The results
yield an implied efficiency curve that considers the producer’s preferences instead of the
mechanical efficiency. The implied efficiency is a valuable finding and can be used as a
basis for internal discussion within the hydropower plant’s management.

The results show a greater willingness of the manager to produce at levels below than
above the best efficiency point. Our hypothesis is that this is mainly linked to cavitation
issues when producing at higher levels. Changes in these preferences over time was also
investigated, which showed an increased willingness to produce both above and below the
best efficiency point at the end of the time period.
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Appendix A
Appendix

A.1 Unit root test A
Statistical tests of the null hypothesis that a time series is non-stationary against the altern-
ative hypothesis that it is stationary, are called unit root tests:

H0: X
t

⇠ I(1)
H1: X

t

⇠ I(0).

The interpretation of this is that an autoregressive process is stationary if and only if the
roots of its characteristic polynomial lie strictly inside the unit circle (Olsson et al., 2015).
The Dicky-Fuller (DF) test is the most basic unit root test. The test is based on the Dicky-

Fuller regression, which is a regression of the form

�X
t

= ↵+ �X
t�1 + "

t

.

The test statistic is the t ratio on ˆ� , and it is a one-sided test for

H0: � = 0

H1: � =< 0.

If a test statistic falls into the critical region, we conclude that the process is stationary
at the confidence level prescribed by the critical region. However, a problem with the
Dickey-Fuller tests is that their critical values are biased if there is autocorrelation in the
residuals of the Dickey-Fuller regression. The augmented Dicky-Fuller (ADF) test solves
this issue by including as many lagged dependent variables as necessary to remove any
autocorrelation in the residuals. The ADF-test of order q is based on the regression

�X
t

= ↵+ �X
t�1 + �1�X

t�1 +...+ �
q

�X
t�1 + "

t

.

The test proceeds as in the ordinary DF-test above, except that the critical values depend
on the number of lags, q, that has been included. In this paper, we run all ADF-test with
one lag,i.e. q = 1.
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A.2 Descriptive statistics

Power plant A Mean St.dev. Min. Max. Median
I Observed 0,7151472 1,064891 -1,07798 7,766352 0,342648

Simulated 0,751687 0,843074 0 4,373952 0,5568258
C Observed 0,01462579 0,2187709 -0,5969365 1,003681 -0,00486093

Simulated 0,227499 0,3268673 -0,3029207 2,104676 0,1476972
R Observed 0,00E+00 0,1887571 -0,4811746 0,5708791 0,0308818

Simulated 0,0156275 0,2160682 -0,5664131 0,7145599 -0,000471952
P Observed 3,138499 0,5256082 1,427228 4.425137 3.204928

Simulated 3,082369 0,3152591 2,346197 3,752814 3.064955

Table A.1: Descriptive statistics for the state variables processes for power plant A

Power plant B Mean St.dev. Min. Max. Median
I Observed 8,842896 10,62155 -13,3225 60,46186 4,9464

Simulated 8,936684 6,151064 0 23,24549 7,273236
C Observed 0,01480243 0,3172844 -1,02264 1,0478 -0,01281955

Simulated 0,01855873 0,3069211 -1,097067 1,10942 -0,00044
R Observed -0,004508971 0,164374 -0,4700683 0,4615402 0,01634631

Simulated 0,02265908 0,2654173 -0,8235879 0,6411824 0,01990878
P Observed 3,232482 0,5020268 1,468325 4,425138 3,312216

Simulated 3,168794 0,4115622 2,593862 3,79042 3,164708

Table A.2: Descriptive statistics for the state variables processes for power plant B

Table ?? ant table ?? shows the descriptive statistics for the state variable processes. These
processes are elaborated in chapter 4. Table ?? shows the different coefficients for the state
variables, for both power plant A and B.
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Power plant A Power plant B
� 0,432 0,5532132
I

1 -0,8281 -6,944
�I

1 6,0815 6,123
I

2 0,5579 -5,309
�I

2 0,1638 3,694
D1 0,7151 8,856
�I 0,5158 0,532
f 20 20
⇢ 0,936 0,932
�1 0,99 0,93
�2 0,04 0,07
�
R

-1,53E-02 0,005
AP

1 0,18059 0,17325
�P

1 -0,03969 -0,06570
AP

2 -0,01348 0,01800
�P

2 -13,04764 1,55786
AP

3 -0,01620 0,01322
�P

3 2,30658 5,33779
DP 5,33572 5,39782
↵1 0,95025 0,9692
↵2 -0,0916 -0,067
�P 0,01 0,01459
Q 1,69 5

Table A.3: Coefficients for the state variables

57



A.3 State transition matrices
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(A.1)

The state variable transition for the reservoir level, (4.22), is not included in (4.30), but it
is still part of the state transition on vector form in (4.29). The reason for not including it
in the matrix form, is only because of the difficulty surrounding the min-operator.
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