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Abstract—A current trend is autonomous transport of goods 

and people in the air, at land, and at sea. For safe and reliable 
operations, autonomous systems require sensors that replace, or 
even exceed, the senses of a human operator. A system of spatially 
distributed inertial measurement units (IMUs) along the hull of a 
vessel, which allows sensing of local accelerations of a vessel or 
structure at sea is proposed. In contrast to classic motion sensors 
on ships, the sensors are not placed in a central location of the ship, 
but are instead mounted on the inside of hull of the vessel. This 
enables the system to measure local hull vibrations, which are 
induced by external forces or pressure gradients. The 
measurements can be processed to allow a spatial awareness of 
environmental loads or force fields acting on the vessel. After a 
discussion of the fundamentals of local motion sensing on a marine 
vessel, this paper presents two applications for distributed motion 
sensing. The first application is the measurement and 
classification of ice-induced vibrations in the hull of an Oden-class 
icebreaker during transit and stationkeeping in ice-infested 
waters. At four locations on the vessel, the local vibrations were 
measured and probability distribution function fitted to the 
motion data. It is shown, depending on the ice-conditions, that the 
stochastic properties of the signal change. In a second application, 
a model scale ship is equipped with an array of four motion sensors 
along the hull of the vessel and one virtual sensor in the center of 
gravity as a reference measurement. By this configuration, it is 
demonstrated how to detect local pressure zones along the hull 
caused by incoming waves. 

Keywords— Arctic, Marine technology, Maximum likelihood 
estimation, Motion estimation, Sensor arrays, Statistical analysis 

I. INTRODUCTION 

Distributed motion sensing is an extension of the classical 
one point motion sensing on ships. Today, many ships are 
equipped with inertial measurement units (IMUs), placed at a 
central location in the vessel, typically in an instrument room, as 
part of an integrated inertial navigation system (INS), which 
provides, in combination with a global navigation satellite 
system (GNSS) information about the position, velocity, and 
attitude of the vessel [1], and sometimes also the corresponding 
accelerations [2]. An extension of a single motion sensor INS to 
a system with a triple redundant sensor package is presented 
in [3]. Besides for navigation purposes, data from a motion 
sensor on a vessel can also be used for the detection of dangerous 
operation conditions. One such condition is the occurrence of 
parametric roll on a vessel. Galeazzi et al. describe in [4] a 
method for parametric roll monitoring based on the detection of 
changes in the stochastic properties of the roll motion signal 
from an onboard IMU. Johnston et al. showed that acceleration 

data obtained from an IMU in the center of gravity of a ship can 
also be utilized to determine the global load from interaction 
with sea-ice [5]. The authors extended their approach with a 
second IMU, placed in the bow of the vessel, close to the ice 
interaction zone [6]. They proofed that, for measuring global ice 
loads, the IMU can be placed arbitrarily inside the ship (given 
the rigid body assumption). By fusing the acceleration data from 
a set of four spatially distributed IMU sensors, Kjerstad et al. [7] 
were able to obtain a full state estimate of the acting 
accelerations on a vessel. They used the reconstructed 
acceleration vector as feedforward in a control law to rapidly 
compensate ice loads. Amongst others, they demonstrated the 
effectiveness of a spatially distributed sensor setup for dynamic 
positioning (DP) control in ice infested waters. 

All of these application for IMU sensors on ships have the 
aim of measuring or estimating the global accelerations or global 
loads acting on the vessel, typically based on rigid body 
dynamics. Locally occurring motions and vibrations are 
neglected or actively filtered out of the signal. However, the 
rigid body assumption is crude, and especially when operating 
in harsh environments, like ice-infested waters or in large waves, 
the flexibilities in the ship hull becomes very distinct. Hence, 
accelerations measured at different locations will not be the 
same. The analysis of locally induced vibrations thus provides 
information about the external loads, e.g. the attacking sea-
ice [8]. Strain-gauges along the hull of the bow of a vessel 
provide information about the local load distribution along the 
hull during ship-ice interaction [9]. This provides spatial 
knowledge about the ice conditions around the vessel, which 
can, according to the authors, be utilized in decision supports 
systems for the crew. The measurement of locally induced ice-
accelerations and loads is also beneficial for DP and position 
mooring in sea-ice infested waters. Due to the aggressive nature 
of the ice loads [10], control systems must be provided with 
more information to compensate for the higher dynamics of ice 
loads [11]. The drift of sea-ice can lead to the accumulation of 
ice rubble along the hull of the vessel [12], which can endanger 
stationkeeping operations. The problem is to detect local ice-
induced accelerations without the need of installing strain 
gauges in the hull of the vessel. 

This paper proposes to measure and to use locally induced 
vibrations in the ship’s hull in order to evaluate the environment 
around the vessel. A distributed motion sensor setup for both full 
scale and model scale measurements is presented. The 
placement of the sensors is discussed as well as a mathematical 
model for the measured accelerations derived. A full scale 
application on an icebreaker ship demonstrates, that distributed 
motion sensing can be used to track changes in the attacking ice 



conditions. During a voyage in the ice-infested waters of the 
Arctic, data was collected under different ice conditions and in 
open water from four spatially distributed IMUs placed on the 
Swedish icebreaker Oden. It is shown that the recorded local 
vibrations follow a t-distribution when the ship is affected by 
ice, but follow a normal distribution when the ship operates in 
open waters. Different test scenarios show that the parameters 
of the underlying t-distribution depend on the properties of the 
attacking ice and the state of ice encounter, e.g. the impact 
velocity. The properties of the ice around the vessel were 
extracted from a camera system. It is further shown that, due to 
the spatial distribution of the sensors, a local awareness of the 
ice conditions can be achieved (e.g. differences in ice conditions 
between the port and starboard side of the vessel). In a second 
application, a model scale experiment is conducted, which 
demonstrates that locally induced motions can be used to detect 
the angle of attack from waves in open water by calculating the 
phase difference of locally measured heave accelerations at 
different positions of the ship. 

The scope of the paper is as follows: In section II a 
mathematical model describing the locally measured 
accelerations is given and the placement of the sensors is 
discussed. Section III presents the full scale application of 
distributed motion sensing on an icebreaker vessel. The 
experiment setup is described and 13 different test scenarios 
with different ice conditions are presented. The statistical 
characteristics of acceleration data from four IMU sensors is 
determined. For each scenario a camera system provides 
information about the ice conditions around the vessel. The 
changes in the statistical properties in each scenario and for each 
sensor is discussed and compared to the recorded ice conditions. 
Section IV presents the model scale application for angle of 
attack detection of incoming waves with the help of distributed 
motion sensing. The experiment setup is described and a 
mathematical model that includes locally induced wave motions 
is presented. A method is presented to estimate the angle of 
attack from incoming waves. Section V concludes this paper in 
a summary of the potential of distributed motion sensing and an 
outlook on upcoming work. 

II. DISTRIBUTED MOTION SENSING 

An IMU contains six sensors, out of which three orthogonal 
accelerometers measure the proper acceleration acting on the 
object the IMU is mounted on. Three orthogonal gyroscopes 
measure the angular rate. The readings from the gyroscopes are 
neglected in this work. As shown in Fig. 1, three coordinate 
systems have to be distinguished [13]: The North-East-Down 
(NED) coordinate system, denoted with the superscript {n}, is 
defined relative to the Earth’s reference ellipsoid and assumed 
as an inertial reference frame [13]. The body-fixed reference 
frame, denoted with superscript {b}, is a moving coordinate 
frame fixed to a point of origin in the vessel. The sensor-fixed 
reference frame for each sensor, denoted with the superscript 
{si}, is the coordinate system fixed to the sensor i in the sensor 
mounting point. In this paper all sensor readings are aligned with 
the body frame of the vessel. The sensor output of the ith IMU’s 
three orthogonal accelerometers in the body reference frame can 
be combined in a vector ��,�

� ∈ ℝ� . The sensor output is 
modelled, following [6] and [13], 

��,�
� = ��,�

� + ��
�(��� )�� + �� + ��  (1)

with ��,�
� ∈ ℝ� representing the linear dynamic accelerations in 

the mounting point of sensor i, ��
� (���) the rotation matrix 

between the NED frame and the body frame, which depends on 
the Euler angles ��� = (�, �, �), see also [13], �� = (0,0, �) 
contains the gravity expressed in the NED frame, �� ∈ ℝ� 
contains the sensor biases and �� ∈ ℝ� accounts for the sensor 
noise of each accelerometer. Following [7], the linear dynamic 
acceleration in the vessel origin (VO), ���

� ∈ ℝ�, can be derived 
by taking into account the centrifugal, Coriolis, and Euler 
acceleration. Additionally, also local accelerations 
denoted  ����

� , which are not affecting the movement of the 
vessel, are taken into account by 

���
� + ����

� = ��,�
� − �� × � − �� × ��

− �� × (�� × �) 
(2)

where � ∈ ℝ�  is the angular acceleration, �� ∈ ℝ�  is the 
angular rate, and � ∈ ℝ� is the lever arm between the center of 
the sensor’s coordinate frame and the VO, see [7] for more 
details.  
 Accelerations caused by the hydrodynamics of the ship, by 
environmental action such as wind, waves, or sea-ice, and 
accelerations by the thrusters and propellers contribute to the 
linear dynamic accelerations in the VO. The additional locally 
measureable vibrations can either be caused by engine induced 
vibrations or by external effects. One of these external effects 
can be the interaction of the ship’s hull with surrounding sea-ice. 

 
Fig. 2. Position of IMU sensors for ice induced vibration measurements 

 
Fig. 1. Coordinate system definitions 
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The ship-ice interaction occurs generally in four steps: Breaking 
of the ice, rotation of the broken ice pieces, sliding against the 
hull, and clearing of the ice pieces [15]–[17]. Especially due to 
the crushing of ice and due to the sliding of the ice fragments 
along the hull, vibrations are induced that are locally 
measureable [8], [18].  
 Since the ship’s structure damps the locally induced 
vibrations, the placement of the sensors is crucial to be able to 
capture them. The sensors must be placed as close as possible to 
the sources of the local vibrations. In the case of the interaction 
with sea-ice, this would be close to the ice-interaction zone 
inside the hull of the vessel. An example of the sensor 
placements is given in Fig. 2 and further discussed in the first 
application example.  

III. STATISTICAL PROPERTIES OF ICE INDUCED VIBRATIONS 

During a six week expedition in the Arctic Ocean, data from 
four IMU sensors, distributed over the vessel, were collected 
while travelling in different ice conditions and in open water. 
Due to the placement of some sensors close to the ice-interaction 
zone, locally ice-induced vibrations were measureable.  

A. Probability distribution of ice-induced accelerations 

If the locally measureable vibrations are influenced by the 
ship-ice interaction, the properties of the measured acceleration 
signals will change. The ice breaking process can be seen as a 
stochastic process. As soon as the ship-ice interaction is 
dominant, the stochastic process of ice breaking will influence 
the stochastic properties of the locally induced vibrations, which 
are measured by the IMUs. The locally measured vibrations 
����

�  are described as a continuous random variable and �����
(�) 

is the probability density function (PDF) of the locally induced 
accelerations. Noise signals are commonly assumed to be 
Gaussian distribution. Gaussian distributed data produces a 
straight line on probability paper plot. If the data, however, 
shows heavier tails, it follows another probability distribution 
[19]. Besides the Gaussian distribution, the recorded vibration 
data is tested against the univariate t-distribution, the Cauchy 
distribution and the Laplace distribution. These three 
distributions are heavy tail distributions [20]. The correct 
distribution is determined by inserting the recorded and filtered 
data into a probability plot. With the help of maximum-
likelihood estimators, the four probability distributions are fitted 
to the data. The Kolmogorov-Smirnov test is used to exclude 
probability distributions that do not fit the data on a significance 
level of 5 %.  

The univariate t-distribution depends on three parameters: 
The location parameter �, the scale parameter �, and the shape 

parameter �. With the Gamma function Γ(�) =  ∫ ���������
�

�
, 

the PDF of the univariate t-distribution is: 

�(x;�, �, �) =
Γ(0.5 + 0.5�)

S ⋅Γ(0.5�)√��

⋅�1 +
1

�

(x− �)�

��
�

�
���

�

 

(3)

The shape parameter � ∈ ℝ�� defines the tail of the distribution. 
If � → ∞, the tails vanish and the t-distribution approaches the 

normal distribution. A Gaussian distribution is assumed for  
� > 30 . The smaller the shape parameter �  gets, the more 
distinct the tails of the distribution are.  The variance for the t-
distribution is defined for � > 2 by 

���(x) = ��
�

� − 2
 (4)

The Cauchy distribution results for � = 1 [21].  
 The Laplace distribution is a double exponential distribution, 
defined by the location parameter � and the scale parameter �: 

�(x;�, �) =
1

2�
exp�−

|x − �|

�
� (5)

B. Experimental setup 

During the SWEDARCTIC Arctic Ocean 2016 
expedition [22], the Swedish icebreaker Oden was equipped 
with four IMU sensors according to Fig. 2. IMU 1 was placed in 
a central location of the vessel, close to the approximate center 
of gravity of the vessel. It is used as reference to measure global 
accelerations without the influence of locally induced 
accelerations. IMU 2 was placed close to the ice interaction 
zone, inside the ice-knife of the vessel and directly at the outer 
hull of the vessel. IMU 3 and IMU 4 were placed in the aft of 
the vessel on port (P) respectively starboard (SB) side. In 
contrast to IMU 2, the IMUs 3 and 4 could unfortunately not be 
placed directly on the outer hull due to safety regulations.  

The sensors were of type ADIS 16364 from Analogue 
Devices. The technical specifications of the IMUs’ 
accelerometers are given in TABLE I. Synchronization of data 
recording was guaranteed by a single-board computer 
(BeagleBone). Each BeagleBone was equipped with a highly 
precise real-time clock, which was synchronized via the network 
time protocol (NTP) to the ship’s systems.  

TABLE I.  
TECHNICAL SPECIFICATION OF ACCELEROMETERS 

Parameter Value Unit 

Dynamic range ±5.25 g 

Sensitivity 1.00 mg/LSB 

Bias stability 0.1 mg 

Velocity 
random walk 

0.12 m/sec/hr0.5 

Output noise 5 mg rms 

 



A camera system, which was also synchronized to the ship’s 
systems, recorded the ice conditions around the vessel. After 
post-processing, a panorama image is obtained, which can be 
used to automatically determine the ice concentration and an 
indicator of the brokenness of the surrounding ice for each side 
of the vessel [23]. An example is shown in Fig. 3. Ahead, port, 
and the starboard part of the image are analyzed separately, 
according to the blue, red, and green marked areas in Fig. 3. The 
ice concentration is determined for each region by separating ice 
and water showing pixels. The brokenness is determined by 
edge detection and counting the edge pixels between two ice 
floes or between water and an ice floe. More information on how 
to obtain the ice conditions from the recorded images can be 
found in [23]. 

C. Processing of recorded acceleration data 

 The data from the accelerometers is processed in order to 
align all sensor readings to the body frame, remove the 
influence of the slowly varying biases, and to filter out noise. 
The processing steps are shown in Fig. 4. 

D. Scenarios 

 For 13 different scenarios with different ice conditions and 
vessel speeds, the ice induced vibrations were analyzed by 
fitting four different probability distributions to 30 seconds of 
data of the three accelerometers of each IMU sensor. The time 
window of 30 seconds has been chosen to capture enough 
dynamics to model the tails of the distributions but still to be 
short enough to assume constant heading, speed, and wind 
influence. An overview of the scenarios and the recorded 
shipdata is given in TABLE III while the ice conditions are 
summarized in TABLE II. 
 Scenarios 1-3 are taken while the ship was travelling in open 
waters. In scenario 3, the ship gets close, but not in contact, with 
a major ice floe on starboard. In scenarios 4-6, the ship travelled 
through open ice with speeds of ~9.5 m/s for scenarios 4 and 5 
and 1.2 m/s for scenario 6. In scenarios 7-11, the ship travelled 
slowly through close and very close pack-ice.  In scenarios 12 
and 13, the ship was standing still, with major, unbroken ice 
 

 
Fig. 4. Processing of sensor readings for each IMU 
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TABLE III.  
SHIPDATA DURING EACH ANALYZED SCENARIO 

Scenario 
Date and 

Time 
SOG 
(m/s) 

Heading 
(°) 

True wind-
speed (m/s) 

True 
wind 

direction 
(°) 

1 06.09.16 12:47 6.1 246.8 10.0 345.7 
2 16.09.16 18:05 6.1 246.8 10.0 345.7 
3 01.09.16 18:44 6.4 314.8 14.4 319.7 
4 09.09.16 13:49 9.5 232.9 7.4 245.6 
5 16.09.16 17:34 9.5 232.9 7.4 245.6 
6 16.09.16 17:37 1.2 214.4 8.1 247.8 
7 06.09.16 13:47 5.5 2.2 11.6 333.0 
8 09.09.16 14:20 6.7 230.5 8.2 260.2 
9 09.09.16 14:01 6.7 231.5 7.5 247.5 
10 09.09.16 14:04 3.3 231.5 8.3 244.8 
11 09.09.16 14:48 1.2 214.4 8.1 247.8 
12 14.09.16 9:40 0.1 72.4 5.0 152.1 
13 21.08.16 0:16 0.2 133.6 6.5 69.3 

 

TABLE II.  
RESULT FROM CAMERA IMAGE ANALYSIS 

Scenario Ice state 
Water pixels in % Brokenness of icea 

Ahead Port SB Ahead Port SB 
1 Open water 84.23 96.54 62.23 - - - 
2 Open water 48.73 70.35 65.64 - - - 

3 
Open water, 
level ice SB 

22.39 61.81 3.89 - - 0.28 

4 Open ice 26.69 7.32 25.01 4.21 10.39 7.84 
5 Open ice 13.03 27.12 36.17 20.84 29.76 21.55 
6 Open ice 43.98 14.15 43.99 10.30 22.19 10.57 

7 
Close pack-

ice 19.09 8.63 18.40 1.94 7.65 0.95 

8 
Very close 
pack-ice 2.08 0.26 3.28 1.02 1.34 4.05 

9 
Very close 
pack-ice 11.47 2.27 6.63 1.44 1.34 0.83 

10 
Very close 
pack-ice 3.12 0.34 5.85 0.48 0.65 2.87 

11 
Very close 
pack-ice 2.97 0.88 15.09 1.68 3.91 5.68 

12 
Level ice at 
both sides 8.14 4.61 10.80 0.93 2.45 0.28 

13 
Level ice 

ahead 19.27 42.92 48.27 0.46 5.43 4.51 
a Brokenness is an index describing the amount of broken ice in an image. 100 means that every 
ice showing pixel in the image shows broken ice, 0 means that no ice pixel shows broken ice.   

 
Fig. 5. Probability plot in open water of IMU 3 surge 

 
Fig. 6. Ice conditions in scenario 4 with contact of ice floe on port 



                                                                                                    

TABLE IV.  
P-VALUES FOR DIFFERENT DISTRIBUTIONS OF ACCELERATION DATA IN OPEN WATER (SCENARIOS 1-3) 

Scenario / 
IMU 

Gaussian t (degrees of freedom in brackets) Laplace Cauchy 
surge sway heave surge sway heave surge sway heave surge sway heave 

1 / IMU1 0.140 0.105 0.223 0.140 820193.046 0.104 1742718.967 0.222 2492868.710 0.000 0.000 0.000 0.000 0.000 0.000 
1 / IMU2 0.834 0.158 0.001 0.910 25.330 0.251 26.290 0.511 6.557 0.000 0.000 0.000 0.000 0.000 0.000 
1 / IMU3 0.782 0.061 0.423 0.782 1660634.014 0.296 21.040 0.423 1253873.622 0.000 0.000 0.000 0.000 0.000 0.000 
1 / IMU4 0.370 0.562 0.986 0.372 3896261.261 0.577 100.545 0.914 53.158 0.000 0.000 0.000 0.000 0.000 0.000 
2 / IMU1 0.719 0.778 0.883 0.721 1399657.179 0.776 878468.061 0.971 50.764 0.000 0.000 0.000 0.000 0.000 0.000 
2 / IMU2 0.488 0.009 0.000 0.820 33.229 0.009 4079531.376 0.000 6017145.159 0.000 0.000 0.000 0.000 0.000 0.000 
2 / IMU3a 0.750 0.967 0.310 0.846 140.040 0.907 99.100 0.310 2300228.744 0.000 0.000 0.000 0.000 0.000 0.000 
2 / IMU4 0.927 0.666 0.426 0.927 2524694.046 0.667 2956476.760 0.000 4496663.239 0.000 0.000 0.000 0.000 0.000 0.000 
3 / IMU1 0.701 0.255 0.756 0.703 305538.649 0.240 158.912 0.893 33.332 0.000 0.000 0.000 0.000 0.000 0.000 
3 / IMU2 0.461 0.431 0.455 0.889 11.785 0.925 16.443 0.689 25.386 0.000 0.000 0.000 0.000 0.000 0.000 
3 / IMU3 0.997 0.586 0.607 0.999 142.226 0.711 29.503 0.606 1775816.718 0.000 0.000 0.000 0.000 0.000 0.000 
3 / IMU4 0.703 0.502 0.282 0.936 42.262 0.356 17.823 0.281 3608822.858 0.000 0.000 0.000 0.000 0.000 0.000 

aSee Fig. 5 for a probability plot example 
  

TABLE V. 
P-VALUES FOR DIFFERENT DISTRIBUTIONS OF ACCELERATION DATA IN OPEN ICE (SCENARIOS 4-6) 

Scenario / 
IMU 

Gaussian t (degrees of freedom in brackets) Laplace Cauchy 
surge sway heave surge sway heave surge sway heave surge sway heave 

4 / IMU1 0.940 0.759 0.843 0.960 71.893 0.845 27.094 0.885 41.269 0.000 0.000 0.000 0.000 0.000 0.000 
4 / IMU2 0.000 0.001 0.000 0.779 5.792 0.575 6.157 0.878 4.225 0.009 0.000 0.108 0.000 0.000 0.000 
4 / IMU3 0.637 0.069 0.812 0.964 15.793 0.302 8.882 0.910 60.480 0.000 0.000 0.000 0.000 0.000 0.000 
4 / IMU4 0.426 0.098 0.603 0.403 17.048 0.153 11.791 0.635 362.809 0.000 0.000 0.000 0.000 0.000 0.000 
5 / IMU1 0.364 0.082 0.958 0.364 2959770.773 0.082 4022347.152 0.959 2177582.861 0.000 0.000 0.000 0.000 0.000 0.000 
5 / IMU2 0.000 0.161 0.000 0.192 4.727 0.180 10.764 0.000 64.511 0.000 0.000 0.000 0.000 0.000 0.000 
5 / IMU3 0.571 0.415 0.935 0.908 26.535 0.481 34.298 0.989 62.035 0.000 0.000 0.000 0.000 0.000 0.000 
5 / IMU4 0.645 0.647 0.253 0.644 3788174.650 0.648 1176429.805 0.256 1095565.369 0.000 0.000 0.000 0.000 0.000 0.000 
6 / IMU1 0.215 0.000 0.103 0.230 137.670 0.014 7.791 0.103 3637209.864 0.000 0.000 0.000 0.000 0.000 0.000 
6 / IMU2 0.000 0.000 0.000 0.000 2.501 0.000 3.247 0.000 27.742 0.000 0.000 0.000 0.000 0.000 0.000 
6 / IMU3 0.893 0.134 0.982 0.934 208.654 0.135 4510293.111 0.992 156.398 0.000 0.000 0.000 0.000 0.000 0.000 
6 / IMU4 0.003 0.204 0.118 0.245 10.247 0.205 1602917.111 0.425 7.547 0.000 0.000 0.000 0.000 0.000 0.000 

 
TABLE VI. 

P-VALUES FOR DIFFERENT DISTRIBUTIONS OF ACCELERATION DATA IN CLOSE AND VERY CLOSE ICE (SCENARIOS 7-13) 

7/ IMU1 0.371 0.035 0.874 0.476 77.312 0.035 1503465.676 0.857 395.886 0.000 0.000 0.000 0.000 0.000 0.000 
7 / IMU2 0.000 0.000 0.000 0.968 5.209 0.647 4.182 0.391 3.384 0.002 0.012 0.016 0.000 0.000 0.000 
7 / IMU3 0.005 0.458 0.724 0.614 7.106 0.653 14.130 0.779 129.300 0.003 0.000 0.000 0.000 0.000 0.000 
7 / IMU4 0.000 0.002 0.172 0.847 5.798 0.879 8.041 0.683 14.045 0.000 0.001 0.000 0.000 0.000 0.000 
8 / IMU1 0.676 0.774 0.271 0.595 49.320 0.774 2900316.526 0.270 1327104.681 0.000 0.000 0.000 0.000 0.000 0.000 
8 / IMU2 0.000 0.000 0.000 0.800 3.624 0.441 4.239 0.879 3.976 0.092 0.005 0.013 0.000 0.000 0.000 
8 / IMU3 0.005 0.000 0.267 0.790 6.486 0.291 5.093 0.584 11.010 0.002 0.000 0.000 0.000 0.000 0.000 
8 / IMU4 0.000 0.002 0.026 0.539 6.253 0.084 8.321 0.153 11.620 0.000 0.000 0.000 0.000 0.000 0.000 
9 / IMU1 0.478 0.685 0.517 0.477 3581935.297 0.686 1684267.334 0.341 32.464 0.000 0.000 0.000 0.000 0.000 0.000 
9 / IMU2 0.000 0.000 0.000 0.008 3.906 0.129 4.850 0.507 3.144 0.004 0.000 0.127 0.000 0.000 0.000 
9 / IMU3 0.225 0.932 0.065 0.799 18.322 0.967 88.690 0.572 9.594 0.000 0.000 0.000 0.000 0.000 0.000 
9 / IMU4 0.122 0.098 0.002 0.995 10.919 0.120 141.652 0.659 6.386 0.000 0.000 0.000 0.000 0.000 0.000 
10 / IMU1 0.516 0.210 0.442 0.867 22.162 0.210 4223793.302 0.639 62.955 0.000 0.000 0.000 0.000 0.000 0.000 
10 / IMU2 0.000 0.005 0.000 0.539 5.251 0.063 16.770 0.835 5.806 0.001 0.000 0.011 0.000 0.000 0.000 
10 / IMU3 0.018 0.000 0.004 0.638 7.803 0.673 5.099 0.395 6.590 0.000 0.000 0.000 0.000 0.000 0.000 
10 / IMU4 0.023 0.421 0.354 0.986 8.492 0.669 16.455 0.496 13.125 0.000 0.000 0.000 0.000 0.000 0.000 
11 / IMU1 0.691 0.000 0.452 0.691 3128931.064 0.000 14.175 0.452 515611.289 0.000 0.000 0.000 0.000 0.000 0.000 
11 / IMU2 0.000 0.000 0.000 0.021 2.296 0.000 2.625 0.056 1.728 0.000 0.000 0.000 0.000 0.000 0.009 
11 / IMU3b 0.000 0.000 0.000 0.962 3.126 0.256 2.795 0.935 2.783 0.045 0.008 0.198 0.000 0.000 0.000 
11 / IMU4 0.000 0.000 0.000 0.367 4.306 0.021 8.219 0.566 4.735 0.005 0.000 0.002 0.000 0.000 0.000 
12 / IMU1 0.982 0.893 0.106 0.981 3855881.438 0.972 80.300 0.106 984353.806 0.000 0.000 0.000 0.000 0.000 0.000 
12 / IMU2 0.371 0.145 0.000 0.821 11.328 0.288 9.453 0.182 6.653 0.000 0.000 0.000 0.000 0.000 0.000 
12 / IMU3 0.000 0.000 0.000 0.294 2.781 0.087 3.450 0.012 3.859 0.004 0.000 0.000 0.000 0.000 0.000 
12 / IMU4 0.322 0.862 0.198 0.816 10.359 0.838 42.967 0.413 10.659 0.000 0.000 0.000 0.000 0.000 0.000 
13 / IMU1 0.586 0.907 0.712 0.588 3296372.495 0.850 22.686 0.712 1102895.316 0.000 0.000 0.000 0.000 0.000 0.000 
13 / IMU2 0.219 0.181 0.000 0.567 11.681 0.494 14.028 0.338 4.768 0.000 0.000 0.001 0.000 0.000 0.000 
13 / IMU3 0.000 0.000 0.000 0.578 3.190 0.433 2.549 0.339 3.054 0.002 0.002 0.002 0.000 0.000 0.000 
13 / IMU4 0.733 0.515 0.133 0.961 23.886 0.530 211.617 0.218 22.873 0.000 0.000 0.000 0.000 0.000 0.000 

bSee Fig. 7 for a probability plot example 
 



floes on both starboard and port side or, as in  scenario 13, the 
bow of the ship was, before the measurement, rammed into an 
ice floe.  

E. Sstatistical characteristics of ice-induced vibrations 

a) Ship travelling in open waters: When the ship travels 
in open waters, ice-induced accelerations are not present. As 
shown in TABLE IV, the acceleration data from all four IMUs, 
except the heave acceleration data from IMU 2 in the bow of 
the vessel, follow Gaussian distributions. Outliers in the data 
from IMU 2, as a result from slamming of the vessel’s bow, 
cause heavier tails in the data. It is noticeable, that in those cases 
the underlying t-distribution has a high number of degrees of 
freedoms, which makes it close to a Gaussian distribution. In 
cases of very high degrees of freedom, the iterative solver of 
the maximum likelihood estimator could not converge. Both the 
Laplace and Cauchy distributions are unsuitable for describing 
the data, since no or only weak tails are present in open water 
acceleration data. 

b) Ship travelling in open ice: TABLE V shows the result 
from distribution fitting for recorded acceleration data in open 
ice. Some of the recorded data shows such distinct outliers, that 
the tail of the data can be best captured with a t-distribution. In 
scenario 4, the data shows distinct outliers in the bow (IMU 2) 
and port (IMU 3) sensors’ data, however not in the starboard 
(IMU 4) sensor data. The reason is a direct contact of the ship’s 
hull with a bigger unbroken ice floe on the portside of the bow 
of the vessel, as it can be seen in Fig. 6. Again, both the Laplace 
and Cauchy distribution are unsuitable for describing the data. 

c) Ship travelling in close or very close ice: Except for 
IMU 1 and some single cases, the Gaussian distribution is 
unsuitable to describe the acceleration data captured when the 
ship travels in close or very close ice. IMU 1 is an exception, 
because it was mounted mid-ships, far away from the hull and 
is thus not capable of capturing the ice-induced vibrations. In 
general the t-distribution is the best choice to describe the 
statistical behaviour of the ice-induced accelerations. It is also 
noticeable, that the degrees of freedom of the t-distribution 
decreased compared to the open ice scenarios 4-6. The reason 
are more distinct outliers, caused by sudden interaction of ice 

with the ship’s hull. An example of the distinct tails of the data 
can be seen in Fig. 7. In Fig. 8, the change of the signal variance 
in relation to the ice conditions for a continous measurement is 
shown. The variance of the t-distribution is given in (4) and 
depends on both the degrees of freedom � and the scale of the 
distribution �. Recursively, the t-distribution parameters were 
estimated with a window length of 30 seconds over a time of 
12 minutes for the surge acceleration data from IMU 2 
(15th September 2016). The ship was travelling in a field of ice 
floes of about 20-30 meters diameter at a speed of 5-6 m/s. The 
variance was calculated and plotted together with the ice 
brokenness index from the camera images. At 13:17 the ship 
encountered a larger, unbroken ice floe. This results in a 
significant increase of variance, which can be seen as an 
indicator of a higher energy exchange between the ship and the 
surounding ice. 

d) Ship standing still in close ice: The two scenarios 12 
and 13 were recorded when the ship was stationkeeping in level 
ice, as shown in Fig. 9. IMU 1 is again not capable to capture 
local dynamics, which is why the data is normal distributed. 
IMUs 2-4 are located closer to the hull record vibrations, which 
allow them to capture the heavier tail t-distributed hull 
vibrations. This means that also during stationkeeping, ice-
induced vibrations, probably caused by the ice drift, is 
noticeable by the accelerometers.  

 
Fig. 7. Probability plot in very close ice of IMU 3 surge 

 
Fig. 8. Change of signal variance in relation to brokenness of ice 

 
Fig. 9. Ice conditions in scenario 12 stationkeeping in level ice 



IV. MODEL SCALE EXPERIMENT TO DETECT ANGLE OF ATTACK 

OF INCOMING WAVES 

A. Experimental setup 

 Experiments were performed with a 1:90 scaled 
C/S Inoccean Cat I Drillship (CSAD, short for Cybership Arctic 
Drillship), a model of the CAT I Drillship [24]. A setup of four 
spatially distributed motion sensors were mounted inside the 
hull, as illustrated in Fig. 10. The ADIS16364 was used in the 
experiments, with each IMU connected to an Arduino 
Leonardo™ ETH microcontroller. One microcontroller was set 
to be the leader, and the three other operated as followers. Time-
synchronization was achieved with an interrupt signal from the 
leader to the followers at a pre-defined frequency. Measured 
acceleration data were sent over an Ethernet interface and 
collected on a cRIO™ platform. Due to computational 
limitations of the cRIO™, the sampling rate was set to 20 Hz.  
 Experiments were carried out in the basin of the Marine 
Cybernetics Laboratory (MC-Lab) at NTNU. The position and 
heading of the vessel were fixed as illustrated in Fig. 11. In Fig. 
12 a photo of the ship model in the basin with the experimental 
setup is shown. The fixation works as a stiff DP-setup with 
nearly free motions in heave, roll and pitch, and limited, but not 
constrained, motions in surge, sway and yaw. In total seven 
experiments were carried out, with heading fixed to 
0°, 30°, 60°, 90°, 120°, 150° , and 180° . Stoke’s 1st order 
waves excited the vessel, with a wave period of 1.5 seconds. 
Due to some temporary modifications in the basin, the wave 
beach was not working properly and the waves were strongly 
reflected. As a result, each experiment was only performed for 
50 seconds because the reflected waves affected the wave 
spectrum and direction of incoming waves.  

 

B. Modeling 

A new reference frame is introduced for the model 
experiments, which is a basin fixed reference frame denoted 
{f}. This reference frame is assumed an inertial reference frame 
for navigation in the basin, similar to NED.  

 Due to spatial limitations, each sensor frame is rotated to be 
parallel with the body frame using a rotation matrix. Based on 
measured Euler angle offset, the body-parallel accelerations 
were calculated as 

��,�
� = ��

�(����
� )��,�

�  (6)

where ��,�
� ∈ ℝ� is the linear accelerations of sensor i rotated 

to {b}, ����
� ∈ ℝ� is the initial angle offset of sensor frame i 

relative to {b}, and ��,�
� ∈ ℝ� is the measured accelerations of 

sensor i. In contrast to the full-scale experiments, the gravity 
was modeled as unknown using the differential equation 

�̇ = −� × �, (7)

where � ∈ ℝ� is the gravity vector and � ∈ ℝ� is the angular 
rate of the vessel.  Using the method of [25], the kinematic 
model is 

�̇�/�
�,� = −� × ��,�/�

�,� − ��,�/�
�,�   

�̇�,�/�
�,� = −� × ��,�/�

�,� − � − � + ��,�
�  

�̇ = −� × � 

�̇ = � 

(8)

where ���/�
�� ∈ ℝ� is the position of sensor i in the basin frame, 

���/�
�� ∈ ℝ� is the linear velocity of the sensor, and � ∈ ℝ� is 

the sensor bias modeled as a random walk. The kinematic 
model was modeled as an LTV system, and solved using the 
discrete time Kalman Filter. The measurement of the state in 
the Kalman Filter, � = ���/�

�� , was the measured position from 

the camera based positioning system in MC-Lab. 
 The waves are modeled with the assumption of deep water, 
which gives the dispersion relation � = ��/�, where � is the 
wave number, � is the circular frequency of the waves, and � 
is the gravity constant. The phase velocity may now be 
expressed in terms of the wave period calculated by  

� =
�

2�
� (9)

where � ∈ ℝ is the phase velocity of the waves, and � ∈ ℝ is 
the wave period.  

C. Estimating angle of attack of incoming waves 

 The proposed method for estimating the direction of 
incoming waves is based on the idea that the system of 
distributed motion sensors can measure the wave force field as 
the waves travel through the hull. By measuring the point in 
time of extrema in heave acceleration in each sensor, one can 
estimate the direction of incoming waves. Using the phase 
velocity of the waves and the distance between the sensors, one 

 
Fig. 10. Positioning of motion sensors 
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Fig. 11. Fixation of model 
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Fig. 12. Photo of CSAD with experimental setup 



can calculate the time it will take for the waves to travel 
between the sensors. For example, setting sensor #1 as the 
reference sensor, the distance between sensor #1 and #4 in the 
x-y plan is given as ����/��

�� � when sensor #4 is projected onto 

the x-y plane of sensor #1. The time it takes for the wave peak 
to travel from sensor #1 to #4 is now estimated as a function of 
the direction of incoming waves, �, given as 

��(�) =
����/��

�� �cos (−�)

�
 

(10)

where � ∈ ℝ  is the angle of attack of the incoming waves, 
expressed in {s1}. It should be noted that this method defines 
the time difference such that negative time means the peak 
occurred in sensor #4 before #1. In addition, as the estimated 
angle of attack is given in {b}, a positive heading in the basin 
corresponds to an equal negative angle of attack in {b}. Further, 
as waves travel through the hull, the measured time difference, 
��, in peaks in heave acceleration for both sensors is used to 
estimate �. This is solved as an optimization problem  

min
�∈[����°,���°)

��(�) − ��  (11)

 By augmenting this method to include all four sensors, one 
gets a unique time difference for all directions of incoming 
waves. The objective of minimizing the time difference then 
becomes an optimization problem in the least squares sense.  

D. Signal processing 

 The algorithm for estimating the angle of attack of incoming 
waves was implemented as an online algorithm on the vessel. 
Hence, to avoid time delay, there was no noise filtering except 
the Kalman Filter.  

E. Results 

 The time series presented in Fig. 13 are the first 50 seconds 
when waves hit the vessel, with heading fixed to 0°. When 
calculating t�(β), the estimated angle of incoming waves is 
modeled with step size of 10°. The estimates are assumed to be 
Gaussian distributed when calculating the variance and 
standard deviation. The mean value of the estimated angles is 
annotated in the figure, together with the standard deviation. 
The estimates have a large variance, while the mean value is 
close to the true direction.  

The mean estimate and standard deviation for all headings 
are presented in Fig. 14, with values given in the legend. The 
polar plot illustrates estimated direction of incoming waves 
expressed in {b}. The method performs well for all headings, 
with a maximum discrepancy of 12°. The standard deviation 
varies more, where head and beam sea have a larger variance 
compared to headings between 30° and 120°.  
 In Fig. 15 the performance of the online algorithm for 
finding the acceleration extrema is investigated. The figure 
shows the heave acceleration of all motion sensors for the first 
10 seconds when the wave train hits the vessel. The illustrated 
experiment is with heading fixed to 0°. The local maximum and 
minimum values for all sensors are marked with circles and 
squares. It is clear that the extrema found are affected by noise, 

as the measured value is affected by measurement noise. The 
figure also illustrates how the wave travel through the hull, as 
there is a clear and consistent delay from peak in heave 
acceleration from the two sensors in the bow to the two located 
aft.  

 
Fig. 15. Point in time of extrema in heave acceleration for all four sensors 

  
Fig. 13. Estimated angle of attack of inc. waves with heading fixed to 0° 

 
Fig. 14. Estimated angle of attack of incoming waves for all headings 



V. CONLUSION 

 This paper presented a method to measure and use locally 
induced accelerations on marine vessels. By placing 
accelerations sensors not in the center of the vessel, but instead 
close to the hull of the vessel, the sensors are able to record 
locally induced accelerations, that origin from the environment 
around the vessel. In two applications the advantages of the 
distributed acceleration sensing approach are demonstrated. By 
measuring local accelerations in the hull of a full-scale 
icebreaker vessel and evaluating the statistical properties of the 
locally induced accelerations, a relationship can be found 
between the ice conditions around the vessel and the measured 
hull vibrations. In a second, model-scale application, it was 
shown that locally measured heave accelerations can be used to 
identify wave forces traveling through the hull. This can be 
used for identifying the direction of incoming waves, which can 
be useful for autonomous vessels. 
 Further work is required in developing the applications of 
distributed motion sensing on marine vessels. For ice-induced 
motion sensing, a system for drift detection around a 
stationkeeping vessel can be developed, which utilizes the 
changes in statistical properties of ice-induced vibrations 
presented in this paper. This drift estimate can be used as 
support for vessels, who are stationkeeping in ice. Ice-induced 
motion detection can also be developed further into a decision 
support system for ice-going vessels, warning the crew of 
dangerous ice conditions around a vessel travelling in ice. As 
shown in the second application, distributed motion sensing can 
be used for direction detection of incoming waves. This can be 
further used as input to heading controller for weather vaning 
vessels, which are in stationkeeping operations and compared 
to standard weather vaning methods. 
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