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Abstract

Hybrid positron emission tomography/magnetic resonance
imaging (PET/MR) scanners are one of the latest tools avail-
able in the field of medical imaging, and are expected to out-
perform the well-established PET/X-ray computed tomography
(CT) scanners in a large range of fields. The perhaps largest
challenge that has to be overcome before this can be achieved,
is that of attenuation correction (AC) of the acquired PET im-
ages, as there is no direct relation between the MR image in-
tensity of a tissue and its attenuating properties, as is the case
in CT.

This study investigated the performance of two PET AC
methods provided with the biograph mMR PET/MR scan-
ner installed at St. Olavs Hospital (Trondheim, Norway); one
for head imaging based on an ultra-short echo-time (UTE) se-
quence, and one for whole-body imaging based on a Dixon se-
quence. These AC methods were compared to the ‘gold stan-
dard’ of CT-based AC, based on activity concentrations in PET
images from mMR examinations of lymphoma and lung cancer
patients, corrected with the different AC methods (UTE, Dixon
and CT).

The results of the study show that the UTE-based AC method
leads to an underestimation of PET activity in the brain of up
to 9 % in the investigated regions of interest. This is caused by
underestimation of bone in the cranial region. The exclusion of
bone in the Dixon-based AC method leads to underestimation
of PET activity in the thorax/abdomen, indicated by an under-
estimation of 4 % in the liver. The two MR-based AC methods
are thus not sufficiently accurate to be utilised for quantification
in PET imaging.
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Sammendrag

Positronemisjonstomografi/magnetisk resonanstomografiskan-
nere (PET/MR) er et av de siste tilgjengelige verktøyene in-
nen medisinsk avbildning, og er forventet å prestere bedre enn
de veletablerte PET/computertomografi-skannerene (CT) in-
nen en rekke omr̊ader. Den kanskje største hindringen i veien
mot å oppn̊a dette er problemet med attenuasjonskorreksjon
(AC) av de innsamlede PET-bildene, ettersom det ikke eksis-
terer noen direkte sammenheng mellom et vevs signalintensitet
i MR-bilder og dets attenuerende egenskaper, som er tilfelle i
CT.

Denne studien undersøkte ytelsen til to AC-metoder som
fulgte med biograph mMR PET/MR-skanneren installert ved
St. Olavs Hospital (Trondheim); én for avbildning av hode ba-
sert p̊a en ultra-short echo-time (UTE) sekvens, og én for full-
kroppsavbildning basert p̊a en Dixon-sekvens. Disse AC-metodene
ble sammenlignet med ‘gullstandarden’ CT-basert AC, basert
p̊a aktivitetskonsentrasjoner i PET-bilder fra mMR undersøkelser
av lymfom- og lungekreft-pasienter, korrigert med de forskjelli-
ge AC-metodene (UTE, Dixon og CT).

Studiens resultater viser at den UTE-baserte AC-metoden
fører til en underestimering av PET-aktivitet i de undersøkte
delene av hjernen p̊a opptil 9 %. Dette skyldes en underes-
timering av bein i kranie-regionen. Ekskluderingen av bein i
den Dixon-baserte AC-metoden fører til en underestimering av
PET-aktivitet i toraks/abdomen, indikert av en underestime-
ring p̊a 4 % i leveren. De to MR-baserte AC-metodene er der-
med ikke nøyaktige nok til å bli benyttet til kvantifisering i
PET-avbildning.
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Part I

Introduction

1 Motivation and objective

Hybrid positron emission tomography / magnetic resonance imaging
(PET/MR) scanners are one of the latest tools available in the field of
medical imaging. The Siemens biograph mMR was the world’s first
commercially available, fully integrated PET/MR scanner, and St.
Olavs Hospital (Trondheim, Norway) was fortunate enough to receive
one as a gift, which was installed autumn 2013.

Since its introduction in the late 1990’s, the PET/X-ray computed
tomography (CT) scanner has been the multi-modality imaging sys-
tem of choice, fusing excellent skeletal contrast with the molecular
imaging possibilities of a PET system, complete with hardware-based
image registration. Hybrid PET/MR scanners are still in an initiation
stage, but are believed to outperform the PET/CT in several fields,
including, but not limited to, the following. The excellent soft-tissue
contrast provided by the MR imaging (MRI) modality is expected to
drastically increase the possibilities in neuroimaging especially, as well
as other fields. The lower dose delivered in PET/MR examinations
compared to PET/CT is of great importance in therapeutic progress
monitoring, where multiple examinations are necessary, especially in
paediatric oncology. [12] [35] [36]

Due to its recent invention, there are still many unresolved chal-
lenges connected with the new combination of image modalities in
hybrid PET/MR scanners. The perhaps largest challenge yet to be
resolved is that of attenuation correction (AC) of the acquired PET
images [21][36]. In PET imaging a tracer molecule labelled with a
positron-emitter is injected into the patient, and the resulting radioac-
tivity distribution is imaged by detectors surrounding the patient. The
emitted radiation is attenuated by different tissues on its way from
inside the body towards the detectors, and to acquire accurate, quan-
tifiable images, it is crucial to correct for this attenuation.

The attenuation of photons in the PET energy range (around 511
keV) depends on the electron density of the tissue. In PET/MR scan-
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ners there is no direct way of measuring the electron density, as is
possible with PET/CT scanners. The issue of PET AC in PET/MR
must thus be solved in a more indirect manner, as will be described in
the theory section.

The mMR installed at St. Olavs Hospital is provided with two dif-
ferent MR sequences specialised for AC; a Dixon sequence for use in
whole-body imaging, and an ultra-short echo-time (UTE) sequence for
use in head imaging. The UTE sequence is a new version which has not
yet been clinically validated. The main objective of this study was to
validate the performance of these two sequences, compared to the ‘gold
standard’ of CT based AC. Additionally, in the beginning of this year
(2014) the scanner received an upgrade in the form of a new PET im-
age reconstruction method; Siemens’ new point-spread-function (PSF)
algorithm, and the assessment of this algorithm’s performance is the
second objective of this study.

Part I will provide the reader with the theoretical basis needed to
understand and appreciate the practical issues related to the objective
of this study. The subsequent parts will present the methods used,
the results, the discussion of these results, and the conclusions made
from the interpreted results. The appendices provide the reader with
important details supporting the understanding of the practical issues
related to the performed tasks.

2 Theory

This section will first present the minimum needed basic theory on
PET, photon attenuation, CT and MRI, before more specifically dis-
cussing AC in PET. Finally a short overview of image registration will
be given.

2.1 PET

PET is a functional imaging modality utilising biologically active molecules
labelled with positron emitters (tracers) to image and quantify physi-
ologic processes. The objective in PET imaging is to image the distri-
bution of radioactivity from the injected tracer with an accuracy high
enough that the detected activity can be accurately quantified. [42]

2
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2.1.1 Positron emitters and tracers

A positron emitter is a radioactive isotope with an excess number of
protons compared to the number of neutrons in the nucleus. Through
transmutation one proton of this neutron-deficient isotope is converted
to a neutron, releasing an electron neutrino (νe) and a positron (β+)
in the process (known as β+-emission). The former is uncharged and
has virtually no mass, and thus it does not interact with any other
particles. The latter is the antiparticle associated with the electron
and is thus also known as an antielectron. A positron created through
β+-emission will have an initial kinetic energy, the amount of which
depends on the positron-emitting isotope. While travelling through the
surrounding material the positron will lose this kinetic energy through
Coulomb interactions with the electrons of nearby atoms. Once it has
lost (nearly) all of its kinetic energy, the positron will annihilate with
a nearby electron in what is known as an event. The annihilation
creates two gamma photons, travelling in (nearly) opposite directions,
each with an energy of 511 keV, which is the resting energy (E = mc2)
of electrons/positrons. Figure 1 shows a schematic overview of the
described process. [5] [33] [42]

In PET imaging the positron emitting isotope is usually bound
to a biologic molecule. This molecule is typically a substrate of a
metabolic process one desires to image, such as the consumption of
glucose at the cellular level. In the case of glucose consumption the
radiopharmaceutical (tracer) fluorodeoxyglucose (FDG) is especially
useful. FDG is a glucose-analogue in which one of the hydroxyl groups
of regular glucose has been replaced with the positron-emitting fluorine
isotope 18F, as shown in Figure 1. After injection into the patient, FDG
is transported into any glucose-consuming cell, more so in cells with a
higher relative glucose consumption such as brain cells and malignant
tumour cells. Normal glucose is degraded in the cell through a ten-step
process known as glycolysis, to free its stored energy [24]. Due to its
chemical properties, degradation of FDG will halt after the first step,
trapping the tracer inside the cell, and degradation will not continue
until 18F has undergone radioactive decay. One important consequence
of this is that the detected photons from 18F-FDG become an excellent
indicator of the location of glucose consumption in the body. This is
highly relevant in malignancy detection, due to the aforementioned

3
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high relative glucose consumption in malignant cells. [22]

Figure 1: Overview of the basic principle of PET physics, and the molecular
structure of FDG. A proton of a neutron-deficient isotope (a) is converted to
a neutron, emitting a positron and a neutrino. The positron travels a certain
distance (the positron range) before annihilating with an electron, emitting
two photons in opposite directions (b). If transmitted in the right direction
these photons can be detected by a pair of opposing detectors. c shows the
molecular structure of 18F-labelled FDG, where one of the hydroxyl groups
fo glucose has been replaced with the radioactive fluorine isotope 18F. [42]

Part of what makes PET imaging a flexible and valuable functional
imaging modality is the large amount of tracers that can be produced.
11C, 13N, 15O, and 18F are all positron-emitting isotopes of chemi-
cal elements which are extremely abundant in organic and biologic
compounds, thus enabling the conversion of a wide range of biologic
molecules into tracers. Depending on the nature of the tracer, it is
inhaled or injected either during, or a certain time before, the exami-
nation. A limiting factor is the cost of tracer production. Since many
of the useful positron-emitting isotopes have a short half-life they have
to be produced on-site, typically in a cyclotron. FDG is an exception,
being relatively transportable due to 18F’s half-life of 109.8 minutes
[5], contributing to FDG’s position as the by far most utilised tracer
in PET imaging. [33]

2.1.2 PET detectors

To detect the gamma photons emitted from the electron/positron an-
nihilation events inside the patient, a suitable detector is needed. A
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typical PET detector consists of two main components; a scintillator
and a photodetector. The scintillator is usually an inorganic crystal
in which the gamma spectrum photons are converted to visible light
(scintillation photons) through photoelectric absorption and Compton
effects. The scintillation crystals are coupled to photodetectors, from
which the output is a measurable signal proportional to the energy
deposited in the scintillation crystal. The typical PET detector block
consists of an array of crystals coupled to an array of position-sensitive
photodetectors, as seen in Figure 2. [18] [33]

Scintillation crystals can be made from a range of different materi-
als, including sodium iodide (NaI), bismuth germanium oxide (BGO),
and lutetium oxyorthosilicate (LSO). Important crystal properties in-
clude stopping power (ability to attenuate incident gamma photons),
conversion efficiency (relative amount of gamma energy converted to
scintillation photons) and linearity. Likewise there are several photode-
tectors to choose from, including the photomultiplier tube (PMT), the
avalanche photodiode (APD), and the silicon photomultiplier (SiPM).
The PMT has been the workhorse in PET and single-photon emission
computed tomography (SPECT) for several decades, but due to its size
and its sensitivity even to weak magnetic fields, in PET/MR scanners
it has been replaced by alternatives insensitive even to strong magnetic
fields, such as the APD. [18] [33]

In a standard whole-body PET scanner the patient is positioned
on a moveable patient bed. Mounted coaxially around the bed is the
detector gantry. In the gantry the detector blocks are arranged in rings
as seen in Figure 4, with the scintillator crystals oriented towards the
center of the gantry. The axial field of view (FOV) of regular PET
scanners is limited, often between 20 and 30 cm. Several acquisitions,
at different bed positions, are therefore necessary to cover the whole
body. [18] [42]
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Figure 2: Example of a PET block detector, consisting of a grid of rectan-
gular crystals coupled to a grid of photo-detectors. The photodetectors in
this example image are PMTs. [33]

2.1.3 Detected events

The crucial principle behind PET imaging is the emission of two gamma
photons from every annihilation event, travelling in opposite directions.
Thus, when the two photons from an event are detected by two (oppos-
ing) detectors, one can assume that the event took place somewhere
along a straight line connecting the two detectors. This line is known
as the line of response (LOR). To ensure that two detected photons
originate from the same event, a coincidence time window is set based
on the known speed of gamma photons (30 cm/ns) and the time res-
olution of the detectors. To be accepted as originating from the same
event, as a coincidence, the two photons must be detected within this
time window (∼ 5 - 10 ns). [5] [42]

From annihilation in patient tissue to detection in the gantry the
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two gamma photons can follow several paths. One is both photons
passing out of the body without interacting significantly with other
particles, known as a true count. Another possibility is for one or both
photons to undergo Compton scattering and change direction prior to
detection, known as a scattered count. Yet another possibility is for
two photons originating from separate events to be detected within the
coincidence time window, known as a random count. As seen in Fig-
ure 3 both scattered and random counts give rise to false LORs. Since
photons lose energy if they undergo a Compton interaction, heavily
scattered counts can be filtered out based on energy discrimination of
detected photons. This is done by analysing the signal pulse from de-
tected gamma photons, which is the task of the pulse-height analyser.
The energy resolution of the detector determines the range of accepted
energies. Random counts can be filtered out by more advanced tech-
niques based on estimation from the singles rates of the detectors or
by manipulating the coincidence time windows. [5] [27]

When the depth of interaction (DOI) in the crystal detecting a
gamma photon is unknown, which is generally the case, the LOR is
assumed to stretch between the center of the edge of the two detect-
ing crystals, as indicated by the dashed line in Figure 4. Scintillator
crystals with smaller cross-sections thus give better spatial resolution.
However, when the crystal cross-section becomes small compared to the
attenuation length of the detected photons, not knowing the DOI in
the crystal becomes an issue. As shown in Figure 4, events originating
in the center of the transaxial FOV will result in true LORs. Photons
from events in the edges of the transaxial FOV may however traverse
the incident crystal and interact in its neighbour. The detected event
will then be attributed to another LOR than the true one, as indicated
by the dashed line in the figure. Depending on scanner hardware and
software, this can be corrected for, either by measuring the DOIs, or
by mapping the PSF of the system. [5] [18]

PSF mapping The PSF of an image system is a function describing
how an imaged mathematical point will appear in the resulting im-
age. The PET PSF is spatially variant, and is influenced by a range of
scanner properties, including, but not limited to, the positron range,
non-collinearity of the anihiliation photons, distance between detec-
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tors, detector stopping power, and DOI. A way of improving the image
quality in PET imaging is to map the PSF for every single position in
the FOV. This can be done by simulation, analytical derivations, or
through experimental measurements. Measuring can be done by imag-
ing a point source in every position (or at least in a required minimum
for the system model) inside the FOV of the scanner. The PSF map
is incorporated in iterative reconstructions of the PET images. PSF
algorithms improve resolution and scatter, and largely for the DOI
problems described above. [4] [34] [40]

A well-known issue with PSF reconstruction algorithms is that of
edge artefacts, or ringing artefacts, manifested as overshoots along ac-
tivity edges in the PET images. The proposed explanations for this
artefact include mismatches between assumed and actual system mod-
els, and insufficient support for high spatial frequencies, but will not
be described here. [2] [41]

Figure 3: Schematic illustrations of different possible coincidence events
recorded in PET scanners. [27]
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Figure 4: Schematic example of how a true event gives rise to a false LOR
due to the depth of interaction-problem. [18]

2.1.4 Image reconstruction

Before continuing, the patient reference coordinate system (RCS) have
to be defined. The RCS is an intuitive Cartesian coordinate system
utilised when referring to the patient’s body. The positive x-direction
is defined to be from the right side of the patient to the left (say, from
right to left shoulder). The positive y-direction is defined to be from
anterior to posterior (chest to back). The positive z-direction is defined
to be from bottom to top (feet to head). The x- and y-direction define
the transversal plane, while z is the axial direction.

Figure 5 illustrates how two-dimensional (2D) PET measurements
are saved in raw image files known as sinograms. The detected activ-
ity in each LOR is saved as a pixel in the sinogram, with coordinates
as illustrated in the figure. Each row in the sinogram corresponds to
a projection along a certain angle φ, while each column corresponds
to a certain distance s along the axis perpendicular to the projection
angle. Each detector can form LORs with a certain sector of (at least
partly) opposing detectors. The angle θ defines the angle between the
projection and the transversal plane. For 2D acquisitions, which are
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restricted to θ = 0, the number of sinograms (for each bed-position)
equals the number of detector rings. For three-dimensional (3D) ac-
quisitions, which are not restricted to θ = 0, the data acquisition is
more complicated. The raw data can also be saved in a list file, which
contains information on every single detected event. [4]

Figure 5: Illustration of how 2D PET data is saved in sinogram images. s
gives the distance from the specific LOR to the center of the projection in
the direction given by φ. The detector Da can form LORs with all detectors
between and including Db(min) and Db(max). Each row in the sinogram cor-
responds to a projection of the imaged object for a certain angle φ. The top
right image illustrates how the polar angle θ is defined. [4]
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Before image reconstruction the raw data is corrected for random
counts, attenuation, scattered counts, etcetera. The corrected data
is then used to generate an image, using one of several methods. In
filtered backprojection (FBP) the data is simply backprojected into
image space (as opposed to the forward projection at acquisition), after
first being filtered to account for the oversampling of the center of
the FOV. Iterative reconstruction methods are based on a starting
presumption of the image distribution, followed by a calculation of
the projections this distribution would give. These projections are
compared with the projections actually measured during acquisition,
and further iterations are performed to reduce the difference. [10]

2.1.5 SUV

Standardised uptake value (SUV) is a widely used quantification mea-
sure of localised activity in PET images. SUV is a calculation of the
activity concentration in PET images, normalised for patient size and
injected activity. The most frequently used calculation in clinical set-
tings, SUVBW (‘SUV bodyweight’), is defined as1

SUVBW =
A

DI

·mpatient, (1)

where A is the measured absolute activity (corrected for attenuation,
scattering, etcetera) in [Bq/ml], Di is the injected dose in [Bq], and
mpatient is the patient’s mass in [g]. 1 g is assumed to be equivalent
to 1 ml, so the quantity is unitless. Another frequent SUV measure is
SUVLBM (‘SUV lean body mass’), defined as1

SUVLBM =
A

DI

· LBM [g], (2)

where LBM is given as1

LBMM[kg] = 1.10 ·mpatient − 128

[
mpatient

lpatient

]2
,

for males, and as1

LBMF[kg] = 1.07 ·mpatient − 148

[
mpatient

lpatient

]2
,

1 This definition is gathered from the Siemens’ syngo software directly.
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for females. where mpatient is the patient weight given in [kg], and
lpatient is the length of the patient given in [cm].

2.2 Photon attenuation

Attenuation of electromagnetic radiation is the reduction in intensity,
caused by the scattering and absorption of photons, of a ray traversing
a material with which it can interact. The attenuation depends on the
energy of the photons and the properties of the traversed material. [39]

2.2.1 Attenuating interactions

X-ray and gamma radiation share much of the same energy spectrum
and are thus both subject to the same attenuating interactions (see
Figure 6). The interactions relevant for electromagnetic radiation of
diagnostic energy include photoelectric absorption, Compton scatter-
ing, Rayleigh scattering, pair-production, triplet-production, and nu-
clear photoabsorption. For the photon energies observed in PET and
X-ray imaging the two former are the most prominent attenuating in-
teractions. [5] [39]

In photoelectric absorption a photon interacts with an inner shell
electron of the absorbing atom. All of the photon energy is transferred
to the electron, which is subsequently ejected from its shell, leaving a
vacancy. The vacant shell is filled by an electron from an outer shell,
emitting X-ray radiation of energy equal to the difference in binding
energy between the two shells in the process. The energy of the in-
teracting photon must be equal to or greater than the binding energy
of the electron. The probability of photoelectric absorption decreases
with increasing energy once this lower threshold is exceeded. Photo-
electric absorption is thus more prominent for lower (X-ray) photon
energies (< 80-140 keV) than for electron/positron-annihilation pho-
ton energies (511 keV). [5] [39]

In Compton scattering, which as already mentioned is important
in PET imaging, a photon interacts with an outer-shell electron with
a low binding-energy relative to the energy of the incoming photon.
Some of the photon’s energy is transferred to the electron, which is
subsequently ejected from the atom. The scattered photon will have
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a different direction and a lower energy than the incident photon. [5]
[39]

The probability for all the possible interactions constitute the lin-
ear attenuation coefficient (LAC) µ. µ-values are generally given in
units [cm−1], and for X-ray and PET energies they are dependent on
the electron density (Z-number) of the traversed material, and the in-
cident photon energy. For a narrow beam (pencil beam) of incident
intensity I0 traversing a material of thickness x with uniform atten-
uation coefficient µ for the given energy, the transmitted intensity is
given by

Ix = I0e
−µx. (3)

To normalise for the density of the material, the mass attenuation
coefficient µ/ρ is often used. The importance of attenuation in PET
(and CT) imaging will be discussed below. [5] [39]

Figure 6: Schematic overview of possible photon/electron interactions rel-
evant to attenuation of photons in PET and CT energy spectra. A: No
interactions. B: Photoelectric absorption, photon fully absorbed. C: Comp-
ton scattering, the scattered photon has lower energy. [39]
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2.3 CT

CT is a structural imaging modality utilising X-ray radiation to cre-
ate images with excellent skeletal contrast and acceptable soft-tissue
contrast. [16]

In medical imaging it is common to divide the imaged volume into
voxels, the 3D equivalent to pixels in a regular 2D image. The smaller
the voxels the better the resolution in the image. When an X-ray
beam traverses the body it will pass through voxels of different tis-
sue types, and thus with different attenuating properties (attenuation
coefficients). The transmitted intensity It of a beam traversing n vox-
els will depend on the sum of the attenuation coefficients of all the
traversed voxels according to

It = I0e
−

n∑
i=1

µixi
, (4)

where µi and xi are the attenuation coefficient and the traversed thick-
ness, respectively, of voxel i. This can be reformulated

− ln(It/I0) =
n∑
i=1

µixi, (5)

which shows that when the incident and transmitted intensities of the
beam is known, along with the direction of the beam through the
voxels (determining the xi’s), one can calculate the sum of attenuation
coefficients along the specific beam path. [16]

A typical CT scanner consists of a patient bed surrounded by a
detector gantry. The radiation source, an X-ray tube, rotates about
the patient bed, emitting a spectrum of energy determined by its peak
voltage. With a peak voltage of for instance 100 kV, the emitted
photons will have a maximum energy of 100 keV, but the mean energy
of the emitted spectrum will be much lower, as shown in Figure 7. The
radiation detectors are either rotating with the X-ray tube, or mounted
in stationary rings in the gantry. [16]
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Figure 7: Illustrative examples of X-ray energy spectra, from two different
tungsten targets bombarded with electrons accelerated with a peak voltage of
100 kV, 2 mm aluminium filter. The peaks in the spectra are the charac-
teristic K-peaks of the tungsten targets, while the main body of the spectra
originate from bremsstrahlung. [26]

A regular X-ray image is a 2D projection of the attenuation coeffi-
cients in the imaged 3D volume. In CT imaging several one-dimensional
(1D) projections are acquired from transverse slices through the body.
The acquisition is usually done performing a helical scan along the
length of the patient, with a fan-shaped or cone-shaped X-ray beam,
ensuring that enough information is acquired to calculate the attenua-
tion coefficient in every individual voxel. The contrast in the resulting
images is caused by the differences in attenuation coefficients between
different tissues. Cortical bone is generally the most attenuating tissue,
while lung tissue is the least attenuating. [16]

The calculated attenuation coefficients are commonly rescaled to
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the integer Hounsfield units (HU), according to the formula

HUvoxel = 1000 · µvoxel − µwater

µwater

, (6)

where µwater and µvoxel are the attenuation coefficients for water and
the voxel of interest (VOI), respectively. An example of a standard
(low-dose) CT image given in HU can be seen in Figure 8. [16]

Figure 8: Example of a low-dose (as opposed to diagnostic) CT image slice.
The image slice is a sagittal slice through the head and neck of a male
patient. The patient bed is visible to the left. The brightest pixels in the
tissue have the highest attenuating values, and are usually bone or metal.
The darkest pixels are air, and the intermediate ones are soft-tissues. In
this image the skull, jaws, and vertebrae are clearly visible, along with the
trachea and sinuses. If the image seems stretched/compressed in a certain
direction, this is a flawed property of the utilised image viewer. Patient ID:
PETMR023.
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2.3.1 Beam hardening

In CT imaging there is a desire to keep the radiation dose delivered
to the patient as low as possible, while still acquiring images of suf-
ficient quality, according to the principle of keeping the dose as low
as reasonably achievable (ALARA). As mentioned, as an X-ray beam
traverses the body it is attenuated, and the attenuating interactions
have different probabilities for different photon energies. Specifically,
after traversing tissue of some thickness, an X-ray beam will have a
different spectrum of photon energies than the incident beam; there
will be relatively fewer low-energy photons. This is known as beam
hardening, and is an issue when the travel length of the beam becomes
too large, since high-energy photons are less attenuated, and thus con-
tribute less to image contrast. To compensate for beam hardening one
can either increase the input energy, and thus the dose; or one can de-
crease the travel length of the X-ray beam through the body. One way
of decreasing the travel length of the beam is to position the patient
in a way optimal for imaging of the specific body part, for instance
by positioning the arms above the head in an abdominal examination.
[16]

2.4 MRI

MRI is an imaging modality utilising the nuclear resonance of hydro-
gen nuclei (protons) placed in an external magnetic field to generate
structural and functional images[19]. This section will provide the
minimum of information needed to understand the MRI-related parts
touched upon in this report. First a short overview of the basic princi-
ples of MRI is given, before two types of sequences especially important
in connection to PET AC are presented.

2.4.1 Basic principles

Protons (as all elementary particles) possess an intrinsic angular mo-
mentum known as spin, which, since the proton also has charge, gives
rise to a magnetic dipole moment ~µ. When a proton is placed in a
magnetic field ~B0, ~µ will interact with the field and start to precess
around the field direction, at a frequency known as the Larmor fre-
quency. The Larmor frequency ω0 is linearly dependent on the field
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strength B0 = | ~B0|:
ω0 = γB0, (7)

where γ is the gyromagnetic ratio. Water-bound hydrogen nuclei have
a gyromagnetic ratio of γ- ≡ γ/(2π) = 42.6 MHz/T. Thus, hydrogen
nuclei experiencing a magnetic field of 3 Tesla (T) will have a Larmor
frequency of about 128 MHz, which is within the radiofrequency (RF)
spectrum. [15] [19]

In a tissue voxel experiencing an external, homogeneous magnetic
field, the individual magnetic moments will sum up to a net magneti-
sation ~M in the direction of the field. This net magnetisation vector
can be manipulated by exciting the tissue with (Larmor frequency)
RF pulses, which flip the vector a certain angle (flip angle) away from

the direction of ~B0, depending on the strength and direction of the
RF pulse. The transversal component of ~M , M⊥, will precess about
the field direction (at the Larmor frequency) and can be detected by
strategically placed coils in which it will induce time-varying currents.
After excitation the signal will decay as ~M returns to equilibrium; M⊥
decays and M‖ (longitudinal component of ~M) regrows. [19] [30]

The regrowth of M‖ follows the equation

M‖(t) = M0

[
1− e−t/T1

]
+K1e

−t/T1 , (8)

where K1 is a constant depending on the initial conditions, M0 = | ~M |,
and T1 is the longitudinal relaxation time constant, which is tissue-
dependent. The decay of M⊥ follows the equation

M⊥(t) = K2e
−t/T2 , (9)

where K2 is a constant depending on initial conditions, and T2 is the
transversal relaxation time constant, which is tissue-dependent. M⊥ is
the only detectable part of ~M in regular MRI, and T2 thus governs how
fast the MRI signal irreversibly decays. Magnetic field inhomogeneities
induce additional decay of the signal (dephasing of individual ~µ’s),
determined by T ′2, but this dephasing is largely constant over time
(static) and thus reversible. [19] [30]

According to Equation (7) the Larmor frequency, and thus the fre-
quency of the detected signal, depend on the magnetic field strength.
By introducing linear magnetic field gradients in specific directions at

18



I

specific times during excitation and detection, a spatial dependence
can be imposed on the Larmor frequency. [19] [30]

The detected MRI signal consists of a weighted sum of all the Lar-
mor frequencies of the different tissue types in the different voxels. The
frequency content of the signal is acquired and saved in k-space (see
Figure 9). In MR sequences a range of exciting RF pulses and space-
encoding gradients are employed in order to fill k-space with sufficient
amount of values (k-space mapping). When sufficiently mapped, the
inverse FT of k-space will yield the image of the object. The lower
frequencies determine the image intensity, while the higher frequencies
determine the resolution. [14] [19] [30]

Figure 9: Illustration of 2D k-space and its corresponding spatial oscilla-
tions. Each coordinate in the illustration contains a square displaying the
spatial oscillation corresponding to that specific point in k-space. The lowest
spatial frequencies are found in the center, increasing with radial distance.
The lower frequencies decide the image intensity, while the higher frequen-
cies decide the resolution. [14]
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2.4.2 UTE sequences

As mentioned above, the MRI signal decays exponentially as a function
of the T2 time constant. T2 varies depending on the molecular envi-
ronment of the proton, from a few hundred milliseconds to less than a
microsecond, for different tissues and tissue components present in the
body. An overview of tissues with short mean T2 values can be found
in Table 1. Cortical bone, with a mean T2 of about 0.5 ms, is a large
tissue class in the body that does not yield any significant signal in
regular MR sequences, since its signal have long since decayed at the
time of signal acquisition. [1] [37]

Table 1: Approximate mean T2s of some short-T2 tissues and tissue compo-
nents, from adult clinical results and tissue sample results estimated for 1.5
T field strength. [37]

UTE sequences have been specifically designed to acquire signal
from tissues with short T2, in some cases specifically from cortical bone.
The echo-time (TE) of a sequence is the time between tissue excitation
and signal acquisition. UTE sequences acquire signal immediately after
RF excitation, before the signal from bone and other short-T2 tissues
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have had time to decay beyond detection, often with TE ∼ 50 µs. This
acquired signal will consist of signals from both tissues with short and
long T2s. To separate the two signals, a second acquisition is performed
when most of the signal from the short-T2 tissues have fully decayed,
when most of the remaining signal originate from long-T2 tissues, as
illustrated in Figure 10. Two images are reconstructed from the signals
from the two different TEs, and the latter is subtracted from the former
to suppress the long-T2 signal. [1] [37]

Figure 10: Illustration of the decay of a signal consisting of signals with
different T2s. The dotted line is the signal from tissue with a short T2, and
the dashed line is the signal from tissue with a long T2, while the continuous
line is the total signal. The ADC (analogue-to-digital converter) sections
indicate the acquisition times of the two different images in a UTE sequence.

For the short-T2 acquisition radial k-space mapping is performed,
from the center and outwards, to maximise the amplitude of the intensity-
determining lower frequencies. The higher frequencies will however in-
evitably be sampled when the signal amplitude is very low, leading to
inherent poor resolution. [1] [37]

Since every aspect of a UTE sequence occur on such a small time-
scale compared to regular MR sequences, there are several challenges
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related to UTE imaging in addition to those normally encountered.
The short-T2 signal decays so fast that the signal acquisition must be
performed immediately after excitation, during ramp-up of the mag-
netic gradients, which themselves must have a high slew rate and max-
imum amplitude. The change in the magnetic field resulting from the
ramp-up of the gradients induces eddy currents in the gradient coils
and other conductors in the vicinity. These eddy currents produce
a magnetic field that opposes the original change in the field, lead-
ing to a deviation between the desired and actual k-space trajectories.
This, along with shifts in k-space trajectories due to system latencies,
degrade the reconstructed image. The k-space trajectories can be cor-
rected and shifted back into the correct position, either by acquiring
the actual k-space trajectories through gradient monitoring, or by sim-
pler calculations based on the expected symmetry of radially sampled
signal, as well as other methods not described here. [1] [7] [37]

2.4.3 Dixon sequences

The bulk signal in MRI originates from protons bound in water molecules,
but there is also a substantial contribution from lipid-bound (fat-
bound) protons. Water-bound and lipid-bound protons have slightly
different chemical environments, resulting in slightly different experi-
enced magnetic fields, and thus in slightly different precession frequen-
cies. As mentioned above, the spatial information in the MR signal
depends on induced spatial dependencies in the precession frequency.
This means that if the fat-signal is not separated from the water-signal,
the fat-signal may be assigned a shifted position in the image relative
to the actual spatial origin of the signal. [9] [25]

The (complex) MRI signal and its contributions from the fat and
water can be modelled as illustrated in Figure 11; as a sum of the signal
from fat (F) and the signal from water (W), with a phase difference (α)
between them. In addition there are error phases caused by magnetic
field inhomogeneities (φ) and system imperfections (φ0):

S(x, y, z) = [W (x, y, z) + F (x, y, z)eiα]ei[φ(x,y,z)+φ0(x,y,z)]. (10)

α arises from the difference in Larmor frequency, and can be manip-
ulated through choice of TE and other timing properties. The error
phase due to field inhomogeneities can be corrected for in various ways
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not described here (phase unwrapping, mapping of shift smoothness).
[9] [25]

Figure 11: Illustration of the complex MRI signal (S) and its contributions
from fat (F) and water (W). α is the phase difference between the fat and
water signals, φ is an error phase caused by magnetic field inhomogeneities,
while φ0 is an error phase due to system imperfections. [25]

By sampling signals at two different α’s, at 0 and π radians, one
gets the following signal equations, respectively:

S0 = (W + F )eiφ0 , (11)

and
Sπ = (W − F )ei[φ+φ0], (12)

where the spatial dependency (x, y, z) is omitted for simplicity. When
φ = 0 the water and fat signals can be calculated directly:

2W = |S0 + Sπ|, (13)

2F = |S0 − Sπ|. (14)

Usually φ 6= 0, but as mentioned above this can be corrected for. A
sequence acquiring two images to separate fat and water such as the one
described here is known as a two-point Dixon sequence, named after
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the man first proposing the technique, W. T. Dixon. Dixon sequences
are able to separate fat and water signals wuite successfully, creating
water-only images and fat-only images, in addition to the acquired
in-phase and out-of-phase images. [9] [25]

2.5 PET AC

As described above, the radiation from the PET tracer inside the body
is attenuated to different degrees by different tissues; different tissues
have different µ-values. To accurately quantify the amount of tracer
in a specific region of interest (ROI), for instance to assess the uptake
in a tumour and thus assess its properties, the PET raw data must
be corrected for this attenuation. Without AC the activity values in
the resulting image will be underestimated, as seen in Figure 12. This
is especially evident for LORs passing through a lot of or/and highly
attenuating material, such as in the central parts of the imaged object,
or close to bone structures. [27]

Figure 12: A comparison of two PET images of a uniform-activity phantom,
both reconstructed from the same PET raw data, one without AC (NAC) and
one with AC (AC). In the NAC image the activity seems to be concentrated
in the edge of the phantom, since most of the detected photons originate from
this area. The AC image displays the activity distribution more correctly.

The detected PET signal can be modelled in the following way. Let
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f be the activity distribution in a cross-section with the attenuation
distribution µ, while L(φ, s) is a straight line x cosφ + y sinφ = s in
an xy-plane. The detected PET signal can then be modelled as

g(φ, s) = e
-
∫

L(φ,s)

µ(x)dx

·
∫

L(φ,s)

f(x)dx, (15)

which in its discrete and noisy form is what is stored in each pixel in
the sinogram files described above. When µ is known, the detected
activity can be corrected for attenuation:∫

L(φ,s)

f(x)dx = e

∫
L(φ,s)

µ(x)dx

· g(φ, s), (16)

where

e

∫
L(φ,s)

µ(x)dx

is the attenuation correction factor (ACF) of the specific LOR along
L(φ, s). The attenuation distribution can be imaged by a µ-map, and
when it is known the ACF of every LOR can be calculated and saved
in an AC sinogram through the same kind of forward projection used
when creating the raw data sinogram. As shown by Equation (16),
attenuation correction can then be performed by simply multiplying
the raw data sinogram with the AC sinogram. [27] [31]

Accurate µ-maps are crucial for the quality of the PET images.
There are several ways of acquiring the needed µ-maps, including trans-
mission scans, CT scans, and a range of MR-based methods. [27]

2.5.1 Transmission scans

In traditional stand-alone PET scanners, µ-maps were acquired by
performing a transmission scan of the patient either before, after, or
during the PET scan; and comparing it with a blank scan (a scan
performed without any patient present in the scanner). In a typical
transmission scan one or several rod sources (usually 68Ge, decays to
68Ga, a β+-emitter) are rotated about the patient along the edge of
the transaxial PET FOV. The detected activity in detectors collinear
with the rod sources is used as the basis for calculating the µ-map.
Transmission scans can be quite lengthy, and also produce noisy µ-
maps. [27]
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2.5.2 CT-based AC

With the successful combination of PET and CT into fully integrated
PET/CT scanners, the possibility for efficiently using CT data for
creating PET µ-maps became a reality. As described above, CT images
are essentially µ-maps, but for a different energy range than that of
PET annihilation photons. In general, a simple energy scaling is not
sufficient to translate µ(EX-ray) to µ(Eγ) based on a measurement of
µ(EX-ray) only. However, when limiting the attenuating material to
biological tissue, it has been shown, amongst others by Carney et al.[8],
that a bilinear scaling is sufficiently accurate (see Figure 15). The
basic assumption is that the CT image can be segmented into two
different tissue mixtures based on HU-values. Voxels of HU-values
below a certain breakpoint (BP) is considered a mixture of air and
water, while voxels above the BP is considered a mixture of bone and
water. Two different linear scaling functions are applied, one for each
side of the breakpoint, translating the HU-values to 511 keV µ-values.
An example of such a scaling function is plotted in Figure 15 in Part
II. [27] [43]

Using CT data to generate µ-maps have several advantages over
transmission scans. The CT data is virtually noiseless compared to the
transmission scan, and provides a much better resolution. Also, since
CT scans are routinely acquired as a part of any PET/CT examination,
there is almost no time added due to the additional AC scans. There
is however an issue with movement. CT scans are acquired so fast that
patient movement such as breathing usually is not a problem. PET
scans however last for several minutes for each bed position, and are
thus sensitive to breathing and other patient movements. This leads to
a mismatch between the µ-map and the dynamic shape of the tissue
from which the PET data is collected. A way of correcting for this
is to gate the PET signal based on monitoring of for instance patient
respiration (respiratory gating). If the PET signal is to be gated, a
longer scan is necessary to compensate for the discarded data. [27]

2.5.3 MR-based AC

As mentioned in the beginning of this part, scanners combining PET
with MRI in a fully integrated PET/MR system recently became com-
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mercially available. How to acquire µ-maps is one of the great chal-
lenges in PET/MR, and has been subject to intensive research since
the idea of combining PET and MR in a single scanner first was in-
troduced. Especially difficult is the imaging of bone in MR, which
is a tissue notorious for not contributing any signal in ordinary MR
sequences. [6] [17] [21]

The signal in MRI depends on proton densities, and there is no di-
rect correlation between proton (1H-nuclei) density and electron den-
sity, which is the crucial property in PET attenuation. There is thus no
way of directly scaling MR image intensities to acquire an attenuation
map, as can be done with CT images. The acquisition of traditional
transmission or CT scans is largely out of the question in PET/MR,
due to spatial constraints and the need for components unaffected by
strong magnetic fields. In addition the radiation dose should be kept
ALARA. [6] [17] [21]

Keereman et al.[21] suggested the following requirements for an
ideal MR-based AC (MRAC) method.

• The acquired/derived attenuation map should be accurate and
detailed enough to distinguish between air, lung, soft-tissue, spon-
gious bone and cortical bone, as the improper discrimination of
these has been shown to result in large quantification errors, es-
pecially the mismapping of lung tissue.

• Due to variations between patients in attenuating properties of
lung tissue in particular, patient-specific lung tissue attenuation
coefficients should be derived.

• The limited axial FOV of MR systems often leads to the exclusion
of the arms from the image, and this issue must be solved.

• Patient bed and MR coils should be included in the attenuation
maps, which may be a challenge regarding flexible coils.

• The acquisition of the attenuation map must not be time-consuming,
as time is the largest constraint in MRI; and PET and MR image
quality must be unaffected.

• If any additional system components are to be installed post
system installation, they must be small enough to fit inside the
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bore of the scanner, or be placed outside the bore, as well as not
being unreasonably impractical to implement.

Although there are several different strategies for performing MRAC,
no current method fulfils all these criteria, including template, or
machine-learning-based methods; transmission-based methods; and segmentation-
based methods.

Template/atlas methods are based on the acquisition of a conven-
tional MR image set, to which a template, based on general patient
images, is non-linearly registered and used as an attenuation map. The
template may be based on PET transmission scans or CT images. In
some proposed methods the template is a single image set averaged
from several individuals. In other cases the template consists of sev-
eral image sets which are each registered to the patient MR image
set, and the subsequent attenuation map is derived from a weighted
sum of these. Machine-learning-based methods may be based on tem-
plate/atlas approaches, additionally employing pattern recognition al-
gorithms to construct pseudo-CTs which are subsequently scaled to
construct attenuation maps. Other methods are based on MR images
only. [6] [21]

Mollet et al.[28] proposed a method utilising a form of transmis-
sion scan to acquire attenuation maps, only suitable in TOF PET
systems (at present not available in the mMR). By inserting a static
annular-shaped transmission source in the FOV of the PET system,
transmission scans can be acquired during regular emission scans. The
coincident photons originating from the transmission source are distin-
guished from the emission coincidences based on the TOF capability
of the system. The reconstructed attenuation map was segmented to
successfully eliminate noise. The main disadvantage of this type of
MRAC is that the increased activity in the PET FOV degrades the
count rate performance of the system.

2.5.4 Segmentation-based MRAC

Segmentation-based methods are based on deriving an attenuation
map largely from MR sequences alone. One of the great challenges
when attempting this is that in conventional MR images, both bone
and lung tissues yield very little signal, due to their short (T2) decay
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times. This leads to very little contrast between bone, lung tissue and
air, materials with widely differing attenuating properties, with bone
being the most attenuating tissue in the human body. In brain imag-
ing in particular, where the amount of bone is relatively high, and
where there are complex mixtures of soft-tissue, air and bone in the
post-nasal cavities, distinguishing bone from other tissues is of vital
importance. Another example of tissues differing in attenuating prop-
erties but yielding similar signal intensities in conventional MR images
is fat and soft-tissue. [6] [21]

The earliest segmentation-based methods proposed were based on
segmenting conventional MR images into different tissue-classes and
assigning the segmented areas a predefined attenuation coefficient. Ad-
ditional anatomical information or use of pattern recognition methods
improved the attenuation maps, but the general results were poor com-
pared to CT data[6] [21]. By introducing additional MR sequences ca-
pable of acquiring signal from bone and lung tissue (UTE sequences),
or capable of distinguishing fat and soft-tissue from each other (Dixon
sequences) , improved attenuation maps can be acquired. [6] [21]

Dixon-based MRAC methods are able to separate fat from water,
and can thus segment tissues with differing contents of these, such
as adipose tissue and soft-tissue. Dixon sequences are generally very
fast, and thus clinically applicable in whole-body imaging. They are
however not capable of generating signal from bone, and are thus not
suitable for creating accurate head µ-maps (despite this they are still
utilised in brain imaging in lack of better alternatives). [6] [9] [21]

UTE-based MRAC methods are able to discriminate between bone
and other tissues, but do not work perfectly, due to the technical dif-
ficulties and increased sensitivity to inhomogeneities and frequency
off-sets when operating on UTE-relevant time-scales. The post-nasal
cavities present a particular difficult area, as they are riddled with
bone/air interfaces. UTE-sequences are generally too time consuming
to be employed in whole-body imaging, but are routinely acquired in
PET/MR brain imaging. [6] [9] [21]

2.6 Image registration

A substantial task of this study involved image registration between
images acquired not only from different scanners and modalities, but
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also imaged with the patient in different positions. To increase the
appreciation of the complexity of this task, a short introduction to
image (co-)registration is given below.

Medical images are created on a range of different scanners, in a
range of different modalities such as CT, MRI, PET, SPECT, ultra-
sound, etcetera. The images are stored along with information on
how the image coordinate system (the image domain) relate to some
physical coordinate system defined on each different scanner. Images
from different modalities acquired on the same (hybrid) scanner are
automatically co-registered through hardware techniques. However,
when images from different scanners, regardless of modality, are to be
co-registered, software methods have to be employed. [23]

The objective in image registration is to find a one-to-one voxel
mapping between the image domains of two different images (of equal
number of dimensions). In other words, the objective is to find a
transformation that deforms one image, the moving image, so that it
aligns with another image, the fixed image, such that there exists a
defined relation between the image domain of the moving image and
the physical domain of the fixed image. This transformation is defined
as a mapping from the fixed image to the moving image. [23]

The alignment’s quality is defined by a similarity measure, such as
the sum of squared differences (SSD) or mutual information (MI). The
latter is very useful when co-registering images of different modalities,
such as CT and MRI. The optimum image transformation is acquired
by maximising the similarity measure, while minimising a penalty term
which constrains the transformation regarding compression and defor-
mation. [23]

There are several kinds of transformations that can be performed,
with different numbers of degrees of freedom. The simplest transform
is a translation transform, where the moving image can be translated in
all image directions. In rigid transformations the moving image can in
addition be rotated about a center of rotation. In similarity transforms
the moving image can also be scaled isotropically. By adding shear
possibilities for shearing the image the transformation becomes affine.
[23]

The transformation methods mentioned until now are all rigid trans-
formations with a restricted amount of degrees of freedom. Non-rigid
transformations such as B-spline and thin-plate spline transformations
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may have tens of thousands of degrees of freedom, depending on num-
ber of image dimensions, and image size and resolution, since they
allow deformation, compression, bending, etcetera, of the moving im-
age. Examples of an image transformed with different methods can be
seen in Figure 13. [23]

Figure 13: Examples of different image transformations, all performed with
the same moving and fixed images. [23]
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Part II

Materials and methods

1 Patients

The patients included in the study suffered from lymphoma or lung
cancer. Their diagnostic routine included a PET/CT examination,
which involved an injection of the PET pharmaceutical 18F-marked
Fluorodeoxyglucose (FDG) 60 minutes prior to the examination. Be-
fore the FDG injection, the patients were informed about the PET/MR
research study and the extra PET/MR examination, and volunteers
signed a written consent. The PET/MR examination did not neces-
sitate any additional injection of FDG. The research project was ap-
proved by the regional ethics committee (REK).

2 Image acquisition

2.1 Scanners

Two multi-modality scanners were used to acquire data in this study:
The biograph mCT (serial number 11094) PET/CT scanner running
software version syngo MI.PET/CT 2012A was used to acquire the
necessary CT images; while the biograph mMR (serial number 51033)
PET/MR scanner running software version syngo MR VB20P was used
for both MR and PET image acquisition. Both scanners were delivered
by Siemens Healthcare (Erlangen, Germany), and installed in autumn
2013.

2.2 Examination protocols

The total examination flow is illustrated in Figure 14. The patient
was injected with FDG 60 minutes prior to the PET/CT examination,
and thus about 120 min ± 15 min prior to the PET/MR examination,
depending on the length of the PET/CT examination. The injected
dose was 4 MBq/kg, and ranged from a minimum total injected dose of
150 MBq to a maximum total injected dose of 530 MBq, depending on
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patient size. Directly after the PET/CT examination the patient was
moved to the mMR and the PET/MR examination was performed.

Figure 14: Overview of the examination flow from FDG injection to
PET/MR examination. FDG was injected 60 minutes prior to the PET/CT
examination. The PET data from the mCT was not utilised in this study.

2.2.1 PET/CT

The PET/CT examination consisted of a single, low-dose CT-scan;
a multi-bed-position PET scan; and in some cases also a diagnostic
CT scan of parts of the body. All scans were performed with the
patient lying on the back with the arms raised above the head to avoid
beam hardening artefacts in the thorax/abdomen. Only the low-dose
CT scan was relevant in this study(scan direction: caudocranial, tube
current-exposure time product: 40 mAs, peak tube voltage: 120 kV,
slice (width(coll): 3.0 mm / 64x0.6, rotation time: 0.5 s, pitch: 0.95).
The low-dose scan was performed for the purpose of acquiring an AC-
CT image utilised for the AC of PET images. The PET data/images
from the PET/CT examination was not used in this study.

2.2.2 PET/MR

The PET/MR examination consisted of a multi-bed-position (one to
five bed positions) PET scan; in addition to a range of MR sequences
for each bed-position. The choice of MR sequences varied depending on
the bed position, patient, and disease. The examination was performed
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with the patient lying on the back with the arms positioned alongside
the side of the body. The MR sequences relevant to this study was a
Dixon sequence (TR: 3.60 ms, TE: 1.23 ms (2.46 ms), FOV: 328x500
mm2, TA: 17.95 s, flip angle: 10 degrees, slice thickness: 3.12 mm), and
a UTE sequence (TR: 11.94 ms, TE: 0.07 ms (2.46 ms), FOV: 300x300
mm2, TA: 99 s, flip angle: 10 degrees, slice thickness: 1.56 mm). The
patients wore hearing protection covering their ears to protect from
operation noise.

The Dixon scans resulted in four different images (in-phase, opposing-
phase, fat-only, water-only), from which a whole-body µ-map was de-
rived; segmenting air, lung tissue, fat, and soft-tissue, with predefined
LAC values of 0 cm-1, 0.0224 cm-1, 0.0854 cm-1, and 0.1000 cm-1, re-
spectively. The UTE scans resulted in two different images, one from
each echo time, from which a head µ-map was derived; segmenting air,
soft-tissue, and bone, with predefined LAC values of 0 cm-1, 0.1000
cm-1, and 0.1510 cm-1, respectively. Both µ-maps, the in-phase Dixon
image, and the second-echo UTE image were utilised in this study.

The previous version of the UTE-based AC method (VB18P) was
based solely on the two images acquired from the two different TEs.
The new version (VB20P) utilised in this study additionally employs
streaking artefact reduction, gradient delay (eddy current) correction
and template-based segmentation.

2.3 PET image reconstruction

The PET reconstruction software RetroRecon on the mMR was used
for the necessary image reconstructions with different µ-maps and re-
construction methods. All image reconstructions were performed with
the following RetroRecon settings: 3 iterations, 344x344 output res-
olution, and Gaussian filter of 4.0 mm full width at half maximum
(FWHM). All images were reconstructed twice for each different µ-
map: once using regular 3D-iterative reconstruction, and once using
the recently added option of PSF reconstruction.
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3 Image processing

3.1 Hardware and software

The image handling and modification was performed on a laptop com-
puter with a 64-bit quad-core Intel Core i7-4750HQ CPU, clock speed
2.0 GHz, 8 Gb DDR3 RAM memory, running 64-bit Windows 8.1 pro.
The software used for image processing was MATLAB R2014a (8.3.0.532)
64-bit, MRIcron1 (6.6.2013), dcm2nii2 (6.6.2013), elastix v4.7 for
windows 64-bit, and its sister-program transformix v4.7 for windows
64-bit.

3.1.1 MRIcron and dcm2nii

MRIcron is a simple image viewing software developed for medical im-
ages, and was used for viewing overlaid images and for manual editing
of image masks. dcm2nii is an image converter specialised at con-
verting DICOM (Digital Imaging and Communications in Medicine)
images to NIFTI image format (Neuroimaging Informatics Technol-
ogy Initiative), and was used to convert the output images from the
scanner (DICOM format) to the simpler, and in this study’s case more
flexible 3D NIFTI format (.nii). The NIFTI images were handled using
the MATLAB functions load nii.m and save nii.m, both written and
published on MATLAB Central File Exchange by Jimmy Shen3.

3.1.2 Image formats - DICOM vs NIFTI

When discussing medical images, an ‘image’ refers to a 3D image vol-
ume saved along with a header containing important and informative
metadata relevant to the image. When referring to 2D medical images,
the term ‘image slice’, or just ‘slice’, is used.

The output images from the biograph scanners, from both MR, CT
and PET scans, are saved in DICOM format (.ima). Images saved in
DICOM format are saved in directories, with one file for each image
slice. Each DICOM file contains the raw image data of a slice, along

1http://www.mccauslandcenter.sc.edu/mricro/mricron/
2http://www.mccauslandcenter.sc.edu/mricro/mricron/dcm2nii.html
3Rotman Research Institute, Canada
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with a large amount of informative and vital, series-specific and slice-
specific metadata. This metadata is saved as tags, and the DICOM
standard defines a large number of public tags which are well described,
and thus decoded by most software able to read DICOM images. Each
tag contains a tag name, a group number, and an element number,
along with information on how the actual data in the tag is saved and
thus how this can be properly decoded.

Saved along with the public tags, there is a large amount of manufacturer-
specific private tags. These private tags are not necessarily as well-
described as the public tags, as they are defined in manufacturer
DICOM conformance statements, which do not contain very much
information. The private tags are of great importance for enabling
manufacturer-specific software, such as that on the scanners, to prop-
erly handle the images.

Along with patient information, the DICOM tags contain informa-
tion on a range of different image properties, such as the physical size
of the voxels, the physical position of the image, the spacing between
slices, etcetera. The preservation of the metadata is vital to maintain
the integrity of the DICOM file, and crucial when exporting an image
from the scanner, editing it, and then importing it back into the scan-
ner. The most important tag in this study was the ‘Pixel Data’-tag,
which contains the raw image of the DICOM file as a binary stream.

DICOM directories are more cumbersome to handle than a 3D im-
age format containing the entire image in a single file. The NIFTI im-
age format is well-suited for saving entire 3D image volumes in single
files. Just like in the DICOM format, the NIFTI files contain impor-
tant metadata, but less detailed. A conversion from NIFTI to DICOM
is thus not as straightforward as a conversion from DICOM to NIFTI.
NIFTI is still a versatile and popular image format, used as input to
a range of different image software, including the image registration
program utilised in this study; elastix.

3.1.3 elastix

elastix is a command-line interface, image registration program tak-
ing a minimum of four inputs: a fixed image, a moving image, an
output directory, and a registration parameter file. The registration
parameter file is a plain-text file (.txt) containing parameter-value pairs

37



II

defining all necessary registration parameters, such as the transform
method, the metric, which resolutions to use, how many samples to
draw, etcetera. A few examples of registration parameter files used in
this study can be found in Appendix B. elastix supports multiple
image file formats, but not DICOM directories, so all registrations were
performed on images in 3D NIFTI format.

The output from elastix consists of detailed log files, a trans-
form parameter file, and (optionally) the transformed image. The
transform parameter file is a plain-text file which can be used as in-
put, along with an image and an output directory, to elastix’ sister-
program transformix, which transforms the image according to the
input transformation, returning the transformed image as well as a log
file.

Optional inputs to elastix include: initial transform parameter
files, additional registration parameter files, a fixed-image mask, and a
moving-image mask. A mask is a binary image used to limit the area
in the image from which the samples can be drawn. The mask has
pixel value one in areas where a drawn sample can be accepted, and
zero where it is to be discarded. The use of registration masks and
their creation have been of great importance in this study, both for
image registration and image fusion when creating modified µ-maps.
How this is the case will be explained in the results.

3.2 Conversion of HU to PET LAC

As described in the theory section, CT images provide excellent maps
of the electron density distribution and thus also of linear attenuation
coefficients, but they have to be converted to fit the PET photon en-
ergy range. The conversion method developed by Carney et al.[8] is
visualised in Figure 15. As shown, the conversion function is bilinear,
with different slopes on each side of the breakpoint. The coefficients
defining the slopes are shown in Table 2. The peak tube voltage rele-
vant in this study was 120 keV.
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Figure 15: Example of the bilinear conversion function between HU and
511 kev LACs described by Carney et al.[8]. The peak voltage for which
the plotted function applies is 120 kV, with a breakpoint at 47 HU. y1 =
9.6e-05(HU + 1000) cm-1, y2 = a(HU + 1000) + b. The values for a and b
are given in Table 2.

Table 2: Overview of the slope-defining coefficients a and b in the HU to
PET LAC conversion method described by Carney et al.[8]. BP is the break
point, peak voltage is the peak voltage of the X-ray tube in the CT scanner.
The slopes are shown in Figure 15.

Peak voltage a b BP
[kV] [10−5 cm−1] [10−2 cm−1] [HU]

80 3.64 6.26 50
100 4.43 5.44 52
110 4.92 4.88 43
120 5.10 4.71 47
130 5.51 4.24 37
140 5.65 4.08 30
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4 µ-map creation

The main objective of this study was to assess the performance of the
MR-based AC methods compared with the ‘gold standard’ of CT-based
AC. One of the prerequisites for this to be achieved, was to develop
methods for creating mMR-compatible, CT-based µ-maps, both for
head and for whole-body. Developing these methods was by far the
most substantial task of this study. These methods will thus be de-
scribed in Part III, and only a minimal description of the resulting
µ-maps will be given here, since this is necessary to enable the reader
to make sense of the remaining sections of this part.

A total of three different types of µ-maps were created: one for
whole-body, two for head. The whole-body µ-map and one of the head
µ-maps were created from both CT and MR data (CTMR µ-map),
while the other head µ-map was created using CT data only (CT µ-
map). The whole-body µ-map had to be create from both CT and
MR data due to the differing positions of the arms between the two
examinations. The neck posture also differed between the two scanners,
and thus two different µ-maps were created for the head, to assess the
impact inaccurate µ-map data in the neck region might have on the
brain region.

As was mentioned in Section 2.3, the PET data was reconstructed
twice for each µ-map; once for each reconstruction method. For the
head PET scans this resulted in a total of six reconstructions; twice
for the original MR µ-map, twice for the CT µ-map, and twice for the
CTMR µ-map. For the whole-body PET scans the result was a total
of four reconstructions; twice for the original MR µ-map, and twice for
the CTMR µ-map.

5 Head µ-map bone volume

The head µ-maps (MR, CT, CTMR) were compared regarding the
amount and localisation of bone. The bone voxels in the MR µ-maps
all have a value of 0.1510 cm-1, and thus the bone volume in the MR
µ-maps was easily calculated by extracting every voxel assigned this
value. The threshold for bone in the CT µ-maps was set to 300 HU =
0.1146 cm-1, as this was determined to be an optimal value by Delso
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et al.[11]. According to the work of de Oliveira et al. [32] HU > 300
correspond to dense trabecular bone and cortical bone, while HU <
300 correspond to low-density trabecular bone.

The amount of bone was calculated for the entire head µ-map, and
for the cranial region of the µ-map. The cranial region was defined as
all the transaxial image slices containing cranial bone, and thus also
included parts of the lower jaw as well as the cranium. The border
between the cranial region and the neck was set manually by identifying
the lowest transaxial image slice containing cranial bone. The relative
difference in bone volume between the different µ-maps was calculated
and tested for significance, as described in Section 7.

In addition, the overlap between cranial bone in the MR µ-maps
and the CT(MR) µ-maps was calculated. This was done by creating
a binary mask for each different µ-map, covering all bone voxels with
value one, zero elsewhere. The bone mask of the MR µ-map was
subtracted from the bone mask of the CT µ-map, and the resulting
images would contain values of -1, 0, and 1. -1 corresponded to bone
voxels unique to the MR µ-map, while 1 corresponded to bone voxels
unique to the CT µ-map.

6 ROIs and SUV measurements

To quantitatively compare intra-patient PET images, several ROIs
were placed, in the brain, liver and aorta in each patient. For each
ROI, SUVBW and SUVLBM was calculated for every voxel, according
to Equation (1) and (2), respectively. For each ROI the minimum,
maximum, and mean values was acquired from the different SUV cal-
culations. The minimum and maximum values are very sensitive to
noise, and thus the less noise-sensitive mean value was chosen for fur-
ther analysis.

All ROIs set in the PET images were approximately spherical in
shape, and were set in the exact same position in every intra-patient
PET image, based on coordinates in the corresponding MR images.
The MR image in which the coordinates were set was first registered
to the PET images (translational registration) such as to acquire the
same resolution and FOV, and thus the same image coordinate system,
as the PET images.
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Two ROIs were placed in the whole-body images (Figure 16), in
concordance with the guidelines from a nuclear physician at St. Olavs
Hospital. One was placed in the aorta, covering 123 voxels (1.1 ml), in
such a way as to ensure that the ROI did not include parts of the vessel
wall. The other ROI was placed in the liver, covering 1419 voxels (12.5
ml), in an as homogeneous area of the liver as possible.

Twelve ROIs were placed in the brain (Figure 17), six in each hemi-
sphere. They were placed in the following regions: frontal, temporal,
parietal, and occipital lobes; cerebellum; and thalamus. All ROIs cov-
ered 515 voxels (4.6 ml), except those of the thalamus, which only
covered 123 voxels due to size constraints.

Figure 16: Example of typical ROI placements in the aorta(A) and liver(B),
displayed as overlays on an in-phase Dixon image. Both ROIs have a spher-
ical shape. The aorta ROI is placed so that it does not include any part of
the vessel walls. The liver ROI is placed in an as homogenous area of the
liver as possible. The sample sizes/volumes of the aorta and liver ROIs
are 123 voxels/1.1 ml and 1419 voxels/12.5 ml, respectively. Patient ID:
PETMR021.
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Figure 17: Example of typical placements of all twelve head ROIs, displayed
as overlays on a second-echo UTE image. All ROIs have a spherical shape,
and are placed in both left and right hemispheres in the following brain
regions: Frontal(A), temporal(B), parietal(C), and occipital(D) lobes; cere-
bellum(E); and thalamus(F). All ROIs have a sample size of 515 voxels and
a voloume of 4.5 ml, except those of the thalamus which have a sample size
of 123 voxels and a volume of 1.1 ml. Patient ID: PETMR023.
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7 Statistics

The measure of relative difference between the quantity x and the
reference quantity xref is in this report defined as

RD =
x− xref
xref

. (17)

All results in the form of relative differences were tested for significance
using a t-test on the null hypothesis that the dataset comes from a
normal distribution and have a mean equal to zero, using the built-in
MATLAB function ttest.m. The similarity of the left and right hemi-
sphere ROIs were tested using a two-sample t-test on the null hypothe-
sis that the data in the left and right hemisphere ROIs comes from inde-
pendent random samples from normal distributions with equal means
and equal but unknown variances, using the built-in MATLAB function
ttest2.m.

7.1 SUV

To compare the intra-patient PET images, the following calculations
were made for each ROI:

• The relative difference in mean SUV values between reconstruc-
tions using the original MR µ-map for AC, and reconstructions
using the CTMR µ-map for AC.

• Head only: The relative difference in mean SUV values between
reconstructions using the original MR µ-map for AC, and recon-
structions using the CT µ-map for AC.

• Head only: The relative difference in mean SUV values between
reconstructions using the CT µ-map for AC, and reconstructions
using the CTMR µ-map for AC.

• The relative difference in mean SUV values between reconstruc-
tions performed using the regular 3D-iterative reconstruction method,
and reconstructions using the PSF reconstruction method.

As a response to the SUV results extracted from the ROIs, for a
few selected patients the relative difference in activity concentration
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was calculated for the entire PET head images, comparing the same
reconstructions as for the ROIs above. The resulting images, referred
to as difference images, indicated in which areas the compared image
had lower and higher activity concentrations than the reference image,
with negative and positive relative values, respectively.
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Part III

Results

1 Introduction

This part will first present the developed methods for creating CT-
based µ-maps compatible with the mMR, then the results from the
assessment of volume and localisation of bone in the head µ-maps.
Finally the results from the PET reconstructions utilising the different
µ-maps and reconstruction methods will be presented, comparing the
two reconstruction methods and different µ-maps based on SUV values
and voxel-by-voxel comparison of PET image activity concentrations
(difference images as described in the previous part).

All figures in this part displaying examples from patient images,
only display selected slices from the images they are depicting. To
simplify the writing, these figures are still referred to as if they were
the images from which they were collected. The patient images are
naturally 3D, and thus difficult to display fully in a 2D medium, while
still conserving space. The crosshairs visible in the patient images
indicate the relationship between the image planes (sagittal, coronal,
transaxial).

The patient images in the figures may appear disproportionate, i.e.
as if they have been stretched or compressed in a certain direction.
This is just a flawed property of the utilised image viewer, and not an
indication of inaccuracies in the images themselves. Some of the fig-
ures display multiple images for the sake of visual comparison between
them. Even if images are placed side-by-side, it can be hard to identify
subtle differences between them. A better way to visually compare im-
ages is to view them as overlays in an image viewer program where the
images can be manipulated. This was done for all compared images,
but in (2D) paper format overlaid images were found to convey less
information than the chosen side-by-side comparisons.

Unless otherwise stated, such as by referring to it as built-in, or
by naming its creator, all MATLAB functions and scripts described and
referred to in this text have been written single-handedly by the author
of this report.
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For all box plots in this part (and Appendix C) the following ap-
plies: The center line in each box indicates the median, the lower and
higher edges are the 25 % and 75 % markers, and the whiskers ex-
tend to the most extreme data points not considered outliers, which
are marked by red dots. An outlier is defined as a data point outside
the interval ±2.7σ, where σ is the standard deviation. The number N
given in the figure legends is the number of patients.

When referring to ‘3D reconstruction’, this is a simplified way of
referring to the regular 3D PET reconstruction method. The PSF
method is naturally also a 3D reconstruction method, but is referred
to simply as ‘PSF’, since this notation simplifies the writing.

2 µ-map creation

This section will present the methods developed for creating head and
whole-body µ-maps based on CT-data (CT images). It is written
partly in the form of a discussion, justifying the method choices con-
tinuously.

2.1 Template

The CT-based µ-maps had to be compatible with the mMR scanner,
meaning that it had to be accepted for use in the RetroRecon software.
The least cumbersome way of ensuring this was to use the original
MR µ-map image, exported as DICOM format from the scanner, as a
template for the CT-based µ-map.

MATLAB R2014a contains built-in functions for reading and writ-
ing DICOM files (dicomread.m and dicomwrite.m), but these do not
successfully decode all private tags when reading, or preserve them
when writing, and thus could not be used. Instead, the function
ReadDicomElementList.m was used to read DICOM files, and the
function WriteDicomElementList.m was used to write DICOM files,
while preserving all tags, both public and private. These functions
were written and published on MATLAB Central File Exchange1 by

1http://www.mathworks.com/matlabcentral/fileexchange/
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Dirk-Jan Kroon2.

The function createmodmumap.m (Appendix A.3) was written to
take care of the editing of the template µ-map, replacing the raw im-
age only in each DICOM file. The function takes an image volume
saved as a 3D array as input, along with a directory containing the
template µ-map, and an output directory. The image array has to be
identical in size, orientation, and units as the template image. Each
DICOM file from the template directory is read into a MATLAB struc-
ture array, the raw image data (the pixel data tag) is replaced with the
corresponding slice of the image array, and the modified file is written
to the output directory. Regarding the metadata, the resulting modi-
fied DICOM image is identical to the template in every single detail,
and is to the scanner software indistinguishable from the original MR
µ-map.

2.2 Method overview

This section provides an overview of the developed methods for cre-
ating head and whole-body µ-maps. The overview is given here to
motivate for the subsequent sections which explain two techniques es-
pecially important to the developed methods (registration mask cre-
ation and conversion from HU to 511 keV LACs), before the methods
finally are described in detail.

2.2.1 Head µ-map creation

Three images are utilised in the creation of head µ-maps; a whole-body
AC-CT image, a second-echo UTE head image, and a UTE-based head
µ-map. The main steps in the developed method are as follows:

1. The AC-CT image is cropped such as to discard the image below
the shoulders, result: ‘CThead1’.

2. ‘CThead1’ is registered to the MR UTE image; rigid registration,
result: ‘CThead2’.

2Senior Vision Engineer at Focal Machine Vision en Optical Systems, Nether-
lands
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3. ‘CThead2’ is registered to the MR UTE image; rigid registration,
using a fixed-image mask covering the cranial region of the image,
result: ‘CThead3’.

4. ‘CThead3’ is converted from HU to PET LACs, result: ‘preCTµ-
map’.

5. Two µ-maps are created: ‘CT µ-map’ - only containing ‘preCTµ-
map’ image data, excluding the arms of the patient; and ‘CTMR
µ-map’ - created by fusing ‘preCTµ-map’ with the MR UTE
µ-map, such as to only keep the spatially accurate data from
‘preCTµ-map’ (skull and parts of the neck).

The registrations are controlled visually for each patient. The focus
area of the head µ-map is the cranial region, to ensure PET image
accuracy in the brain.

2.2.2 Whole-body µ-map creation

Three images are utilised in the creation of whole-body µ-maps; a
whole-body AC-CT image, an in-phase Dixon whole-body image, and
a Dixon-based whole-body µ-map. The main steps in the developed
method are as follows:

1. The AC-CT image is registered to the MR Dixon image, rigid
registration, result: ‘CT1’.

2. ‘CT1’ is registered to the MR image, B-spline registration, fixed-
image mask excluding the arms, shoulders and chest muscles;
moving-image mask excluding the patient bed; result: ‘CT2’.

3. ‘CT2’ is converted from HU to PET LACs, result: ‘preCTµ-
map’.

4. A single µ-map is created, ‘CTMR µ-map’, by fusing the MR
Dixon µ-map with ’preCTµ-map’, such as to only keep the spa-
tially accurate data from ‘preCTµ-map’ (legs, abdomen, ribcage,
neck).

The registrations are controlled visually for each patient. The focus
area of the whole-body µ-map is the thorax, as this was the disease area

50



III

in most of the patients included in the study. The thorax is also an area
containing significant amounts of bone, which are left unsegmented in
the standard Dixon-based µ-maps.

2.3 Image registration masks

As mentioned in Part II, a registration mask is an image restricting
the area from which the registration image sampler can draw samples.
In other words; the mask focuses the registration on certain areas of
its corresponding image, and excludes other areas.

As the reader may recall, the patient position differed between the
mCT and the mMR; arms up in the mCT, arms down in the mMR.
In addition, the different patient beds in the two scanners resulted in
different angles of bending and twisting of the neck between examina-
tions. This led to differences in patient position between the images
resulting from the two examinations, of such a degree that a whole-
body image from the mCT could not be accurately registered to a
corresponding image from the mMR for all parts of the body. The
parts that could not be accurately transformed include the arms, the
shoulders, the chest muscles, a range of back muscles connected to the
shoulders, and the neck and head.

When registering an image from the mCT to a corresponding image
from the mMR, without using any registration mask, the result was
negatively influenced by the differences in patient position in the two
images. Rigid registrations failed to correctly transform vital regions,
and non-rigid registrations resulted in unrealistic deformations of the
image when trying to transform non-corresponding bodyparts to each-
other. A visual comparison between two registrations of a CT image
to an MR image, both with the same registration parameters, but
one registered with mask and one without, can be found in Figure
18. The image registered without the mask has obvious, unrealistic
deformations of the sides of the thorax, as a result of an attempt to fit
the thorax to cover the arms in the MR image.

To improve the registrations, masks were used, masking out the
parts of the images that could not possibly be transformed to the
correct position, focusing the registration on ‘the least common de-
nominator’. The manual creation of each single mask needed was a
time-consuming and inaccurate process, and an effort was made to
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automate it. The subsequent section describes the MATLAB functions
written to aid in the creation of these masks, but not necessarily the
complete method used to create the masks, this difference should be
kept in mind.

18.1: With mask. 18.2: Without mask.

Figure 18: Visual comparison of two registered CT images, both with the
same fixed (MR image, arms down) and moving image (CT image, arms
up), and both using the same registration settings (B-spline), but only one of
them registered with a fixed-image mask excluding the arms, shoulders, and
chest muscles. The crosshairs are placed in the same image coordinate in
both images. The most obvious difference is the deformation of the thorax
in 2, as a result of trying to fit the thorax to the arms of the fixed image.
Patient ID: PETMR021.

2.3.1 Segmentation functions

Two different functions were written to take care of mask creation;
one creating masks segmenting the entire imaged body based on simple
thresholding, applicable on both head and whole-body images; and one
creating masks from whole-body images, segmenting the entire body,
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excluding the arms, shoulders, and chest muscles. The former was used
both when creating head masks and when creating whole-body masks.

The first function, createmask.m (Appendix A.2), uses threshold-
ing of image voxel values to discriminate between voxels inside and
outside the body. All mask voxels coinciding with the body are set to
one, before they are dilated (spherical dilation) to ensure the inclusion
of weak-signal voxels at the edges of the body. The final step fills the
holes in the mask caused by weak-signal tissue-types inside the body
(lung and bone in MR) or by image artefacts (susceptibility artefacts
in MR).

The second function, segmentRibcage.m (Appendix A.11), also
uses voxel-value thresholding, and is based on the assumption that the
distance from the outside of the ribcage to the start of the air-filled
lung-tissue closest to it, i.e. the thickness of the ribcage wall (thoracic
wall), is approximately spatially constant. The function takes a (T1-
weighted) whole-body MR image as input, and progresses through the
following steps:

1. Identify which parts of the image that are part of the patient
body using createmask.m.

2. Segment all gas-filled (weak-signal) volumes inside the body.

3. Detect which of these volumes that contain the lungs; the lungs
will be contained within either the largest or the two largest
volumes, depending on the tracheal connection (the air in the
trachea connecting the lungs) being detectable or not. All other
volumes are removed from the mask. Ask for manual confirma-
tion that the lung segmentation was successful.

4. Ask for manual input of top and bottom z-coordinate of lungs,
remove parts of volume exceeding these values (typically the tra-
chea, and gas-filled cavities in the abdomen appearing to be con-
nected to the lungs).

5. Dilate the lung volume in negative z-direction, towards the bot-
tom of the lungs.

6. Dilate the resulting volume in both positive and negative x-
direction, towards the center of gravity of the lungs (x = 0).
(x > 0⇒ dilation in negative x-direction, and vice versa).
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7. Dilate the resulting volume an equal distance in all directions
(inflate the volume). The resulting volume should include the
ribcage and the organs within, excluding everything else.

8. Segment the rest of the body below the lungs using createmask.m,
ensuring that the arms are not included in the mask.

9. Segment the head and neck based on manual input of the z-
coordinate of the top of the shoulders.

segmentRibcage.m successfully segmented the least common de-
nominator between the mCT and the mMR in all patient whole-body
images, creating fixed-image registration masks that improved the nec-
essary non-rigid registrations performed during the creation of whole-
body CT-based µ-maps massively. An example of a registration mask
can be seen in Figure 19.

Figure 19: Example of a fixed-image mask utilised during B-spline registra-
tion of a whole-body image. The mask excludes the arms, sholders and chest
muscles. The mask is layered on the in-phase Dixon image it was created
from. Patient ID: PETMR021.
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2.4 HU to PET LAC conversion

The function HU2PETLAC.m converts CT image volumes with voxel val-
ues in HU to 511 keV LAC µ-maps, and can be found in Appendix
A.9. The conversion is performed as described in Part II Section 3.2,
and the peak tube voltage can be chosen among the values given in
Table 2. The output image is scaled to units [hm-1] to match that of
the original MR µ-maps.

Figure 20 shows an example of a CT image with voxel values in
Hounsfield units and the same image converted to 511 keV PET LAC
values using HU2PETLAC.m. The visual consequence of the conversion
is slightly brighter soft-tissue voxels, due to the smaller relative range
from minimum to maximum value in the converted image. The voxel
values were evaluated for a few random voxels in bone and in soft-
tissue, and the values corresponded well with known values for these
tissue types.

20.1 20.2

Figure 20: A CT image with voxel values in HU (1) and in LAC (2). The
LAC image has a smaller relative range from minimum to maximum value,
which is manifested visually as slightly brighter soft-tissue compared to the
HU image. Patient ID: PETMR023.
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2.5 Head µ-map creation

The script CT2MRmumap head.m was written to take care of the different
steps constituting the creation of head µ-maps, and can be found in
Appendix A.4. This particular version of the script creates CTMR
µ-maps, but is nearly identical to the one creating CT µ-maps.

The first step of creating a µ-map is to convert the three images
from DICOM format to 3D NIFTI format. This is mainly because of
the use of elastix, but also introduces the advantage of only having to
handle a single image file at a time until the end of the process. The
resulting images from the conversions of the second-echo MR UTE
image, the AC-CT image, and the MR UTE-based µ-map are referred
to simply as ‘MR’, ‘CT’, and ‘MR µ-map’, respectively.

In the second step a fixed-image registration mask is created from
the MR image, the CT image is cropped, and two rigid registrations are
performed, both with the MR image as the fixed image. The mask is
created using the function createmask.m, and is cropped to cover the
cranial region only, i.e. all transaxial image slices containing cranial
bone. To ease the first registration, the CT image is cropped to better
fit the FOV of the MR image. This is done by simply excluding all
transaxial slices below a manually chosen z-value, typically just below
the shoulders, and the result is referred to as ‘CT head’.

Figure 21 displays examples of a CT head image and an MR im-
age. Notable differences between the two images include different FOV,
different resolution, arms and patient bed visible in CT image, and dif-
ferent neck postures.

The first registration is performed with the MR image as the fixed
image, the CT head image as the moving image, and with the regis-
tration parameter file ‘rigidHeadCT.txt’ found in Appendix B.2. The
purpose of this registration is to create a good starting point for the
second registration. The second registration uses the MR image as the
fixed image, and the transformed image from the first registration as
the moving image, along with the registration mask described above.
The registration parameters are defined in ‘rigidHeadCT2.txt’ found
in Appendix B.3. The resulting image is referred to as ‘transformed
CT image’.

Examples of images resulting from the two registrations are dis-
played in Figure 22. The most obvious visual difference between the
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two images is the difference in skull position. This can be observed in
the shifted nose in the transaxial slice, in the right ear channel in the
coronal slice, and the angle of the vertebrae in the sagittal slice. Open-
ing them as overlays in an image viewer shows that the result of the
second registration is an excellent alignment of the cranium between
the registered CT image and the MR image.

In the third step a fusion mask is created, either based on the
MR image or the CT image, depending on the similarity between the
initial images regarding neck posture, and thus the accuracy of the
transformation of the CT image. The fusion mask is manually edited
to only include the parts of the transformed image from the second
registration that is sufficiently spatially accurate. This is often limited
to the skull (cranium and lower jaw), and part of the neck.

The final step includes conversion of the transformed CT image
using the function HU2PETLAC.m, resulting in a CT µ-map. This image
is fused with the MR µ-map, using the fusion mask as a boundary, with
CT µ-map inside the mask and MR µ-map outside it. This CTMR
µ-map is then saved as a DICOM directory, using createmodmumap.m

with the original MR µ-map as the template.
Figure 23 displays examples of a CT µ-map and a CTMR µ-map.

As shown, the CT µ-map consists only of the converted CT image,
with most of the arms cut away. Because of time constraints, and the
assumption that they would not have any effect on the brain region, the
arm stumps were not completely removed. The CTMR µ-map consists
of the skull and part of the neck from the converted CT image, while
the rest of the neck and the shoulders are kept from the MR µ-map.
There are also some parts from the MR µ-map around the outer ear
of the CTMR µ-map, which is caused by the hearing protection wore
by the patient in the mMR.

The difference between the creation of CTMR µ-maps and CT µ-
maps, is that in the creation of the latter there is no fusion of the two
images. The CT µ-map is edited so that the arms (which are raised
above the head) are (almost completely) removed. Other than this the
procedure is identical to that described above.

57



III

21.1: CT.

21.2: MR.

Figure 21: Examples of a CT head image and a second-echo UTE MR image.
In the CT image the patient bed and the raised arms are visible. The two
images also differ in patient neck posture. Patient ID: PETMR036.
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22.1

22.2

Figure 22: Examples of CT images resulting from the registrations per-
formed when creating head µ-maps. 1 is a CT image (Figure 21.1) regis-
tered to an MR head image (Figure 21.2). 2 is 1 registered to the same
MR image again, with a fixed-image mask covering the cranial region. The
crosshairs are positioned in the exact same image coordinate as in Figure
21.2. The most obvious visual difference is the rotation of the image, caused
by focusing the second registration on the cranium. Patient ID: PETMR036.
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23.1: CT µ-map. 23.2: CTMR µ-map.

Figure 23: Examples of CT and CTMR head µ-maps. The crosshairs are
positioned in the exact same image coordinate in these two images as in Fig-
ure 21.2. In 1 the remaining arm stumps are visible, while in 2 most of the
neck and shoulders are taken from the MR µ-map. Patient ID: PETMR036.

2.6 Whole-body µ-map creation

The script CT2MRmumap wb.m was written to take care of the differ-
ent steps constituting the creation of whole-body µ-maps, and can be
found in Appendix A.5. As with CT2MRmumap head.m, the first step of
creating a µ-map is to convert the three input images from DICOM to
NIFTI format. The resulting images from the conversions of the AC-
CT image, the in-phase whole-body Dixon image, and the Dixon-based
whole-body µ-map are referred to as ‘CT’, ‘MR’, and ‘MR µ-map’, re-
spectively.

Figure 24 displays examples of an AC-CT image and a whole-body
in-phase Dixon image. Notable differences between the two images
include different FOV, different resolution, different arm positions, a
visible patient bed in the CT image, and different neck postures.

In the second step the whole-body fixed-image registration mask is
created by feeding the MR image to segmentRibcage.m. The function
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is run several times until a suitable combination of input parameters
has been achieved.

The third step performs the rigid registration, with the MR im-
age as the fixed image, the CT image as the moving image, and the
registration parameter file ‘rigidWBCT.txt’ found in Appendix B.4.
For the resulting transformed CT image a mask is created such as to
include the entire patient, excluding the patient bed.

The non-rigid registration is performed in the fourth step, again us-
ing the MR image as the fixed image, the transformed image from the
previous registration as the moving image, and with the fixed-image
and moving-image masks created in the previous steps. The regis-
tration is performed with the settings defined in ‘BsplineWBCT.txt’
found in Appendix B.1.

Figure 25 displays examples of two resulting images from the two
described registrations. The most obvious visual difference between
the two images can be seen in the top of the lungs and in the pelvic
area in the coronal slices, in the sinuses in the sagittal slices, and in
the right lung in the transaxial slice. Further visual analysis reveals
that the B-spline-registered CT image provides a much better fit to
the MR image than the rigidly registered one.

The final step converts the transformed CT image using HU2PETLAC.m,
and fuses the resulting CT µ-map with the MR µ-map, using the fixed-
image mask from the non-rigid registration as a boundary in the same
fashion as in the creation of fused head µ-maps. If the final registration
fails to successfully transform the head, the mask is cropped to exclude
this bodypart. The resulting CTMR µ-map is saved as DICOM using
createmodmumap.m with the MR µ-map as the template.

An example of an original whole-body MR µ-map and a CTMR
µ-map can be seen in Figure 26. The most notable difference between
the two images is the visible bone in the CT parts of the CTMR µ-map.
Other than that the CTMR µ-map is more detailed in the abdomen
and the lung, and offers continuous µ-values in the CT-parts of the
image.
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24.1: CT. 24.2: MR.

Figure 24: Examples of an AC-CT image (1) and a whole-body in-phase
Dixon MR image (2). In the CT image the patient bed is visible. The posi-
tions of the arms and neck posture differ between the two images. Patient
ID: PETMR024.
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25.1 25.2

Figure 25: The result of two registrations performed when creating whole-
body µ-maps. 1 is a CT image (Figure 24.1) registered to an MR image
(Figure 24.2), rigid registration. 2 is 1 registered to the same MR im-
age again, non-rigid registration with a fixed-image mask covering the least
common denominator between the fixed and moving image. The crosshairs
in these two images are placed in the exact same position as in the image
in Figure 24.2. Differences between the two registered images can be seen
in the top of the lungs and in the pelvic area in the coronal slices, in the
sinuses in the sagittal slices, and in the right lung in the transaxial slice.
Patient ID: PETMR024.
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26.1 26.2

Figure 26: Examples of whole-body MR (1) and CTMR (2) µ-maps. The
crosshairs in these two images are placed in the exact same position as in
the image in Figure 24.2. The most obvious differences include the visible
bone and finer detail in 2 compared to 1. Patient ID: PETMR024.

3 Head bone segmentation

When examining a typical MR UTE µ-map of the head and neck, like
the one seen in Figure 27.1, it is clear that the MR µ-maps overestimate
the amount of bone in the neck region of the patient. When visually
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comparing the MR µ-map with a CT µ-map, such as the one seen in
Figure 27.2, assuming that the CT µ-map is relatively close to render
the real amount of bone, the gross overestimation becomes even more
obvious. In addition, it seems as if the MR µ-map is misclassifying
some of the real bone as soft-tissue, as seems to be the case in the
forehead of the sagittal slice. There is also obvious misclassification of
tissue around the ears.

3.1 Volume

The results of the bone volume measurements in the head µ-maps
demonstrate that the MR µ-map has significantly more bone than the
CT µ-map (not CTMR µ-map) when assessing the µ-map as a whole.
When assessing the cranial region only, the MR µ-map has significantly
less bone than both the CT-based µ-maps.

Figure 28 displays a box plot of the absolute volume of bone in the
different µ-maps. Figure 29 displays a box plot of the relative amount
of bone in the CT-based µ-maps compared with the MR µ-map. A
one-sample t-test performed on the datasets ‘Full mumap - CTMR’,
‘Cranium - CT’ and ‘Cranium - CTMR’ in Figure 29 returned p-values
of 0.0741, 0.0142 and 0.0135, respectively, for the null hypothesis that
the dataset comes from a normal distribution and have a mean equal
to zero; indicating the statistical significance of the differences.

When considering the full µ-map, the MR and CTMR µ-maps con-
tain a lot more bone than the CT µ-map (with a mean of about 30
% more), while the CTMR µ-map does not contain significantly more
bone than the MR µ-map. For the cranial region, both the CT and
the CTMR µ-map have significantly more bone than the MR µ-map,
both with a mean of 8.3 % more.

65



III

27.1

27.2

Figure 27: Visual comparison of the amount of bone in the head and neck
area between a CT µ-map (2) and an MR UTE µ-map (1). The crosshairs
are placed in the same image coordinate in both images, but the registra-
tion of the CT image is slightly inaccurate in the neck area. Patient ID:
PETMR023.
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Figure 28: Box plot of the absolute bone volume in the different head µ-
maps, both for the entire µ-map (blue) and for just the cranial region (green).
N = 19.
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Figure 29: Box plot of the relative difference in bone volume in the head/neck
between the original MR UTE µ-map and the CT-based µ-maps, both for
the entire µ-map and for just the cranial region. The MR µ-map is used
as the reference point. P-values from t-test for the null hypothesis that the
dataset comes from a normal distribution and have a mean equal to zero:
1.518e-07, 0.074, 0.014, and 0.014, from left to right, respectively. N = 19.

3.2 Localisation

Figure 30 displays a box plot of the relative amount of unique bone
in the cranial region of each of the MR and the CT µ-maps, i.e. the
relative amount of cranial bone voxels (voxels classified as bone) unique
to the specific µ-map compared with the other µ-map. About 35 %
(mean difference) of the cranial bone voxels in the MR µ-map are
unique to the MR µ-map, while about 40 % (mean difference) of the
cranial bone voxels in the CT µ-map are unique to that µ-map.
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Figure 30: Box plot of the relative amount of bone voxels in the cranial
region of the head µ-map which are not corresponding to bone voxels in the
other µ-map. N = 19.

4 PET image analysis

This section will present the results of the analysis of the different
PET image reconstructions performed with the different µ-maps and
reconstruction methods, as described in Part II Section 7.1. First the
comparisons of the MR µ-map and the CT-based µ-maps are presented,
and then the comparison of the regular 3D and the PSF reconstruction
methods.

69



III

4.1 Example images

4.1.1 Head

Figure 31 displays an example of a head PET image overlaid on a
head MR image. The highest FDG concentrations are found in the
brain, especially in the cerebral cortex. This is in concordance with
the known high relative glucose consumption in the brain. There are
no visible malignancies in any of the patients.

Figure 31: Example of a head FDG-PET image overlaid on a second-echo
UTE MR image. The MR image is the greyscale background, while the PET
image is displayed in a hot colour scale. The scale’s low and high ends are
dark red and bright yellow, respectively. Higher activity indicates higher
glucose consumption. Patient ID: PETMR023.
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4.1.2 Whole-body

Figure 32 displays an example of a whole-body PET image overlaid
on a whole-body MR image. The high activity seen in the brain, the
bladder, the stomach, and in the liver are all normal. The smaller
bright spots between the lungs and the shoulders in this lymphoma
patient indicate lymph nodes with metastases.

Figure 32: Example of a whole-body FDG-PET overlaid on a whole-body
in-phase Dixon MR image. The MR image is the greyscale background,
while the PET image is displayed in a hot colour scale. The scale’s low
and high ends are dark red and bright yellow, respectively. Higher activity
indicates higher glucose consumption. This particular patient suffers from
lymphoma, and the high glucose consumption in the lymph nodes is clearly
visible. Patient ID: PETMR024.
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4.2 MR - CTMR

The results presented below show that the reconstructions with the
CTMR µ-map result in significantly higher mean SUV values relative
to the reconstructions with the MR µ-map in all ROIs, except for the
aorta in which the mean SUV values are not significantly different from
zero.

4.2.1 Head

Figure 33 displays a box plot of the relative differences in mean SUV
values for the head ROIs between PET image reconstructions per-
formed using the original MR UTE-based µ-map, and the CTMR µ-
map for AC. All reconstructions were performed using the PSF recon-
struction method, and the MR µ-map reconstructions have been used
as the reference point, according to Equation (17). The corresponding
results for comparisons of MR & CTMR 3D reconstructions, and MR
& CT 3D and MR & CT PSF reconstructions are very similar, and
can be found in Appendix C.

All ROIs display a significant increase in mean SUV values (max-
imum p-value < 0.004) in the CTMR reconstructions compared with
the MR reconstructions. The similarity of the left and right hemisphere
ROIs were tested using a two-sample t-test on the null hypothesis that
the data in the left and right ROIs comes from independent random
samples from normal distributions with equal means and equal but
unknown variances; yielding a minimum p-value of 0.50, meaning that
the left and right hemispheres are not significantly different. The cere-
bellum ROIs display a larger variance than the others. The mean
increase in mean SUV values, for both right and left hemispheres, for
the frontal, temporal, parietal and occipital lobes; cerebellum; and
thalamus ROIs are 8.4 %, 2.8 %, 5.8 %, 9.4 %, 9.1 %, and 3.2 %,
respectively.

Figure 34 shows a difference image comparing images reconstructed
with the CTMR µ-map and the MR µ-map for AC, where the negative
values (blue) indicate voxels in which the CTMR reconstruction result
in lower values than the MR reconstruction, while positive values (red)
indicate voxels in which CTMR result in higher values than MR. The
values in the difference image are in the order of - 50 % to + 10000 % in
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tissue in general, while in the brain they range from about +2 % in the
center to about +20 % closer to the bone for most areas. The highest
positive values and lowest negative values of the difference image seem
to correspond with the areas where the CTMR and MR µ-maps differ
obviously in (bone) structure. The resulting difference image from the
3D reconstructions did not display any obvious differences from the
PSF reconstructions, and is thus included.

Figure 33: Box plot of the relative difference in mean SUV values between
PET head images reconstructed using the original MR UTE µ-map, and
using the CTMR µ-map. The reconstruction method was PSF, and the
original MR UTE µ-map reconstruction results were used as the reference
point. N = 19.
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34.1: MR µ-map. 34.2: CTMR µ-map.

Figure 34: A difference image comparing images reconstructed using the two
different µ-maps MR µ-map and CTMR µ-map for AC, overlaid on the MR
µ-map and on the CTMR µ-map. The µ-map images are shown as greyscale
backgrounds, while the negative and positive values of the difference image
are shown in blue and red, respectively. Both PET images were reconstructed
using the PSF reconstruction method, and the MR µ-map reconstruction was
used as reference. Blue indicates voxels in which the CTMR reconstruction
result in lower values than the MR reconstruction, while red indicates voxels
in which CTMR result in higher values than MR. Patient ID: PETMR023.

4.2.2 Whole-body

Figure 35 displays plots for both 3D reconstruction and PSF recon-
struction, of the relative difference in mean SUV values in the aorta
and liver ROIs between PET image reconstructions using the original
MR Dixon µ-map for AC, and reconstructions using the CTMR µ-map
for AC. The MR reconstructions have been used as the reference point
according to Equation (17).

For the 3D reconstructions the mean SUV values are significantly
(p-value of 6.255e-04) higher for the liver ROI (mean of +3.78 %),
while the mean SUV values in the aorta are not significantly different

74



III

from zero (p-value of 0.579). For the PSF reconstructions the mean
SUV values are significantly (p-value of 5.7539e-04) higher for the liver
ROI (mean of +3.82 %), while the mean SUV values in the aorta are
not significantly different from zero (p-value of 0.510).

35.1 35.2

Figure 35: Box plot of the relative difference in mean SUV values between
PET whole-body images reconstructed using the original MR UTE µ-map,
and using the CTMR µ-map. The MR UTE µ-map results have been used
as the reference point. Both the results using the 3D (1) and the PSF re-
construction (2) methods are shown. N = 18.

75



III

4.3 CT - CTMR (head only)

The results below show that there is a significant difference in resulting
mean SUV values from images reconstructed with the two different
CT-based head µ-maps (CTMR and CT); the CTMR µ-map yields
significantly lower mean SUV values.

Figure 36 displays a box plot of the relative difference in mean SUV
values in all head ROIs between PET image reconstructions using the
CT µ-map for AC, and using the CTMR µ-map for AC. The recon-
structions were performed using the PSF reconstruction method, and
the CT reconstructions were used as the reference point according to
Equation (17). The corresponding results for 3D reconstructions are
very similar and can be found in Appendix C.

All ROIs display significant decreases in mean SUV values in the
CTMR reconstruction compared to the CT reconstruction. The mean
decrease in mean SUV values, for both right and left hemispheres, for
the frontal, temporal, parietal and occipital lobes; cerebellum; and
thalamus ROIs are 1.1 %, 1.5 %, 1.9 %, 2.2 %, 1.7 %, and 1.4 %,
respectively.

Figure 37 shows a difference image comparing the images recon-
structed with the CTMR µ-map and the CT µ-map for AC, where the
negative values (blue) indicate voxels in which the CTMR reconstruc-
tion result in lower values than the CT reconstruction, while positive
values (red) indicate voxels in which CTMR result in higher values
than CT. The values in the difference image range from -50 % to +150
% in tissue. The hot spots seen in the tissue seems to correlate with
where the two µ-maps differ, i.e. around the outer ears and the cheeks.
Closer examination of the image reveals that the difference image con-
tains small negative values in the entire brain, ranging in the order of
-0.1 % to -3 %.
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Figure 36: Box plot of the relative difference in mean SUV values between
PET head images reconstructed using the CT µ-map, and using the CTMR
µ-map. The reconstrucion method was PSF, and the CT reconstruction
results were used as the reference point. N = 19.
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37.1: CT µ-map. 37.2: CTMR µ-map.

Figure 37: A difference image comparing images reconstructed using the two
different µ-maps CT µ-map and CTMR µ-map for AC, overlaid on the CT
µ-map and on the CTMR µ-map. The µ-map images are shown as greyscale
backgrounds, while the negative and positive values of the difference image
are shown in blue and red, respectively. Both PET images were reconstructed
using the PSF reconstruction method, and the CT µ-map reconstruction was
used as reference. Blue indicates voxels in which the CTMR reconstruction
result in lower values than the CT reconstruction, while red indicates voxels
in which CTMR result in higher values than CT. Patient ID: PETMR023.

4.4 3D - PSF

The results below show that in the brain the PSF reconstruction results
in both higher and lower mean SUV values relative to the regular 3D
reconstruction method, depending on where in the brain the SUV is
measured. The mean differences are small, but significant. For the
liver ROI the mean SUV values are significantly lower in the PSF
reconstructions, while the data from the aorta ROI is less conclusive.
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4.4.1 Head

Figure 38 displays a box plot of the relative difference in mean SUV val-
ues for each head ROI between PET image reconstructions performed
using the regular 3D-iterative reconstruction method and the PSF re-
construction method. Both reconstructions were performed using the
CTMR head µ-map for AC, and the 3D-iterative reconstruction results
have been used as the reference point according to Equation (17). The
comparison of 3D and PSF reconstructions for the other µ-maps (MR
and CT µ-maps) show very similar results, and can be found in Ap-
pendix C.

All ROIs except the thalamus’ show a small, but significant (max-
imum p-value < 0.0001) decrease in mean SUV values in the PSF
reconstruction relative to the 3D reconstruction. The mean decrease,
for both right and left hemispheres, in the frontal, temporal, parietal,
and occipital lobes; and cerebellum is 1.5 %, 1.0 %, 0.7 %, 1.4 %, and
0.9 %, respectively. The thalamus ROIs show a significant increase
in mean SUV values of 2.7 %. As seen in Figure 17, the thalamus is
the measured brain region positioned closest to the center of the skull,
while the other ROIs are placed in more peripheral regions.

The similarity of the left and right hemisphere ROIs were tested
using a two-sample t-test on the null hypothesis that the data in the
left and right ROIs comes from independent random samples from nor-
mal distributions with equal means and equal but unknown variances;
yielding a minimum p-value of 0.35, meaning that the left and right
hemispheres are not significantly different.

Figure 39 shows a difference image from a single patient compar-
ing the two reconstruction methods, where the negative values (blue)
indicate voxels in which the PSF reconstruction result in lower values
than the 3D reconstruction, while positive values (red) indicate voxels
in which PSF result in higher values than 3D. Based on visual com-
parison with other patients, this image is found to be representative
for the observed general trends.

The values in the difference image are in the order of - 20 % to + 10
% in tissue. There are bands of positive values (+1 % to +10 %) along
the cortex and skin, while there are bands of negative values (-1 % to
-20 %) along the cranial bone and outside the skin. Other than that
most of the image is dominated by noise, which in the transaxial image
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slices displays a radial dependency. By comparing this image with that
of Figure 17 one can see that the peripheral brain ROIs mostly cover
negative values, while the thalamus ROIs mostly cover positive values.

The results comparing 3D and PSF from the reconstructions with
the MR µ-map and CT µ-map show no obvious differences from the
CTMR results, and are therefore not included here. The corresponding
box plots for MR µ-map and CT µ-map can be found in Appendix C.

Figure 38: Box plot of the relative difference in mean SUV values between
PET head images reconstructed using regular 3D-iterative reconstruction,
and using the PSF reconstruction method. The CTMR µ-map was used for
reconstruction, and the 3D-iterative reconstruction results have been used
as the reference point. All ROIs show a significant decrease in mean SUV
values, except the thalamus ROIs which show a significant increase in mean
SUV. N = 19.
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Figure 39: A difference image comparing images reconstructed using the two
reconstruction methods regular 3D-iterative and PSF, overlaid on a second-
echo UTE MR image. The MR image is shown as a greyscale background,
while the negative and positive values of the difference image are shown in
blue and red, respectively. Both images were reconstructed using the CTMR
µ-map for AC, and the 3D reconstruction was used as the reference. The
crosshairs are placed in the same image coordinate as in Figure 17. Blue
indicates voxels in which the PSF reconstruction result in lower values than
the 3D reconstruction, while red indicates voxels in which PSF result in
higher values than 3D. Patient ID: PETMR023.

81



III

4.4.2 Whole-body

Figure 40 displays a box plot of the relative difference in mean SUV
values for the aorta and liver ROIs between PET image reconstructions
performed using the 3D-iterative reconstruction method, and the PSF
reconstruction method. Both the results from the reconstructions using
the MR µ-map for AC (Figure 40.1) and from using the CTMR µ-map
for AC (Figure 40.2) are shown. The 3D reconstructions have been
used as the reference according to Equation (17).

For the MR µ-map the mean SUV values are significantly (p-values
of 0.040 for aorta and 1.566e-05 for liver) lower for both the aorta (mean
of -0.52 %) and the liver ROI (mean of -0,45 %). For the CTMR µ-map
the mean SUV values are significantly (p-value of 1.407e-05) lower for
the liver ROI (mean of -0.41 %), while the mean SUV values in the
aorta are not significantly different from zero (p-value of 0.178).
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40.1 40.2

Figure 40: Box plot of the relative difference in mean SUV values between
PET whole-body images reconstructed using regular 3D-iterative reconstruc-
tion, and using the PSF reconstruction method. Both the results from the
reconstructions using the MR µ-map for AC (1) and from using the CTMR
µ-map for AC (2) are shown. The 3D-iterative reconstruction results have
been used as the reference point. N = 18.
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Part IV

Discussion
In this part the results presented in Part III will be interpreted and
discussed, starting with the developed method for creating µ-maps,
and continuing with the rest of the results as they appear above. The
results will be compared with relevant findings from other research
groups, if available, and suggestions for improvement of the experi-
ments and for further inquiries will be proposed.

1 µ-map creation

Many of the choices regarding the creation of CT-based µ-maps were
justified when the methods were described in Part III. This section will
mainly discuss the accuracy and robustness of the developed methods.

1.1 Image registration accuracy

As mentioned, the registrations were only evaluated through visual
comparison. For rigid registrations this was considered sufficiently
accurate, as there are only six degrees of freedom to consider. For
non-rigid registrations (B-spline), the proper validation of registration
results should include manual recognition of a large number of anatom-
ical landmarks in both the fixed and moving image [38]. However,
the recognition of these landmarks is a time-consuming process. The
expected potential gain of a more accurate registration evaluation in
this study was a slight increase in registration accuracy, resulting in a
minor increase in PET AC accuracy. This increase in accuracy would
likely be negligible in the PET image reconstruction compared to other
sources of error, and thus the validation was found too time-consuming
when considering the expected gain and, equally important, the time
schedule of this study.

Murphy et al.[29] have proposed a semi-automatic method for using
landmarks for registration evaluation, where most of the landmarks are
automatically recognised after the initial manual recognition of a sub-
set of them. To improve the non-rigid image registrations performed

85



IV

in this study, this method could be incorporated, either for use in the
creation of each µ-map, or for validating the registration parameters
on a sufficiently large patient population. The latter would demand a
large initial effort, but would make the need for a validation of each
subsequent registration redundant.

1.1.1 Whole-body masks

The whole-body masks were essential to achieve acceptable accuracy of
the non-rigid whole-body image registrations. segmentRibcage.m is a
versatile function, in that it has several modifiable parameters as part
of its input. This facilitated tuning of the creation of masks for each
patient, compensating for the inter-patient differences in MR image
intensity distributions.

The function also facilitates manual editing of both the interme-
diate segmentations and the resulting masks, such as to compensate
for significant anatomical abnormalities caused by large tumours or
other malignancies. In the case of the segmentation of the lungs, two
patients demanded manual editing of the segmented volume: One due
to a large tumour connected to the edge of the lung, and one due to
an abnormal thickness of the connective tissue between the lungs and
the ribs in part of the ribcage. Several of the patients, especially those
with a large abdominal circumference, demanded manual separation of
the segmentations of arms and hips/abdomen, due to their proximity
to each other.

The lung segmentation could be automated further by analysing
the image intensity distributions of the input MR image, and setting
the thresholds based on that. Automatic detection of where the shoul-
ders narrow up to the neck could make redundant the need to manu-
ally detect a suitable neck slice, and the top and bottom of the lungs
could probably also be automatically detected based on recognising z-
direction-dependent changes in segmented lung volume. Separation of
connected arms/hips could probably be done automatically based on
shape recognition and tracing of separate areas in the stack of transax-
ial slices.

All in all, if the mask creation could be made more robust and fully
automatic, a large number of whole-body masks and thus whole-body
µ-maps could be created with no user input during the procedure.
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As of now segmentRibcage.m is sufficiently robust to manage most
patients, but is too slow to be used on a large scale, due to the need
for some manual input.

1.1.2 Accuracy for obese patients

For patients with a high body fat percentage, and thus with a lot of
subcutaneous fat, the skin of the patient often shifted position relative
to the rest of the body between the examinations in the mCT and in the
mMR. This was partly caused by the differing examination positions,
but also by the coils utilised in the mMR examinations. The coils
restrict the possible positions of the skin in the mMR relative to the
mCT examination. For obese patients this caused the registration to
perform less accurately in the abdominal area than for patients closer
to normal weight. This was deemed acceptable, as the area of interest
in this study was the thorax, and the observed inaccuracies in the
abdomen were assumed to not have any significant affect on the PET
image reconstruction of the thorax.

1.2 Head µ-maps

The head µ-maps are found to be accurate for at least the cranium,
and all tissue parts in a fixed position relative to it, such as the brain,
inner ears, nose, etcetera. In patients where the lower jaw is in the
same position relative to the cranium in both examinations, which was
observed to be the case for nearly all patients, the µ-maps are assumed
to be accurate for the lower jaw as well.

All patients wore hearing protection in the mMR, but not in the
mCT, leading to deformation of the ears in the mMR relative to the
mCT. This led to slight inaccuracies in the CT-based µ-maps in the
corresponding area, as seen in Figure 23 in the coronal and transaxial
slices.

For every patient the posture of the neck changed from the mCT to
the mMR. For the CT µ-maps especially this led to inaccuracies in the
neck below the lower jaw, as can be seen in Figure 23 in the sagittal
slices. The remaining parts of the arms also contributed to the inac-
curacy of the CT µ-maps, in that they contribute falsely to the ACF
of LORs in the neck region. In the CTMR µ-maps the replacement of
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the inaccurate parts of the CT µ-map with the corresponding parts of
the MR µ-map increased their spatial accuracy.

1.3 Whole-body µ-maps

Based on visual assessment the whole-body CTMR µ-maps are found
to be sufficiently spatially accurate for the entire body. The parts of
the µ-map which contain CT data are more detailed than the parts
from the original MR µ-map, and also provide a continuous µ-value
distribution. The focus area of the visual evaluation of the registrations
was the thorax, which is thus assumed to be the most accurate area
of the µ-maps. Sources of error include the aforementioned differing
positions of skin, along with non-stationary gas-filled cavities in the
abdomen.

2 Head bone

The results show that the MR UTE µ-map grossly overestimates the
amount of bone in the neck, while slightly underestimating the amount
of bone in the cranium (Figure 28 and 29). The results from the overlap
analysis show that even though the amount of cranial bone is similar
in the MR and CT µ-maps, the bone voxels are far from completely
overlapping, with more than 30 % of the bone voxels in each µ-map
being unique to that µ-map (Figure 30).

This is in compliance with the work of Delso et al.[11]. They investi-
gated the feasibility of using UTE sequences to create MR µ-maps, and
observed decreased performance in the bone segmentation in the base
of the skull and in the neck. They performed their investigations on a
scanner from a different manufacturer (GE healthcare) than this study,
and thus with a different UTE sequence, and their results are therefore
not directly comparable with this study. Nonetheless, both studies in-
dicate that bone segmentation based on UTE sequences perform worse
in the neck than in the skull. Delso et al. suggest an explanation in
short-T2 structures associated with the neck muscles being classified
as bone, and since this is inherent to all UTE sequences, it is also the
most likely explanation for the results observed in this study.

Visual comparison of the CT-based and MR µ-maps reveal that
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the latter consistently misclassify tissue in the air/tissue interfaces as
bone, such as those found in the ear and the paranasal sinuses. This
was also observed in the study by Delso et al. who attributed them
to MR artefacts known to be connected to air/tissue interfaces, such
as signal ringing, partial-volume artefacts, and local magnetic field
inhomogeneities[11]. These artefacts are most likely the source of the
misclassification observed around air/tissue interfaces in this study as
well, but they do not explain why so much (more than 30 %) of the
bone in the MR µ-maps are attributed to the wrong position.

When assessing the UTE sequence for MR µ-map creation, Aitken
et al.[1] observed similar misclassification of bone in the UTE-based
µ-maps. They found that the misclassification was caused by eddy
current artefacts due to the rapidly changing magnetic field gradients.
They corrected for this by mapping the true k-space trajectories us-
ing a magnetic field camera, and demonstrated that the correction
improved the bone segmentation significantly. The VB20P UTE se-
quence incorporates a different method for eddy current correction,
described by Block et al.[7], but the results of this study indicate that
the incorporated method does not perform satisfactory. Thus eddy
current artefacts are a likely cause of the bulk of the spatial misclas-
sification of bone in the MR µ-maps. A better method for correcting
for eddy currents should be incorporated to improve the performance
of the UTE sequence.

Another source of error in the bone segmentations, both in MR and
CT-based µ-maps, is dental implants. Older patients (constituting the
majority of the patients in this study) are likely to have dental im-
plants made from metal. In MRI the magnetic susceptibility artefacts
caused by (ferromagnetic) metal are manifested as signal voids in the
image, and in CT metal implants lead to streaking artefacts caused
by excessive beam hardening due to their general high LACs. Metal
implants are thus likely to contribute to an underestimation of bone
in MR µ-map, and an overestimation of bone in the CT µ-map. How-
ever, only four of the patients presented with large enough artefacts
in a position where they had any effect on the measured cranial bone.
Metal-related artefacts are thus not regarded as a significant source of
error in this study, but major metal artefacts may have an impact in
the clinic, and a method for correcting for them should be incorporated
in the clinic.
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When calculating the amount and localisation of bone, the bone
threshold was set to >300 HU. According to the work of de Oliveira
et al.[32] a threshold of 300 HU will lead to an inclusion of most of
the dense trabecular bone and cortical bone. Most of the low-density
trabecular bone (HU < 200) will not be included. There is as men-
tioned no direct correlation between T2-relaxation times and CT HU
units, and thus it is difficult to assess what types of bone that will be
segmented by the UTE sequence. However, the 300 HU limit has been
successfully employed in other studies [11], and is deemed a reasonable
limit in this study as well.

3 PET image analysis

3.1 ROI placement

3.1.1 Head

The brain ROIs were placed based on manual recognition of the differ-
ent brain regions, by an operator with no previous experience in brain
segmentation (Figure 17). Some of the ROIs may therefore have been
placed not entirely inside the target region, and thus also cover parts
of neighbouring brain regions. This is however of little consequence
for the presented results, as the ROIs were placed in the exact same
position in each intra-patient PET image, and the same method for
recognising brain regions was used on every patient. This ensures that
the data is inter-patient comparable.

The size of the ROIs was chosen as large as possible, while still
maintaining a size small enough to ensure some degree of localisation
within the target region. Most of the ROIs were placed in peripheral
brain regions, as these are the largest and easiest to recognise. The
thalamus is the only central brain structure assessed with ROIs in this
study.

A possible improvement on the placement of ROIs would be to
(non-rigidly) register a suitable MR brain image from each patient to
an atlas, such as the MNI1521. By placing the ROIs in the atlas, and

1Montreal Neurological Institute
http://www.bic.mni.mcgill.ca/ServicesAtlases/HomePage
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performing the reverse transformation of the mentioned registrations
on the ROI masks, the ROIs would be placed in the same location in
each patient, given a high accuracy of the registration. This procedure
was found too time consuming at the time of data analysis in this
study, but will be incorporated in future work.

3.1.2 Whole-body

The activity in the aorta and liver was chosen to be measured as this
is the standard routine for nuclear physicians when assessing the back-
ground activity in whole-body PET images. The liver ROIs’ sam-
ple size of 1419 voxels provides data with little noise-sensitivity, while
the smaller aorta ROIs (123 voxels) are more sensitive to noise. The
type, amount, and most importantly the position of malignancies var-
ied widely between patients, so measuring the activity in these would
provide data of little comparability between patients. Several more
ROIs could be placed throughout the thorax, in landmarks known to
be located in approximately the same regions in all patients, to improve
the mapping of the spatial dependency in the MR µ-maps’ performance
relative to the CT-based µ-maps.

3.2 MR - CTMR

As the CT-based µ-maps are used as the gold standard in this study,
underestimation is defined as when the MRAC PET data returns lower
activity values than the CT-based AC PET data, and vice versa for
overestimation. This section only discusses the comparison of the MR
and CTMR µ-maps, but for head the results were virtually equal for
the comparison of MR and CT µ-maps, and thus the same discussion
applies for those results.

3.2.1 Head

The results show that the UTE-based MRAC results in underestima-
tion of mean SUV values in all brain ROIs (Figure 33). This underes-
timation can be explained by the amount of bone in the cranial region,
which was found to be higher in the CT-based µ-maps than in the
MR UTE µ-maps. When bone is segmented as soft-tissue, the ACFs
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of the ROI LORs passing through the relevant tissue are underesti-
mated, resulting in underestimation of the activity in the ROI as well.
The peripheral brain regions display larger underestimation than the
central, which is most likely correlated with the proximity to bone.

Examination of the difference images shows a connection between
the areas of the most extreme differences in PET activity (the highest
and lowest values) and the areas where the MR UTE µ-map is assumed
to be less accurate (Figure 34). These areas include tissues containing
a lot of air/tissue interfaces such as the sinuses and the pharyngeal
region; and the neck, where the MR µ-map is known to misclassify
soft-tissue as bone, as discussed in Section 2.

Dickson et al.[13] performed similar investigations as this study,
comparing the performance of UTE-based and CT-based AC in the
head based on differences in PET image activity concentrations. They
used FDG PET/CT data from GE Discovery ST and VCT PET/CT
systems (GE Healthcare Systems, Waukesha, USA) as the gold stan-
dard, and assessed the performance of the previous version (VB18P) of
the UTE-based MRAC method by comparing the PET/CT data to the
PET/MR data acquired on a biograph mMR. They defined underesti-
mation as where the (MRAC) PET/MR data returned lower activity
values than the PET/CT data, and overestimation as the opposite.

They found significant underestimation in activity in all brain re-
gions: 15.7 %, 15.2 %, 12.2 %, 15.2 %, 17.3 %, and 4.3 %, in the
frontal, temporal, parietal, and occipital lobes, the cerebellum, and
the thalamus, respectively. Qualitatively this is in concordance with
the corresponding results from this study (8.4 %, 2.8 %, 5.8 %, 9.4 %,
9.1 %, and 3.2 %). By comparing different AC methods performed on
the same PET data, this study utilises a more direct method of com-
parison, eliminating many of the variables influencing PET activity
values when comparing PET data from different scanners.

Quantitatively, if accepting the results of Dickson et al. as compa-
rable, the results of this study show that the new version of the UTE-
based MRAC method (VB20P) performs better in the brain than the
previous version (VB18P). This is most likely due to the additional
correction methods (reduction of streak and eddy current artefacts)
and the use of a template to segment bone utilised in the VB20P. The
observed underestimations throughout the brain are however still of
such a magnitude (up to 9 %) that the UTE-based MRAC method
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still is not sufficiently accurate to produce quantifiable PET images.
The performance is worse closer to bone, which is as expected.

However, SUV is a measure that is known to be notoriously prone
to differences in system (inter-scanner variability, image reconstruction
parameters, detector sensitivity, scanner geometry, etcetera), injected
dose, amount of time between injection and scanning (biologic effects
which are difficult to predict), etcetera. This is the main reason for
performing the reconstructions with the different µ-maps on the exact
same PET data in this study. Even though Dickson et al. corrected
for all the differences they were able to correct for (physical radioactive
decay, normalisation, alternating examination order, etcetera), the ob-
served differences in SUV values in their study may largely be caused
by the different systems from which the PET data sets were collected,
as well as the different times of biological decay (washout) of the FDG
tracer. The results in this study are not prone to such systematic
errors, and differences are solely caused by differences in the µ-maps.

Most studies that compare CT-based and MR-based AC methods,
compare PET data from a PET/CT scanner corrected with CT-based
AC, with PET data from a PET/MR scanner corrected with MR-
based AC. It is therefore difficult to find results in the literature that
are comparable to this study.

3.2.2 Whole-body

The observed underestimation in mean SUV values in the liver (3.8
%), when reconstructing with the MR µ-maps compared with the CT-
based µ-maps, shows that the exclusion of bone in MRAC has a sig-
nificant effect on PET activity quantification in the abdomen as well.
The underestimation is most likely caused by decreased ACFs when
excluding segmentation of bone in the MR µ-maps.

The results show no significant over- or underestimation in the
aorta, but this is likely due to the low size of the ROI and thus high
noise-sensitivity. To increase the possibility of observing any signifi-
cant difference in the aorta the patient population must be increased,
as the size of the ROI is restricted due to the size of the aorta.

As there is significant underestimation of PET activity in the liver
ROI, which was placed relatively far from any large bone structures,
additional mapping of the underestimation closer to bone structures

93



IV

should be performed. This due to, as observed in the head, a tendency
for ROIs closer to bone to display more severe estimation.

As for the head there are few studies in the literature that are
comparable to this study. Izquierdo-Garcia et al.[20] investigated the
performance of whole-body MRAC versus CT-based AC on a Phillips
PET/MR scanner. The MRAC method on that scanner is similar to
the Dixon-based whole-body MRAC method on the mMR in that it
attributes roughly the same LAC values to soft-tissue, air, and lung
tissue, but it only segments those three tissue classes, and the utilised
MR sequence (atMR) is not a Dixon sequence. Their results were still
similar to this study, with less than 10 % underestimation in SUV
values in the PET images reconstructed with the MRAC method com-
pared with the CT-based AC method, for the entire thorax/abdomen,
including the liver. The underestimation observed in the liver in this
study indicates that there is underestimation in the the rest of the
body as well.

3.3 CT - CTMR (head only)

The CT and CTMR head µ-maps were compared to assess the potential
equality of the two CT-based head µ-maps in the brain region. The
reason for making both CT and CTMR µ-maps was the differing neck
postures between the mCT and mMR examinations and the obvious
amounts of false bone in the MR µ-map: Either the µ-map would be
anatomically spatially accurate, in that it would place the neck in the
correct position (CT + MR); or it would place the neck in the wrong
position, but give a correct amount of bone in the neck (CT only). The
choice between these is a choice between two suboptimal alternatives.

The results show that the two µ-maps do not perform identically in
the brain, but display small, but significant differences in mean SUV
value for the different ROIs (Figure 36 and 37). The only differences
between the µ-maps are the CT arm stubs, neck, and the minor dif-
ferences in the outer ears and around the cheeks. These differences
must therefore be the cause of the observed differences between the
PET images. The conclusion is that the PET images might be signifi-
cantly influenced by what initially is assumed to be minor inaccuracies
in the µ-maps. This must be taken into account when designing CT-
based µ-maps, both for phantoms and patients. In the setting of this
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study, alterations could have been made in the method for position-
ing the patients in the two scanners, such as to achieve identical neck
postures, and thus improved the CT-only µ-maps. A more complete
removal of the arms would also improve the CT µ-maps, and this will
be performed in future studies.

3.4 3D - PSF

3.4.1 Head

The results from the relative differences in mean SUV values show
that, compared with the regular 3D algorithm, the PSF reconstruction
algorithm consistently results in lower SUV values in the peripheral
brain regions, and in higher SUV values in the thalamus, a central
brain region (Figure 38). This is in concordance with what is observed
in the difference image and indicates that the difference image indeed
is representative for the entire population (Figure 39). Comparing the
image with the placement of the ROIs explains the results from the
ROIs, in that all ROIs except for the thalamus were by chance placed in
areas where the PSF yield lower values than the 3D algorithm (Figure
17).

Thus the results show that the PSF algorithm is prone to edge
artefacts, manifested throughout the brain as alternating undershoots
and overshoots in activity compared to the regular 3D algorithm. Bai
& Esser[3] investigated the quantitative effects of edge artefacts on im-
ages reconstructed with PSF (phantoms scanned on a biograph mCT),
and found that the PSF algorithm resulted in significant overshoots in
activity compared to the regular 3D reconstruction method. This is in
concordance with the results of this study.

The observed differences attributed to the PSF algorithm are large
enough to have clinical impact. This is an important factor to consider
when quantitatively assessing PET images in a clinical setting, and
the performance of the PSF should be further examined to determine
the consistency of the observed performance. This could be done by
registering all patients’ PET images to a common template, and create
an average image of the resulting difference images. This was not
done in this study due to time constraints. Any dependency on the
number of reconstruction iterations, resolution, etcetera should also be
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investigated.

3.4.2 Whole-body

The results from the aorta ROIs are inconclusive regarding the sta-
tistical significance of the observed decrease in mean SUV values in
reconstructions performed with the PSF compared to the regular 3D
reconstruction algorithm. With only the results from the MR µ-map
being found to be barely significantly different from zero, and the re-
sults from the CTMR µ-map being found to not be significantly dif-
ferent from zero, the conclusion is that the patient population is too
small to observe any significant change in mean SUV in the aorta be-
tween the two reconstruction methods. An increase in ROI size would
likely reduce the variance of the data, but a larger ROI would be more
difficult to place inside the aorta without including any parts of the
vessel walls.

The liver ROIs display a much lower variance than the aorta ROIs,
most likely due to the much larger ROI sample size. The observed de-
crease in mean SUV in PSF compared to 3D is statistically significant
for both µ-maps, but it is of a minute magnitude. Further assess-
ment of the PSF in whole-body images should examine the potential
significance of edge artefacts, as those observed in the brain.
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Part V

Conclusion
Compared with CT-based PET AC methods, the VB20P version of
the UTE-based head MRAC method provided with the biograph mMR
grossly overestimates the amount of bone in the neck region, while it
slightly underestimates the amount of bone in the cranial region. The
method especially struggles to correctly classify tissue in air/tissue in-
terfaces. The misclassification of tissue is most likely caused by a com-
bination of artefacts related to eddy currents, signal ringing, partial-
volume artefacts, and local magnetic field inhomogeneities. The mis-
classification of bone as soft-tissue leads to an underestimation of PET
activity in the brain, and also in the liver, in compliance with what
other studies have found. The observed underestimation in the liver
using Dixon-based µ-maps indicates that there is underestimation in
the rest of the body as well. The current MR-based AC methods of
the biograph mMR are therefore not sufficiently accurate to be utilised
for quantification in PET imaging.

Compared to the regular 3D reconstruction, the PSF reconstruction
algorithm results in significant edge artefacts throughout the brain.
These artefacts result in a spatially dependent change in activity, neg-
ative for some, positive for others. The effect of these edge artefacts
must be taken into account in clinical settings. For the rest of the body
there is a minute difference in the liver, but the edge artefacts should
be mapped to assess the PSF’s clinical performance in these regions as
well.

The comparison of the two different CT-based head µ-maps demon-
strates that inaccuracies assumed to be of minimal influence may still
have significant effects, emphasising the need to minimise all possible
inaccuracies when creating modified CT-based µ-maps.

The developed methods for creating CT-based µ-maps have poten-
tial for improvement, especially in the areas of (non-rigid) registration
and registration validation, but also in their level of automation, which
could be significantly increased.
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Part VI

Appendices
The work with this master thesis resulted in more than 2500 lines of MATLAB
code, excluding empty lines; and in tens of different elastix registration param-
eter files. A few of these MATLAB scripts/functions and registration parameter
files can be found below.

A MATLAB functions & scripts

A.1 calculateSUV.m

Contents

• Gather necessary values from header data.
• Perform calculations.
• Structure returned data.

function data = calculateSUV(PETvolume,mask,meta,missingDose,...

missingInjTime,missingSex,missingHeight,missingWeight)

%CALCULATESUV - Calculate SUV values in PET image.

% DATA=CALCULATESUV(PETVOLUME,MASK,META,MISSINGDOSE,

% MISSINGINJTIME,MISSINGSEX,MISSINGHEIGHT,MISSINGWEIGHT)

% calculates the SUV values in PETVOLUME in the ROI defined by

% MASK. META contains a struct of the form returned by

% DICOMINFO.m from one of the DICOM files in the PET image

% series. MISSING* are optional inputs containing data to

% replace the corresponding values in META.

assert(length(PETvolume(:))==length(mask(:)))

Gather necessary values from header data.

% Optionally replace data with MISSING*.

seriesTime=strTime2numTime(meta.SeriesTime); % [s since midnight]

patientSex=meta.PatientSex; % string

if exist(’missingSex’,’var’) && ~isempty(missingSex)

patientSex=missingSex;
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end

if exist(’missingHeight’,’var’) && missingHeight>0

patientHeight=missingHeight;

else

patientHeight=meta.PatientSize; % [m]

end

if exist(’missingWeight’,’var’) && missingWeight>0

patientWeight=missingWeight*1000;

else

patientWeight=meta.PatientWeight*1000; % [g]

end

sliceThickness=meta.SliceThickness; % [mm]

pixelSpacing=meta.PixelSpacing; % [mm]

injectionTime=strTime2numTime(...

meta.RadiopharmaceuticalInformationSequence...

.Item_1.RadiopharmaceuticalStartTime); % [s since midnight]

if exist(’missingInjTime’,’var’) && missingInjTime>0

injectionTime=missingInjTime;

end

injectedDose=meta.RadiopharmaceuticalInformationSequence...

.Item_1.RadionuclideTotalDose; % [Bq]

if exist(’missingDose’,’var’) && missingDose>0;

injectedDose=missingDose;

end

timeHalflife=meta.RadiopharmaceuticalInformationSequence...

.Item_1.RadionuclideHalfLife; % [s]

Perform calculations.

% Radioactive decay correction factor.

decayTime=seriesTime-injectionTime; % [s]

decayCorrFactor=exp(log(2)*decayTime/timeHalflife);

% SUVbw correction factor.

bodyWeightCorrFactor=patientWeight/injectedDose;

% SUVlbm correction factor.

switch patientSex

case ’M’

LBMcorrFactor=1000*(1.10*patientWeight/1000-128*...
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(patientWeight/1000/patientHeight/100)^2)/...

injectedDose;

case ’F’

LBMcorrFactor=1000*(1.07*patientWeight/1000-148*...

(patientWeight/1000/patientHeight/100)^2)/...

injectedDose;

otherwise

error(’Sex not recognised!’)

end

% Calculate SUV.

VOI=PETvolume(mask>0);

SUVbw=decayCorrFactor*bodyWeightCorrFactor*VOI;

SUVlbm=decayCorrFactor*LBMcorrFactor*VOI;

Structure returned data.

% Return VOI, VOI volume, voxel volume, and all calculated SUV

% values; along with the name of the image series.

data.SeriesName=strrep(strrep(meta.SeriesDescription,’*’,’’),...

’ ’,’_’);

data.VOI=VOI;

data.VOIvolume=nnz(mask)*pixelSpacing(1)*pixelSpacing(2)*...

sliceThickness;

data.VoxelVolume=pixelSpacing(1)*pixelSpacing(2)*sliceThickness;

data.SUVbw=SUVbw;

data.SUVbwMin=min(SUVbw(:));

data.SUVbwMax=max(SUVbw(:));

data.SUVbwMean=mean(SUVbw(:));

data.SUVlbm=SUVlbm;

data.SUVlbmMin=min(SUVlbm(:));

data.SUVlbmMax=max(SUVlbm(:));

data.SUVlbmMean=mean(SUVlbm(:));
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A.2 createmask.m

function mask = createmask(iva,thresholds,radius)

%CREATEMASK - Create a binary mask from a 3D image volume.

% MASK = CREATEMASK(IVA,THRESHOLDS,RADIUS) returns a mask

% created from the image volume array IVA, based on the

% thresholds given as input. If RADIUS is given the mask will

% be dilated using a sphere with the given radius. The function

% firsts sets the lower and upper thresholds based on input,

% and then creates an initial binary mask, which is

% (optionally) dilated before all holes are filled using the

% function fillMask.

% Initialize threshold variables.

if exist(’thresholds’,’var’) && ~isempty(thresholds)

if length(thresholds)<2

lower=thresholds;

upper=max(iva(:));

else

lower=thresholds(1);

upper=thresholds(2);

end

else

lower=40;

upper=max(iva(:));

end

% Create mask

mask=iva;

mask(:)=0;

mask(iva>=lower&iva<=upper)=1;

% Optional: dilate mask.

if exist(’radius’,’var’) && radius

[x,y,z]=ndgrid(-radius:radius);

se=strel(sqrt(x.^2+y.^2+z.^2)<=radius);

mask=imdilate(mask,se);

end
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% Fill holes inside the mask.

mask=fillMask(mask);

A.3 createmodmumap.m

function createmodmumap(IVA,dirIN,dirOUT)

%CREATEMODMUMAP - Create a new DICOM image series with the 3D

% image IVA. CREATMODMUMAP(IVA,DIRIN,DIROUT) creates a DICOM

% series in DIROUT, identical to the one in DIRIN, with the

% exception of PixelData, which is filled with corresponding

% slices from the 3D image volume array IVA. IVA must be

% oriented in the same direction as in the original DICOM

% series, and will for all intents and purposes be a modifed

% version of an image volume created from the DICOM series in

% DIRIN.

frames=size(IVA,3);

createORempty(dirOUT) % Create or empty folder.

cd(dirIN)

directory=dir;

files=directory(3:end);

h=waitbar(0,’Writing images...’);

% The code commented out below is left in place to keep the

% options for replacing more than just the Pixeldata, such as the

% SeriesNumber etc. The philosophy at present is to change as

% little as possible, and ’Don’t change a winning team... So long

% as it’s winning fast enough.’

% t=now;

% cl=datestr(t,13);

% seriesNumber=501;

% seriesInstanceUID=dicomuid;

for i=1:frames

elements=ReadDicomElementList(files(i).name);

% SOPInstUID=dicomuid;

% for j=1:length(elements)
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% if strcmpi(strcat(elements(j).group,...

% elements(j).number),’00020003’)

% elements(j).data=SOPInstUID;

% elements(j).length=length(SOPInstUID);

% elseif strcmpi(strcat(elements(j).group,...

% elements(j).number),’00080018’)

% elements(j).data=SOPInstUID;

% elements(j).length=length(SOPInstUID);

% elseif strcmpi(strcat(elements(j).group,...

% elements(j).number),’00200011’)

% elements(j).data=seriesNumber;

% elements(j).length=length(seriesNumber);

% elseif strcmpi(strcat(elements(j).group,...

% elements(j).number),’0020000E’)

% elements(j).data=seriesInstanceUID;

% elements(j).length=length(seriesInstanceUID);

% end

% end

elements=imagearrayinsertion(IVA(:,:,i),elements);

modfilename=files(i).name;

% modfilename(31:34)=strcat(’0’,seriesNumber);

% modfilename(41:59)=strcat(datestr(t,10),’.’,...

% datestr(t,5),’.’,datestr(t,7),’.’,cl(1:2),’.’,...

% cl(4:5),’.’,cl(7:8));

h=waitbar(i/frames,h,sprintf(’Writing image %u/%u.’,i,...

frames));

cd(dirOUT)

WriteDicomElementList(elements,modfilename);

cd(dirIN)

end

close(h)

up; % Funtion that returns the current directory to the userpath.

A.4 CT2MRmumap head.m

The script creating head µ-maps containing only CT data is very similar to this
script, with the exception of the fusion of CT and MR µ-maps, which is replaced
by a simple removal of most of the visible arms in the CT image.
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%CT2MRMUMAP_HEAD is a script for creating CT-based head mumaps.

% The script runs through five successive steps. Step 1

% consists of manual selection of the needed starting images

% (DICOM series), preparation of output folders, conversion of

% DICOM series to 3D nifti, and initializing various variables

% containing file names. Step 2 creates a fusion mask, with an

% option for manual correction in case of image artefacts

% caused by metallic dental implants. Step 3 asks for manual

% graphical input on where to focus the registration and on how

% to crop the CT image to ease the registration; before

% performing two successive registrations, the latter with a

% fixed-image mask. Step 4 creates a fusion mask, manually

% edited to only contain accurate regions. Step 5 converts the

% final CT image to LAC values and fuses the resulting CT mumap

% with the MR mumap to create the CTMR mumap, which is

% subsequently saved as a DICOM directory.

clc

% Variable initialization:

% Global parameters:

dirElxPar=’C:\D\elx_par\CT2MRmumap\’;

fileRegRigidCT=[dirElxPar ’rigidHeadCT.txt’];

fileRegRigidCT2=[dirElxPar ’rigidHeadCT2.txt’];

% Change/tune:

mainpath=’G:\D\CTMRmumaps_intermediate\head\PETMR036\’;

step=7;

valHUair=-1024;

dirData=’G:\D\’;

thresholdMR=40;

radiusMR=2;

thresholdCT=-400;

radiusCT=0;

% Parameters set based on those above:

dirNII=[mainpath ’nifti\’];
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dirElxOut=[mainpath ’elxOutput\’];

dirElxOut_r2MRCT=[dirElxOut ’r2MRCT\’];

dirElxOut_r2MRr2MRwmCT=[dirElxOut ’r2MRr2MRwmCT\’];

switch step

case 1

dirCT=uigetdir(dirData,’Select CT scan, AC-CT.’);

dirMR=uigetdir(dirData,’Select MR UTE scan, second TE.’);

dirDataMR=fileparts(dirMR);

dirMRmumap=uigetdir(dirDataMR,’Select MR UTE mumap.’);

dirCTMRmumap=fileparts(dirMRmumap);

dirCTMRmumap=...

[dirCTMRmumap filesep ’CTMRmumap_head’ filesep];

cd(dirCT)

temp=dir;

temp=dicominfo(temp(5).name);

kVp=temp.KVP;

up

createORempty(dirNII)

createORempty(dirElxOut_r2MRCT)

createORempty(dirElxOut_r2MRr2MRwmCT)

% Convert DICOM to NIFTI:

MRniifiles=dcm2nii(dirMR,dirNII,’MR’);

CTniifiles=dcm2nii(dirCT,dirNII,’CT’);

MRmumapniifiles=dcm2nii(dirMRmumap,dirNII,’MRmumap’);

fileMR=[dirNII MRniifiles(end).name];

fileCT=[dirNII CTniifiles(1).name];

fileMRmumap=[dirNII MRmumapniifiles(1).name];

case 2

% Create fusion mask:

MR=load_nii(fileMR);

mask=createmask(MR.img,thresholdMR,radiusMR);

MRmaskFuse=MR;

MRmaskFuse.img=mask;
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fileMRmaskFuse=[dirNII ’maskFuse’ MRniifiles(end).name];

save_nii(MRmaskFuse,fileMRmaskFuse)

viewWoverlay(fileMR,fileMRmaskFuse,true)

% Ask if the mask was edited and saved using the MRIcron

% option ‘create SPM5 masks’ where the mask is saved as

% ‘l*.nii’

maskEdited=input(...

’Did you edit and save the mask? (y/n), [n]: ’,’s’);

if strcmpi(maskEdited,’y’)

fileMRmaskFuse =[dirNII ’l’ MRniifiles(end).name];

end

case 3

% Create registration mask from the fusion mask:

MRmaskFuse=load_nii(fileMRmaskFuse);

img=permute(MR.img,[3 2 1]);

h=figure(’Name’,...

’Choose where to cut the registration mask.’);

imshow(img(:,:,end/2),[])

[~,slice]=ginput(1);

close(h)

slice=round(slice);

MRmaskReg=MRmaskFuse;

MRmaskReg.img(:,:,1:slice)=0;

fileMRmaskReg=[dirNII ’maskReg’ MRniifiles(end).name];

save_nii(MRmaskReg,fileMRmaskReg)

% Crop the CT image:

CT=load_nii(fileCT);

img=permute(CT.img,[3 2 1]);

h=figure(’Name’,...

’Choose where to cut, cut to bottom is kept.’);

imshow(img(:,:,end/2),[])

[~,slice]=ginput(1);

close(h)

slice=round(slice);

img=CT.img(:,:,slice:end);
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voxelsize=CT.hdr.dime.pixdim(2:4);

nii=make_nii(img,voxelsize);

fileCThead=[dirNII ’CThead.nii’];

save_nii(nii,fileCThead)

% Perform registrations:

system(sprintf(’elastix -f %s -m %s -out %s -p %s’,...

fileMR,fileCThead,dirElxOut_r2MRCT,fileRegRigidCT));

filer2MRCT=[dirElxOut_r2MRCT ’result.0.nii’];

system(sprintf(...

’elastix -f %s -m %s -out %s -p %s -fMask %s’,...

fileMR,filer2MRCT,dirElxOut_r2MRr2MRwmCT,...

fileRegRigidCT2,fileMRmaskReg));

filer2MRr2MRwmCT=[dirElxOut_r2MRr2MRwmCT ’result.0.nii’];

% Visually control registrations:

% viewWoverlay(fileMR,fileMRmaskFuse)

viewWoverlay(fileMR,filer2MRCT)

viewWoverlay(fileMR,filer2MRr2MRwmCT)

viewWoverlay(filer2MRr2MRwmCT,fileMRmaskFuse,true)

case 4

% If the MR fusion mask does not cover the CT image

% sufficiently, create a fusion mask from the CT image

% and edit it manually:

useCTmask=false;

maskEdited=input(...

’Did you edit and save the mask? (y/n), [n]: ’,’s’);

if strcmpi(maskEdited,’y’)

fileMRmaskFuse =...

[dirElxOut_r2MRr2MRwmCT ’lresult.0.nii’];

else

CT=load_nii(filer2MRr2MRwmCT);

mask=createmask(CT.img,thresholdCT,radiusCT);

CTmaskFuse=CT;

CTmaskFuse.img=mask;

fileCTmaskFuse=...

[dirElxOut_r2MRr2MRwmCT ’maskFuseresult.0.nii’];
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save_nii(CTmaskFuse,fileCTmaskFuse)

system(sprintf(...

’mricron %s -o %s -c blue -v %s -t -1 -x’,...

filer2MRr2MRwmCT,fileMRmumap,fileCTmaskFuse));

fileCTmaskFuse=...

[dirElxOut_r2MRr2MRwmCT ’lresult.0.nii’];

useCTmask=true;

end

case 5

% Create and save CTMR head mumap in DICOM directory:

CT=load_nii(filer2MRr2MRwmCT);

MRmumap=load_nii(fileMRmumap);

CTMRmumap=MRmumap;

if useCTmask

mask= load_nii(fileCTmaskFuse);

else

mask=load_nii(fileMRmaskFuse);

end

CTMRmumap.img=HU2PETLAC(CT.img,kVp,valHUair);

CTMRmumap.img=fuseVolumes(CTMRmumap.img,MRmumap.img,...

mask.img);

fileCTMRmumap=[dirNII ’CTMRmumap.nii’];

save_nii(CTMRmumap,fileCTMRmumap)

viewWoverlay(fileCTMRmumap,fileCTmaskFuse)

CTMRmumap=flip(flip(permute(CTMRmumap.img,[2 1 3]),1),2);

createmodmumap(CTMRmumap,dirMRmumap,dirCTMRmumap)

otherwise

disp(’Failsafe’)

end

A.5 CT2MRmumap wb.m

%CT2MRMUMAP_WB is a script for creating CT-based whole-body

% mumaps. The script runs through five successive steps. Step 1

% consists of manual selection of the needed starting images
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% (DICOM series), preparation of output folders, conversion of

% DICOM series to 3D nifti, and initialising various variables

% containing file names. Step 2 creates the registration mask

% for the non-rigid registration. Step 3 performs the rigid

% registration of the CT image to the MR image, and then

% removes the patient bed from the resulting image. Step 4

% performs the non-rigid registration. Step 5 converts the

% resulting CT image to LAC values and fuses the CT mumap with

% the MR mumap using the registration mask as the boundary,

% before saving the mumap using the MR mumap DICOM series as a

% template. The mask may be manually edited between the running

% of step 4 and step 5, to exclude bodyparts not successfully

% transformed to accurate positions (the head).

clc

% Variable initialization:

% Global:

dirElxPar=’C:\D\elx_par\CT2MRmumap\’;

fileRegRigidCT=[dirElxPar ’rigidWBCT.txt’];

fileRegBsplineCT=[dirElxPar ’BsplineWBCT.txt’];

% Change/tune:

dirRoot=’G:\D\CTMRmumaps_intermediate\WB\PETMR013\’;

step=7;

valHUair=-1024;

dirData=’G:\D\’;

thresholdsMR=[0 110 70 70 50 50];

radiusMR=6;

overlapMR=3;

thresholdsCT=-200;

radiusCT=1;

dirNII=[dirRoot ’nifti\’];

dirElxOut=[dirRoot ’elxOutput\’];

dirElxOut_r2MRCT=[dirElxOut ’r2MRCT\’];

dirElxOut_r2MRnr2MRCT=[dirElxOut ’r2MRnr2MRCT\’];
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filer2MRCT=[dirElxOut_r2MRCT ’result.0.nii’];

filer2MRnr2MRCT=[dirElxOut_r2MRnr2MRCT ’result.0.nii’];

fileCTMRmumap=[dirNII ’CTMRmumap.nii’];

fileDataBackup=[dirNII ’dataBackup.mat’];

fileTemp=[dirNII ’temp.nii’];

switch step

case 1

if exist(fileDataBackup,’file’)

load(fileDataBackup);

else

dirCT=uigetdir(dirData,’Select CT scan, AC-CT.’);

dirMR=uigetdir(dirData,...

’Select MR Dixon scan, composed.’);

dirDataMR=fileparts(dirMR);

dirMRmumap=uigetdir(dirDataMR,...

’Select MR Dixon mumap, composed.’);

dirCTMRmumap=fileparts(dirMRmumap);

dirCTMRmumap=...

[dirCTMRmumap filesep ’CTMRmumap_WB’ filesep];

cd(dirCT)

temp=dir;

temp=dicominfo(temp(5).name);

kVp=temp.KVP;

up

createORempty(dirNII)

createORempty(dirElxOut_r2MRCT)

createORempty(dirElxOut_r2MRnr2MRCT)

% Convert DICOM to NIFTI:

MRniifiles=dcm2nii(dirMR,dirNII,’MR’);

CTniifiles=dcm2nii(dirCT,dirNII,’CT’);

MRmumapniifiles=dcm2nii(dirMRmumap,dirNII,’MRmumap’);

fileMR=[dirNII MRniifiles(end).name];
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fileCT=[dirNII CTniifiles(1).name];

fileCTmask=[dirNII ’mask’ CTniifiles(1).name];

fileMRmumap=[dirNII MRmumapniifiles(1).name];

save(fileDataBackup);

end

case 2

% Create registration mask:

[~,fileMRmask]=segmentRibcage(fileMR,thresholdsMR,...

radiusMR,overlapMR);

viewWoverlay(fileMR,fileMRmask,true) % View in MRIcron.

case 3

% Perform rigid registration:

system(sprintf(’elastix -f %s -m %s -out %s -p %s’,...

fileMR,fileCT,dirElxOut_r2MRCT,fileRegRigidCT));

viewWoverlay(fileMR,filer2MRCT)

% Mask out the patient bed from CT:

CT=load_nii(filer2MRCT);

CTmask=CT;

CTmask.img=createmask(CT.img,thresholdsCT,radiusCT);

CC=bwconncomp(CTmask.img,6);

indexes=CC.PixelIdxList;

lengths=cellfun(’length’,indexes);

[~,indexLargest]=max(lengths);

lengths(indexLargest)=0;

[~,indexLargest(2)]=max(lengths);

CTmask.img(:)=0;

CTmask.img(indexes{indexLargest(1)})=1;

save_nii(CTmask,fileCTmask)

viewWoverlay(filer2MRCT,fileCTmask)

case 4

% Peform non-rigid registration:

system(sprintf(...

’elastix -f %s -m %s -out %s -p %s -fMask %s -mMask %s’,...

fileMR,filer2MRCT,dirElxOut_r2MRnr2MRCT,...
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fileRegBsplineCT,fileMRmask,fileCTmask));

viewWoverlay(fileMR,filer2MRnr2MRCT)

case 5

% Convert CT image and fuse with MR mumap to create the

% CTMR mumap.

CT=load_nii(filer2MRnr2MRCT);

MRmumap=load_nii(fileMRmumap);

mask=load_nii(fileMRmask);

mask=mask.img;

CTMRmumap=MRmumap;

CTMRmumap.img=HU2PETLAC(CT.img,kVp,valHUair);

CTMRmumap.img=...

fuseVolumes(CTMRmumap.img,MRmumap.img,mask);

save_nii(CTMRmumap,fileCTMRmumap)

viewWoverlay(fileCTMRmumap,fileMRmask)

% Re-orient image to match DICOM image series and create

% CTMR mumap

% DICOM directory.

CTMRmumap.img=flip(flip(flip(permute(CTMRmumap.img,...

[3 1 2]),1),2),3);

createmodmumap(CTMRmumap.img,dirMRmumap,dirCTMRmumap)

otherwise

disp(’Failsafe’)

end

A.6 extractimagearray.m

function image_array = extractimagearray(el)

%EXTRACTIMAGEARRAY - Create a 2D image from the PixelData in EL.

% IMAGE_ARRAY = EXTRACTIMAGEARRAY(EL) returns a 2D image

% created from the pixel data in EL. EL is a list of elements

% of the form returned by READDICOMELEMENTLIST. IMAGE_ARRAY is

% rescaled using corresponding image tags. This function is

% taylored to extract mumap images from MR and CT mumaps, but

% should also work well for other DICOM images.
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% Extract the necessary DICOM tags from the header:

for i=1:length(el)

if strcmpi(strcat(el(i).group,el(i).number),’00080008’)

imagetype=el(i).data;

elseif strcmpi(strcat(el(i).group,el(i).number),’00280010’)

rows=el(i).data;

elseif strcmpi(strcat(el(i).group,el(i).number),’00280011’)

columns=el(i).data;

elseif strcmpi(strcat(el(i).group,el(i).number),’00281052’)

rescaleintercept=str2double(el(i).data);

elseif strcmpi(strcat(el(i).group,el(i).number),’00281053’)

rescaleslope=str2double(el(i).data);

elseif strcmpi(strcat(el(i).group,el(i).number),’7fe00010’)

pixeldata=el(i).data;

end

end

if strcmpi(imagetype(end-5:end),’AC_MAP’)

CTmumap=true;

end

% Cast the pixel data to the correct type:

pixeldata=uint8(pixeldata);

image_vector=typecast(pixeldata,’int16’);

% Rescale the pixel data:

rsi=0;

rss=1;

if exist(’rescaleintercept’,’var’)

rsi=rescaleintercept;

end

if exist(’rescaleslope’,’var’)

rss=rescaleslope;

end

if exist(’CTmumap’,’var’) && CTmumap

rss=rss*10000;

end
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image_vector=int16(double(image_vector)*rss+rsi);

% Reshape the image vector to a 2D image:

image_array=int16(zeros(rows,columns));

counter=0;

for i=1:rows

for j=1:columns

counter=counter+1;

image_array(i,j)=image_vector(counter);

end

end

A.7 fillmask.m

function filledMask = fillMask(mask)

%FILLMASK - Fill holes in the 3D binary image MASK.

% FILLEDMASK = FILLMASK(MASK) fills the 3D binary image in all

% three planes using imfill and returns it as FILLEDMASK.

filledMask=mask;

for i=1:size(filledMask,3)

filledMask(:,:,i)=imfill(filledMask(:,:,i),’holes’);

end

filledMask=permute(filledMask,[2 3 1]);

for i=1:size(filledMask,3)

filledMask(:,:,i)=imfill(filledMask(:,:,i),’holes’);

end

filledMask=permute(filledMask,[2 3 1]);

for i=1:size(filledMask,3)

filledMask(:,:,i)=imfill(filledMask(:,:,i),’holes’);

end

filledMask=permute(filledMask,[2 3 1]);

A.8 fuseVolumes.m

function fusedVolume = fuseVolumes(iva1,iva2,mask)

%FUSEVOLUMES - Fuse two image volumes using MASK as boundary.

% FUSEDVOLUME = FUSEVOLUMES(IVA1,IVA2,MASK) fuses the two

% equally sized arrays IVA1 and IVA2 using the binary image
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% MASK (equal size) as a boundary. Where MASK has value 1,

% values from IVA1 is used, where MASK has value 0, values from

% IVA2 is used.

imask=int16(~mask);

mask=int16(mask);

fusedVolume=iva1.*mask+iva2.*imask;

A.9 HU2PETLAC.m

function CTmumap = HU2PETLAC(CT,kVp,valHUair,scalingFactor)

%HU2PETLAC - Rescale CT HU image to 511 keV LAC.

% CTMUMAP = HU2PETLAC(CT,KVP,VALHUAIR,CORRFACTOR) rescales the

% CT image CT given in Hounsfield Units (HU), to a CT-based PET

% mumap of 511 keV linear attenuation coefficients (LACs). KVP

% is the peak voltage of the X-ray tube during the acquisition

% given in kV. VALHUAIR is the HU value of air (either -1024 or

% -1000), and SCALINGFACTOR is a scaling factor used to scale

% the LAC values to the same order as those given in MR mumaps.

% This function takes a CT image volume in HU as minimum input,

% and converts it to an image volume with 511 keV LAC’s scaled up

% with a factor of 10000, as is the case with MR mumaps.

% Default values:

if ~exist(’kVp’,’var’)

kVp=120;

end

if ~exist(’valHUair’,’var’)

valHUair=-1000;

end

if ~exist(’corrFactor’,’var’)

scalingFactor=10^4;

end

% The function below loads the scaling factors based on the paper

% of Carney et al. 2006. The default (kVp=120 kV) is a=5.1e-5,

% b=4.71e-2, break point (BP) at 47 HU, and slope below BP (sbBP)

% equal to 9.6e-5.
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[a,b,BP,sbBP] = getcoeffHU2PETLAC(kVp);

% During the registration some voxels acquire values below that

% of air.

CT(CT<valHUair)=valHUair;

CTmumap=CT;

CTmumap(CT<BP)=int16(scalingFactor*sbBP*(double(CT(CT<BP))+...

abs(valHUair)));

CTmumap(CT>=BP)=int16(scalingFactor*(a*(double(CT(CT>=BP))+...

abs(valHUair))+b));

A.10 imagearrayinsertion.m

function el = imagearrayinsertion(image_array,el)

%IMAGEARRAYINSERTION - Insert a 2D image into EL’s PixelData.

% EL = IMAGEARRAYINSERTION(IMAGE_ARRAY,EL) simply reverses the

% action of EXTRACTIMAGEARRAY, inserting the 2D image

% IMAGE_ARRAY into the pixel data of EL.

% Extract the necessary DICOM tags from the header:

for i=1:length(el)

if strcmpi(strcat(el(i).group,el(i).number),’00080008’)

imagetype=el(i).data;

elseif strcmpi(strcat(el(i).group,el(i).number),’00280010’)

rows=el(i).data;

elseif strcmpi(strcat(el(i).group,el(i).number),’00280011’)

columns=el(i).data;

elseif strcmpi(strcat(el(i).group,el(i).number),’00281052’)

rescaleintercept=str2double(el(i).data);

elseif strcmpi(strcat(el(i).group,el(i).number),’00281053’)

rescaleslope=str2double(el(i).data);

elseif strcmpi(strcat(el(i).group,el(i).number),’7fe00010’)

pixeldata_elementposition=i;

end

end

if strcmpi(imagetype(end-5:end),’AC_MAP’)
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CTmumap=true;

end

% Reshape 2D image to an image vector:

image_vector=int16(zeros(1,rows*columns));

counter=0;

for i=1:rows

for j=1:columns

counter=counter+1;

image_vector(counter)=image_array(i,j);

end

end

% Rescale the image vector values:

rsi=0;

rss=1;

if exist(’rescaleintercept’,’var’)

rsi=rescaleintercept;

end

if exist(’rescaleslope’,’var’)

rss=rescaleslope;

end

if exist(’CTmumap’,’var’)&&CTmumap

rss=rss*10000;

end

image_vector=int16((double(image_vector)-rsi)/rss);

% Cast image vector to correct type and replace the PixelData tag

% in EL:

pixeldata=typecast(image_vector,’uint8’);

el(pixeldata_elementposition).data=pixeldata;

el(pixeldata_elementposition).length=length(pixeldata);

A.11 segmentRibcage.m

Contents

• Parameter initialisation
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• Initial segmentation
• Null non-lung volumes
• Dilate lung volumes to include ribcage
• Segment abdomen
• Segment neck and head
• Finallize mask and save it to file

function [mask,fileMRmask] = segmentRibcage(fileMR,thresholds,...

radius,overlap)

%SEGMENTRIBCAGE segments the ribcage in an MR image.

% SEGMENTRIBCAGE(FILEMR,THRESHOLDS,RADIUS,OVERLAP) takes the MR

% NIFTI image FILEMR as input, along with THRESHOLDS: a vector

% containing segmentation thresholds for the lungs, whole-body,

% abdomen, neck, and head; RADIUS: the radius of the dilation

% sphere; and OVERLAP: the number of slices of the top of the

% lung that will have their mask extended by the neck mask

% slices. The function makes a mask covering the whole body,

% excluding the arms, shoulders, and chest muscles. The lungs

% are identified as the largest volume (possibly the two

% largest volumes) of air inside the body. The lung volume is

% dilated to fill the entire inside of the ribcage, and the

% resulting volume is dilated outwards to include the ribcage.

% The thickness of the ribcage wall is assumed to be

% approximately spatially constant. After segmenting the

% ribcage the rest of the body below the ribs are segmented

% based on simple thresholding, ensuring that the arms are not

% in contact with the body below the ribs. The neck and head is

% segmented based on simple thresholding. The mask is both

% returned as an image volume array and saved to file.

Parameter initialisation

temp=[2 15 20 20 20 20];

if ~exist(’thresholds’,’var’)

thresholds=temp;

elseif length(thresholds)<6

thresholds=[thresholds temp(length(thresholds)+1:end)];

end

if ~exist(’overlap’,’var’)
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overlap=2;

end

[dirRoot,name,ext]=fileparts(fileMR);

dirRoot=[dirRoot filesep];

fileMRmask=[dirRoot ’ribMask’ name ext];

fileTemp=[dirRoot ’temp.nii’];

fileDataFrames=[dirRoot ’dataFrames.mat’];

fileDataAbdomen=[dirRoot ’dataAbdomen.mat’];

fileDataLungthresholds=[dirRoot ’dataLungthresholds.mat’];

MR=load_nii(fileMR);

MRimg=MR.img;

MRmask=MR;

mask=MRimg;

lower=thresholds(1);

higher=thresholds(2);

bodyThreshold=thresholds(3);

abdomenThreshold=thresholds(4);

neckThreshold=thresholds(5);

headThreshold=thresholds(6);

Initial segmentation

mask(:)=0;

mask(MRimg>=lower&MRimg<=higher)=1;

tempmask=createmask(MRimg,bodyThreshold); % Bodymask

mask=mask.*tempmask; % Null voxels outside of body.

mask=fillMask(mask); % Fill holes in all three planes.

% volumeRelativeLungRight=0.55;

% volumeRelativeLungLeft=0.45;

Null non-lung volumes

Identify the two largest volumes:

CC=bwconncomp(mask,6);
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indexes=CC.PixelIdxList;

lengths=cellfun(’length’,indexes);

[~,indexLargestVolume]=max(lengths);

lengths(indexLargestVolume)=0;

[~,indexSecondLargestVolume]=max(lengths);

% Detect if the two lung volumes are connected:

ratio=cellfun(’length’,indexes(indexLargestVolume))/cellfun(...

’length’,indexes(indexSecondLargestVolume));

if ratio>0.7/0.3

lungsConnected=true;

else

lungsConnected=false;

end

% Keep lung volume(s) only:

% If lung volumes are not connected, connect their centers of

% mass.

mask(:)=0;

if lungsConnected

mask(indexes{indexLargestVolume})=1;

else

mask(indexes{indexLargestVolume})=1;

mask(indexes{indexSecondLargestVolume})=1;

CC=bwconncomp(mask,6);

STATS=regionprops(CC,’Centroid’);

centr1=STATS(1).Centroid;centr2=STATS(2).Centroid;

x=round(centr1(1)); y=round(centr1(2)); z=round(centr1(3));

x(2)=round(centr2(1)); y(2)=round(centr2(2)); z(2)=...

round(centr2(3));

mask(min(y):max(y),min(x):max(x),min(z):max(z))=1;

end

% Manually detect top and bottom of lungs:

% Also choose a neck slice for neck segmentation.

if exist(fileDataFrames,’file’)

load(fileDataFrames);

else
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system(sprintf(’mricron %s -x’,fileMR));

neckFrame=input(’Neck slice, z-value: ’);

topFrame=input(’Top of lung, z-value: ’);

bottomFrame=input(’Bottom of lung, z-value: ’);

if isempty(neckFrame); neckFrame=size(mask,3); end

if isempty(topFrame); topFrame=size(mask,3); end

if isempty(bottomFrame); bottomFrame=1; end

save(fileDataFrames,’neckFrame’,’topFrame’,’bottomFrame’);

end

mask(:,:,topFrame+1:end)=0;

mask(:,:,1:bottomFrame-1)=0;

% Ask for confirmation of successful lung segmentation:

if ~exist(fileDataLungthresholds,’file’)

temp=MRmask;

temp.img=mask;

save_nii(temp,fileTemp)

viewWoverlay(fileMR,fileTemp,true)

temp=load_nii(fileTemp);

mask=temp.img;

tuningNeeded=input(...

’Tune lung segmentation thresholds? (y/n) [y]: ’,...

’s’);

if isempty(tuningNeeded); tuningNeeded=’y’; end

if strcmpi(tuningNeeded,’y’)

error(’Tuning needed!’)

else

save(fileDataLungthresholds,’lower’,’higher’,...

’bodyThreshold’);

end

end

Dilate lung volumes to include ribcage

Define structuring elements:

Define structuring elements:

122



VI

lengthSe=9;

middleSe=floor((lengthSe+1)/2);

seLeftward=zeros(lengthSe,1); seLeftward(1:middleSe)=1;

seLeftward=strel(’arbitrary’,seLeftward);

seRightward=zeros(lengthSe,1); seRightward(middleSe:end)=1;

seRightward=strel(’arbitrary’,seRightward);

seDownward=zeros(1,1,lengthSe); seDownward(1:middleSe)=1;

seDownward=strel(’arbitrary’,seDownward);

% Dilate towards the bottom of the lungs:

for i=1:30

mask(:,:,bottomFrame:topFrame)=imdilate(mask(:,:,...

bottomFrame:topFrame),seDownward);

end

% Find center of mass:

CC=bwconncomp(mask,6);

STATS=regionprops(CC,’Centroid’,’BoundingBox’);

assert(length(STATS)==1,’Lungs not connected!’)

centroid=round(STATS(1).Centroid);

% Dilate from left/right towards center of mass:

middleRow=centroid(2);

for i=1:10

mask(1:middleRow,:,:)=imdilate(mask(1:middleRow,:,:),...

seRightward);

mask(middleRow:end,:,:)=imdilate(mask(middleRow:end,:,:),...

seLeftward);

end

% Dilate volume outwards to include rib cage:

[x,y,z] = ndgrid(-radius:radius);

se = strel(sqrt(x.^2 + y.^2 + z.^2) <=radius);

mask(:,:,bottomFrame:end)=imdilate(mask(:,:,bottomFrame:end),se);

Segment abdomen

if exist(fileDataAbdomen,’file’)

123



VI

load(fileDataAbdomen);

else

tempmask=MRimg;

tempmask(:)=0;

tempmask(:,:,1:bottomFrame-1)=createmask(MRimg(:,:,...

1:bottomFrame-1),...

abdomenThreshold,1);

% Check if the arms are too close to body for automatic

% segmentation:

armsincluded=true;

CC=bwconncomp(tempmask);

indexes=CC.PixelIdxList;

lengths=cellfun(’length’,indexes);

if length(lengths)>=3

indexLargest=zeros(1,3);

[~,indexLargest(1)]=max(lengths);

lengths(indexLargest(1))=0;

[~,indexLargest(2)]=max(lengths);

lengths(indexLargest(2))=0;

[~,indexLargest(3)]=max(lengths);

lengths=cellfun(’length’,indexes);

if lengths(indexLargest)>radius^4

tempmask(:)=0;

tempmask(indexes{indexLargest(1)})=1;

armsincluded=false;

end

end

% se=strel(’disk’,1);

% tempmask=imdilate(tempmask,se);

% Manually null arms:

while armsincluded

temp=MRmask;

temp.img=tempmask;

save_nii(temp,fileTemp)

viewWoverlay(fileMR,fileTemp,true)
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temp=load_nii(fileTemp);

tempmask=temp.img;

armsincluded=...

input(’Arms included in mask? (true/false): ’);

end

save(fileDataAbdomen,’tempmask’)

end

mask(:,:,1:bottomFrame-1)=tempmask(:,:,1:bottomFrame-1);

Segment neck and head

Neck: The neck is segmented by creating a 2D mask based on a selected trans-
axial slice in the neck, and then placing this mask around the center of gravity
of the slices between the selected slice and the top of the lungs plus the optional
overlap.

MRneckslice=MRimg(:,:,neckFrame);

MRneckslicemask=createmask(MRneckslice,neckThreshold);

CC=bwconncomp(MRneckslicemask,4);

indexes=CC.PixelIdxList;

lengths=cellfun(’length’,indexes);

[~,indexLargest]=max(lengths);

STATS=regionprops(CC,’BoundingBox’,’ConvexImage’);

bbox=round(STATS(indexLargest).BoundingBox);

MRneckslicemask(:)=0;

MRneckslicemask(bbox(2):bbox(2)+bbox(4)-1,bbox(1):bbox(1)+...

bbox(3)-1)=STATS(indexLargest).ConvexImage;

CC=bwconncomp(MRneckslicemask,4);

STATS=regionprops(CC,’Centroid’);

centroidneckslice=STATS.Centroid;

tempmask=mask;

tempmask(:)=0;

for i=topFrame+1-overlap:neckFrame-1

tempmask(:,:,i)=createmask(MRimg(:,:,i),neckThreshold);
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CC=bwconncomp(tempmask(:,:,i),4);

indexes=CC.PixelIdxList;

lengths=cellfun(’length’,indexes);

[~,indexLargest]=max(lengths);

STATS=regionprops(CC,’Centroid’);

centroidtemp=STATS(indexLargest).Centroid;

translationvector=round(centroidtemp-centroidneckslice);

tempmask(:,:,i)=imtranslate(MRneckslicemask,...

translationvector);

end

% Head:

tempmask(:,:,neckFrame:end)=createmask(MRimg(:,:,...

neckFrame:end),headThreshold,1);

CC=bwconncomp(tempmask(:,:,neckFrame:end),6);

indexes=CC.PixelIdxList;

lengths=cellfun(’length’,indexes);

[~,indexLargest]=max(lengths);

tempmask(:,:,neckFrame:end)=0;

tempmask(indexes{indexLargest}+numel(tempmask(:,:,...

1:neckFrame-1)))=1;

Finallize mask and save it to file

mask=mask+tempmask;

mask(mask>1)=1;

MRmask.img=mask;

save_nii(MRmask,fileMRmask)
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B Registration parameter files

A couple of examples of the elastix registration parameter files used in the
registrations performed during the work with this master, are shown below. The
parameter files were developed based on existing parameter files from similar
studies, information found in the elastix manual, and on trial-and-error when
tweaking the parameters to improve the registrations.

B.1 BsplineWBCT.txt

This file set the parameters for the B-spline registration in the creation of whole-
body CTMR mumaps.
(FixedInternalImagePixelType "float")

(MovingInternalImagePixelType "float")

(FixedImageDimension 3)

(MovingImageDimension 3)

(UseDirectionCosines "true")

// Main components

(Registration "MultiResolutionRegistration")

(Interpolator "LinearInterpolator")

(ResampleInterpolator "FinalBSplineInterpolator")

(Resampler "DefaultResampler")

(FixedImagePyramid "FixedSmoothingImagePyramid")

(MovingImagePyramid "MovingSmoothingImagePyramid")

(Optimizer "AdaptiveStochasticGradientDescent")

(Transform "BSplineTransform")

(Metric "NormalizedMutualInformation")

// Transformation

(FinalGridSpacingInPhysicalUnits 16)

(GridSpacingSchedule 4.0 4.0 4.0 2.0 2.0 2.0 1.0 1.0 1.0)

(HowToCombineTransforms "Compose")

// Similarity measure

(NumberOfHistogramBins 32)

(ErodeMask "true")
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// Multiresolution

(NumberOfResolutions 3)

(ImagePyramidSchedule 1 1 1 1 1 1 1 1 1)

// Optimiser

(MaximumNumberOfIterations 4096 2048 1024)

(AutomaticParameterEstimation "false")

(SP_a 2000 7000 20000 20000 30000)

(SP_A 50)

(SP_alpha 0.602)

//(MaximumStepLength 1.0)

//(CheckNumberOfValidSamples "true")

//(RequiredRatioOfValidSamples 0.05)

// Image sampling

(NumberOfSpatialSamples 4096)

(NewSamplesEveryIteration "true")

(ImageSampler "RandomCoordinate")

//(UseRandomSampleRegion "true")

//(SampleRegionSize 50.0 50.0 50.0)

//(MaximumNumberOfSamplingAttempts 10)

// Interpolation and resampling

//(BSplineInterpolationOrder 1)

(FinalBSplineInterpolationOrder 3)

(DefaultPixelValue -1024)

(WriteResultImage "true")

(ResultImagePixelType "short")

(ResultImageFormat "nii")

B.2 rigidHeadCT.txt

This file set the parameters for the first rigid registration in the creation of head
CT and CTMR µ-maps.
(FixedInternalImagePixelType "float")

(MovingInternalImagePixelType "float")

(FixedImageDimension 3)

(MovingImageDimension 3)
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(UseDirectionCosines "true")

// Main components

(Registration "MultiResolutionRegistration")

(Interpolator "LinearInterpolator")

(ResampleInterpolator "FinalBSplineInterpolator")

(Resampler "DefaultResampler")

(FixedImagePyramid "FixedSmoothingImagePyramid")

(MovingImagePyramid "MovingSmoothingImagePyramid")

(Optimizer "AdaptiveStochasticGradientDescent")

(Transform "EulerTransform")

(Metric "NormalizedMutualInformation")

// Transformation

(AutomaticScalesEstimation "true")

(AutomaticTransformInitialization "true")

(HowToCombineTransforms "Compose")

// Similarity measure

(NumberOfHistogramBins 32)

//(ErodeMask "true")

// Multiresolution

(NumberOfResolutions 5)

(ImagePyramidSchedule 16 16 16 8 8 8 4 4 4 2 2 2 1 1 1)

// Optimiser

(MaximumNumberOfIterations 4096 2048 1024 512 256)

(AutomaticParameterEstimation "false")

(SP_a 4000)

(SP_A 50)

(SP_alpha 0.6)

//(MaximumStepLength 1.0)

//(CheckNumberOfValidSamples "true")

//(RequiredRatioOfValidSamples 0.05)
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// Image sampling

(NumberOfSpatialSamples 5000)

(NewSamplesEveryIteration "true")

(ImageSampler "RandomCoordinate")

//(UseRandomSampleRegion "true")

//(SampleRegionSize 50.0 50.0 50.0)

// Interpolation and resampling

//(BSplineInterpolationOrder 1)

(FinalBSplineInterpolationOrder 3)

(DefaultPixelValue -1024)

(WriteResultImage "true")

(ResultImagePixelType "short")

(ResultImageFormat "nii")

B.3 rigidHeadCT2.txt

This file set the parameters for the second rigid registration in the creation of
head CT and CTMR µ-maps.
(FixedInternalImagePixelType "float")

(MovingInternalImagePixelType "float")

(FixedImageDimension 3)

(MovingImageDimension 3)

(UseDirectionCosines "true")

// Main components

(Registration "MultiResolutionRegistration")

(Interpolator "LinearInterpolator")

(ResampleInterpolator "FinalBSplineInterpolator")

(Resampler "DefaultResampler")

(FixedImagePyramid "FixedSmoothingImagePyramid")

(MovingImagePyramid "MovingSmoothingImagePyramid")

(Optimizer "AdaptiveStochasticGradientDescent")

(Transform "EulerTransform")

(Metric "NormalizedMutualInformation")
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// Transformation

(AutomaticScalesEstimation "true")

(AutomaticTransformInitialization "true")

(HowToCombineTransforms "Compose")

// Similarity measure

(NumberOfHistogramBins 32)

//(ErodeMask "true")

// Multiresolution

(NumberOfResolutions 3)

(ImagePyramidSchedule 1 1 1 1 1 1 1 1 1)

// Optimiser

(MaximumNumberOfIterations 4096 4096 4096)

(AutomaticParameterEstimation "false")

(SP_a 4000)

(SP_A 50)

(SP_alpha 0.6)

//(MaximumStepLength 1.0)

//(CheckNumberOfValidSamples "true")

//(RequiredRatioOfValidSamples 0.05)

// Image sampling

(NumberOfSpatialSamples 5000)

(NewSamplesEveryIteration "true")

(ImageSampler "RandomCoordinate")

//(UseRandomSampleRegion "true")

//(SampleRegionSize 50.0 50.0 50.0)

// Interpolation and resampling

//(BSplineInterpolationOrder 1)

(FinalBSplineInterpolationOrder 3)

(DefaultPixelValue -1024)

(WriteResultImage "true")

(ResultImagePixelType "short")

(ResultImageFormat "nii")
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B.4 rigidWBCT.txt

This file set the parameters for the rigid registration in the creation of whole-body
CTMR µ-maps.

(FixedInternalImagePixelType "float")

(MovingInternalImagePixelType "float")

(FixedImageDimension 3)

(MovingImageDimension 3)

(UseDirectionCosines "true")

// Main components

(Registration "MultiResolutionRegistration")

(Interpolator "LinearInterpolator")

(ResampleInterpolator "FinalBSplineInterpolator")

(Resampler "DefaultResampler")

(FixedImagePyramid "FixedSmoothingImagePyramid")

(MovingImagePyramid "MovingSmoothingImagePyramid")

(Optimizer "AdaptiveStochasticGradientDescent")

(Transform "EulerTransform")

(Metric "AdvancedMattesMutualInformation")

// Transformation

(AutomaticScalesEstimation "true")

(AutomaticTransformInitialization "true")

(HowToCombineTransforms "Compose")

(AutomaticTransformInitializationMethod "CenterOfGravity")

// Similarity measure

(NumberOfHistogramBins 32)

//(ErodeMask "true")

// Multiresolution

(NumberOfResolutions 5)

(ImagePyramidSchedule 16 16 16 8 8 8 4 4 4 2 2 2 1 1 1)

// Optimiser

(MaximumNumberOfIterations 4096 2048 1024 512 256)

(AutomaticParameterEstimation "false")
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(SP_a 4000)

(SP_A 50)

(SP_alpha 0.6)

//(MaximumStepLength 1.0)

//(CheckNumberOfValidSamples "true")

//(RequiredRatioOfValidSamples 0.05)

// Image sampling

(NumberOfSpatialSamples 5000)

(NewSamplesEveryIteration "true")

(ImageSampler "RandomCoordinate")

//(UseRandomSampleRegion "true")

//(SampleRegionSize 50.0 50.0 50.0)

// Interpolation and resampling

//(BSplineInterpolationOrder 1)

(FinalBSplineInterpolationOrder 3)

(DefaultPixelValue -1024)

(WriteResultImage "true")

(ResultImagePixelType "short")

(ResultImageFormat "nii")
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C Additional results

This section presents additional results not presented in Part III.

C.1 PET - head

C.1.1 MR - CTMR

Figure 41: Box plot of the relative difference in mean SUV values between
PET head images reconstructed using the original MR UTE µ-map, and us-
ing the CTMR µ-map. The reconstruction method was 3D-iterative, and the
original MR UTE µ-map reconstruction results were used as the reference
point. N = 19.

134



VI

Figure 42: Box plot of the relative difference in mean SUV values between
PET head images reconstructed using the original MR UTE µ-map, and
using the CTMR µ-map. The reconstruction method was PSF, and the
original MR UTE µ-map reconstruction results were used as the reference
point. N = 19.
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Figure 43: Box plot of the relative difference in mean SUV values between
PET head images reconstructed using the original MR UTE µ-map, and
using the CTMR µ-map. The reconstruction method was PSF, and the
original MR UTE µ-map reconstruction results were used as the reference
point. N = 19.
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C.1.2 CT - CTMR

Figure 44: Box plot of the relative difference in mean SUV values between
PET head images reconstructed using the CT µ-map, and using the CTMR
µ-map. The reconstrucion method was PSF, and the CT reconstruction
results were used as the reference point. N = 19.
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C.1.3 3D - PSF

Figure 45: Box plot of the relative difference in mean SUV values between
PET head images reconstructed using regular 3D-iterative reconstruction,
and using the PSF reconstruction method. The MR µ-map was used for
reconstruction, and the 3D-iterative reconstruction results have been used as
the reference point. N = 19.
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Figure 46: Box plot of the relative difference in mean SUV values between
PET head images reconstructed using regular 3D-iterative reconstruction,
and using the PSF reconstruction method. The CT µ-map was used for
reconstruction, and the 3D-iterative reconstruction results have been used as
the reference point. N = 19.
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