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Abstract

As parallel and heterogeneous computing becomes more and more a necessity for im-
plementing high performance simulators, it becomes increasingly harder for scientists
and engineers without experience in high performance computing to achieve good perfor-
mance. Even for those who knows how to write efficient code the process for doing so is
time consuming and error prone, and maintaining and implementing changes in such code
requires huge effort. By providing tools for automated utilization of parallel hardware,
such efforts could be restricted and experts in numerical methods could spend their time
on expressing better methods rather than on implementation details.

In this thesis we present a CUDA back-end for the Equelle compiler. Equelle is a
domain-specific language designed for writing simulators of partial differential equations,
and is under development at SINTEF ICT. The language provides natural syntax for
describing finite volume methods, and lets the compiler take care of high performance.
The back-end presented in this thesis allows programs written in Equelle be compiled
to execute on graphics processing units (GPUs), without requiring the user to have any
knowledge in GPU programming.

We have verified correctness of the CUDA back-end by applying it to Equelle simula-
tors for the shallow water equations and both explicit and implicit methods for the heat
equation. Good performance have been shown for all three simulators, and we discuss
what should be done next to achieve even higher performance.
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Sammendrag

Parallelle og heterogene beregninger blir stadig mere nødvendig for å implementere ef-
fektive simulatorer med høy ytelse. Dette gjør det vanskeligere for forskere og ingeniører
uten erfaring innen parallellprogrammering å oppn̊a høy ytelse p̊a sine programmer. Selv
for de som kan denne typen programmering er det tidkrevende å implementere gode pro-
grammer, og vedlikehold og utvidelse av programvaren er ressurskrevende. Ved å tilby
programvare for automatisk å utnytte parallell hardware kan disse ressursene omprior-
iteres, og forskere innen numeriske metoder kan bruke tiden sin p̊a å utvikle nye metoder
istedet for å måtte jobbe p̊a detaljniv̊a med implementasjonen.

I denne masteroppgaven presenterer vi en CUDA back-end til Equelle kompilatoren.
Equelle er et domene-spesifikt programmeringsspr̊ak laget for å lage simulatorer av par-
tielle differensialligninger, og er for tiden under utvikling ved SINTEF IKT. Spr̊aket har
en naturlig syntaks for å uttrykke numeriske metoder av typen “finite volume methods”,
og kompilatoren har ansvaret for at simulatorene f̊ar høy ytelse. CUDA back-end’en vi
presenterer her lar programmer skrevet i Equelle bli kompilert til å kjøre p̊a GPUen
(graphics processing unit) istedet for p̊a CPUen, uten at brukeren trenger å vite noe om
hvordan man programmere disse.

Vi har verifisert at den nye back-end’en oppfører seg som forventet ved å bruke den til
å kompilere en simulator for bølger og vannflyt i grunt vann, bassert p̊a “the shallow water
equations”. Vi har ogs̊a kjørt simuleringer ved å kompilere Equelle implementasjoner av
varmeligningen for b̊ade eksplisitte og implisitte metoder. Ytelsen har vist seg å være god
for alle de tre simulatorene, og vi har diskutert hvordan ytelsen kan forbedres ytterligere.
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Chapter 1

Introduction

In this thesis we will expand the Equelle compiler by offering a compiler back-end for
executing simulators written in Equelle on graphics processing units (GPUs). Equelle is a
Domain-Specific Language (DSL) for writing simulators of partial differential equations in
their discrete numerical form, and is under development as a research project at SINTEF
ICT. The goal of the language is to provide a programming environment in which it is easy
to express finite volume methods, and where the compiler takes care of high performance.
The goal of this thesis is to implement GPU support in the compiler, so that users of
Equelle can take advantage of the computational power of GPUs without having to know
anything about how to program GPUs themselves.

We will use the CUDA programming model to implement the back-end, and we will
through this thesis discuss the implementation choices and design of the back-end. We
demonstrate correctness by running simulators for the heat equation using both explicit
and implicit methods, and fir the shallow water equations. Implicit methods are treated
by automatic differentiation, which we have implemented by operator overloading. We
also show that we achieve great performance, and especially so for simulators on large
grids.

Even though we through this thesis are able to execute Equelle programs on the
GPU and achieving good speedup, we still observe huge performance potentials in the
compiler. We therefore discuss how we can improve performance by using a profiler to
identify weaknesses in our design, and to monitor program flow and memory management.
From this discussion we give suggestions for the future development of the compiler.

Some parts of this thesis are based on work done during the Specialization Project[20]
which is considered to be preparation work for the master thesis. During that work we
looked at different DSLs and learned to use Equelle by writing the shallow water simulator
used in this thesis. Most of Sections 2.2, 2.3 and 3.1, as well as some of Section 2.1, are
therefore taken from that project, and edited and improved to fit this format. As we
show that the CUDA back-end gives us the exact same numerical results for the shallow
water simulations, we have also used illustrations from the specialization project to show
examples of the water flow. These are shown in Figures 5.4 and 5.5.

Organization of this Thesis

We start by introducing concepts from the scientific fields on which we build our new
CUDA back-end in Chapter 2. We give an introduction to the need for and use of

1



2 CHAPTER 1. INTRODUCTION

heterogeneous computing, and the challenges faced by programmers in order to fully utilize
the computational power on parallel platforms and accelerator hardware. We continue
by briefly showing the main concepts behind the finite volume method for numerically
solving partial differential equations (PDEs). The concept of Domain-Specific Languages
(DSLs) are then introduced, followed by a short overview of how compilers work.

Chapter 3 gives an introduction of the DSL Equelle. We here describe the idea behind
the language and what problems it can be used to solve. In order to understand the rest
of the thesis we also explain some of the functionality and built-in functions integrated in
Equelle. We then go through the organization of the Equelle compiler and what we mean
by the front-end and back-end.

In Chapter 4 we present the methods, tools and design choices we have built our CUDA
back-end library on. We describe the data types used for the most important Equelle
types, and implementation details of the most central functionality of the language. We
also explain automatic differentiation and how it can be used to build linear systems
arising from implicit methods for solving PDEs.

The back-end is then validated in Chapter 5, where we compile three different Equelle
simulators by using the new back-end and running them on the GPU. The simulators
are two versions of the heat equation, one solved by an explicit method and the other
implicitly, and the shallow water simulator. We also conduct experiments to look at the
performance of the back-end.

Chapter 6 is devoted to discuss the design choices, the performance and how we can
make the back-end perform even better. We do a step-by-step optimization procedure
targeting explicit formulations, and show which factors seem to be the major bottleneck
in all three simulators. We then discuss where the future development should be focused
and suggest some improvements to both the compiler front-end and back-end, before we
finish with some concluding remarks in Chapter 7.

In order to help the reader build the software we have developed, we have added some
build instructions in Appendix A. Here we have also included information on how to
download the same version as we have performed our tests on, in order to make repro-
ducibility easier. We have written an extensive documentation of the software, and have
therefore added instructions on how it can be generated as well.

Appendix B is used to describe the numerical methods which our test simulators are
based on. We have also added listings to show the complete heat equation simulators
written in Equelle.



Chapter 2

Background

2.1 Heterogeneous Computing

Parallel computing is not a new concept. Since the 90s the fastest supercomputers in the
world have consisted of thousands of processors, and the MPI (Message Passing Interface)
programming model for writing programs suitable for huge clusters is well established.
What is new in parallel computing is the extent of its use. Traditionally, parallel comput-
ing was only used in scientific computing. Now however we will have a hard time finding
a computer without multi-core processors. Even smart-phones and tablets have dual- or
quad core processors, and are therefore target architectures for parallel computing.

On top of this, specialized acceleration hardware such as the graphics processing unit
(GPU) has during the last decade developed from being used for graphics only to now per-
forming high performance general purpose operations. The term heterogeneous computing
refers to using more than one type of computational hardware, such as the CPU and GPU
combined to do computations, opposite to only running the application on the CPU. This
section gives an overview of the development of parallel hardware and accelerators, and
the challenges faced by software developers to keep up with their development.

2.1.1 From Serial to Parallel Computers

The modern way of developing faster computers for both regular and high performance
computing, differs a lot from how this development has traditionally been. The traditional
way to develop a new and better series of CPUs was to increase the numbers of transistors
on a chip, as well as their speeds, in order to increase their clock frequency. The clock
frequency describes how many instructions a CPU can perform per unit of time. As the
power consumption by a micro processor has a cubic relation with the frequency [21],
this development came to an end as the frequency reached the limit of what the CPU
cooling systems could handle. In order to keep on developing faster computer systems,
the vendors had to use other strategies.

The new strategy for developing more powerful processors came from placing multiple
processor cores on the same chip and to get them to cooperate on executing the pro-
grams running on the computer. However, in order for a single program to be able to
take advantage of multiple cores, the program must be written differently compared to a
traditional program. How the program should be parallelized has to be described by the
programmer, as this cannot in general be done with automated tools.

3



4 CHAPTER 2. BACKGROUND

Before the introduction of multi-core CPUs, old programs got a performance boost for
free as they where executed on new and faster CPUs. Since the clock-frequency now stays
the same, this free lunch is no longer available, and programs written for serial execution
have to be changed in order to perform better on new hardware. In some cases, it might
be enough to add some lines of compiler directives, so that the compiler can parallelize
computationally intensive parts of the program, but in other cases the entire program has
to be redesigned. This is one of the major challenges that comes with the development
towards multi-core processors.

Parallel systems can be divided in two fundamentally different platform models, where
the multi-core CPUs in modern laptops and smart phones come in the one group and tradi-
tional supercomputers come in another. The difference is found in how the computational
cores access memory, and whether memory accessed by one core is visible to the others.

Traditional computer clusters consists of several processors connected through a net-
work. Each of these processors have their own memory, and in order for one processor
to read data written by another processor the data has to be explicitly sent over the
network. This is called distributed memory systems, and the industry standard for
writing programs suitable for clusters is the Message Passing Interface (MPI) API. When
these programs are executed, there will actually be executed one process for each pro-
cessor, which run independent from each other. The only points in the program where
processors have to wait for each other are during communicative function calls where the
processes send and receive data across the network.

The multi-core processors on the other hand, are designed so that there are multiple
computational cores on the same chip. All of them access the same memory, so that if
one core write to memory, this is information that all other cores can read as well. Such
systems are said to have shared memory architecture. These can be programmed
by creating threads inside a program where each thread run on a different core. The
programmer can then create threads which later on are joined to one control flow within
the program. In other words, all functionality comes from only one process. There are
several APIs available for writing such programs, where the perhaps most used one is
OpenMP. OpenMP is a high level interface where the programmer tells the compiler
what to parallelize, while the alternative pthreads API is a low level interface where the
programmer explicitly needs to create and destroy threads and take care of the partitioning
of the problem between the threads.

These two fundamentally different models requires different ways of thinking about
parallelization, but they can also be combined. Since most clusters consists of nodes
of multi-core CPUs, one can write applications using MPI to distribute the problem
across the network, and use OpenMP or pthreads within each MPI process. For a deeper
discussion on these programming models, see the book by Pacheco [25].

2.1.2 GPUs and CUDA

Parallel to the development of clusters and multi-core CPUs, the gaming industry used a
lot of resources in developing faster and more powerful graphics processor units, GPUs.
Their goal is to optimize graphical computations, and are designed to best fit the nature
of such problems. In visualization and computer graphics the goal is often to compute
an output image based on an algorithm and some input data. Most often, the nature of
these algorithms are such that any pixel in the output can be computed from the input
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independently of any other pixels in the output. In other words, all output pixels can be
computed at the same time, making the algorithms easy to parallelize. Such algorithms
are said to be embarrassingly parallel.

The development of more powerful GPUs have been very rapid, driven from the de-
mands of the huge gaming industry and their need to get better and more detailed graph-
ics. In order to produce smooth graphics, 30 images per second have to be generated and
displayed, each with an average of 1.4 million pixels. So not only can 1.4 million elements
be computed in parallel, but there is a huge amount of data that have to be loaded and
written for each of the 30 frames within a second. Therefore, the GPUs have developed
to optimize total throughput, rather than the speed of each single operation. The devices
are therefore ideal for embarrassingly parallel problems [8].

It was originally not intended for the GPU to provide general purpose computations,
however given their huge throughput, such computations were attempted by researchers
in the early 00s. Larsen and McAllister [23] did a proof of concept study in 2001 showing
how matrix multiplication could be done on the GPU by tricking the GPU to believe
it was applying textures to images. After this, researchers kept experimenting on using
graphical APIs to trick the GPU to do scientific computing by expressing it in terms
of the graphical primitives. An example of this is also a MATLAB interface for certain
numerical linear algebra algorithms expressed in the OpenGL API by Brodtkorb [7].

CUDA was the first programming language for doing general purpose programming
on GPU, released by NVIDIA in 2007. The CUDA language is based on C/C++, and
made it therefore easy for researchers familiar with C programming to take advantage of
the computational powers of GPUs. Applications written in CUDA can only be executed
on GPUs produced by NVIDIA. Other programming platforms, such as OpenCL, came
later offering more portable programs which can be run on a wider range of GPUs. The
software developed for this thesis, is written in CUDA, and we will therefore not look
deeper into the OpenCL model here.

CUDA provides functions that allocate memory on the GPU (the device) and for
copying data between the CPU (the host) and the device. In order to do computations
on the device, we write special functions called kernels. These kernels are mapped to a
grid of blocks of threads, where the kernel body is executed on all threads specified by
the programmer. Each thread has its unique id within each block, and each block has its
unique id inside a grid. Since programs we launch on the GPU should be highly parallel in
nature, we can use these IDs to specify on what data element each thread should operate.
A schematic overview of this hierarchy is shown in Figure 2.1.

The size of the grid and blocks are given in the function call, and they should be
chosen to fit both the hardware restrictions and problem sizes in order to achieve best
performance. The execution model is a combination of the single-instruction multiple-
data (SIMD) model from Flynn’s taxonomy [17], and the single-program multiple-data
(SPMD) model. The blocks are executed by the SPMD model, where each block runs
the same program (the kernel body) with different data. Within each block, groups of 32
threads operate in warps. Each warp is executed in SIMD fashion, where all instructions
are done simultaneously by all threads.

The memory hierarchy of a GPU is depicted in Figure 2.2. Each thread has its own
private registers which can not be accessed by any other threads. Each block share a fast
but limited memory block called shared memory. This can be seen as a programmable
cache, and is useful for applications which have regular memory access patterns. The
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Figure 2.1: A CUDA kernel is launched on a set of threads which are grouped into
blocks. All the blocks make up the grid. All blocks contain the same number of
threads given in a 1, 2 or 3 dimensional structure, and the size of the grid is given
as a 1, 2 or 3 dimensional structure as well. Source: Nvidia [1].

shared memory can only be accessed by its own block. Then there is the global memory
which is accessible from all threads in all blocks. Functions such as cudaMalloc for
allocation of memory, and cudaMemcpy for copying data between host and device, operate
on this global memory.

In addition to the generality of the CUDA programming language, there exist several
libraries for often used applications and algorithms. Some that are used in this thesis are
the cuSPARSE and Cusp libraries for numerical linear algebra, and the Thrust library
providing datatypes and algorithms such as sorting, scanning and reductions. There
are also libraries for fast Fourier transforms and random number generation as well,
called cufft and curand respectively. For further reading about CUDA, see the online
programming guide[1], the book by Sanders and Kandrot[31], or Brodtkorb[8].

CUDA Example

We will now give a small example of a program using CUDA for adding two arrays, in
order to further introduce and explain some important functionality and terminology of
the language. The program is shown in Listing 2.1 and is not very complex, but it will
serve our purpose as most kernels written for this thesis are quite small.

CUDA is built around a C-like environment where the user is responsible for allocating
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Figure 2.2: The memory hierarchy of GPUs as seen by CUDA. Source: Nvidia [1].

the required memory on the device before it is used. The user is also responsible for
deallocating it as well in order to prevent memory leaks. Similarly as the C-functions
malloc and free, CUDA uses cudaMalloc and cudaFree for this, as seen in lines 26 and
43-44. All functions belonging to the CUDA runtime returns a status flag of the type
CudaError_t, which may be used to check if the functions executed successfully.

After allocating memory, we might want to fill the device array with values from
host memory. This will be the case if the initialization process is serial by nature, or
if we read the data from file. Copying of data stored on the device is done with a call
to cudaMemcpy(dest, src, size, direction). We copy the size bytes starting at
memory address src over to the memory block of the same size starting at dest. The
direction is specified by using a flag to tell the function if we want to copy from host to
device memory as in line 28, or the opposite as in line 40. This function can be used as
a device-to-device or host-to-host function as well.

Now, we look at the kernel implementation of add_kernel at line 9, starting with the
qualifier __global__. The qualifier specifies to the compiler that this function should be
compiled to run on the device instead of the host, but that we can still use the host to
call it. The qualifier __device__ on the other hand, as used for the function myID at line
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4, tells the compiler that this function is executed on the device only, and that it is only
possible to call it from another function running on the device.

All launched threads will execute the code given in the kernel independently of each
other. In order to figure out which thread we are in, we can access the predefined variables
which are used in the myID function. The variable threadIdx gives the thread’s index
inside its block, while blockIdx gives the index of the block we are in. Both the variables
have three members, x, y and z, since CUDA allow 3D kernels. The variable blockDim

returns the number of threads inside the block in the given direction, and there is a similar
function for gridDim for the number of blocks in each direction. The function myID will
therefore return a unique index for each thread in a kernel launced on a 1D grid of 1D
blocks.

The kernel is called from line 36, where the triple angle bracket syntax is used for
specifying the number of threads and blocks we want to use. The first argument is the
number of threads per block, and the second one is number of blocks in the grid. Each
of the arguments can be of type dim3 defining 3D Cartesian structures. We only specify
one dimension in this example. Since all blocks are of the same size, the total number of
threads will be a multiple of the block size. The grid size is therefore chosen to be such
that if we have a data size n such that n− 1 is a multiple of the block size, we still launch
enough kernels for the last data element to have its own thread as well. This is why we
need to do the if-test at line 11, as we often launch too many threads and we do not want
to access unallocated memory blocks.

More examples of CUDA kernels can be seen in Chapter 4.

Listing 2.1: CUDA example program for adding two arrays. Includes both a global
kernel and device function.

1 #include <cuda . h>
2
3 // Device func t i on f o r f i n d i n g each thread ’ s ID
4 device int myID( ) {
5 return threadIdx . x + blockIdx . x∗blockDim . x ;
6 }
7
8 // Implement k e rne l f o r adding two arrays o f s i z e n
9 global void add kerne l ( double∗ a , const double∗ b , const int n) {

10 int id = myID( ) ;
11 i f ( id < n ) {
12 a [ id ] += b [ id ] ;
13 }
14 }
15
16 int main ( int argc , char∗∗ argv ) {
17 const int n ; // S i z e o f array
18 const int t h r e a d s p e r b l o c k ; // Define number o f th reads per b l o c k
19
20 double ∗ a host , ∗ b host ; // hos t po in t e r s
21 /∗ Al l o ca t e memory and i n i t hos t arrays − omit ted ∗/
22
23 // Declare dev i c e po in t e r s
24 double ∗a dev , ∗b dev ;
25
26 CudaError t s t a t = cudaMalloc ( (void ∗∗)&a dev , s izeof (double ) ∗n) ;
27 i f ( s t a t != cudaSuccess ) { /∗ Error a l l o c a t i n g memory − Exi t
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program ∗/ }
28 s t a t = cudaMemcpy( a dev , a host , s izeof (double ) ∗n ,

cudaMemcpyHostToDevice ) ;
29 i f ( s t a t != cudaSuccess ) { /∗ Error copying memory − Exi t program

∗/ }
30
31 /∗ Same fo r b dev − Al l o ca t e memory and copy data ∗/
32
33 // Set up and launch ke rne l
34 const dim3 b l o c k s i z e ( t h r e a d s p e r b l o c k ) ;
35 const dim3 g r i d s i z e ( ( int ) ( ( n + t h r e a d s p e r b l o c k −

1) / t h r e a d s p e r b l o c k ) ) ;
36 add kerne l<<<b l o c k s i z e , g r i d s i z e >>>(a dev , b dev , n) ;
37
38 // Copy data from dev i c e to hos t
39 // Omitting error check ing
40 cudaMemcpy( a host , a dev , s izeof (double ) ∗n , cudaMemcpyDeviceToHost ) ;
41
42 // Free dev i c e memory
43 cudaFree ( a dev ) ;
44 cudaFree ( b dev ) ;
45 /∗ Freeing hos t memory − omit ted ∗/
46
47 return 0 ;
48 }

2.1.3 Challenges in Parallel Computing

The GPU is not the only accelerating hardware available for doing heterogeneous high
performing computing. Other examples are the FPGA (Field Programmable Gate Array),
initially used for discrete logic but also applied to signal processing and as accelerator in
high-performance computing, and the Cell BEA which was the main engine in the Play
Station 3 gaming console [9]. The Xeon Phi coprocessor released by Intel in 2012 is
another highly parallel hardware architecture which also is designed to be able to run
existing code as it is based on the regular x86 architecture. However, in order to obtain
optimal performance, the existing applications have to be retuned to fit the physical
limitations of the hardware.

With the different memory models and APIs for writing parallel programs for multi-
core CPUs and clusters, and the continuous development of more powerful and flexible
GPUs and other acceleration hardware, programmers face a huge challenge in order to
keep software optimized with respect of this. Software developers have to deal with

• several different programming models,

• portability issues between different hardware types, and

• maintenance required to gain performance of new hardware, or even new versions
of the same hardware.

An important challenge within High Performance Computing is therefore to find a
way to make it easy for programmers, scientists and engineers to utilize the power of new
hardware without having to cope with the problems listed above. One solution is to make
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compilers which automatically transform programs to match a specified hardware, but
this is a tremendously huge task, and for now considered to be out of reach. Instead of
considering all possible programs however, a step in the right direction is to find ways of
automatically translate certain types of programs into parallel code. This can be done
by choosing a narrow problem domain and analyse the common data structures and
operations used to solve those problems. By using properties of the data structures and
the natural operations on them, it is feasible to automatically create parallel code.

In this thesis we will consider the Domain-Specific Language (DSL) Equelle, which
is currently under development by SINTEF ICT. The goal with the DSL is to provide
a programming language for writing simulations of certain partial differential equations
(PDEs) where the user is freed from the concern of implementation details related to high
performance. This is done by providing a compiler that translates the application into
accelerated hardware specific code. This is a step in the right direction in order to resolve
the issues listed above.

2.2 Numerical Partial Differential Equations

Partial differential equations (PDEs) and their solutions have been studied for centuries,
and analytic solutions are only available for a small subset of all PDEs arising in science
and engineering. Even though analytical solutions are out of reach it is often the case
that numerical methods help us obtain approximate solutions.

Numerical methods are usually designed by using a discretization of the domain of the
PDE, and there are three classes of methods that are most commonly used. The discrete
domain takes form of a grid or mesh, and the goal is to find approximate solutions, for
example at each node or cell in the grid. The different classes of methods are:

Finite Difference Methods The derivatives are approximated by combining Taylor ex-
pansions on the nodes. These are then used to find a stencil that gives the approx-
imate solution in each node based on its neighbours.

Finite Element Methods The PDE is considered on integral, or weak, form. Each cell
is assigned a set of basis functions and the functions in the PDE are evaluated in
terms of these basis functions. The solution will then be found as coefficients on the
function space spanned by this basis.

Finite Volume Methods This method is applied to PDEs based on conservation laws.
The rate of change in each cell has to match the production by any source term
inside that cell as well as the fluxes through the cell’s boundaries. The solution is
then found as an approximate value in each cell.

In this thesis we will only encounter numerical schemes based on the finite volume
method, and therefore take a closer look at it. For further reading on finite volume
methods, the book by LeVeque [24] can be consulted.

2.2.1 Finite Volume Methods

We consider a hyperbolic PDE on its conservative form

∂

∂t
q(x, t) +∇ · f(q(x, t)) = 0, (2.1)
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n

∂Ω

Ω

Figure 2.3: A domain Ω with boundary ∂Ω having an outward pointing unit normal
n.

where q(x, t) is some conserved quantity in position x at time t. The equation is considered
without source term, and f is a flux function and depends on q. We will use this equation
to describe a general finite volume method on a domain Ω, as shown in Figure 2.3, with
boundary ∂Ω and an outward pointing unit normal n.

We start by integrating the equation over the domain and move the time derivative
outside the integral as

∂

∂t

∫
Ω

q(x, t) dΩ +

∫
Ω

∇ · f(q(x, t)) dΩ = 0. (2.2)

On the second term, we use the divergence theorem which states that∫
Ω

∇ · f(q(x, t)) dΩ =

∫
∂Ω

f(q(x, t)) · n dγ, (2.3)

and Equation (2.2) becomes

∂

∂t

∫
Ω

q(x, t) dΩ +

∫
∂Ω

f(q(x, t)) · n dγ = 0. (2.4)

Let | · | denote an element’s natural size, so that |Ω| will denote the volume of Ω if
Ω ∈ R3, and its area if Ω ∈ R2. In other words, |Ω| :=

∫
Ω

dΩ. Since we want to end up
with a numerical method, we approximate the value q(x, t) inside of Ω at time tn as

Qn
Ω ≈

1

|Ω|

∫
Ω

q(x, tn) dΩ. (2.5)

To be able to use Qn
Ω we integrate equation (2.4) in time from tn to tn+1,∫ tn+1

tn

∂

∂t

∫
Ω

q(x, t) dΩ dt+

∫ tn+1

tn

∫
∂Ω

f(q(x, t)) dγ dt = 0, (2.6)

and get (
Qn+1

Ω −Qn
Ω

)
|Ω|+ ∆tF∂Ω = 0, (2.7)
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where ∆t = tn+1 − tn is the time step. F∂Ω represent a numerical approximation of the
flux out of the boundary, and has to be chosen according to the nature of the flux term
f and the geometry of the boundary. In other words, F∂Ω is an approximation of

F∂Ω ≈
1

∆t

∫ tn+1

tn

∫
∂Ω

f(q(x, t)) · n dγ dt. (2.8)

Solving Equation (2.7) for the next time step, Qn+1
Ω , we will therefore end up with some

numerical method of the form

Qn+1
Ω ≈ Qn

Ω −
∆t

|Ω|
F∂Ω. (2.9)

Since F∂Ω depends on q in the time interval [tn, tn+1], we can use any ODE (ordinary
differential equation) method to approximate the flux function:

Forward Euler Using the already obtained solution Qn
Ω from the previous time step to

approximate F∂Ω, so that F∂Ω = F n
∂Ω.

Backward Euler Use the unknown solution of the next time step, Qn+1
Ω , in the flux

term, so that F∂Ω = F n+1
∂Ω .

Crank-Nicolson By combining the two methods above we get the Crank-Nicolson method,
with F∂Ω = 1

2

(
F n
∂Ω + F n+1

∂Ω

)
.

The Forward Euler method is an explicit method, meaning that the updated solution
Qn+1

Ω can be computed straight forward only based on values from time tn. The other two
are implicit methods as Qn+1

Ω depends on values at tn+1, and to obtain a solution we are
required to solve a system of linear- or non-linear equations. The benefit of using implicit
methods is that it is easier to obtain stability of the solution. Another option is to keep
the equation in semi-discrete form by not integrating in time, and use a Runge-Kutta
method to solve the remaining ODE.

2.3 Domain-Specific Languages

As we saw in Section 2.1, it is becoming increasingly harder to keep high performance
software at optimal speed with regards of new hardware and programming models. When
it comes to writing computationally intensive software it is not enough to be an expert of
the application field, but it is also necessary to have knowledge of parallel programming,
or how to use accelerators such as GPUs. Di Pietro et.al. [14] list four areas of expertise
that are needed in the field of scientific computing in order to solve a problem in an
optimal way. These are

Modelling Using the laws of physics to create a mathematical model describing the
problem at hand. It is often the case that the problem can be described as a partial
differential equation (PDE) with suitable initial- and boundary conditions.

Discretization The PDE has to be transformed from continuous form to a discrete
approximation in order to be solved numerically by a computer. Numerical methods
such as finite element (Galerkin methods), finite differences or finite volume methods
are the most widely used ones, and can formulate discrete representations of a wide
range of PDEs. The resulting problem is often to solve a system of linear equations.
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Solution Use of numerical packages and libraries that will solve the discrete problem, by
using the properties associated with the obtained matrix to optimize the solution
in terms of correctness, stability and efficiency.

Software design Writing the numerical packages used to find the solution, by using both
low-level data structures and algorithms that are tuned to both the programming
language and the underlying hardware architectures.

It is often not the case that one person has expert knowledge in all these areas, and
in order to solve problems more efficiently, a software system should be developed so that
the interaction between the various domain experts could be limited. This can be done
by creating a Domain-Specific Language (DSL). A DSL is a programming language
designed for solving problems in a narrow problem domain. It should have a syntax which
feels natural to an expert in the respective domain, so that the domain expert can easily
express himself. The writing of a program in a DSL should therefore take significantly less
time for a domain expert, compared to the effort needed for expressing the same program
in a general-purpose programming language.

Since all programs within a domain usually share some form of algorithmic design,
datatypes and memory access patterns, the DSL compiler can perform a lot more aggres-
sive optimizations and error checking of the code, compared to what a general-purpose
language compiler would be able to do. A good DSL for scientific computing will there-
fore cover the software design and much of the solution step from the above list, and
therefore leave the user to focus more on the modelling and discretization. Since writing
programs in the DSL should be faster and easier than implementing the same functional-
ity in a general-purpose language, it should also allow the user more time to test different
discretizations without too much effort.

There are several well known domain-specific programming languages that are widely
used by scientists. Matlab is a widely used DSL for programming numerical algorithms
and linear algebra. Typesetting of academic papers are often done in LATEX or TEX, and
queries in relational databases are commonly written in SQL. In order to write compilers
for DSLs, one is likely to use two DSLs as well, namely Lex for the lexical analysis and
Yacc for the parsing. Even more examples are found in [34].

Creating a DSL is not without drawbacks [34], and it requires planning, quality imple-
mentation and proper maintenance in order to be successful. First of all when planning
a DSL, it might sometimes be hard to find the proper scope of the language. The lan-
guage needs to be flexible enough for the user to express all necessary operations, but still
be restricted enough for the compiler to be able to do aggressive optimization and error
checking. It is therefore important to have proper balance between the domain-specific
and the general-purpose aspects.

Another challenge is to provide the user with good tools for developing applications in
the language. Since online resources of new and small languages tend to be limited, it is
important to provide good documentation and user training. New Integrated Development
Environments (IDEs) with syntax highlighting, auto-completion and integrated debuggers
are other tools that increase productivity and user-friendliness, and should therefore be
provided. As we saw in the previous section, the hardware development is fast, and long
term maintenance is important in order to keep the compilers up to date for maximal
performance.
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Some of these challenges can be easily overcome by implementing the DSL within a
general-purpose language. The domain-specific parts are in these cases often represented
by classes, functions and operator overloading, while all the flexibility of the host language
is still preserved. Also, the DSL can then take advantage of already existing IDEs and
debuggers, and it is often enough to provide a simple plug-in for the IDE to provide syntax
highlighting of new keywords. When a DSL is designed as a part of an already existing
language, it is called a domain-specific embedded language.

Since we in this thesis will consider the DSL Equelle, which targets finding solutions
of PDEs solved by finite volume methods, it is natural to mention two other DSLs in
related domains which have some of the same goals. Liszt and Halide are two relatively
new DSLs that both provide programming environments where users write their program
independently of the hardware they will run on. The two compilers are then responsible
for translating the code to be run on a given hardware.

Liszt [11, 13] is the language which has a domain closest to the one of Equelle. It is
designed for solving PDEs related to turbulent flow on unstructured meshes, by combining
operations on cells, faces and vertices. Liszt is embedded inside the object-functional
programming and scripting language Scala, and compiles to an intermediate C++ code,
which can be specified to target different hardware architectures. They offer back-ends for
shared memory platforms using pthreads, for clusters and distributed memory platforms
using MPI, and for GPUs using CUDA.

In the field of image processing we find the DSL Halide [26, 27] which provides a
simple syntax for expressing such algorithms, as well as strategies for how to execute
them. Complex image processing programs often consist of several layers of stencils and
graphs, where the performance depends heavily on the strategy for evaluating them. What
Halide provides is a language where the algorithms and strategies are expressed separately
at a high level. This makes it easy and little time consuming to test different strategies
in order to find the best one for the given algorithms.

2.4 Compilers

Compilers are computer programs intended to translate a text written in one programming
language (the source language) to another language (the target language). The target
language can be assembly language, machine code or executable programs tailored for the
given architecture on which it is compiled, as is the case with the C compiler gcc, or byte
code which is created to run on virtual machines on all architectures, as is the case for
java. Alternatively, the target language can be another high-level programming language,
as we will see is the case with Equelle. Here is a very brief explanation of how a compiler
works, and the reader should refer to [5] for a longer discussion on compiler design.

A compiler usually consists of three steps as depicted in Figure 2.4. The front-end
checks that the source code is correct given the set of rules that makes up the language.
The program is then optimized in terms of speed and resources, before the same program
is generated in the target language. The front-end again consists of several steps in order
to check for different types of errors in the source code.

Consider the source code line

int a = (b + 5) * (c - 4);
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Front-end
Lexical
analyzer

Syntax
analyzer

Semantic
analyzer

Optimization Code generator

Figure 2.4: A schematic view of a typical compiler.

The lexical analyzer is in charge for recognizing what each word in the input means, such
as recognizing keywords, numbers or variable names, matching them in tokens. In the
above example, int is a keyword defining the data type of a variable, while a, b and c

are variable names, +, - and * are arithmetic operations, and 4 and 5 are numbers.
The next step is a syntax analyzer which matches the stream of tokens to the grammar

of the given language. The compiler use this grammar to build a syntax tree matching the
input, for our example as shown in Figure 2.5. An example of a syntax error would be if we
had forgotten a arithmetic operation or the first operand in front of the multiplication.
The syntax analyzer is also in charge of filling the symbol table, which consists of the
variables declared in the program together with their types and additional information
needed by the rest of the compiler. A variable is added to the symbol table when the
syntax analyzer encounters a declaration, and similarly the syntax analyzer looks up the
variable in the table when the variable is used.

The semantic analyzer are in charge of type checking, ensuring that all data types are
compatible with their use. For instance, if b was a string, the above example would not
make sense and give a compiler error. Since the different parts of the front-end checks for
different kind of errors, this also makes it easier to create more readable error messages.

assignment

declaration

integer a

∗

+ −

b 5 c 4

Figure 2.5: A possible syntax tree of the above example.

After the semantic analysis, the compiler is left with an abstract syntax tree, such
as the one in Figure 2.5 .This is where the optimization phase of the compiler is done.
There are plenty of ways a compiler can do optimization, for example with the respect to
execution speed, memory usage, power consumption and so on, depending on what the
goal of the program is.

The most important part of a optimizing compiler is nonetheless to conserve correct-
ness. Making a program run faster is no use if the resulting program does not behave as
expected. It is also important to balance the optimization level with the time it takes to
optimize, as it is hard to keep a productive work flow if the compilation process becomes
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too time consuming.
The last step of a compiler as shown in Figure 2.4, is the code generation step. This

is also known as the back-end of a compiler. The code generator goes through the nodes
of the abstract syntax tree, and output the source program in the form of an optimized
equivalent target program. This main focus of this thesis will be on the back-end of the
Equelle compiler which has CUDA as target language.



Chapter 3

Equelle

Equelle [15] is a Domain-Specific Language (DSL) designed for writing highly efficient
simulators of partial differential equations solved by finite volume methods. The language
is under development at Sintef ICT and it is expected that future release versions will
cover a wider functionality than what is presented here. We will therefore in this chapter
give an overview of the state of the language at the time of writing, as this defines the
initial state for this master thesis. The compiler is an Open Source project, and the source
code is therefore freely available on GitHub[16].

The need for a language such as Equelle has grown from the increasing complexity of
writing high performance code for scientific computing. Writing a finite volume method
in C/C++ requires a huge amount of error prone indexing for looping over all cells and
accessing values in the correct neighbour cells and faces. Once the problem becomes more
complex than the simplest examples, the code will become hard to read and debug for
anyone but the code author. Add optimizations to the code and wrap everything inside a
parallel API, and the program becomes even larger, more complex and harder to read. It
will require large effort to change the underlying numerical method, or even look for small
index bugs. Not to mention the big effort needed to rewrite the entire program from e.g.
MPI to CUDA.

The goal for Equelle is to provide a portable programming model tailored for solving
problems using the finite volume method. Since the normal way of expressing a numerical
method is to write an equation for the value of one cell based on the neighbouring cells
and faces given a general cell in the grid, the statements and operations in Equelle are
designed in the same manner. The programmer can define subsets of cells or faces in order
to compute values by different rules depending on whether the cell is at the boundary
or not, just to mention one example. A program written in Equelle will therefore be
completely free from indices for faces and cells. We will show this in more detail soon.

The programs are written independently of the grid, and therefore require the numer-
ical method to be expressed in a general way. The programming model is based on the
assumption that there is a grid, and that the specified operations will solve the equation
regardless of which grid is provided at run-time. This gives portability in the sense that
a single equation can be solved by one program on several grids, with different initial and
boundary conditions.

The second form of portability is that the user should not worry about efficiency and
parallelism, as this is the compiler’s task. The goal for Equelle on this end is to provide
several compiler back-ends, so that the Equelle source code can be compiled to efficient

17
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code for a series of different hardware, such as multi-core CPUs, cluster of CPUs or GPUs,
depending on what is available on the user’s system. A simulator written in Equelle
can therefore in principle be compiled to any computational platform, without a single
change in the Equelle source code. As new platforms for high performance computing are
developed, we can add new back-ends to the Equelle compiler and in that way reuse the
existing simulators written in Equelle by only a recompilation.

We will in this chapter give a presentation of the Equelle language, so that we later can
talk about the implementation of its functionality. As of this writing, a draft of Equelle
Reference Manual [29] exists as a TEX document in the GitHub directory of the language,
and this will be an important source for Section 3.1, where we will describe some syntax
and functionality. We will later in Section 3.2 give an overview of the Equelle compiler,
where we also discuss the intermediate representation which provides the basis for new
back-ends in Section 3.2.1.

3.1 Programming in Equelle

We will now present an overview of the types, syntax and some of the built-in functionality
of the Equelle language. For a more thorough presentation the Reference Manual[29]
should be consulted. In order to get some context around the concepts we explain in
this chapter, we show the full Equelle implementation of the heat equation in Listing B.1
in Appendix B.1. This is the example simulator given on the Equelle website[15] and is
therefore not written for this Thesis. It is however a very useful example, as it makes
use of most of the functionality offered by Equelle. The simulator will also be used in
Chapter 5, where we test the new back-end.

As mentioned above, Equelle is designed to do computations on general grids consisting
of cells separated by faces. The geometry of the grid is provided by the user at run-time,
and therefore the Equelle syntax is not grid-specific. Different domains are accessed
through built-in functions such as AllCells() and BoundaryFaces(), and more specific
subsets can also be specified by a combination of built-in functions and a set of run-time
provided cell or face indices.

Variables in simulations suited for Equelle are typically data sets with one element for
each cell or face in the entire or just parts of the grid. The data types provided in the
language are therefore suited for this need. Variables are declared as a combination of
a regular type and the domain the variables are On. For example we declare a variable
myVar with the line

myVar : Collection Of {Scalar, Vector, Bool} On ...

{AllCells(), BoundaryCells(), InteriorFaces(), [etc]}

where we only use one of the types given in each curly bracket.
The language is strongly typed, meaning that the type of a variable can not be changed

after it is declared. This makes the compiler capable to easily throw an error if we
try to do operations that do not make sense, such as adding some value defined on
InteriorFaces() with a value defined on BoundaryCells(). Since this would not make
sense even in the cases where these sets are of the same size, the user is able to detect
such bugs at compile time instead of experiencing cryptic simulation results in run-time.

The language offers a series of built-in functions which performs operations on the grid.
In general a grid is defined in 2 or 3 dimensions and consists of non-overlapping cells. In
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Figure 3.1: Example 2D grid where capitalized letters are cell identifiers and lower
case letters identify faces. The arrows show the orientation of each faces.

Table 3.1: Some built-in functions in Equelle operating on the grid showed in Figure
3.1.

Built-in functions Return values
BoundaryFaces() {a, d, e, g, h, i, j,m, n, o}
InteriorFaces() {b, c, f, k, l}
FirstCell(InteriorFaces()) {A,B,D,A,B}
SecondCell(InteriorFaces()) {B,C,E,D,E}
IsEmpty(SecondCell(BoundaryFaces())) {0, 1, 0, 1, 0, 0, 0, 1, 1, 1}

3 dimensions, each cell is bounded by the surface faces which then again is bounded by
edges. The edges are line segments between vertices. Each face has an orientation given
by an attached unit normal vector, and this orientation plays an important role in some
of the built-in functions.

Some of the built-in grid related functions can be seen in Table 3.1, where the functions
are evaluated on the grid shown in Figure 3.1. The function BoundaryFaces() can be
used as a set holding boundary conditions, and it is also easy to imagine how subsets of
BoundaryFaces() can be used to treat different types of boundary conditions on different
parts of the domain.

In finite volume methods we almost always need to compute some sort of flux value
across each face in the domain using values stored at each cell. Such an operation gives
one flux value for each face in the domain, and to access the cells at each side of the face,
FirstCell and SecondCell functions are used. These take a set of faces as input and
return one cell corresponding to each of those faces. The functions use the faces’ unit
normals to decide which of the two cells are the first and the second. The direction of
the normal is used such that the vectors points from the FirstCell to the SecondCell,
as can be seen in the table. The function isEmpty is also handy as it can be used to get
the orientation of faces on the boundary, checking if the argument is a legal cell or not.

The face orientations are also used in the built-in functions for finding gradients and
divergence. The function Gradient takes a Collection Of Scalar On AllCells() as
input and compute the discrete gradient across each interior face based on the face’s
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orientation. The gradient function could also have been written in Equelle as

Gradient(u) = (u On SecondCell(InteriorFaces())) ...

- (u On FirstCell(InteriorFaces()))

The size of the cells, and so the distance between the two values, are not used in the
evaluation of the function, so if Gradient is to be used for a first order approximation
of the derivative of u on the faces, we also need to explicitly use these distances in the
evaluation. The function Centroid takes a set of grid elements as input and returns the
centre coordinate of these. An approximation of the derivative of u across the interior
faces can therefore be written as

first = FirstCell(InteriorFaces())

second = SecondCell(InteriorFaces())

derivative = Gradient(u) / |Centroid(second) - Centroid(first)|

Here we also use the syntax for finding the natural size of grid elements. The notation
| · | is used for finding the length of vectors, as well as sizes of cells and faces. Since the
grid can be either of 2 or 3 dimensions, function names based on volume and area could be
misleading, and the syntax used here therefore provides more general expressions. This
use can also be seen in Listing B.1 on lines 21 and 27.

The Divergence function is constructed in a similar manner. It is implemented to
take values at faces as input and return for each cell a sum of its faces’ values relative
to the face orientations. If the value at face i is given by the function fi(u) and the face
orientation is given by the unit normal ni, we can write the result from the divergence
function as

Dcell =
∑

i∈Faces(cell)

fi(u)(ni · n), (3.1)

where n is the outward unit normal for the cell. The Divergence function can be seen in
a context in line 56 in Listing B.1.

The critical point in solving numerical PDEs is often the treatment of the time deriva-
tive. Given an explicit formulation of the problem, the solution at the next time step can
be found directly from the previous as Qn+1 = F̃ (Qn), where F̃ represent the right hand
side from Equation (2.9). The solution can then be programmed directly by the basic
functionality of the language. However, the user has to be careful using small enough
time steps to ensure stability of the solution.

In order to obtain a stable solution using larger step sizes, an implicit method can
be used instead. Such methods are formulated as Qn+1 = F̃ (Qn+1, Qn) as discussed in
Section 2.2, and results in a (non-)linear system of equations that needs to be solved.
In Equelle this is done by the NewtonSolve function, or by NewtonSolveSystem if the
problem is a system of PDEs. The programmer is required to formulate the problem in
terms of a residual function and provide an initial guess, which in these Equelle functions
are used by a Newton method for solving the problem.

Another important thing to have in mind when writing a simulator in Equelle is that
all variables are immutable by default. In order to reassign values to a variable, the
variable has to be explicitly declared with the Mutable keyword. Typical variables that
we want to be Mutable are variables for storing the result for each time step, such as the
declaration of u0 in line 62 in the heat equation.
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The On and Extend Operations

The On and Extend operations are some of the most central operations in Equelle. They
are used to map variables between different sets on the grid, without the user having to
worry about error prone indexing. Both operations can be used in two different ways,
and we will take a look on both of them.

The Extend operator can first of all be used to create a Collection of uniform values
on a set, as can be seen in line 26 in Listing B.1 stating

bf_sign = IsEmpty(FirstCell(bf)) ? (-1 Extend bf) : (1 Extend bf)

Here we create two sets defined on the set bf, where all elements are -1 and 1 respec-
tively. We then use the ternary if function in combination with IsEmpty, so that bf_sign
becomes -1 if the FirstCell of a bf face is outside the boundary and 1 otherwise.

The other use of Extend maps a Collection Of Scalar to a superset by inserting
zero for the new elements in the Collection. A good illustration of this is found on line
54 in Listing B.1, where the fluxes for the InteriorFaces() and the BoundaryFaces()

have been computed separately and we want them combined in a new variable. Since the
two flux variables are defined on different sets we are not allowed to add them as is, but
by extending both to the set of AllFaces() by inserting zeros we are able to get all the
fluxes in the same variable:

fluxes = (ifluxes Extend AllFaces()) + (bfluxes Extend AllFaces())

The two uses of the On operator is slightly more complex. The first use is as a restrict
to operation, which performs the opposite operation of the last use of Extend. Given
a Collection defined on a set, we can use the On operator to extract a subset of the
Collection copied to a new variable, or to be used in some calculations. For instance,
in line 31 from Listing B.1 stating

dir_sign = bf_sign On dirichlet_boundary

we have that bf_sign is a Collection Of Scalar On BoundaryFaces() which is eval-
uated On dirichlet boundary, which is a subset of BoundaryFaces() provided by the
user. After evaluating this line, dir_sign becomes the subset of bf_sign that corresponds
to the faces stored in dirichlet_boundary.

The other use of On is as an evaluate on operation. The right hand set do not need to be
a domain with unique cells or faces, but can be a Collection on which the left hand side
should be evaluated. If u is a variable defined as Collection Of Scalar On AllCells()

then the following line is perfectly legal

first_u = u On FirstCell(InteriorFaces())

Since a Cell can be FirstCell to multiple faces, the right hand side is not a domain,
but can rather be looked at as a set of Cell IDs. Since each element in u corresponds to
one Cell ID as well, we fill first_u with the elements in u corresponding to the Cell ID
in the set. This is therefore not a one-to-one operation, but rather of type one-to-many.
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The Parameter File

The parameter file is given as argument to the executable Equelle simulator, and is the file
containing all runtime variables needed by the program. This is where the grid is defined
and where the user provide simulation input such as for example initial conditions.

The grid can be given in two different ways. The first is as a Cartesian grid where the
user defines nx, ny and, if the grid is given in three dimensions, nz as well as dx, dy and
dz for cell sizes. The Equelle program will then construct the grid from these parameters
and store it as an unstructured grid. The alternative is to read the grid from file by using

grid_filename=myGrid

in the parameter file.

The parameter file also gives us the opportunity to give the user control over other
aspects of the simulator execution as well. This can for example be information related
to linear solvers, such as which solver and preconditioner to use, and what the accuracy
of the solution should be. It can also state whether the arguments to the Output function
of type Collection Of Scalar should be written to file or to screen.

3.2 The Equelle Compiler

The Equelle compiler consists of two distinct steps, namely the front-end and the back-
end. In short, the front-end translates the Equelle source code to C++ code using types
and classes from the requested back-end. The C++ file is then linked with the back-end
library and compiled to an executable. The back-end is designed as a library for each
computational platform, and therefore the user has to specify which platform the Equelle
program should be compiled to in the front-end step. The entire process is shown in
Figure 3.2.

The front-end is very similar to the typical compiler front-end described in Section 2.4.
The compiler performs lexical and syntax analysis in order to classify each token in the
source code and matches them to the programming statements from the grammar in order
to build the abstract syntax tree. The semantic analyzer then assures that the operations
requested in the source code are allowed with respect to their types as described in the
previous section.

Currently the Equelle compiler does not perform optimizations on the abstract syntax
tree. We have chosen to include optimization in Figure 3.2 nonetheless, as it is expected
to be included in the future. In Section 6.3.1 we discuss how doing optimizations in the
front-end potentially may give some performance gains, but it is however not within the
scope of this thesis to implement.

There are several possible outputs available from the front-end, depending on which
hardware we want to deploy the simulator on. The choice of back-end is done by adding
a flag when we compile the Equelle source code, and we get C++ files as intermediate
code. These files include different libraries from the Equelle back-end, depending on the
targeted platform. We will now take a closer look at the intermediate representation.
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3.2.1 Intermediate Representation

As we have already mentioned, the intermediate code produced by the Equelle compiler’s
front-end is a C++ program. It is translated from the Equelle source code in a line wise
one-to-one fashion. The Equelle functions and types are easily recognized in the C++
program, and the readability is therefore quite high. We use classes and type definitions to
handle the Equelle types, so that for example a Collection Of Scalar variable becomes
an instance of the C++ class CollOfScalar in the intermediate code.

The Equelle functionality is handled in two ways. The built-in functions and grid
operators are all wrapped in an EquelleRuntime class, so that all Equelle function calls
are replaced with a call to the corresponding member function from EquelleRuntime.
Arithmetic operations and comparison expressions on the other hand, are handled by
operator overloading.

An example of the intermediate code is shown in Listing 3.2, where the Equelle function
computeBoundaryFluxes given in Listing 3.1 is translated by the front-end. The first

Back-end

Front-end

Lexical analyzer

Syntax analyzer

Semantic analyzer

Optimalization

Equelle source code

C++ using
EquelleRuntimeCPU

C++ using
EquelleRuntimeMPI

C++ using
EquelleRuntimeCUDA

Serial Executable MPI Executable CUDA Executable

EquelleRuntimeCPU
library

EquelleRuntimeMPI
library

EquelleRuntimeCUDA
library

Figure 3.2: The Equelle compiler



24 CHAPTER 3. EQUELLE

thing we notice is how the function call is written in the same way in C++ as in Equelle.
This comes from the C++11 lambda syntax, making it possible to define functions inside
a given scope. Notice also how variable names are preserved, and the member functions
in the Equelle runtime are easily recognized. The front-end also inserts a conservative
amount of parentheses. The complete intermediate code can be seen in the Appendix in
Listing B.3, where the complete Equelle program is given in Listing B.1.

Listing 3.1: An Equelle function computing boundary fluxes taken from the heat
equation simulator.

1 computeBoundaryFlux : Function (u : Collection Of Scalar On AllCells ( ) )
2 −> Collection Of Scalar On BoundaryFaces ( )
3 computeBoundaryFlux (u) = {
4 u d i r b d y c e l l s = u On ( b f c e l l s On d i r i c h l e t b o u n d a r y )
5 d i r f l u x e s = ( btrans On d i r i c h l e t b o u n d a r y ) ∗ d i r s i g n ∗ . . .
6 ( u d i r b d y c e l l s − d i r i c h l e t v a l )
7 −> d i r f l u x e s Extend BoundaryFaces ( )
8 }

Listing 3.2: The intermediate code for the Equelle source code shown in Listing 3.1.
The Equelle runtime class is here represented by the variabel er.

1 std : : funct ion<Col lOfSca la r ( const Col lOfSca la r &)> computeBoundaryFlux = [& ] ( const
Col lOfSca la r& u) −> Col lOfSca la r {

2 const Col lOfSca la r u d i r b d y c e l l s = er . operatorOn (u , e r . a l l C e l l s ( ) ,
e r . operatorOn ( b f c e l l s , e r . boundaryFaces ( ) , d i r i c h l e t b o u n d a r y ) ) ;

3 const Col lOfSca la r d i r f l u x e s = ( ( er . operatorOn ( btrans , e r . boundaryFaces ( ) ,
d i r i c h l e t b o u n d a r y ) ∗ d i r s i g n ) ∗ ( u d i r b d y c e l l s − d i r i c h l e t v a l ) ) ;

4 return er . operatorExtend ( d i r f l u x e s , d i r i ch l e t boundary , e r . boundaryFaces ( ) ) ;
5 } ;

This intermediate representation has several advantages. The most important is that
it makes it easy to provide new back-ends. By wrapping all the Equelle functionality inside
Equelle-like C++ classes, we are able to define these classes according to the requirements
of each back-end. A back-end will therefore be represented by a library consisting of the
EquelleRuntime class and the classes for the Equelle types. In order to create a new
back-end, we create a new library using the same names on the classes and giving them
the same user interface. The implementations of the classes and their functions are then
back-end specific.

Since all back-end specific code is abstracted by libraries with the same user interface,
we can produce intermediate code for different back-ends with only minimal differences.
The only differences between the different back-ends will be

• use of a class EquelleRuntime<back-end> as the main runtime variable and in
function declarations.

• the need to #include different back-end specific libraries.

• usage of different namespaces that separates the back-end libraries from each other.
This is also why we safely can give the Equelle classes the same names in the different
back-ends.

All these differences are code that are independent of the contents of the Equelle source
file, and the generated code itself is therefore exactly the same for any back-end.

Another advantage is that the intermediate code is very easy to generate. Since every
Equelle operation has a corresponding member function or operator in the EquelleRuntime
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class, the intermediate representation becomes very readable. It can therefore be written
by humans as well as the compiler. Because of this, it is easy for users to expand their
Equelle programs to do things that is currently not in the scope of the language. Exam-
ples of this can be to add visualization of the result inside the main loop, add timing on
specific parts of the simulator, or make function calls to other C++ code. The readable
intermediate representation also makes it possible to use Equelle as a domain-specific
embedded language, or to easily wrap the Equelle simulator inside a larger program.

There are also disadvantages by using this intermediate formate. It restricts the front-
end’s possibility to do Equelle specific or back-end specific optimizations. In Section 6.3.1
we will illustrate what kind of optimizations we might want the front-end to perform.
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Chapter 4

CUDA Back-End

This chapter will give a presentation of the CUDA Back-End for the Equelle compiler.
We will start by going through the starting point and the design choices that the back-end
is built on, before we dig into the details. We will also explain the development process,
and the methods and software developments techniques used throughout the project.

At the starting point of this master project, Equelle had only a serial back-end. The
compiler was designed for correct evaluation of all functionality that should be in the
language, so that prototypes and test simulators could be written, among others the
shallow water simulator written in the Specialization Project [20] done as a preparation
for this thesis. The format of the intermediate code as well as the idea of how to add new
back-ends (as described in Section 3.2.1) were already planned, and we decided to design
the CUDA back-end according to this.

4.1 Development Process

Development Tools and Techniques

The Equelle project has from the beginning been an Open Source project managed in a
Git system. Git is a version control software which also makes distributed software
development easy, letting several people easily contribute to the same project. One of
the most useful features in Git is that it is easy to go back to a previous version of your
project. In case you do some changes at one point that later do not seem like a good
idea after all, the version control system makes it easy to restore that part of the code.
Equelle is found on the Git based hosting service GitHub [16], where the CUDA back-end
developed through the work of this master project is found under the directory

equelle/backends/cuda

One problem in software developing is to prove correctness of the software. This is
important for several reasons. The most obvious reason is that the software has to be
correct in order to fill its purpose. A second reason is that during development, finding
bugs are easier if the developers have proof of which functions behave correctly and which
do not.

A widely used method for coping with this is the method of unit testing. The idea
behind this method is that for every function that is added to any part of the software,
a series of tests are written such that if these tests are passed then the function will

27
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work for all possible cases. For each time new functionality is added to our back-end all
tests for all functions are executed, so that if a new functionality breaks correctness of an
already implemented function, we will find out immediately and even more important we
see exactly what breaks in which function. This makes debugging easy and serves as a
proof of correctness for software releases.

In this project we have used unit tests to some extent. Since all functions developed
for the CUDA back-end are either CUDA kernels, CUDA library calls, or functions that
set up and launch kernels, and most of them deeply depend on a grid, creating special
cases are hard. The way we have made tests are by first using a grid which is small enough
that we can compute the results by hand, and then check that the CUDA back-end finds
the same results. Later we have used the serial back-end for comparison on a larger grid,
ensuring that our new back-end compute the same results as the serial back-end. Even
though these tests do not include special cases, we get the confirmation that the primary
use of the functions work as they are supposed to. We run these tests every time we do
changes in the code, and that way make sure that we do not break correctness of functions
by changing other parts of the program.

The library developed in this project is not just a concept study, but is meant to be
an integrated part of the Equelle software. This means that it is important for the source
code to be well organized and structured, as well as following “best practice”. It has to be
easy to navigate through the source code folders, and the code has to be commented such
that other programmers easily can extend the library, make optimizations or fix bugs. We
have therefore made an effort in writing an extensive documentation for the library, so
that it can be read by documentation generators such as doxygen. See Appendix A for
how to get the documentation as a pdf document or as html.

Profilers are the primary tool for code optimization, and are used for analysing the
work flow and resource consumption of computer programs. They let the user check
the number of times instructions or functions are called, what the program does during
any time of the execution, and how much time is spent on each task. The most useful
information we can get from a profiler is what the main bottlenecks or hotspots of a
program are. These are the main limiting factors when it comes to performance. We
want to know what functionality is the most time consuming part of the program, and
why is it so.

In order to see why this information is important, consider a program consisting of
parts a and b where a counts for 95% of the program’s execution time. We get very
limited benefit by optimizing part b, since no matter how well we do it we can obtain no
more than a 5% gain in performance. If a, on the other hand, was optimized to only run
twice as fast, the entire program would execute in almost half the time! Most programs
are more complex than this example, and it is not always straight forward to find which
part is most resource demanding, and this is why we use a profiler.

During the development process for this thesis, we first implemented the functionality
so that the back-end would produce the correct results for all functionalities. Then we
used the Nvidia Visual Profiler on a test simulator in order to detect performance bot-
tlenecks. When we got an overview of which parts of the back-end that were limiting
the performance of the simulator, we considered how we could redesign those functions
in order to come up with better solutions.

We have used three external CUDA libraries in the implementation of this back-end,
namely Thrust, cuSPARSE and Cusp. Thrust[4] is a C++ template library providing
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generic algorithms and data-structures similarly to the C++ Standard Template Library,
but with the additional possibility to use the GPU. The cuSPARSE library[2] provides
functions for basic linear algebra for sparse matrices on the GPU. Our application will
depend on its functions for sparse matrix - sparse matrix additions and multiplications
especially. The third library, Cusp[6], contains CUDA implementations of some iterative
solvers of linear systems, as well as some preconditioners. This is used for implementing
the Equelle function NewtonSolve which is needed for implementing implicit methods.
Thrust and cuSPARSE are available inside of the complete CUDA package, but Cusp
has to be downloaded separately. The use of these libraries therefore add one extra
dependency to the Equelle compiler.

Overall Design

We base the CUDA back-end on the intermediate representation described in Section
3.2.1. We therefore implement a library containing the same types as defined there, and
with an EquelleRuntimeCUDA class taking care of the built-in functions from Equelle.
We make sure to give the runtime class the exact same user interface as is given to
EquelleRuntimeCPU, which implements the serial back-end.

We implement the minimal required changes to the front-end, so that the CUDA
intermediate code uses the EquelleRuntimeCUDA class instead of EquelleRuntimeCPU.
We also wrap the entire CUDA back-end in the new equelleCUDA namespace, and make
the front-end generate code for using it instead of the serial back-end’s namespace. We
also edit the list of headers and libraries that has to be included in the C++ file.

Almost all operations in Equelle are of an embarrassingly parallel nature. For every
function that returns a Collection Of <something>, each element in that collection is
independent of any of the other elements in the output. This means that all operations
are well suited for execution on the GPU. The most straight-forward way to do this is
therefore to make each such function make a call to a CUDA kernel or library function
which performs this operation.

There is however one reason for why we might not want to implement the back-end
according to the given intermediate code. The reason is that launching a CUDA kernel
comes with an overhead. The way high-performance code for GPUs should be written is
with as low a number of kernel launches as possible. Combining kernels to lower the total
number of kernel calls is a commonly used optimization technique for GPU computing
and is called kernel fusion.

So why do we still design the compiler the way we do? First of all, if we want to have
multiple operations inside the same kernel, we have to generate the intermediate code
in a completely different way. That would require adding back-end specific optimization
techniques to the front-end. Instead of generating function calls for Equelle functions,
the front-end would have to analyse which code blocks that would not need global syn-
chronizations, and generate tailored CUDA kernels for these code blocks. The process of
implementing this in the compiler could be a topic for a master thesis by itself, and is
therefore outside of our scope. We will however briefly look at why this is an attractive
feature in Section 6.3.1.

Since the intermediate code is designed such that we can implement any back-end to
match it, it comes with a lot of new type names. Since a Collection Of Scalar could
be an array stored on the CPU, the GPU, or distributed across several nodes in a cluster,
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it has its own type CollOfScalar in the intermediate code. That way it is up to the
back-end designer to say what a CollOfScalar is in any given back-end. The same goes
for single scalar values and strings, which are called Scalar and String respectively in
the intermediate code.

Because of this, all types from the intermediate code are represented as classes or stan-
dard types through the typedef keyword. The Equelle functionality is then implemented
through member functions in the runtime class, which again use calls to member functions
in the other classes in our back-end. The exception from this is the CUDA kernels, which
can not be implemented as members of a class.

Even though CUDA kernels have to be implemented as independent functions, we still
want to organize our code in a way that shows that certain kernels in principle belongs
to certain classes. We therefore wrap the kernels inside namespaces called wrap<class>.
For instant, the CUDA kernels needed by the member functions of the class DeviceGrid
are found in the namespace wrapDeviceGrid.

Since all data collections are stored linearly in memory, and since Equelle is meant not
to require structured grids, we use one dimensional block and grid sizes for all kernels.
We implement the back-end to use a fixed number of 512 threads for each block, and
then launch the smallest number of blocks that still is sufficient to do the computations.
Most kernels are implemented such that each thread is responsible for one element in the
output, and we find the required number of blocks by

num blocks = floor

(
collection size+ block size− 1

block size

)
. (4.1)

If the collection size is a multiple of the block size, we get a number which is almost one
block too much, but round it down to the matching number of blocks. If however we have
a data size that is one more than a multiple of the block size, we will wind up with one
extra block, and thus launch 511 more threads than strictly required. This is why each
CUDA kernel needs to check that its thread ID is less than the collection size we want to
evaluate, and this is standard procedure in GPU computing.

Instead of repetitively rewriting Equation (4.1), we create a struct holding two vari-
ables of the dim3 type. This struct, named kernelSetup, is initialized by the number of
threads we want to launch. This helps us avoid potential errors caused by typos, as well
as making it faster to program new kernels.

The same principle is followed for the code needed for finding the identity of a CUDA
thread. We therefore implement the function myID() similarly to what we did in the
example from Listing 2.1.

Memory Management

In order to get high performance it is important to minimize the data transfer between
the host and device memory. Since most data types in Equelle consist of arrays of the
same size as the number of cells or faces, and we here provide functions where they are
modified or used in calculations by the GPU, we should keep all such data arrays in the
GPU memory only. Having such arrays in host memory should only be done in cases
where there are some interaction with the screen or file system, as well as initialization of
the grid.

An Equelle program usually have the following structure:
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1. Initialize or read the grid.

2. Read input data.

3. Definitions and calculations of global variables or grid subsets.

4. Declaration and implementation of functions containing pure calculations.

5. Iterate through some time steps, from where the above functions are called.

6. Writing results to screen or to file for each time step.

From the above list the only parts that requires the data arrays to be accessed by the
CPU are number 1, 2 and 6.

Initialization of the grid can be done in two ways. Either by building a Cartesian
grid from input parameters nx, ny, nz, dx, dy, dz, or by specifying a file containing
coordinates from which the grid is created. In both cases we use the CPU to construct
the grid and the neighbour relations between cells. When these calculations are done, we
transfer the data arrays to the GPU.

For input and output functions we rely on the CPU to read or write the given data to
or from file, and we therefore require copying data between device and host. The input
variables are simply read by the CPU and transferred straight to the device, and output
is done by a straight copy back to the host followed by writing to the file or the screen.

In order to store data we use the CUDA and Thrust APIs, depending on what we are
storing. The CUDA API provides C like memory management, which requires manually
allocation and deallocation of memory before and after use. It is done with the functions
cudaMalloc and cudaFree. This is efficient and its low level interface makes it easy
to create functions using the data array. The drawback is that it may be error prone,
as it might cause memory leaks. The CUDA API is used in the data arrays storing
Collection Of Scalar, where allocation is only done in constructors, and freeing of
memory is implemented in the destructor. Doing this in a safe and correct way solves the
potential memory leak problem.

The class used to store Collection Of Face and Collection Of Cell uses the
Thrust container class thrust::device_vector<int>. Here we do not have to worry
so much about memory leakage, but rather deal with a more verbose set of function calls
in order to get access to the raw data buffers. The reason why the Thrust library was
used for these collections is that the Thrust library provides algorithms that can prove
useful for processes such as sorting, finding subsets, etc, which make more sense for a set
of indices than for a set of scalar values.

The CUDA API is also used for data transfer between host and device, by the function
cudaMemcpy. As well as the pointers to the beginning of the source and receiving data
blocks, and the amount of data, the function takes a flag as input, indicating which
direction the data is copied. This also gives us the ability to easily copy data between
different memory locations within the GPU.

All variables and class members which are just a single variable and not part of an
array are stored on the host. Since the program is designed such that we call a lot of
kernels, the program control will often be at the CPU. Even though it is the GPU that
do all the hard work and big computations, the CPU is in charge of what is executed on
the GPU and when. In order to do this, the CPU will have to do some small evaluations
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between the kernels, and sending a few extra scalar parameters in a kernel call is not
performance critical.

The only data array that is stored entirely on the CPU is data of the loop controlling
type Sequence Of Scalars. The values here are read sequentially one at each loop
iteration, and therefore comes in between the kernel calls. It would therefore not make
sense to have these values stored on the device.

We will now start to describe the library which is the CUDA back-end the Equelle
compiler consists of.

4.2 The Equelle Type Collection Of Scalar

One of the most important classes in the CUDA back-end, is the class CollOfScalar

which represents the data type Collection Of Scalar from Equelle. Objects of this class
are involved in the majority of Equelle function calls, and this is where all intermediate
and final results are stored. It is implemented with few member functions other than
constructors, destructor and get-functions. We also overload arithmetic and comparison
operator to operate on this class.

The most interesting feature of this class is that it has an automatic functionality for
storing not only the values of the variable for the given set of cells or faces, but also its
Jacobian matrix. To understand the need for this functionality, we need to take a look
on how we find implicit solutions and the concept of Automatic Differentiation.

4.2.1 Implicit Solution

When we write simulators using an implicit method, we get a system of non-linear equa-
tions. For a cell Ωi the equation from a finite volume method will be on the form

Qn+1
i = Qn

i −
∆t

|Ωi|
F n+1
i , (4.2)

as we saw in Equation (2.9). Here Qn
i denotes the main variable in cell Ωi for time tn,

and F n+1
i denotes the total flux through the boundary of the cell, ∂Ωi, calculated from

Qn+1. Unless the flux term is very simple, F will be a non-linear function depending on
the neighbour cells of Ωi. Assuming a grid with N cells, we collect all the main variables
for the same time step in a vector Q = [Q1, Q2, . . . , QN ]T . We then end up with a system
of non-linear equation which has to be set up and solved for each time step,

Qn+1 = Qn − F(Qn+1). (4.3)

This problem is solved by using a numerical method for finding the root of the residual
function r(·) defined by

r(Qn+1) := Qn −Qn+1 − F(Qn+1). (4.4)

The approach taken by the serial back-end is to solve (4.4) by using a Newton method,
where given an initial guess Q̃0 (typically equal to Qn) we use the iterative method

Q̃k+1 = Q̃k − Jr(Q̃k)−1r(Q̃k), for k = 0, 1, 2, ..., (4.5)
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where Jr(Q̃) denotes the Jacobian matrix to the vector r(Q̃). In order to solve for each
iteration we write the above equation as a system of linear equations,

Jr(Q̃
k)xk = r(Q̃k), (4.6)

where xk = Q̃k − Q̃k+1. We thereby solve (4.6) for xk using a suitable linear solver, then
find Q̃k+1 from

Q̃k+1 = Q̃k − xk. (4.7)

We use a stopping criteria for the Newton method by comparing ||r(Q̃k)||2 by some user
specific tolerance. Suppose we pass this criteria after j iterations, we let Qn+1 = Q̃j.

The problem we are left with is how to generate the Jacobian matrix. The Jacobian
matrix has the form

Jr(Q) =


∂r1(Q)
∂Q1

∂r1(Q)
∂Q2

. . . ∂r1(Q)
∂QN

∂r2(Q)
∂Q1

∂r2(Q)
∂Q2

. . . ∂r2(Q)
∂QN

...
...

. . .
...

∂rN (Q)
∂Q1

∂rN (Q)
∂Q2

. . . ∂rN (Q)
∂QN

 (4.8)

meaning that (Jr(Q))i,j = ∂ri(Q)
∂Qj

is the residual function for the ith cell differentiated with

respect to the solution of the jth cell. If we have a first order method, where the flux
through a face only depends on the two cells the face separate, then each residual function
will only depend on the variables of the neighbouring cells. Therefore, most of the entries
in the Jacobian matrix will be zero, but it would still be unproductive to make the user
find all the functions describing the non-zero derivatives we are left with. A solution is
the method known as Automatic Differentiation.

4.2.2 Automatic Differentiation

The technique known as Automatic Differentiation (also referred to as Algorithmic Differ-
entiation), or AD in short, consists of the use of dual numbers in order to obtain both the
function value and the value of the function’s derivative by using a set of programmable
tools. It seems like the technique evolved during the ‘70s and ‘80s without any distinct in-
ventor. The books by Rall[28] and Griewank[18] are however widely recognized textbooks
on the topic.

AD should not be confused by the more known techniques of symbolic derivation or
finite differences. Approximating derivatives by using finite differences is done by looking
at a point x + h close to x, and finding the Taylor approximation at x + h. By choosing
h small enough, we can neglect higher order derivatives, and thus get an approximative
value of the derivative. Symbolic derivation is done on the algebraic expression for a
function, using the chain rule and derivation rules to find the algebraic expression of the
derivative. Both these techniques have certain drawbacks, and none of them are identical
to AD. Symbolic derivation often uses a lot of memory and results in re-computation
of the same expression multiple times. Finite differences on the other hand brings an
approximation error into the calculations.

When using AD, we carry numerical data of both the value and the derivative for every
variable and write every basic function or operator for such variables to operate on both
values. For instance, consider variables x and y with derivative values x′ and y′, which we
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want to add and store in variable z. The resulting value is as always z = x+ y, but what
about the resulting derivative? From the rules of derivation we know that derivation is a
linear operation, and therefore

z′ = (x+ y)′ = x′ + y′. (4.9)

Considering the same variables and multiplication, we would get

z = xy

z′ = (xy)′ = x′y + xy′.
(4.10)

Remember that all x, y, x′ and y′ are scalar values, and we therefore store only two numbers
for each of the variables.

The way we automatically get the derivative value in the computations of a function
f(x) is by operator overloading. Let AD be a data type with two members of type double

so that AD = {double AD.val, double AD.der}. We then overload the multiplication
operator as follows:

Listing 4.1: Pseudo code of overloading of the multiplication operator, in order to
do automatic differentiation.

1 AD operator ∗( const AD lhs , const AD rhs ) {
2 AD out ;
3 out . va l = l h s . va l ∗ rhs . va l ;
4 out . der = l h s . der ∗ rhs . va l + l h s . va l ∗ rhs . der ;
5 return out ;
6 }

The same technique can be used in the implementation of other common mathematical
functions as well, such as

√
·, where

z =
√
x

z′ =
1

2
√
x
x′.

(4.11)

Since x do not denote the primary variable, but any variable with a pre-calculated deriva-
tive value, we need to use the chain rule.

Having overloaded all operators and standard mathematical functions, we can write
new mathematical functions which use the data type AD just as we would for any normal
function written for normal data types. A typical function header will be

AD f(AD x);

In order to get any calculations we need to initialize some variables manually, either as
constants inside our function, or as the primary variable given as input to f. For these
cases we need to explicitly state what their derivative values are, as well as their primary
value, and all other variables will get their values and derivatives based on these ones.

First by considering scalar constants, we immediately realize that their derivatives are
zero. Second we consider the primary variable. The primary variable is defined as the
variable all derivatives are with respect to. Hence, if we let the primary variable be called
x, the derivative of this variable will be dx

dx
= 1. Thereby, a scalar constant would have

the values {c, c′} = {c, 0} while a primary variable would have the values {x, x′} = {x, 1},
where x and c would be any values suitable for the application.
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Multi-Variable Case

So how does this extend to a situation where we have multiple variables, such as for exam-
ple a discretized PDE on a grid? Let us define the primary variable as x = [x1, x2, ..., xN ],
and consider two other variables Q and U defined on the same set as x, with AD types
{Q,Q′} and {U,U′}. The AD type will still be consisting of a value and a derivative as
before, however we now need the value to be a vector, and the derivative to be a matrix,

Q = [Q1, Q2, ..., QN ]

Q′ =


∂Q1

∂x1

∂Q1

∂x2
. . . ∂Q1

∂xN
∂Q2

∂x1

∂Q2

∂x2
. . . ∂Q2

∂xN
...

...
. . .

...
∂QN

∂x1

∂QN

∂x2
. . . ∂QN

∂xN

 .
The variable {U,U′} is defined similarly.

We now want to define arithmetic operations in term of the AD type similarly to
what we did for the single variable case. We start by considering addition here as well.
We have component wise additions, and are therefore interested in the gradient vector of
∇(Qi + Ui) for each variable, i = 1, 2, ..., N . This operation is linear, and we therefore
have the same rules for addition in the multi-variable case as in the single variable case{

V = Q + U

V′ = Q′ + U′
(4.12)

where V is found by vector addition and V′ by matrix addition.
Multiplication has to be treated with a bit more care. Since we consider each variable

as a collection of values defined on grid subset, we are actually interested in element-wise
multiplication. Therefore, the resulting values from a multiplication will be

Q ·U = [Q1U1, Q2U2, ..., QNUN ] (4.13)

Let {·}i denote a row of a matrix, letting us write the i’th row of the Jacobian matrix as

{(Q ·U)′}i =

[
∂

∂x1

QiUi,
∂

∂x2

QiUi, ...,
∂

∂xN
QiUi

]
. (4.14)

Looking at element j from this row, we get that

∂

∂xj
QiUi = Ui

∂Qi

∂xj
+Qi

∂Ui

∂xj
. (4.15)

We are therefore able to write each row as

{(Q ·U)′}i = Ui {Q′}i +Qi {U′}i , for i = 1, 2, ..., N. (4.16)

This means that we need Ui and Qi to be multiplied with the i’th row of Q′ and U′

respectively. This can be done by setting up diagonal matrices from the values of Q and
U, and multiply with the diagonal matrices from the left, as

(Q ·U)′ = diag(U)Q′ + diag(Q)U′. (4.17)

The implementation of this AD operation can be written in pseudocode as shown in Listing
4.2.
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Listing 4.2: Pseudo code for overloading of the multiplication operator, in order to
do automatic differentiation in a multi-variable environment.

1 AD operat i on ∗( const AD& Q, const AD& U) {
2 AD out ;
3 out . va l = e l ementw i s eMu l t i p l i c a t i on (Q. val , U. va l ) ;
4 Matrix diagQ = diagonalFromVector (Q. va l ) ;
5 Matrix diagU = diagonalFromVector (U. va l ) ;
6 out . der = diagU ∗ Q. der + diagQ ∗ U. der ;
7 return out ;
8 }

Similar rules can be found for division and square root as well. For an element-wise
division operation, the Jacobian element at row i, column j becomes

∂

∂xj

Qi

Ui

=
Ui

∂Qi

∂xj
−Qi

∂Ui

∂xj

U2
i

. (4.18)

By the same arguments as in Equations (4.15), (4.16) and (4.17), we create diagonal
matrices of the elements of Q, U and element-wise 1/U2, as(

Q

U

)′
= diag

(
1

U2

)
(diag(U)Q′ − diag(Q)U′) . (4.19)

Same argument for element-wise square root gives us(√
Q
)′

= diag

(
1

2
√

Q

)
Q′. (4.20)

When we have defined the rules for all arithmetic operations and basic mathematical
functions, we only need to define constants as AD variables with Jacobians only consisting
of zeros, and the primary variable with the identity matrix for as Jacobian.

4.2.3 Implementation

We implement our class CollOfScalar as a multi-variable AD class, and need therefore
member variables to hold a vector or array for the values, and a sparse matrix for deriva-
tives. Both these members should use the device memory to hold all data arrays. We
create two new classes CudaArray and CudaMatrix for this purpose, implementing them
with a suitable user interface which makes it easy to include the functionality of AD.

The Class CudaArray

The CudaArray class is our main container class for storing values on a grid domain.
The class contains a device array for holding the object’s values, alongside the size of the
array, kernel launch size parameters, and a CUDA error checking variable. The class does
not have any special member functions besides constructors, data access functions, and
a function which copies the device array to host memory. The latter function is for the
Equelle function Output, and debugging and testing use.

The main Equelle functionality needed for this class however, is operator overloading.
We want to use the standard arithmetic operations {+, -, *, /} to do the corresponding
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element-wise operation on the data stored on the GPU. We will implement CUDA kernels
for doing the element-wise operations, and overload the operations to create a CudaArray

object for the result, set up a call to the CUDA kernel with the correct device pointers,
before returning the result. We use multiplication as an example to illustrate this, and
the implementation is seen in Listing 4.3.

Listing 4.3: Overloading of the multiplication operator for CudaArray

1 CudaArray operator ∗( const CudaArray& lhs , const CudaArray& rhs ) {
2 CudaArray out = l h s ;
3 kerne lSetup s = out . setup ( ) ;
4 m u l t i p l i c a t i o n k e r n e l <<<s . gr id , s . block>>>(out . data ( ) , rhs . data ( ) ,

out . s i z e ( ) ) ;
5 return out ;
6 }
7
8 global void wrapCudaArray : : m u l t i p l i c a t i o n k e r n e l (double∗ out ,
9 const double∗ rhs ,

10 const int s i z e )
11 {
12 int index = myID( ) ;
13 i f ( index < s i z e ) {
14 out [ index ] = out [ index ] ∗ rhs [ index ] ;
15 }
16 }

The code operates in two steps. First, creating a new variable as a copy of lhs,
and then calling the kernel which computes the element-wise sum. Note here that
wrapCudaArray is the namespace containing the CUDA kernels related to CudaArray,
and is therefore not a class. The if-test on line 13 makes sure that we stay inside of the
allocated memory for both arrays, since we are likely to deploy more CUDA threads than
we need, as discussed in Section 4.1.

We also add functions for reductions. This is done by copying the data array into a
Thrust device_vector variable and then calling Thrust functions that match the reduc-
tion we want to perform. The reduction functions we then implement in CollOfScalar

only call the corresponding function in its CudaArray member.

The class CudaMatrix

In order to store sparse matrices containing the derivatives of the scalar collections we
define on the grid, we create a class CudaMatrix suitable for our use of matrix operations.
Since variables in Equelle rarely are connected to other cell variables than its neighbours
the matrices will for sure be sparse, and we therefore want an efficient way of storing
them. The storage scheme should also fit with the data structures which are used by the
libraries we need for both matrix arithmetic and linear solvers. This is why we use the
compact sparse row-major format, or CSR-format for short, to store our matrices.

The CSR-format is defined by combining three linear arrays to hold the information
of all the non-zero elements in the matrix. Given an n ×m matrix with nnz number of
non-zero values, the three arrays are:

Values val Stores the nnz non-zero values of the matrix, by holding all non-zero values
for each row continuously in memory.
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Column index colInd Storing the column index of the corresponding value in the val

array.

Row pointer rowPtr Stores the indices in the two other arrays which represents the
beginning of each row. It also contains where the last row ends, so that this array
is of size n + 1, and rowPtr[i+1] - rowPtr[i] represent the number of non-zero
values for row i.

Given the following matrix as example,
1.2 0.0 0.0 −0.2
0.0 4.8 6.0 3.2
1.1 0.0 0.0 0.0
0.0 −3.4 5.3 0.0


the corresponding storage in CSR-format will be:

val = [1.2, -0.2, 4.8, 6.0, 3.2, 1.1, -3.4, 5.3]

colInd = [0, 3, 1, 2, 3, 0, 1, 2]

rowPtr = [0, 2, 5, 6, 8]

The three arrays are stored on the device, and on the host we store the number of
rows and columns, the number of non-zeros, error handling variables and a cuSPARSE
description. We design the class’s constructors such that implementing other functions in
Equelle will be as easy as possible. The following is the most important constructors:

CudaMatrix() Empty matrix, without any allocated device memory. We will come back
to the meaning of an empty matrix.

CudaMatrix(const int size) Identity matrix of the given size.

CudaMatrix(const CollOfScalar& coll) Diagonal matrix of the same size as coll,
where the diagonal elements are the same as the values stored in the given collection.

CudaMatrix(const CudaArray& array) Diagonal matrix of the same size as array, where
the diagonal elements are the same as in array.

CudaMatrix(const CollOfBool& coll) Diagonal matrix of the same size as coll. The
elements are 0.0 or 1.0 entries according to the input.

CudaMatrix(const thrust::device vector<int>& vec, const int size) Restriction
matrix with vec.size() rows and size columns, based on the indices from vec.

We will take a closer look at restriction matrices in Section 4.3.2, and show how the
boolean matrices are used in Section 4.4.2.

The class itself does not contain a lot of member functions. We implement functions
to access the raw data buffers, a check for whether it is empty, and a function to copy the
matrix to the host. The latter is primary for testing purposes. In addition, we implement
a function to get the transposed. The need for the transpose is discussed in Section 4.3.2,
and we look more into the implementation details in Section 6.1.1.

The rest of the functionality of this class is through the overloaded operators. They
are added as friend functions to the class, so that they have direct access to its private
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members. When adding or multiplying sparse matrices, we might get more non-zero ele-
ments then we had in the original matrices. The operations are implemented by functions
from cuSPARSE, which offers a two-step process for these operations. Parts of the sparse
matrix multiplication code can be seen in Listing 4.4. We have omitted the parts of
the code which validates the input parameters and catch errors from the cuSPARSE and
CUDA function calls. The two main function calls to cuSPARSE also require long lists
of input parameters, which we also have omitted for readability. The complete parameter
lists can be seen in the cuSPARSE documentation guide [2].

Listing 4.4: Overloading of the multiplication operator for CudaMatrix by using the
two step procedure from the cuSPARSE library. The main cuSPARSE function calls
requires a long list of input variables, which is omitted here for readability.

1 CudaMatrix equelleCUDA : : operator ∗( const CudaMatrix& lhs ,
2 const CudaMatrix& rhs )
3 {
4 /∗ Check f o r empty matrix ∗/
5 /∗ Check f o r co r r e c t s i z e s ∗/
6
7 // Create an empty matrix o f c o r r e c t s i z e s .
8 CudaMatrix out ; out . rows = l h s . rows ; out . c o l s = rhs . c o l s ;
9

10 // Step 1) Find nonzero pa t t e rn o f output
11 cudaMalloc ( (void ∗∗)&out . csrRowPtr , ( out . rows +1)∗ s izeof ( int ) ) ;
12 int ∗nnzTotalDevHostPtr = &out . nnz ;
13 cusparseSetPointerMode (CUSPARSE, CUSPARSE POINTER MODE HOST) ;
14 cusparseXcsrgemmNnz ( /∗ input parameters omit ted ∗/
15 out . csrRowPtr , nnzTotalDevHostPtr ) ;
16
17 // Set number o f non−z e ros and a l l o c a t e memory f o r the o ther arrays .
18 out . nnz = ∗nnzTotalDevHostPtr ;
19 cudaMalloc ( (void ∗∗)&out . cs rVal , out . nnz ∗ s izeof (double ) ) ;
20 cudaMalloc ( (void ∗∗)&out . cs rCol Ind , out . nnz ∗ s izeof ( int ) ) ;
21
22 // Step 2) Mu l t i p l y the matr ices :
23 cusparseDcsrgemm ( /∗ input parameters omit ted ∗/
24 out . cs rVal , out . csrRowPtr , out . c s rCo l Ind ) ;
25
26 return out ;
27 }

Listing 4.4 shows how we immediately are able to allocate the memory for csrRowPtr
as it does not depend on the number of non-zeros. We then make the cuSPARSE function
call at line 15 to get the number and pattern of non-zeros in the result, where lines 13 and
14 are required set up. We are then able to allocate memory for the arrays containing
the values and column indices, before calling the second step of the procedure at line 24.
The process of getting the correct value for out.nnz_ is system dependent, and line 13 is
therefore a simplification. The complete code can be seen on Github in the file.

.../equelle/backends/cuda/src/cudaMatrix.cu

Addition of two sparse matrices follows a similar cuSPARSE pattern, which really
computes C = αA+ βB, for scalar α and β. The two step function is only implemented
once in the function cudaMatrixSum, where α = 1.0 and β is taken as input. The reason
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for this is that cudaMatrixSum then can be used for addition using β = 1.0 and subtraction
with β = −1.0.

As mentioned in the constructor list above, we include the possibility to create empty
matrices from the default constructor. We define an empty matrix as a matrix which is of
a legal size according to any arithmetic operation, but containing only zeros. This means
that if we have matrices A and B, and B is empty, their sum is A + B = B + A = A.
Multiplication by an empty matrix from both the left or right results in an empty matrix.
These rules are implemented in the overloaded operators.

Implementing CollOfScalar

After creating good interfaces for the classes CudaArray and CudaMatrix, it is quite
straight forward to overload the arithmetic operators for CollOfScalar to use automatic
differentiation. We simply follow the pseudo code in Listing 4.2 for the example class AD,
as well as the evaluation rules for derivatives. The implementation of multiplication for
CollOfScalar is shown in Listing 4.5.

Listing 4.5: Overloading of the multiplication operator for CollOfScalar using
automatic differentiation. We compute the derivatives as long as at least one of the
input parameters contains derivatives.

1 Co l lOfSca la r equelleCUDA : : operator ∗( const Col lOfSca la r& lhs ,
2 const Col lOfSca la r& rhs )
3 {
4 Co l lOfSca la r out ;
5 out . v a l = l h s . v a l ∗ rhs . v a l ;
6 i f ( l h s . a u t o d i f f | | rhs . a u t o d i f f ) {
7 out . a u t o d i f f = true ;
8 CudaMatrix d iag u ( l h s . v a l ) ;
9 CudaMatrix d iag v ( rhs . v a l ) ;

10 out . de r = diag v ∗ l h s . de r + diag u ∗ rhs . de r ;
11 }
12 return out ;
13 }

We check the boolean autodiff_ member if the input variables have Jacobian matrices
or not. The member variable is false by default, so if none of the input variables have
derivatives, we do not give the output any derivative either. Otherwise we create diagonal
matrices from the input’s values, and follow Equation (4.17). Note that we compute the
derivative of the output even though one of the input values do not have a derivative.
This creates no problems for us because of the way we treat empty matrices in arithmetic
operations.

4.3 The Grid

The grid is the most important data structure in any Equelle program. All other data
types rely on the grid, as the number of cells and faces gives the sizes of other collections,
the Vector type has same dimension as the grid, and most of the built-in Equelle functions
use grid relations of some sort. We therefore need a smart way of storing the grid, which
also gives us access to the information that we will need. This section considers the grid
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storage scheme that we use, and also implementation of some of the central grid related
functions available in Equelle.

Since Equelle programs are not limited to structured Cartesian grids, we treat any
grid as unstructured grids. This is similar to the serial back-end, which uses a struct
of type UnstructuredGrid from the OPM (Open Porous Media) Initiative[32] software.
Since the serial back-end is able to do all operations needed by Equelle by using this
data structure, we have decided to implement a class with the same member arrays as
UnstructuredGrid, but where the arrays are stored on the GPU. Since the grid is stored
on the GPU, or the device, we name the class DeviceGrid.

The first data we store in this class are some simple integers denoting the size of the
other arrays and the size of the grid. These are dimensions_, total number of cells and
faces named number_of_cells_ and number_of_faces_ respectively, as well as the size
of the cell_faces_ array, named size_cell_faces_ that will be described below. Since
these are simple integers, we keep them on the host. The arrays stored on the device are
the following:

• cell_centroids_ Contains the coordinates of the centroid of every cell. The size
depends on the dimension of the grid, as it stores three values per cell in 3D grids,
but only two values per cell if the grid is 2D. The size of the array will therefore be
number_of_cells_ * dimensions_.

• face_centroids_ Contains the coordinates of the centroid of every face, and there-
fore number_of_faces_ * dimensions_ elements of type double.

• cell_volumes_ Stores the volume of every cell. For structured grids, this will be
an array consisting of the number_of_cells_ copies of the same number.

• face_areas_ Stores the area of every face.

• face_normals_ The non-normalized normal vector for each face. In order to get
the normal vectors in unit length, we have to divide them by face_areas_. The
size of this array will be dimensions_ * number_of_faces_.

• cell_facepos_ This array contains indices describing the range in the cell_faces_
array belonging to each cell. It can also be used to find the number of faces per cell,
as cell i has cell_facepos_[i+1] - cell_facepos_[i] faces.

• cell_faces_ Contains indices of the faces surrounding all the cells in the grid. The
face indices for cell i is found in the interval cell_faces_[cell_facepos_[i]] to
cell_faces_[cell_facepos_[i+1] - 1]. The size of this array is found in the
last element of cell_facepos_.

• face_cells_ This is the inverse array of cell_faces_ and lists the cells on each
side of every face. The array is 2 * number_of_faces_ long, and gives the two cells
such that the normal vector points from the first to the second cell. Hence FirstCell
of face f is face_cells_[2*f], while SecondCell of face f is face_cells_[2*f+1].
If a face is on the boundary either the first or second value will be -1, denoting no
cell.
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In addition to holding the grid data, this class is given the interface for Equelle func-
tions that are heavily depending on the grid. For instance, we use this class to find subsets
of faces and cells, FirstCell and SecondCell for faces, and On and Extend operations.
It is straight-forward to copy data such as sizes of cells and faces, centroids and normals
to the variables that request them, as these results are already stored in the class.

In order to describe the interface however, we need to give a small explanation of the
types CollOfCell and CollOfFace. These types are implemented as different versions
of a template class CollOfIndices<int codim>, where codim is the codimension. The
codimension of a subspace L of a vector space V is given as

codimL = dimV − dimL. (4.21)

This means that given a 3-dimensional grid where cells are also given in 3-dimensions,
the codimension of a cell is 0. A face on the other hand, is a 2-dimensional subset of the
grid, and therefore has codimension 1. Considering a 2-dimensional grid, we see that cells
becomes 2-dimensional as well, and faces only 1-dimensional. However, the codimension
of cells and faces are the same. We therefore define the following:

typedef CollOfIndices<0> CollOfCell;

typedef CollOfIndices<1> CollOfFace;

and when we talk about CollOfIndices we refer to any of the two.
The class CollOfIndices<codim> makes no use of the codimensional template. The

class is simply an interface towards a Thrust device vector storing indices, and the codim

denotes simply if these indices are cell indices or face indices. We also note that in cases
where we operate on AllCells() or AllFaces(), we will get a CollOfIndices containing
[0, 1, 2, ..., N − 1], where N is number of cells or faces. We say that these collections are
full, and instead of storing an array with indices[i] = i we simply set a flag telling us
that the collection is full, combined with a size parameter to tell us how many indices
the collection should contain. For collections that are not full, we require that the stored
indices are sorted.

The reason that we want to separate CollOfFace and CollOfCell is that some Equelle
functions are only legal for a set of faces but not for a set of cells, and opposite. Allowing
both kind of indices for operations where only one of them makes sense could easily create
strange bugs in the back-end, and for any future users.

We will go through some of the functions to illustrate how easily we get the different
Equelle functions from the grid arrays. Most of the functions are very straight-forward
and embarrassingly parallel, and we are therefore able to just give the algorithms by only
using the mentioned DeviceGrid arrays for a single output element, instead of listing the
kernels in their full form.

4.3.1 Implementation of Equelle Grid Functions

Some central built-in functions in Equelle are the functions to specify subsets of cells and
faces in the grid, and common subsets are the interior and boundary sets. These are also
functions that are not straight forward to parallelize because of two reasons:

1. We do not know how large the results will be.
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2. We need the result to be sorted, in order to use Collection Of Scalar variables
related to these sets.

The first issue can be resolved by computing the number of boundary cells and faces
during the grid construction. This would add a one time cost, but could potentially help
us during each function call. The second reason is a bigger problem. The process of
finding out if cell i is a boundary cell can be done without dependencies of the other cells,
but we can not know where in the sorted result we should put i.

The solution we have chosen is as follows, using BoundaryCells() as an example.

• Create a Thrust device vector of size number_of_cells_ where all elements are
number_of_cells_. Since indices have base zero, number_of_cells_ is a non-legal
index.

• Call a CUDA kernel using one thread for each cell in the grid, which checks if the
cell is a boundary cell or not. If the cell is a boundary cell we let the corresponding
element in the device vector become the cell’s index, otherwise we keep it unchanged.

• Use the Thrust algorithm remove_if to extract all elements of the vector that do
not have the value number_of_cells_.

The resulting device vector will then contains the sorted indices of the boundary cells
in the grid. The same method also applies for BoundaryFaces(), InteriorFaces() and
InteriorCells().

The kernels are based on the information stored in the DeviceGrid arrays. Note
first that the Equelle functions FirstCell and SecondCell are able to do direct look-up
in the array face_cells_ based on their Collection Of Face input. Since this array
contains the value -1 where there are no cells, we can use this to look for cells outside the
boundary. Listing 4.6 shows the complete kernel for finding the boundary faces. Finding
InteriorFaces() is done similarly, but assigning to b_faces only if both comparisons
are false.

Listing 4.6: CUDA kernel for finding the faces located at the grid boundary.

1 global void boundaryFacesKernel ( int∗ b face s ,
2 const int∗ f a c e c e l l s ,
3 const int number o f f ace s )
4 {
5 const int f a c e = myID( ) ;
6 i f ( f a c e < number o f f ace s ) {
7 i f ( ( f a c e c e l l s [ 2∗ f a c e ] == −1) | | ( f a c e c e l l s [ 2∗ f a c e + 1 ] ==

−1) ) {
8 b f a c e s [ f a c e ] = f a c e ;
9 }

10 }
11 }

In order to find BoundaryCells() we have to check if any of the faces surrounding the
cell is a boundary face. In the array cell_faces_ we have access to these face indices,
where the array cell_facepos_ describes where in cell_faces_ we have to look for the
faces for each cell. For every cell c we can therefore loop through cell_faces_ from
position cell_facepos_[c] to position cell_facepos_[c+1], and check if any of the
faces are boundary faces.
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Listing 4.7: CUDA kernel body for finding the cells located at the grid boundary.
The array b faces is the result and is initialized with number of faces .

1 const int c e l l = myID( ) ;
2 i f ( c e l l < n u m b e r o f c e l l s ) {
3 bool boundary = fa l se ;
4 int f a c e ;
5 for ( int f i = c e l l f a c e p o s [ c e l l ] ; f i < c e l l f a c e p o s [ c e l l + 1 ] ;

f i ++){
6 f a c e = c e l l f a c e s [ f i ] ;
7 i f ( ( f a c e c e l l s [ 2∗ f a c e ] == −1) | | ( f a c e c e l l s [ 2∗ f a c e +1]

== −1) ) {
8 boundary = true ;
9 }

10 }
11 i f ( boundary ) {
12 b c e l l s [ c e l l ] = c e l l ;
13 }
14 }

The body of the kernel for finding boundary cells is shown in Listing 4.7. We assume
that each cell is not on the boundary in line 3 and change this boolean if this assumption
turns out not to be true. In order to find InternalCells(), we implement the same
algorithm but use if (!boundary) on line 11 instead.

4.3.2 Implementing On and Extend

In Section 3.1 we described the functionality of the On and Extend operators, and we will
here take a look on how we implement them. The EquelleRuntimeCUDA class will consist
of four functions in order to cover all uses of these functions. The member functions for
the Extend operator match the two different uses of the operator as described before:

1. Extend a Scalar to make a CollOfScalar of uniform values matching a given
grid set. This one is straight forward to implement by using a constructor of
CollOfScalar matching this need, and we will therefore not give it any more at-
tention.

2. Extend a CollOfScalar defined on one grid set to a superset by inserting values of
zero representing the new elements.

The On operator is implemented by two member functions as well:

3. As restrict to operator, returning a subset of a variable given the relationship be-
tween the set the variable is originally based on and the subset of it representing
the elements we request.

4. As evaluate on operator, where we create a variable based on a mapping defined by a
Collection of Cells or Faces, which do not need to be a domain. The Collection

can hence consist of non-unique elements.

Listing 4.8 shows the function definitions, listed in the same order as the descriptions
above. Note that we are using template functions, since the sets can be either CollOfFace
or CollOfCell. Template functions allow us to just make one implementation covering



4.3. THE GRID 45

both codimensions instead of implementing the same functions twice. The drawback of
using template functions is that we are not allowed to call CUDA kernels from them.
This is because they have to be implemented in header files, which are included from
both CUDA files and regular C++ files, and therefore are read by both the nvcc and
gcc compilers. The solution is to send the arguments on to non-template functions,
by using only the device_vector<int> member from the CollOfIndices type. We
have written the code so that the EquelleRuntimeCUDA class sends the arguments to
DeviceGrid member template functions, which then uses grid information to call non-
template functions from the wrapDeviceGrid namespace which set up and call the CUDA
kernels.

Listing 4.8: Function headers for the EquelleRuntimeCUDA member functions im-
plementing the On and Extend operators.

1 template<int codim>
2 Co l lOfSca la r operatorExtend ( const Sca la r& data ,
3 const Col lOf Ind i ce s<codim>& s e t ) ;
4
5 template<int codim>
6 Co l lOfSca la r operatorExtend ( const Col lOfSca la r& data in ,
7 const Col lOf Ind i ce s<codim>& from set ,
8 const Col lOf Ind i ce s<codim>& t o s e t )

const ;
9

10 template<int codim>
11 Co l lOfSca la r operatorOn ( const Col lOfSca la r& data in ,
12 const Col lOf Ind i ce s<codim>& from set ,
13 const Col lOf Ind i ce s<codim>& t o s e t ) ;
14
15 template<int codim data , int codim set>
16 Co l lOf Ind i ce s<codim data> operatorOn ( const

Col lOf Ind i ce s<codim data>&
17 in data ,
18 const

Col lOf Ind i ce s<codim set>&
from set ,

19 const
Col lOf Ind i ce s<codim set>&
t o s e t ) ;

The complexity of implementing number 2, 3 and 4, highly depends on the input
sets, which we will illustrate here by using the restrict to operation from case 3. We will
also misuse the index operator for readability. First consider a function from the Equelle
language,

sub_u = u On BoundaryFaces()

where we let u be a Collection Of Scalar On AllFaces(). It is translated into the
C++ line

CollOfScalar sub_u = er.operatorOn( u, er.allFaces(), er.boundaryFaces() );

Since AllFaces() is a complete set, meaning that each face index matches its array index,
it is straight forward to get a copy of only the elements in u that match the faces from
BoundaryFaces(). If f is the face in position i in BoundaryFaces(), we just have to
compute
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sub_u[i] = u[f]

since f is the face in position f in AllFaces().
If we then use the following line

my_u = sub_u On myBoundary

where myBoundary is a user specified subset of BoundaryFaces(), the mapping is not as
straight forward. If f is the face in position i in myBoundary, we will not find face f

in position f in BoundaryFaces(), as both sets are non-complete subsets. In order to
assign the correct value to position i in my_u, we need to search in BoundaryFaces()

to find f, and use the obtained index to read from sub_u. This search have to be done
for each thread assigning to sub_u, which would lead to a huge amount of reads from
global memory and huge differences in the threads’ workloads. We therefore find another
approach for this problem.

The solution we choose for doing a subset to subset On operation is by creating a
temporary variable by extending the input to a complete set using the Extend operator,
and then do a On operation from the complete temporary variable. Instead of having each
thread search through the from_set variable, we choose to allocate a significant amount
of temporary memory instead. This may not be an optimal solution, but the profiler will
help us detect if this operation will be performance critical.

In summary, in order to compute my_u as defined above, the back-end will do the
following operation:

temp = sub_u Extend AllFaces()

my_u = temp On myBoundary

This covers the use of On as described in point 3, but in order to fully understand all parts
of it we need to understand the second use of the Extend operator as well.

The goal of the extend by zeros operation is to create a new CollOfScalar object of
the same size as to_set, which consists of the elements of data_in where to_set is also
found in from_set, and where the rest of the elements are zero. The variable names here
are taken from the function header from Listing 4.8. The main challenge in implementing
this in CUDA is to find out which elements in to_set are also found in from_set. The
challenge becomes easier by assuming that the to_set is a complete set.

Listing 4.9: Naive implementation of the kernel for the Extend operator.

1 // Number o f th reads in t o t a l shou ld be at l e a s t t o s i z e
2 global void extendKernel ( double∗ out data ,
3 const double∗ in data ,
4 const int∗ f rom set ,
5 const int f r om s i z e ,
6 const int t o s i z e )
7 {
8 int id = myID( ) ;
9 i f ( id < t o s i z e ) {

10 out data [ id ] = 0 ;
11 sync th r ead s ( ) ;
12 i f ( id < f r o m s i z e ) {
13 out data [ f r om se t [ id ] ] = in data [ f r om se t [ id ] ] ;
14 }
15 }
16 }
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A naive way to do this is shown in Listing 4.9. The idea is that we initialize all
elements in the output to zero, and then overwrite the elements specified by the from_set
by the values from in_data. The problem with this code is that the CUDA function
__syncthreads() is only able to synchronize threads within a block, and that we have
no control on how far the execution of other blocks are. If from_set[id] matches an id

held by a thread in another block, we cannot know which of the blocks will first write
to that memory location. Therefore we could easily be in the situation that the correct
value would be written to out_data, followed by another block “initializing” it to zero.

CUDA does not offer any functionality to synchronize between all blocks from a func-
tion running on the device. The only global synchronization method available is to split
the functionality between two kernels, and that is what we have to do to implement the
Extend operation correctly. The two correct kernels are shown in Listing 4.10.

Listing 4.10: Correct implementation of the two kernels needed for the Extend

operator.

1 global void extendKerne l s tep1 ( double∗ out data ,
2 const int t o s i z e )
3 {
4 int id = myID( ) ;
5 i f ( id < t o s i z e ) {
6 out data [ id ] = 0 ;
7 }
8 }
9

10 global extendKerne l s tep2 ( double∗ out data ,
11 const double∗ in data ,
12 const int∗ f rom set ,
13 const int f r o m s i z e )
14 {
15 int id = myID( ) ;
16 i f ( id < f r o m s i z e ) {
17 out data [ f r om se t [ id ] ] = in data [ f r om se t [ id ] ] ;
18 }
19 }

The implementation of Extend above works as long as to_set is a complete set so
that the indices of out_data correspond to the set indices. In case we have a situation
where we want to map a small subset to a larger subset, we use the same method as for
the On operator. Suppose we use the same variables as earlier, the Equelle line

sub_u = my_u Extend BoundaryFaces()

would be executed the same way as

temp = my_u Extend AllFaces()

sub_u = temp On BoundaryFaces()

The last use of the On operator, operating on CollOfIndices is implemented similarly
to how we have implemented the operators for CollOfScalar. Because of the two-step
procedure required to map a subset On a subset, we also need to implement a version for
Extend for collections. Since the implementations depend on look-ups in arrays, the only
difference needed to operate on grid entities are to operate on integers instead of doubles.
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On and Extend of the derivatives

The description above mentions how we implement the On and Extend operators to work
on the values stored in CollOfScalar objects, but not how they operate on possible
derivatives stored in the objects.

Recall that if we consider a variable U defined on the set of all cells of the grid, named
Ω, the data “belonging to” cell i ∈ Ω are the value Ui and its derivatives with respect to
all primary variables x, ∂Ui

∂xj
,∀ j ∈ Ω. The values in other cells differentiated with respect

to xi are not related to Ui. This means that if we are interested in Usub defined as U on
a subset of the grid Ωsub ⊂ Ω, then we are also interested in the derivatives ∂Ui

∂xj
, where

i ∈ Ωsub, j ∈ Ω.
When we apply the operators On and Extend to variables with derivative matrices, we

apply the rules from their values to the rows of the matrices containing the derivatives.
Take the grid in Figure 4.1 as an example, where Ω = {1, 2, ..., 8} represent all cells, and
the marked cells represents Ωsub = {2, 3, 6, 7}. Using {·}i to denote the i’th row of a
matrix, the derivative of Usub will be

Usub.der =


{U.der}2

{U.der}3

{U.der}6

{U.der}7

 .
The first idea for how to implement this would be to find the rows in the input that

should be in the output and copy all elements from those rows, similarly to what we did to
the values. The problem is that the compact storage scheme and the variable number of
non-zero values per row in the sparse matrices makes this task hard to match the GPU’s
architecture. Before copying row i we need to know how many rows with index less that i
are part of the new set as well, and the total number of non-zeros in these. The solution
we have used is to apply restriction matrices.

A restriction matrix is a matrix which when multiplied from the left maps selected
rows from the right-hand-side matrix to be part of the answer. Using the grid from Figure
4.1 as example, we get the derivatives for Ωsub from Ω by


0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0





{U.der}1

{U.der}2

{U.der}3

{U.der}4

{U.der}5

{U.der}6

{U.der}7

{U.der}8


=


{U.der}2

{U.der}3

{U.der}6

{U.der}7

 . (4.22)

Using the overloaded multiplication operator from the CudaMatrix class, cuSPARSE helps
us find both the new non-zero pattern and copy the correct data into the result.

Constructing a restriction matrix in CSR-format is convenient and easy. First note
that we always will have one non-zero value for each row, and all these values will be 1.
This makes it easy to initialize the rowPtr and val arrays. Secondly, the 1 on a given row
is in the column with the same index of the row from the original matrix which we want to
copy. Given a On function call from a complete set to a CollOfIndices<codim> to_set



4.4. OTHER EQUELLE FUNCTIONS 49

1 2 3 4

5 6 7 8

Figure 4.1: Grid to show On and Extend examples.

containing the indices of the subset, the column indices of the 1’s will become the indices
in to_set.

The Extend operation can be done using the same technique, only with a prolongation
operator instead of restriction. The mapping from Ωsub to Ω can be done using matrix-
matrix multiplication as

0 0 0 0
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0




{U.der}2

{U.der}3

{U.der}6

{U.der}7

 =



−0−
{U.der}2

{U.der}3

−0−
−0−

{U.der}6

{U.der}7

−0−


. (4.23)

Constructing this matrix is not as straight forward as for the restriction matrix, since we
have some rows with no non-zero values making it harder to create the array rowPtr.
However, since the prolongation matrix is the transpose of the restriction matrix for the
reverse mapping, we can construct it as a restriction matrix using the from_set, and use
the transpose flag before multiplying the matrix.

4.4 Other Equelle Functions

We will here give some details relating three more Equelle functions, which do not fit in
any of the two previous sections. We start with the Gradient and Divergence operators,
before we look at ternary if statements.

4.4.1 The Gradient and Divergence Operators

Most of the communication between cells happens through the Equelle functions Gradient
and Divergence. As mentioned in Section 3.1 these functions calculate the discrete
analogue to what we usually mean with gradients and divergence. They simply implement
the directional sum of the surrounding values from the input relative to the output.

The Gradient function takes a set of values On AllCells() and produce a result
On InteriorFaces(). Each face therefore uses the values from the two cells it separates.
Divergence operate in the opposite direction, computing a value On AllCells() based
on input On AllFaces() or On InteriorFaces().

Both of the functions make use of the definitions of FirstCell and SecondCell based
on the direction of the unit vector of each face. A positive Gradient value means that the
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value stored in SecondCell is larger than the value stored in FirstCell, and Divergence

is implemented as the sum of values with outward unit normals minus the sum of the values
with inward unit normals.

Implementing these functions to operate on some CollOfScalar are done by using the
arrays stored in the DeviceGrid class. Recall that the array cell_faces_ contains the
face indices surrounding each cell, based on the range given in the cell_facepos_ array.
The opposite is found in face_cells_, where face_cells_[2*i] and face_cells_[2*i +1]

gives the face index for the FirstCell and SecondCell respectively for a face i. We will
therefore implement the Gradient and Divergence functions by using arrays in CUDA
kernels and launching one thread for each output element.

The CUDA kernel used to compute the Gradient is shown in Listing 4.11. Since
Gradient is only defined on InteriorFaces(), this set needs to be computed before
calling the kernel, and is here represented by the int_faces input array of size size_out.
The parameter grad is the result array, and cell_vals is the input values defined on
AllFaces(). The kernel finds the face index of the thread’s interior face in line 6, and
uses the face_cell array to know where to look up in cell_vals in order to compute
the result in line 8.

Listing 4.11: CUDA kernel for computing the Gradient Equelle function. Requires
one thread for each element in InteriorFaces().

1 global void wrapEquelleRuntimeCUDA : : g rad i entKerne l ( double∗ grad ,
const double∗ c e l l v a l s , const int∗ i n t f a c e s , const int∗
f a c e c e l l s , const int s i z e o u t )

2 {
3 const int i = myID( ) ;
4 i f ( i < s i z e o u t ) {
5 // Compute face index :
6 const int f i = i n t f a c e s [ i ] ;
7 // grad [ i ] = secondface [ f i ] − f i r s t f a c e [ f i ]
8 grad [ i ] = c e l l v a l s [ f a c e c e l l s [ f i ∗2 + 1 ] ] −

c e l l v a l s [ f a c e c e l l s [ f i ∗ 2 ] ] ;
9 }

10 }

The Gradient is relatively straight forward to compute, since each InteriorFaces()

separates two and only two cells. The Divergence on the other hand is a bit more complex,
as the number of faces surrounding a cell can vary from cell to cell for unstructured grids.
Finding all faces surrounding a cell can be done by looping over the cell_faces_ range
defined by cell_facepos_. We also need the direction of the unit normals, or in other
words, find out whether the cell we are looking at is a FirstCell or SecondCell for each
face. We therefore need the face_cells_ array in this kernel as well.

Also, note that we only implement a kernel for computing the Divergence from values
defined on AllFaces(), even though it is also legal to give values on only InteriorFaces()

as input. By only implementing a kernel for flux values on AllFaces() we can use the
complete set property of the input, where the index of the flux array corresponds with
the index of the face it belongs to. If the input fluxes had been a subset we would need
some kind of search for each thread in order to find the index of a given face’s value. For
function calls to Divergence with input defined only on InteriorFaces() we use Extend
to AllFaces() on the input before calling the kernel. This will cause some extra adding
of zeroes by some of the threads, but will not affect the performance.
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Listing 4.12: CUDA kernel for computing the Divergence Equelle function. Re-
quires one thread for each cell in the grid.

1 global void divergenceKerne l ( double∗ div ,
2 const double∗ f lux ,
3 const int∗ c e l l f a c e p o s ,
4 const int∗ c e l l f a c e s ,
5 const int∗ f a c e c e l l s ,
6 const int n u m b e r o f c e l l s )
7 {
8 const int c e l l = myID( ) ;
9 i f ( c e l l < n u m b e r o f c e l l s ) {

10 double div temp = 0 ; // t o t a l d i ve rgence f o r t h i s c e l l .
11 int f a c to r , f a c e ;
12 // I t e r a t e over t h i s c e l l s f a c e s :
13 for ( int i = c e l l f a c e p o s [ c e l l ] ; i < c e l l f a c e p o s [ c e l l +1] ; ++i

) {
14 f a c t o r = −1; // Assume normal inwards
15 f a c e = c e l l f a c e s [ i ] ;
16 i f ( f a c e c e l l s [ f a c e ∗2 ] == c e l l ) { // i f normal outwards
17 f a c t o r = 1 ;
18 }
19 // Add con t r i b u t i on from t h i s c e l l
20 div temp += f l u x [ f a c e ]∗ f a c t o r ;
21 }
22 div [ c e l l ] = div temp ;
23 }
24 }

The implementation of the Divergence kernel is shown in Listing 4.12. The loop
beginning on line 13 iterates over the faces surrounding a given cell, checks the direction
of the normal vector relative to the cell and either adds or subtracts the correct flux value.

Gradient and Divergence with Automatic Differentiation

In order to see how derivatives behave in the context of Gradient and Divergence func-
tions, consider a variable U = U(x) as a function of a primary variable x = [x1, x2, ..., xn].
Consider the face f separating cells a and b, and the Gradient G on the InteriorFaces(),
such that

Gf (x) = Ub(x)− Ua(x). (4.24)

The derivatives of G on face f is clearly

∂Gf (x)

∂xi
=
∂Ub(x)

∂xi
− ∂∇Ua(x)

∂xi
. for i = 1, 2, ..., n (4.25)

We can therefore consider the f ’th row of the Jacobian of G as the difference between
the b’th and a’th rows of the Jacobian of U. Since these rows are likely to have different
non-zero patterns, it is hard to write efficient kernels for this in a general setting. We
therefore implement this operation as matrix-matrix products.

The serial back-end uses matrix-matrix products in order to implement derivatives of
the Gradient and Divergence operators as well. The matrices representing the operators
are stored in the EquelleRuntimeCPU class, and are constructed by the Opm::HelperOps

class from the autodiff-module in OPM. We follow a similar approach and implement a
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Figure 4.2: Example 2D grid where capitalized letters are cell identifiers and lower
case letters identify faces. The arrows show the orientation of each faces.

class DeviceHelperOps and make it member of the the EquelleRuntimeCUDA class. The
DeviceHelperOps then constructs the matrices similarly to the Opm::HelperOps class,
but stores them on the GPU as CudaMatrix objects instead. The construction is serial
by nature, so there is no use in constructing the matrices using the GPU. The process
is a one-time cost, and we are therefore not concerned about letting the CPU compute
these matrices.

In order to see what the matrices will look like, we once again consider the grid used
in Section 3.1 which is also shown in Figure 4.2 for convenience. The InteriorFaces()

will be {b, c, f, k, l}, and the Gradient operation on each of them corresponds to

grad(b) = B − A
grad(c) = C −B
grad(f) = E −D
grad(k) = D − A
grad(l) = E −B

(4.26)

This can be written in matrix form as

Gradient



b
c
f
k
l


 =


−1 1 0 0 0
0 −1 1 0 0
0 0 0 −1 1
−1 0 0 1 0
0 −1 0 0 1

 ·

A
B
C
D
E

 (4.27)

where we see the form of the matrix representing the Gradient operator.

The Divergence operator can be represented by a matrix in a similar fashion. Both
matrices are descriptions of the neighbour relations in the grid, and they can be used
for computing the values as well as derivatives, by a matrix vector product. The profiler
however shows that the cuSPARSE sparse matrix times vector function becomes a hotspot
in simulators using explicit solutions. We therefore use the kernels described earlier in
this Section for finding the values based on these operators, and the cuSPARSE function
for multiplying two sparse matrices for their derivatives.
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4.4.2 Ternary If Operator

The last operator from Equelle we will look at is the ternary if operator. Its syntax in
Equelle is similar to C/C++ ternary if syntax,

result = predicate ? iftrue : iffalse

where predicate is a boolean expression resulting in a Collection Of Bool, and iftrue

and iffalse are collections of the same type of result. All collections are required to be
of the same size, as the operation is interpreted as an element-wise ternary if operation.
In the intermediate code, we get the three input variables as arguments in a function call.

As the operator is embarrassingly parallel, it is implemented by setting up a CUDA
kernel where each of the elements in the output is found by evaluating the corresponding
boolean in the predicate array and assigning from iftrue or iffalse accordingly. If
we have CollOfScalars with derivatives however, we need a different approach. This is
because we do not have any guarantee that the derivatives of iftrue and iffalse has
the same non-zero pattern.

Similarly to the On and Extend operators, the ternary if operator will be a row-wise
operator for the derivatives, and it will be implemented in terms of matrix arithmetic.
Let A and B be the derivative matrices for iftrue and iffalse respectively, and let P
be a diagonal matrix such that

Pi,i =

{
1.0 if predicate[i] is true

0.0 if predicate[i] is false.
(4.28)

We can then express the derivative of the result, C, of a ternary if operation as

C = PA+ (I − P )B. (4.29)

In order to build the matrix P we use a CudaMatrix constructor which implements Equa-
tion (4.28) from a CollOfBool variable.

4.5 Linear Solvers

We have up until this point looked into the implementation details of most of the func-
tionality in Equelle, and the treatment of derivative values for helping us use implicit
methods in simulators. As we saw in Section 4.2.1, we implement the implicit simulators
by defining a residual function, and then call the NewtonSolve function in Equelle with
the residual as input. We then get the evaluation of the derivatives of the residual by the
automatic differentiation rules we have implemented, and all that is left is to solve the
linear system,

Ax = b. (4.30)

The task of implementing the linear solver is complex. In order for the solver to
match the CUDA back-end we need to use solvers which can utilize the massively parallel
hardware. Since Equelle lets us write simulators which result in different types of matrices,
we also need the method to be general enough to not rely on specific matrix properties.

Solvers of linear systems can be divided in the following two groups; direct methods
and iterative methods. Direct methods are algorithms that are able to solve the linear
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system in a finite amount of steps. Most direct methods consist of computations with a
sequential dependency pattern, and are therefore not suited for implementation on GPUs.

Iterative methods rely on approximations of the solution such that the approximation
becomes increasingly better. By checking the norm of the residual from the approximate
solution, we are able to detect when the obtained solution is close enough to the exact
solution, and use that as the final solution. This is often a required method when A
is large and sparse, as direct method becomes too time and memory consuming. By
using matrix properties such as symmetry and positive definiteness, the methods can be
expressed by less computations and with a better convergence rate. It is often the case
that faster methods require stricter matrix properties in order to converge at all.

In order to improve the convergence rate for iterative methods it is possible to use a
preconditioner M acting like an approximation of the inverse of matrix A. The idea is
that

M−1Ax = M−1b (4.31)

is easier to solve with a given iterative method than Equation (4.30). There are several
techniques for defining preconditioners, often based on the nature of the problem, non-
zero fill pattern, or size of diagonal elements. It is therefore often the case that a good
preconditioner for one matrix is not a good preconditioner for another, which makes it
hard to provide a single preconditioner that is good for any problem.

The Cusp Library

Since it takes a huge effort to implement linear solvers efficiently in CUDA, we make use of
the Cusp library[6]. It offers functions for both solvers and preconditioners implemented
in CUDA. The solvers are a selection of different Krylov subspace methods, and since
linear solvers are not the main focus of this thesis, we will only give a minimal explana-
tion of them. For a more thorough introduction and discussion on iterative solvers and
preconditioners, see [30]. The provided linear solvers provided by Cusp are the following:

CG The Conjugate Gradient method is one of the best known iterative methods. In
order to obtain convergence the matrix A is required to be symmetric and positive
definite (SPD). Symmetric matrices satisfy AT = A, and a matrix A ∈ Rn×n is
positive definite if xTAx > 0 for any non-zero vector x ∈ Rn. The method was at
first suggested as a direct method, as it gives the exact solution in n iterations given
that the above requirements are met. It is however often the case that the solution
is good enough within few iterations.

GMRes Generalized Minimal Residual works by minimizing the residual vector with
respect to the given Krylov subspace. The only requirement on A is that the matrix
is square and non-singular, meaning that A−1 exists.

BiCGStab The BiConjugate Gradient Stabilized method[33] is an increasingly popu-
lar method for solving non-symmetric linear problems. It is based on other non-
symmetric versions of CG such as BiCG and CGS (CG Squared), by resolving the
issues CGS has with sensitivity to rounding errors. The method requires that A is
non-singular.

The above solvers can be used directly on Equation (4.30), or on Equation (4.31), and
we can also apply one of the following preconditioners provided by Cusp:
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Table 4.1: An overview of which solvers and preconditioners from the Cusp library
that are implemented in the CUDA back-end for Equelle.

None Diagonal Ainv Smooth agr.
CG yes yes
GMRes yes
BiCGStab yes yes

Diagonal The diagonal preconditioner extract the diagonal elements D of A, and use
M−1 = D−1, providing a scaled version of the linear system. The application of the
preconditioner is inexpensive, but also of limited effect. The diagonal preconditioner
has biggest impact to the required number of iterations on problems where the
original system consists of rows of various scales.

Approximations of A−1 Cusp provides three different inverse approximation precondi-
tioners, with a various number of parameters for accuracy and memory consumption.
Two of the preconditioners are intended for SPD matrices only, while the third one
is for non-symmetric cases.

Smoothed aggregation Algebraic multigrid (AMG) preconditioner based on smoothed
aggregation.

The class LinearSolver has been created in order for the Equelle CUDA back-end
to provide a simple interface towards solving linear systems. We have not implemented
combinations of all the methods and preconditioners offered by Cusp. The most impor-
tant combinations are the solvers without preconditioners, in order to show a proof of
concept on the linear solver part of the back-end. Table 4.1 shows the combinations that
are implemented at the current stage, however adding a new combination of solver and
preconditioner to the back-end is relatively easy.

In order to choose what method we should use to solve the linear systems arising
in Equelle, we initialize the LinearSolver class with user provided input parameters at
runtime. Adding the lines

solver=GMRes

preconditioner=none

to the parameter file makes the program use the GMRes method without preconditioners.
We do not require the user to give such parameters on input, and the default option is
to use the BiCGStab method with a diagonal preconditioner. The reason we have chosen
BiCGStab as default is because it works for both symmetric and non-symmetric matrices,
and has faster convergence than GMRes.

We have also added the option to use the CPU for solving the linear system. In some
cases we might not be able to find the solution using the methods provided by Cusp, and
in other situations we might get very slow convergence with any of the provided methods
regardless of which of these preconditioners we use. In those cases we might want to use
another preconditioner which might have a sequential build phase, or that we want to use
a direct solver instead. We therefore offer the option to use the wider range of solvers
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offered by the CPU, with the same interface as the serial back-end, as this makes the
CUDA back-end more flexible.

We will consider a case in Section 5.2 where we are unable to get acceptable conver-
gence with the Cusp methods, and therefore use the CPU solver to validate the rest of
the back-end.



Chapter 5

Numerical Experiments and
Performance Testing

We have now in the previous chapter seen how we have implemented the CUDA back-end
for the Equelle compiler. This chapter will describe some test cases where we validate the
back-end, showing how the simulators behave similarly on our new back-end compared to
the serial back-end. We will show simulator results for mainly the heat equation and the
shallow water equations, as described in Appendix B.1 and B.2 respectively.

We will in Section 5.1 look at explicit and implicit solutions of the heat equations on
structured grids, before we validate the correctness on an unstructured grid in Section 5.2.
In Section 5.3 we will show how the shallow water simulator written for the Specialization
Project[20] can make use of the CUDA back-end without a single change in the Equelle
source code. We will also show some performance measurements in Section 5.4.

We have used the following two GPUs for testing the back-end:

• Nvidia Tesla K40

• Nvidia NVS 5200M

The NVS is a laptop GPU with 1 GB of global memory. It is based on the Fermi
architecture, and have a memory bandwidth of 14.4 GB/s. The core clock rate is 625
MHz, and it has 96 CUDA cores.

The Tesla on the other hand is based on the Kepler architecture, and is a pure compute
GPU without the possibility to render graphics. It has 12 GB of global memory, and a
memory bandwidth of 288 GB/s. The clock frequency on the Tesla is 706 MHz, which
is not a lot more than the NVS, but since the Tesla is designed for double precision
floating points, while the NVS is designed for single precision with capability to use
double precision, this number is not directly comparable. The Tesla also has far more
CUDA cores than the NVS, with its 2880 [3].

5.1 Heat Equation on Structured Grid

The heat equation is stated as
∂u

∂t
− k∇2u = 0 (5.1)

57
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and is used both as an example simulator on the Equlle website[15] and as a test case
during the development of this back-end. The Equelle program is therefore not written
as part of this Thesis. Appendix B.1 gives an overview of how the finite volume method
is used and implemented, and also shows the Equelle source code for the method for both
the implicit and explicit case. We will here look at the simulators on a 3-dimensional
Cartesian grid.

We start by considering the explicit simulator. We choose a grid of size 19× 24× 20
unit cube cells, and use a time step size of ∆t = 0.5. The Dirichlet boundary is chosen
to be at x = 0 and x = 19 as

u(0, y, z, t) = 50z, for 0 ≤ y ≤ 24, 0 ≤ z ≤ 20, t ≥ 0,

u(19, y, z, t) = 1000− 50z for 0 ≤ y ≤ 24, 0 ≤ z ≤ 20, t ≥ 0.
(5.2)

The initial conditions are chosen as

u(x, y, z, 0) = 500, for 0 < x < 19, 0 ≤ y ≤ 24, 0 ≤ z ≤ 20. (5.3)

We compile the explicit heat equation simulator using the new CUDA back-end, and
provide the above grid information, initial and boundary conditions as program input.
The simulation is run for 150 time steps, and the results can be seen in Figure 5.1.

By compiling the simulator using the serial back-end as well, we can use the same
input data in order to run the simulation on the CPU for comparison. We then see that
the output from the last time step from the CUDA back-end and the serial back-end are
exactly the same for all cells.

We now turn to the implicit method, and compile it using the CUDA back-end as
well. We use the same parameter file as for the explicit case, meaning that we use the
default BiCGStab solver with a diagonal preconditioner. The only difference is that we
now use larger time steps, ∆t = 4. The results are shown in Figure 5.2, and are similar
to the results for the implicit case. The maximum difference for the 20th iteration when
comparing to the same simulation using the serial back-end is 8.3 · 10−8. This is expected
as we use 10−8 as default tolerance for the linear solver.

5.2 Heat Equation on Unstructured Grid

Since we have designed the CUDA back-end to use unstructured grids, we will here apply
the implicit heat equation simulator on the domain of the Norne oil field. A grid model of
the reservoir consisting of almost 45 000 cells has previously been used to show correctness
for unstructured grids on the serial back-end, and we use it here for the same reason.

The grid with the result is shown in Figure 5.3. We have applied Dirichlet conditions
by extracting the faces which have approximately lowest x values and set the temperature
on them to constant 0. Similarly, boundary faces with highest x coordinates were given
Dirichlet value of 1000. We use the same initial conditions as before, with u(x, y, z, 0) =
500.

The linear system arising from the NewtonSolve function for this case turns out to be
very hard to solve. Using the default parameters for maximum number of iterations and
any of the three solvers from Table 4.1, the method diverges. This can be caused by two
reasons:
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Figure 5.1: Explicit solution of the heat equation, using initial data from Equation
(5.3) and boundary conditions from Equation (5.2).
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Figure 5.2: Implicit solution of the heat equation, using initial data from Equation
(5.3) and boundary conditions from Equation (5.2).
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Figure 5.3: Heat equation solved in the Norne oil field. Dirichlet boundary conditions
are applied to the rightmost and leftmost faces as shown in this figure.

1. The linear system is of such a nature that in order to solve it we need better methods
which are not available in the CUDA back-end.

2. The linear system has been created with errors, resulting in an impossible-to-solve
system.

In order to check which reason is causing our problem, we let the CPU solve the linear
system, while the CUDA back-end constructs the matrix using automatic differentiation.
The linear system is then solved by the following steps:

1. Copy A and b from device to host.

2. Solve Ax = b by the methods available for the CPU.

3. Copy x from host to device.

The solutions we get from the CPU-solver leads to the results we see in Figure 5.3, and
comparing the solution with the serial back-end gives a maximum error less that 10−8.
This suggest that the first problem suggested above was the reason we did not get correct
results. If the construction of the matrix had been wrong, we should not get correct
results from solving the linear system with the CPU. This validates correctness of the
CUDA back-end applied to unstructured grids.

By doing some more testing we also achieved convergence by using the GMRes method
provided by Cusp. This was done by drastically increasing the maximum iteration count
for the linear system by using

solver_max_iter=100000
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in the parameter file. The GMRes method was also implemented with a restart for every
100’th iteration. The simulator then computed the correct answers in 3 hours and 20
minutes. In comparison, by letting the CPU solve the linear system we only require
about 20 seconds on the entire simulation. This shows us that the GPU is not always the
best option for implementing fast code.

5.3 Shallow Water Equation

In the Specialization Project[20] done as a preparation to this master thesis, we developed
an Equelle simulator for the shallow water equations for varying bottom topography and
dry states. The shallow water equations are given as hhu

hv


t

+

 hu
hu2 + 1

2
gh2

huv


x

+

 hv
huv

hv2 + 1
2
gh2


y

=

 0
−ghBx

−ghBy

 (5.4)

where h is the water depth, u and v are velocities in x and y directions respectively, g
is gravity, and B = B(x, y) is the description of the bottom topography. The terms hu
and hv represent mass fluxes in their respective directions. An overview of the numerical
method used to write the simulator is shown in Appendix B.2.

The equations describe how waves behave under a free surface when the motion is
due to gravity only. It is derived from the Navier-Stokes equations by assuming that
the vertical velocity is negligible compared to the horizontal velocities, and it was first
described as the Saint Venant system[12].

By using the same data sets as in [20], we want to reproduce the results found there
with as little effort as possible. We use the same scripts for generating the bottom
topography

B(x, y) = B1(x, y) +B2(x, y), (5.5)

where B1(x, y) is the basic form defined as

B1(x, y) =
x

150
+

y

100
+ 0.3 sin

(
2πx

85

)
+ 0.2 sin

(
2πy

85

)
, , 0 ≤ x, y ≤ 100, (5.6)

and B2(x, y) is a radial hump given by

B2(x, y) =

{
0.3 sin

(
r−32.5

10
π
)
, for 32.5 ≤ r ≤ 42.5

0 otherwise
. (5.7)

where r =
√

(x− 50)2 + (y − 50)2. The bottom is most easily seen in Figure 5.5.
In order to reproduce the results from [20], we compile the Equelle program for the

shallow water equations using the flag for the CUDA back-end, compile the C++ inter-
mediate code and link it to the back-end library, and run the program using the bottom
topography from Equation (5.5) and the initial conditions we want to use. The results for
a radial dam break in a filled basin are seen in Figure 5.4, and the results using partially
filled basin with dry states are shown in Figure 5.5. By comparing the numerical results
to the results from the serial back-end, we see that the numbers only differs on a machine
epsilon level. Since the numerical results are as good as identical, we have used the figures
from [20] here as well.
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Figure 5.4: Simulation of a radial dam break on the topography described in Equa-
tion (5.5).
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Figure 5.5: Simulating a body of water flowing from one corner on the topography
described in Equation (5.5).
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Table 5.1: The grid sizes used in order to test performance of the explicit heat
equation.

Num cells (106) 0.125 0.25 0.5 1 1.5 2 2.5 3 3.5 3.75
nx 50 50 100 100 150 200 250 300 350 375
ny 50 100 100 100 100 100 100 100 100 100
nz 50 50 50 100 100 100 100 100 100 100

5.4 Performance Testing

We have now seen that our new CUDA back-end is able to produce correct results for
both simple explicit simulators and the more complex evaluation of implicit simulators by
using AD on the GPU. The back-end also handles unstructured grids as we saw in Section
5.2. In this Section we will therefore look at the performance of the CUDA back-end.

It is important to note that any comparison with the serial back-end will give a some-
what misleading speed-up. The serial back-end is not tuned for performance, and com-
paring high performance parallel code with unoptimized serial code gives us limited infor-
mation. That said, we will still compare the performance of the CUDA back-end to the
serial back-end to some extent, because they are built on the same principles and ideas.
The generated part of the intermediate code, and hence the function calls to the Equelle
runtime class, are exactly the same. This means that performance limiting factors such
as limited reuse of variables and lots of temporary variable use in complex expressions
are found in both back-ends. Comparing the two back-ends might therefore not be as
misleading as first indicated.

Explicit Heat Equation

Our first performance test case is based on the explicit heat equation on Cartesian grids.
The use of Cartesian grids makes it easy to generate test cases of different grid sizes while
still being able to generate face indices on which we put Dirichlet conditions. All tests
will therefore be scaled versions of the simulation shown in Figure 5.1.

The tests were conducted by editing the intermediate code by adding timing inside
the for-loop. Since most simulators applied to real-world problems are likely to have
a huge amount of time steps, we are here not interested in the initialization phase of
the program. We therefore use 120 time steps in each simulation, where the reported
timings are started at iteration 10 and ended at iteration 110. This gives us timing
results per 100’th iteration and will represent the performance in the long run. The grid
configurations for each problem size is given in Table 5.1.

We compare different kinds of hardware by using the CUDA back end on two different
GPUs, the Tesla K40 and the NVS 5200M, and the serial back-end on an Intel Xeon E5-
2620 CPU, running at 2.10GHz. The results are gathered in Figure 5.6. Plot A) shows a
comparison of the run times on the three different processors, while B), C) and D) focuses
on one processor at a time. Since the computational complexity of explicit solutions are
linear with respect to the number of cells, we have also added graphs of execution time
per 1 million cells in those plots.

Plot A) in Figure 5.6 shows how the GPUs instantly outperform the CPU with the



5.4. PERFORMANCE TESTING 65

Table 5.2: Comparison between the CUDA back-end and the serial back-end for the
extreme cases in terms of best and worst speed-up.

NVS Tesla
Num cells (106) 0.125 1.5 0.125 3.75

Serial back-end (s) 49 78.14 49 85
CUDA back-end (s) 13.6 11.11 7.7 1.02

Speed up 3.6 7.0 6.3 83

current back-ends. We also see how large the difference becomes between the two GPUs.
Since the Tesla has a lot more computational cores than the NVS, it is able to process a lot
more data simultaneously. The Tesla is also designed for double precision arithmetic while
the NVS primarily is designed for single precision. The dramatically higher performance
of the Tesla is therefore expected. Note also how we do not include data for the NVS for
cases of more than 1.5 million cells, as the device runs out of memory.

As mentioned, the computational complexity of the explicit heat equation is linear,
which means that the relative time for computing 1 million elements should be constant
for any problem size. As we see in Plot B) the serial back-end confirms this relationship
quite well.

The GPUs on the other hand seem to perform better per element for larger cases than
for small cases. This might have different reasons, where kernel overhead is one candidate.
Since each kernel launch requires a small overhead regardless of the number of blocks and
threads, this overhead becomes less significant if each kernel have more data to process.
Hence computational time per element goes down. Another reason might be that if the
problem size is not big enough, the GPU might have more computational cores than the
program is able to use at once, meaning that some resources are idle at all time for smaller
problems. When the test cases become larger we also see that processing time per element
becomes more and more constant.

By comparing the CUDA back-end to the serial back-end, we see that the obtained
speed-up depends on the problem sizes. For small problems, which in this case is 125 000
cells, the speed up will not be as impressive as for the largest cases. Table 5.2 summarize
the performance gains in using the CUDA back-end instead of the serial back-end. On
the laptop GPU, the NVS, we experience a performance gain with a factor of between 3.6
and 7, but by using the Tesla we measure up to 83 times speed up!

As mentioned earlier, we have to stress that the serial back-end is not optimized and
that these numbers therefore are not directly comparable. But we would also like to point
out that the optimizations done in the CUDA back-end is without changing anything in
the compiler front-end, and that both back-ends therefore are affected by the performance
limitations brought by this design.

Implicit Heat Equation

In order to measure performance of an implicit method we use the implicit simulator for
the heat equation to collect runtimes for different grid sizes. Since there is a lot more
work involved in finding the next time step of an implicit method than for an explicit
method, we here measure execution time for only 10 iterations, where we let the program
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Figure 5.6: Execution times for 100 iterations of the explicit heat equation for various
amount of cells on different hardware. We show absolute runtimes in Plot A) where
we focus on the two GPUs, and plot B), C) and D) shows relative performance per
1 million cells on each hardware.
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do some extra iterations both before we start and after we end the timing. The grid sizes
corresponds to the ones given in Table 5.1.

One problem we get when we want to compare implicit methods on different hardware
is that the linear solvers available to each hardware are not the same. The computational
phase when we use the NewtonSolve function can be split in two:

1. Assembling the matrix using AD.

2. Solving the linear system.

If a simulator is slow, we will therefore not immediately know which of the two phases is
the slow part.

In order to make the comparison easier for us we run the experiments by three different
methods:

(a) CUDA back-end on the Tesla K40 using the default solver (BiCGStab and diagonal
preconditioner) from Cusp.

(b) CUDA back-end on the Tesla K40 using the CPU linear solver with input istl.

(c) Serial back-end using the CPU linear solver with input istl.

The istl input to the CPU solver makes use of a conjugate gradient method with an
algebraic multi-grid preconditioner. In order to compare the two back-ends we use that
the difference between method (b) and (a) represent the overhead from using the CPU
solver, and that

(d) := (c)− ((b)− (a)) (5.8)

therefore gives an artificial measure of using the serial back-end with the solver load from
Cusp. We will therefore use the artificial method (d) as a comparison with method (a).

The results of the comparison are shown in Figure 5.7. Plot A) shows the total
runtimes for the methods (a), (b) and (c), with a focus on (a), and in Plot B) we have
changed the focus to cover all timings from (c) as well. We have also added the artificial
timings for method (d), where we have subtracted from (c) the difference between (b) and
(a). Since (d) is not that much faster than (c), and since case (a) using the Cusp solver
is still very fast, it seems like the serial back-end is dominated by the assembly process
rather than the linear solver.

In Plots C) and D) we look at the relative processing speed for 1 million cells. Both
solvers show a constant relative processing time, where the Tesla reaches peak performance
at 1 million cells. We see that both Plot C) and D) indicate that the BiCGStab method
from Cusp is of linear computational complexity. The complexity in the matrix assembly
phase depends on the number of cells, and the number of of non-zeros in each row, as
O(kn). Since all grid sizes are based on 3-dimensional Cartesian grids, k becomes constant
and we get the assembly phase to be O(n) as well.

Based on large cases of more than 1 million cells, we see that the CUDA back-end
requires 21 seconds per 10 iterations of 1 million cells, while the required time for method
(d) using the serial back-end is 700 seconds. This corresponds to a speed-up of 33.6.

These two back-ends are implemented with approximately the same amount of opti-
mization when it comes to assembling the matrix for implicit methods, and both of them
have huge potentials for faster execution. We will look at the current bottlenecks for the
implicit heat equation in Section 6.2.2.
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Figure 5.7: Performance testing for 10 iterations of the implicit solution of the
heat equation running on different Equelle back-ends. We have compared the serial
back-end and the CUDA back-end by creating artificial measurements of the serial
back-end using the same time to obtain the linear solution as the CUDA back-end.
Plot A) and B) show absolute runtimes, and Plot C) and D) show relative processing
speed per 1 million cells.
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The Shallow Water Equations

We conduct the same experiments for the shallow water simulator as we did for the explicit
heat equation. We use different grid sizes to measure performance of 100 time steps, using
some extra iterations before and after the timing similar to before. We use 2D grids as
shown in Table 5.3, and make measurements on all three hardware platforms, the Tesla
K40 and NVS 5200M GPUs and the CPU.

The results are analysed and shown in Figure 5.8. The first observation we make is
that the total runtimes for the Tesla does not follow the same trends as the others for
small cases. We therefore add more grid sizes in order to have more data to analyse.
In Plot A) we see how the Tesla outperforms both the NVS GPU and the CPU, but
not for the smallest cases. In Plot C) we therefore show the results for grids of size less
than 175 000. We see that both the serial back-end and the CUDA back-end on the NVS
follow approximately straight lines, but the CUDA back-end on the Tesla has a profile
more similar to a staircase. The Tesla runs in approximately the same time for cases
between 40 000 to 60 000 cells, then has a small increase and stay close to constant again
from 80 000 cells and up. The runtimes on the Tesla for cases between 80 000 and 250 000
cells differs only by 10%. We also see in Plot D) that the relative processing speeds are
a lot more stable on the NVS, and that the difference between the NVS and the Tesla is
relatively low for the small cases.

In plot B) from Figure 5.8 we see how the relative processing speed is dramatically
increasing during this period, and even after the total runtimes starts increasing we still
get a higher relative performance on the Tesla. When we compare this with the NVS, we
see that we achieve peak performance much earlier on the NVS than on the Tesla. After
400 000 cells, the NVS has approximately constant processing time per million cells, as
we see in Plot E). Plot F) shows that the relative performance of the serial back-end is
decreasing when we increase the number of cells for small cases. This is related to how
much data that fits to the CPU’s cache.

If we compare the CUDA back-end to the serial back-end, we see that for the smallest
cases we do not achieve any huge speed-up. This is likely to be related to the high number
of kernel calls (see Section 6.2.3), and we see that when comparing relative processing
speed for the largest cases we get a formidable speed-up for this simulator as well.

For the NVS we get a peak performance of 6.25 times the performance of large cases
on the CPU. Note also that we are not able to run the largest cases on the NVS as the
device run out of memory. For the Tesla however, we get a peak performance 7 times
higher as on the NVS, meaning that we get a 43 times speed-up compared to the serial
back-end.

Comparison by Optimized CUDA Code

So how good are our results really? As we have pointed out earlier, there are limited
information in comparing unoptimized serial code with what we can achieve on the GPU.
In comparison it will neither be fair to compare our one-kernel-per-operation simulators
to highly tuned and hand-optimized CUDA implementations. But since we have already
done the first comparison we should do the second one as well.

A highly efficient shallow water simulator using the numerical method on which we
have based our Equelle program, was implemented by Brodtkorb et.al.[10] in 2010. They
used a second order approximation in space, while we use a first order approximation of
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Figure 5.8: Performance testing for 100 iterations of the shallow water simulator for
different grid sizes on different hardware. Plot A) gives the trends of the runtimes
of all three hardware with focus on the Tesla K40. Since we have different trends
on the Tesla for relatively small and large cases, we take a closer look at the small
cases on all three hardware in Plot C). Plot B) and Plot E) shows relative processing
speed for the Tesla and NVS respectively, where Plot D) shows the same on small
grids. Plot F) shows relative speed for the serial back-end.
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Table 5.3: The grid sizes used in order to test performance of the shallow water
equation.

Num cells (106) 0.005 0.01 0.02 0.03 0.04 0.05 0.06 0.08 0.10 0.12
nx 50 100 200 300 200 200 200 200 200 300
ny 100 100 100 100 200 250 300 400 500 400

Num cells (106) 0.15 0.18 0.21 0.25 0.375 0.5 0.75 1 1.25 1.5
nx 500 600 300 500 500 500 1000 1000 1000 1500
ny 300 300 700 500 750 1000 750 1000 1250 1000

the same method. The time step is handled by the same Runge-Kutta method in both
cases.

They report peak performance of the GPU in terms of megacells (millions of cells)
processed per second, and give numbers based on two cases. The first case is a dam break
from a wet area onto a dry area, and case two is a radial dam break similar to our test
case from Figure 5.4. They show a higher peak performance on the cases with a higher
ratio of dry cells, as those cells require less computations by their method. We have used
a model on which all cells, dry or not, require the same amount of computations, and
we also use a filled basin as test case for the performance tests shown in Figure 5.8. We
therefore compare our simulator with their radial dam test case where there are water in
all cells of the domain.

The peak performance reported by Brodtkorb et.al using a NVIDIA GeForce GTX
480 is about 150 megacells per second. Our peak performance is obtained from the Tesla
which solves one iteration in 0.73 seconds per 1 million cells when using the largest test
case. This translates to 1.36 megacells per second, meaning that our Equelle simulator is
worse by a factor of 110 compared to the highly tuned CUDA simulator. Note also that the
reported numbers are about 4 years older than ours, and that using the tuned simulator
on new and more powerful GPUs are likely to give them even higher performance.

In Section 6.2.3 we will take a closer look at some of the reasons for the performance
penalty we experience with our shallow water simulator.
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Chapter 6

Discussion

6.1 Implemented Optimizations

As briefly mentioned in Section 4.1, we make use of the Nvidia Visual Profiler in the
optimization phase of the back-end development. After getting the back-end to the level
where it correctly evaluates all functionality of Equelle, we use the profiler to find out
which of the functions are most time consuming, and look at how these functions can be
evaluated with higher performance. The back-end implementation as described in Chap-
ter 4 are the optimized version, and this section will therefore describe some discarded
implementation designs and why those were sub-optimal.

The performance analysis was done with respect to the explicit heat equation simu-
lator. We have looked at both the performance of the initialization phase and compute
phase, and therefore chosen a test case using a grid with 555 000 cells structured in a 3D
Cartesian grid with dimensions 100×111×50. Since this is a large case, and the program
consists of relatively few operations per cell per time step, we have commented out the
line which writes the results to file in order to avoid that process dominating runtime.
In order to have a confirmation that we still get correct results, we keep on writing the
maximum value of the solution of each time step to the screen. The test case uses 20 time
steps.

The test hardware is the laptop GPU, Nvidia NVS 5200M, and we will here go through
a four step process that provided significant performance boost to the application. The
first prototype used 15.8 seconds on the entire simulation, including parameter file read-
ing, grid construction and the 20 iterations of computation. The reported timings are
summarized in Figure 6.1. In Appendix A we have listed the git commits that represents
version of the back-end as we will describe here.

Figure 6.2 shows a screen shot of the Nvidia Visual profiler, showing the main features
we have used during this process. The screen is split in two parts. The uppermost part
shows a time line of the program execution. The line shows what CUDA kernels or GPU
activity has been active at all time. For example, we can see how we have very few
instances of host to device memory transfers, while we do device to device copying almost
all the time. It also seems like we do a lot of copying from the device to host, but as we
hover the mouse above each instance, we see that the size of these copies are of the order
8 bytes representing the result from the maximum reduction. The last line we can see in
the screen shot shows us how often we do computation on the GPU by launching kernels.

Note that there seems to be no activity between 2 and 7 seconds after the program
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Figure 6.1: Bar graph showing the improvement in simulator execution time as we
re-evaluated performance bottlenecks. The numbers on the bars show the amount
of time spent in each of the construction and computational phases. Versions are as
follows: 1) First prototype before profiling, 2) Removing computation of transpose
matrices, 3) Using our own kernels instead of sparse matrix-vector products, 4) Lazy
evaluation of grid subsets, 5) Lazy evaluation of Gradient and Divergence matrix
operators.

is started. This is the initialization phase, where the CPU constructs the grid and its
neighbourhood relations. This process is not analysed by the profiler because this profiler
targets GPU activity only. From the time line it seems like the initialization phase lasts
to about 8 seconds, and that our test program therefore spends the same amount of time
initializing the simulation as computing the result. Note also that the time line from the
profiler is not accurate, as the profiling process requires some overhead. The timings we
report here are therefore from running the simulator without profiling. Doing this, we
found that the construction phase was 8.4 seconds on the first prototype, as seen in bar
1 in Figure 6.1.

The lower half of Figure 6.2 gives the most valuable information to us regarding which
part of our the code we should optimize. The profiler analyse the time spent by kernels
and the number of times each of them are called, and give each kernel a rank which reflects
the expected trade-of we might get from optimizing the kernel. Kernels with high ranks
are expected to have big impact on the performance of the application, while kernels with



6.1. IMPLEMENTED OPTIMIZATIONS 75

Figure 6.2: Screenshot from the Nvidia Visual Profiler analysing the first prototype
of the complete CUDA back-end used on the explicit heat equation.

low ranks are not significant. It is therefore a straight forward process to find the kernel
bottlenecks using this tool.

6.1.1 Matrix Transpose

We described in Section 4.3.2 how we construct the matrix representing the Extend opera-
tor by constructing the On operator for the reverse case and taking its transpose. The first
implementation of the transpose used the cuSPARSE library for actually computing the
transposed matrix with the cusparseDcsr2csc conversion function. The function maps
a matrix stored in the CSR-format over to CSC-format (compact sparse column-major
format). By interpreting a matrix stored in CSC-format as a matrix in CSR-format, we
get the transposed.

This method produced the correct results, but kernels used to compute the transpose
was identified to be a significant performance bottleneck. This can be seen in Figure 6.2,
where we see that the three highest ranked kernels are related to the cusparseDcsr2csc

function. These three kernels are called from inside the cuSPARSE library, but they are
all called from this one function.

In order to avoid this bottleneck, we added a private member in the CudaMatrix class
of the type cusparseOperation_t. This is an enumerator defined in the cuSPARSE
library which is used to flag if matrices used as input to the library functions should be
interpreted as being transposed or not. This allows us to store the non-transpose of all
matrices, but make other functions use the transposed of it.

From the cuSPARSE documentation[2] we also read that the csr2csc function requires
a significant amount of extra storage. By storing a single flag instead we avoid using this
temporary memory as well. By recompiling our test simulator we found a decrease in
execution time with 3.1 seconds. Since the matrix transpose is not used in the initialization
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Figure 6.3: The kernel bottlenecks for the explicit heat equation after redesigning
the treatment of transposed matrices.

phase, this increase in performance only took place in the computation phase, which was
decreased from about 7.4 to 4.3 seconds, as can be seen in bar 2 in Figure 6.1.

6.1.2 Discarding Sparse Matrix-Vector Products

We ran a new profiler analysis in order to find the new hotspots, and the new Kernel
Optimization Priorities are shown in Figure 6.3. In order to understand them we need
once again to go into the earlier implementation choices.

When we started writing the CUDA back-end, we focused on explicit solutions only,
meaning that we did not need to consider derivatives and AD. We then expanded the
back-end to also include AD and added the matrices for Gradient, Divergence, On and
Extend as described in Sections 4.3.2 and 4.4.1. With these matrices at hand, we could
just as well use them for the evaluation of the values also, and not only for the derivatives.
This was an attractive alternative to the kernel implementations, as the kernels consisted
of several functions and about 150 lines of code for each of the Equelle functions. If all
these lines could be replaced with a single multiplication instruction it would make the
code more readable, as well as easier to maintain and expand in the future.

From Figure 6.3 we see that this design was not a good idea. Note that 4 out of 5
of the most important kernels to optimize are related to sparse matrix-vector products.
This makes it clear that if we are able to remove matrix-vector multiplication from our
code altogether, we are likely to experience better performance. We therefore went back
to the implementation where the scalar values were computed using our own kernels.

Rerunning our simulator without using the matrices, we achieved another 2 seconds
faster execution time, giving a total runtime of 10.7 seconds. As with the matrix transpose,
this performance boost was only taken from the computing phase of the simulator, which
is an improvement of about 46% in this phase, as can be seen in bar 3 Figure 6.1.

Note that the profiler analysis from Figure 6.3 shows that the single highest ranked
kernel is still related to matrix transpose, and even with similar rank values as we saw
in the first analysis from Figure 6.2. This could have been interpreted as if removing the
explicit computation for the transpose did not provide any improvements. However, the
significant improvement of the execution time shows that using transpose flags instead
gave a huge impact. The analysis showing that transposed matrix-vector multiplication
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is still a hotspot only indicates how important it was to change that design in the first
place.

6.1.3 Lazy Evaluation of Common Grid Subsets

When we look at the profiler suggestions from Figure 6.3, we see that the two kernels
with highest ranks not related to the matrix-vector product are functions from the Thrust
library. When we use our own kernels instead of using the matrix operations, the Thrust
kernels are still highest ranked by the profiler, with rank values 100 and 54. The third
highest ranked kernel then becomes our boundaryFacesKernel, which also can be seen
in the last line of Figure 6.3, now with rank 43.

The Thrust functions are related to the remove_if function used in the process of find-
ing Boundary and Interior grid subsets. As described in Section 4.3.1, these functions
are implemented by initializing all elements with a non-valid integer, updating only the
elements that are part of the set we want, and extracting all elements that now contain
valid indices. This extraction is what the profiler indicates is our new bottleneck.

It seems hard to find a new and faster method to find these subsets, compared to the
previous cases, and we have decided to not change the way we compute these sets. Instead,
we look at the option of moving the computation of these sets to the construction and
initialization phase of the simulation, then store it and just use this one copy whenever
it is needed.

Pre-computing the grid subsets require some extra memory to be used during the entire
program, but we have to remember that the entire back-end already is designed without
memory minimization in mind. First of all, the data arrays stored in the DeviceGrid

class contains several arrays which sizes depend on the grid. Second, there is a minimal
reuse of variables, since all variables defined by the user is const by default. Storing four
extra arrays which in total contain number_of_faces_ + number_of_cells_ integers is
therefore not expected to have a dramatic impact on the entire memory consumption.

When we consider storing these grid sets, it is natural to ask “What if we do not need
them?” When we look at Figure 6.1, we see that the construction phase is large enough
as it is, and we do not want to add more unnecessary work. With this in mind, we decide
to do a lazy evaluation of the grid subsets. This means that we compute the grid subset
the first time it is requested, and then store it for later. Any standard grid subset is
therefore computed no more than once, and we never compute sets that are not used in
the simulator.

This is done by adding to the DeviceGrid class mutable CollOfIndices member
variables which we are allowed to change even if we use a const instance of the class. We
also store boolean variables indicating whether the collections are initialized or not, and
implement the functions requesting the sets as shown by the example in Listing 6.1. Note
that we do not create a copy of the boundary_faces_ by calling this function, but rather
return a constant reference to the variable in the DeviceGrid class.

We recompile our test simulator with this updated functionality and experience a
drop of another 0.9 seconds in execution time. Since this optimization is also done in the
computational phase, we actually notice that this reduces the computational phase by
almost 40%. This is quite significant having in mind that most simulations are likely to
have more than 20 explicit time steps. This test is shown in bar 4 of Figure 6.1.
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Listing 6.1: Lazy evaluation of BoundaryFaces() in the DeviceGrid class.

1 const CollOfFace& DeviceGrid : : boundaryFaces ( ) const {
2 i f ( boundaryFacesEmpty ) {
3 createBoundaryFaces ( ) ;
4 }
5 return boundary face s ;
6 }

6.1.4 Lazy Evaluation of Gradient and Divergence Matrices

Looking at bar 4 in Figure 6.1, we see that most of the execution time is now spent in the
construction phase of the program. Since we are likely to have a huge number of iterations,
and since this phase is independent of number of iterations, performance is not critical
for this phase. However, we are likely to run small cases during the development of new
simulators, or when we implement new functionality to the back-end, and we therefore
look at how we can improve this part of the program as well.

The construction phase consists of the following steps:

• Constructing the grid.

• Transferring the grid to the device.

• Construction of host matrices for Gradient and Divergence operators by the class
Opm::HelperOps.

• Transferring these matrices from host to device.

The matrices for the Gradient and Divergence operators are only used to compute the
derivative matrices, and they are therefore never used in explicit methods. Because of
this we would prefer not to spend time on constructing matrices we are never going to
use. We therefore implement a lazy evaluation of these matrices as well.

Since the process of constructing these two matrices are a two-step procedure, we
also implement a two-step lazy evaluation. Taking the DeviceHelperOps::gradient()

function as example, we use the work flow as described in pseudo code in Listing 6.2.

Listing 6.2: Pseudo code for lazy evaluation of the matrix representation of the
Gradient operator.

1 const CudaMatrix& DeviceHelperOps : : g rad i en t ( ) {
2 i f ( g rad i en t matrix not on dev i c e ) {
3 i f ( host matr i ce s not c reated ) {
4 c r e a t e host matr i ce s using OPM
5 }
6 copy grad i en t matrix from host to dev i c e
7 }
8 return g rad i en t mat r i x ;
9 }

Since the test simulator uses an explicit method, it will never construct any matrices
for these operators. By running the simulator again, we do the construction phase in only
one fourth of the time compared to before, saving us a lot of time during small tests.
Note that for implicit methods, we will still have to do the same amount of work in the
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Figure 6.4: Kernel performance analysis after the 4 steps of optimization.

construction phase, but the construction of the Gradient and Divergence matrices will
then be moved to the first iteration of the computation phase.

By running the profiler again, we get the ranking of our kernels as shown in Figure
6.4. The first thing we note, is that all the kernel bottlenecks at this stage are our own
kernels, meaning that we do not suffer from loss of performance by taking advantage of
external libraries. Second, all 7 kernels shown in the figure have ranks above 50. Earlier
we had the case that one kernel, or a set of kernels related to the same library function,
was significantly more important to optimize than others. Now however, it seems like
it will not be enough to optimize only one kernel or functionality to get a performance
boost, but that we rather have to re-evaluate how we have implemented all of them.

In summary we have achieved a 4 times speed-up by using the profiler’s “Kernel
Optimization Priorities” analysis to detect what functionality had biggest impact on per-
formance. This performance gain came equally from both the construction phase and
computation phase of the simulator, meaning that we have this amount of speed up
regardless of the number of iterations.

6.2 Performance Limiting Factors

We have shown in Chapter 4 how the CUDA back-end has been implemented to match
the minimally changed compiler front-end, and we have given results showing that the
implementation gives correct simulators, along with a performance analysis in Chapter 5.
In this section our main focus is to look at which factors are stopping us from achieving
even higher performance, targeting the Tesla K40 GPU.

We will go through each of the three simulators used in Chapter 5 and look at what
the of performance limiting factors for each of them are. The explicit heat equation has
to some extent been analysed in Section 6.1, but we will in Section 6.2.1 look at what
are the current bottlenecks. In Section 6.2.2 we will discuss some of the improvement
potential related to the automatic differentiation, and we will also look at the profiler’s
suggestions for the shallow water equations in Section 6.2.3, as that simulator requires
significantly more operations per iteration than the heat equation.

6.2.1 Explicit Heat Equation

We use a test case of 3 million cells on a Cartesian grid and run the simulator for
40 timesteps, a program executing in about 3.3 seconds on the Tesla GPU, and where the
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2 first seconds are initializing and grid construction. The profiler makes a similar analysis
for the kernel optimization potentials as shown in Figure 6.4, which was done on the NVS
5200M GPU, even though the actual rankings contain some small differences. There is
still no single kernel which has significantly higher rank than the others.

On a more general note, the profiler inform us that our use of memory is inefficient.
This is not directly related to our low reuse of variables or the big amount of temporary
variables needed (see Section 6.3.1), but rather because of our irregular memory access
pattern. Two of the warnings from the profiler say that the global memory load and store
efficiency is low, and that this most likely is because of irregular access patterns or bad
alignment.

Since the back-end is designed for handling unstructured grids, we already expect
operations that use multiple elements from the same arrays to be unaligned as we use
only linear memory. Normal memory optimization strategies for GPUs, such as using
shared memory and multidimensional arrays are therefore not possible to implement. In
order to see this, we look at the divergenceKernel as an example, and use 2D Cartesian
grid for simplicity. The kernel code was shown in Listing 4.12. Since a Cartesian grid is
only a special case of unstructured grids, the memory access pattern will have the same
irregularities as for unstructured grids.

In the 2D Cartesian grid all cells have 4 faces each, and in order to compute the
Divergence we want to do some processing of the data stored in an input array flux.
Figure 6.5 shows which operations each thread has to make towards the GPU’s global
memory. In order to know which elements we need from the flux array we read which
faces that belong to our cell in cell_faces_, and in order to know where to look in the
cell_faces_ array we need to read two elements from cell_facepos_. We also need to
read one element from face_cells_ for each flux element, in order to know if it should
be added or subtracted to the result. This means that each thread is required to read
15 elements from global memory in order to compute one element for the resulting array
div.

As we see from Figure 6.5, we are guaranteed that the elements in cell_faces_ are
continuously stored in memory, but the elements in face_cells_ and flux will not be.
For the case of 3D Cartesian grids, we will need to access 6 faces for each cell, and therefore
end up with 21 reads from global memory. We will here give two suggestions on how to
limit the number of global reads compared to the amount of computation.

Writing Separate Kernels for Computations on Cartesian Grids

It is hard to avoid irregular memory access when we use unstructured grids. However, it
is not unthinkable that we could implement the back-end so that it uses different kernels
depending on whether the grid is Cartesian or not. We could set a flag in simulations
where the parameter file defines nx, ny and nz, and check this flag each time we call a
function which could take short-cuts for Cartesian grids.

Consider again the Divergence operator on a 2D Cartesian grid, where we also define
all normal vectors to be in positive x or y directions. We can then define a mapping so
that the linearly stored values on AllCells(), c, can be organized in a nx × ny grid in
C, so that

C(i, j) = c(i+ nxj) for i = 0, 1, ..., nx − 1, j = 0, 1, ..., ny − 1. (6.1)
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Figure 6.5: The data elements each thread is required to access in global memory in
order to compute the Divergence on an unstructured grid. This is the model used
in the CUDA back-end.

We could create a similar mapping for values f stored linearly on AllFaces() as well
onto two grids Fx = (nx + 1× ny) and Fy = (nx × ny + 1), so that

Fx(i, j) = f(i+ (nx + 1)j) for i = 0, 1, ..., nx, j = 0, 1, ..., ny − 1 (6.2)

and

Fy(i, j) = f(i+ nxj + (ny(nx + 1))) for i = 0, 1, ..., nx − 1, j = 0, 1, ..., ny. (6.3)

This mapping onto the grid can be seen in Figure 6.6.
We can now formulate the Divergence operator on f and store it in u as

U(i, j) = Fx(i+ 1, j)− Fx(i, j) + Fy(i, j + 1)− Fy(i, j). (6.4)

With this structured interpretation, we could further map the Divergence operator nicely
to a 2 dimensional block in CUDA, where threads within the same block could cooperate
on the process of reading data from the global memory. By calling kernels with blocks of
size 8 by 8 we could use them to compute a 7 by 7 domain of divergences.

The idea would be to allocate shared memory according to Figure 6.7, and let each
thread with thread ID that matches an element in those domains load this element. We
would then have to synchronize the block so that all shared memory elements would be
written to before we would try to read them. The result could then be easily computed
by Equation (6.4). Listing 6.3 shows an outline of how this CUDA kernel might look like.

Other functions that could benefit from special Cartesian implementations are

• Gradient,

• volume of cells as all cells are the same size which we can compute,

• area of faces as all faces with the same orientation are the same size,
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Figure 6.6: Cell and face data interpreted by a 2D Cartesian mapping. In the
linear memory model used in the CUDA back-end, elements would be stored as
[C(0, 0), C(1, 0), ..., C(nx−1, 0), C(0, 1), ..., C(nx−1, ny−1)], and all Fx values would
be stored before any Fy.
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Figure 6.7: In order to compute the Divergence of a 7 by 7 domain, we would need
face data according to these two domains, where Fx and Fy as in Equation (6.2) and
(6.3). The blue elements are read by threads that do not compute anything for the
output, but only helps loading data to shared memory for the other threads to use.
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• subsets of the grid.

Listing 6.3: Outline for a CUDA kernel for computing the Divergence by assuming
2D Cartesian grid.

1 global void car t DivergenceKerne l ( double∗ div ,
2 const double∗ f lux ,
3 const int nx ,
4 const int ny )
5 { // Assumes b l o c k s i z e s 8 by 8 ,
6 // Find our g l o b a l index :
7 const int i = threadIdx . x + (blockDim . x − 1) ∗blockIdx . x ;
8 const int j = threadIdx . y + (blockDim . y − 1) ∗blockIdx . y ;
9

10 // A l l o ca t e shared memory :
11 s h a r e d double Fx [ 8 ] [ 7 ] ;
12 s h a r e d double Fy [ 7 ] [ 8 ] ;
13
14 // Write to shared memory :
15 i f ( i < 8 && j < 7)
16 Fx [ i ] [ j ] = f l u x [ i + ( nx+1)∗ j ] ;
17 i f ( i < 7 && j < 8)
18 Fy [ i ] [ j ] = f l u x [ i + nx∗ j + ny∗( nx+1) ] ;
19 // Synchronize a l l t h reads in b l o c k :
20 sync th r ead s ( ) ;
21
22 // Ca l cu l a t e d i ve rgence
23 i f ( i < 7 && j < 7 ) {
24 div [ i + nx∗ j ] = Fx [ i +1] [ j ] − Fx [ i ] [ j ] + Fy [ i ] [ j +1] − Fy [ i ] [ j ] ;
25 }
26 }

Kernel Fusion by Changing the Compiler Front-End

Another reason for why the Profiler points out memory usage as an issue with our back-
end, is that reading from and writing to global memory is usually a more time consuming
task than performing arithmetic operations. Our kernels are mostly very small, and most
of the times we read one or two elements from global memory, do one arithmetic operation
and write the result back to global memory.

If we were able to combine kernels which operates on the same data, we would likely
be able to improve performance by reducing memory operations towards global memory.
As we will see in Section 6.3.1 we generate a lot of intermediate results which are written
just to be read at once, and then go out of scope. The process of combining multiple
kernels into one bigger kernel is called kernel fusion, and we will take a closer look at it
later.

6.2.2 Implicit Heat Equation

By running the implicit heat equation simulator through the profiler, we easily get a fast
overview of which functionality are limiting factors for most implicit simulators. We apply
a 3D Cartesian grid as test case, using 500 000 cells and 10 iterations.
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The major kernel bottleneck is the same as the original bottleneck for the explicit
case as described in Section 6.1. It is kernels related to the cuSPARSE function csr2csc

for converting a matrix from CSR- to CSC-format. This may seem surprising at first,
since we never call it and only use a flag to mark transposed matrices. The reason it is
still used is that the sparse matrix-sparse matrix multiplication function from cuSPARSE,
cusparseDcsrgemm, is only implemented for non-transposed matrices. When we call the
csrgemm function with the transpose flag, cuSPARSE calls the csr2csc function internally
before multiplying the matrices as non-transposed matrices.

After kernels related to the csr2csc function, we get highest rank on kernels related
to the csrgemm sparse matrix-sparse matrix multiplication function. Full matrix-matrix
products are operations that maps perfecty to GPUs, but when the matrices are sparse,
the non-regular memory access pattern results in bad performance.

The multiplication process also uses a two-step procedure, as described in Section
4.2.3. Each time we multiply two sparse matrices, we first need to find the new non-zero
pattern, which gives us the csrRowPtr array in the CSR storage format. Since the sparsity
patterns we get will not change between iterations, one potential optimization could be
a lazy evaluation of the sparsity patterns. That way we could compute the csrRowPtr

arrays during the first iteration and then get away with only a one-step multiplication
procedure for all other iterations.

One optimization that we have already implemented is multiplication with diagonal
matrices from the left. This is an operation that is widely used in the CUDA back-end, and
can be translated to multiplying the diagonal entry to all elements in the corresponding
row in the right-hand-side matrix.

In order to optimize implicit simulators, an effort has to be made to find good ways to
treat transposed matrices, or to omit the use of transposed matrices in the back-end all
together. The next step would likely be to look at special cases for sparse matrix-sparse
matrix multiplications given the sparsity patterns that are typical for Equelle simulators.

6.2.3 Shallow Water Equations

The shallow water simulator differs in many ways from the simulator for the heat equation.
The heat equation only consists of a few operations for each iteration, where it calculates
the fluxes across all faces using the Gradient operator, applying some scaling and then
the Divergence operator before the result is added to the next time step.

The shallow water Equelle program consists of 400 lines of code, with an array of three
Collection Of Scalars used for the unknowns, one for each of the three equations.
There are plenty of ternary if operators checking for dry cells, and in general a lot of
complex expressions. As we saw in Section 5.4 the simulator does not gain much from
using the CUDA back-end as long as the number of cells are small.

By running the shallow water simulator through the profiler, we find that each iteration
invokes more than 1000 kernels, where the multiplication kernel alone is called 140 times.
In comparison, each iteration of the heat equation requires less than 35 kernels to be
launched. It is therefore expected that the shallow water simulator would get a larger
performance gain from combining kernels than what the heat equation would get.

Another problem with the huge amount of kernel invocations is that we do a lot of
device-to-device copying. The test case we look at is a 100 by 100 grid, and therefore
consists of 10 000 cells. The equations are solved for the water depth h, and the velocities
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u and v in x and y direction respectively, and we are therefore interested in generating 3
Collection Of Scalar On AllCells() variables. The three of them sums up to

3 · 10000 · 8bytes = 240kB (6.5)

of results for each iteration. The total amount of device-to-device copying is more than
300 MB per iteration. This is more than 1000 times more data than needed just for
the unknowns. We note that the order of extra data we generate is comparable to the
number of kernels launched in each iteration. It is therefore likely that by implementing
some optimizations in the front-end for reducing the amount of kernel calls, we will also
reduce the amount of data that we move around on the device.

6.3 Future work

Even though we now have multiple back-ends available for Equelle, the language is still
in its early development phases. There are plans for extending the language by adding
more functionality to it, and even to add new dialects to the language for solving PDEs
in terms of node stencils instead of in terms of flux relations as we do now. There is also
an MPI back-end under development for deploying the simulators on computer clusters,
and a cloud based back-end is also planned. We will in this section focus on the future of
the CUDA back-end, rather than the future of the entire language.

The future work for providing better performance for this back-end should be focused
in two directions. The first direction is to implement functionality in the compiler front-
end for doing optimization on the abstract syntax tree. This would make the intermediate
representation more complex, but could potentially give huge performance improvements
for both the serial and the CUDA back-ends.

The second direction would be to keep improving the CUDA back-end. We point out
some weaknesses with the back-end and some additional techniques or concepts that we
have not prioritized to look into yet.

6.3.1 Front-End Optimizations

In the discussion on the intermediate representation in Section 3.2.1, we mentioned that
in order to produce the intermediate code used for our back-end, we needed to sacrifice
back-end specific optimizations that could have been implemented in the front-end. We
will here give some suggestions on concepts that should be optimized in order to get higher
performance.

Consider an arithmetic expression

d = (a+ b)c+ ab (6.6)

where all variables are of type Collection Of Scalars defined on the same set. When
this line is executed by the CUDA back-end, the arithmetic operations are executed by
launching the kernels for addition and multiplication one by one, as

temp1 = a + b

temp2 = temp1 * c

temp3 = a * b

d = temp2 + temp3
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Each of the operations will launch kernels where each thread does two reads from global
memory, perform the operation and write the result. In total the expression in Equation
(6.6) would require 8 reads and 4 writes to global memory, distributed on 4 distinct kernel
calls.

The better way to handle the expression in Equation (6.6) would be to make the front-
end write a CUDA kernel to take a, b and c as input and d as output, where each thread
would do the entire computation

d[i] = (a[i] + b[i])*c[i] + a[i]*b[i];

This operation requires only 3 reads and 1 write, and would therefore be more efficient.
The front-end would also have to generate a wrapper function for setting up and launching
the kernel, and a suggestion for a generated code is shown in Listing 6.4. The expression is
generated inside a kernel kernelX where X can be a number giving unique function names.
This kernel is called from the function wrapKernelX, which first create the resulting
CollOfScalar which will be of the same size as a. The wrapper is called from the main
generated function, in which the current front-end generates all code. Also have in mind
that the compiler would only let operations between variables defined on the same set be
accepted, so all variables would be of the same size.

Listing 6.4: Suggested generated code with optimizing CUDA front-end.

1 // In s i d e main genera ted code :
2 . . .
3 const Col lOfSca la r d = wrapKernelX ( a , b , c ) ;
4 . . .
5
6 // Stand a lone f unc t i on s
7 Co l lOfSca la r wrapKernelX ( const Col lOfSca la r& a , const Col lOfSca la r& b ,

const Col lOfSca la r& c ) {
8 Co l lOfSca la r out ( a . s i z e ( ) ) ;
9 kerne lSetup s ( a . s i z e ( ) ) ;

10 kernelX<<<s . gr id , s . block>>>(out . data ( ) , a . data ( ) , b . data ( ) ,
c . data ( ) , a . s i z e ( ) ) ;

11 return out ;
12 }
13
14 global void wrapKernelX ( double∗ out , const double∗ a , const

double∗ b , const double∗ c , const int s i z e )
15 {
16 const int i = myID( ) ;
17 i f ( i < s i z e ) {
18 out [ i ] = ( a [ i ] + b [ i ] ) ∗c [ i ] + a [ i ]∗b [ i ] ;
19 }
20 }

Note that this type of code generation would also be attractive to do on multiple lines
of code in cases where all variables operate in a one-to-one fashion without any need to
globally synchronize all threads. Implementing such analysis in the front-end is however
not straight-forward.

A different technique used to solve this problem on CPUs is using expression templates.
This technique overload operators to call template functions which builds an expression
tree in order to loop through the data structures only once even for complex expressions.
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The technique is used by Eigen[19], among others, on which the serial back-end is built. It
does not require any other intermediate code than the one we already use. An alternative
to the above front-end changes could therefore be to look at using expression templates
with CUDA, even though it is only able to help us one by one line and not for a block of
code.

6.3.2 Back-End Improvements

Even though we have shown good performance of the CUDA back-end considering the
limitations of the intermediate code, there are still parts of the library that will need
more work. The parts we will mention here will mostly be unrelated to the front-end
improvements that we have discussed previously.

The CUDA back-end uses a given number of threads per block for any kernel and
on any GPU. The reason we have chosen 512 threads per block is that this is a block
size which all GPUs with double precision floating-point operations support. Most new
GPUs, included the two GPUs we have used for testing in this thesis, allow up to 1024
threads in each block, but choosing that many threads would limit the amount of GPUs
that could run the back-end.

It is unknown if 512 threads per block is an optimal choice, and investigating this
should be on the to-do list for the future development. Additionally, it could be interesting
to make the choice of block size depend on the size of the grid used in each execution,
and have some kind of automated optimization related to this.

A technique we have not used in the back-end is the use of streams to make the
GPU execute two or more different tasks in parallel. In order to use streams we need to
identify tasks, or in this case Equelle functions, that do not depend on each other, and
which therefore can be evaluated independently. An example of such cases is the Output

function which writes a Collection Of Scalar to screen or file. We could use a separate
stream for copying the given data from the device to host, and immediately continue on
doing computations in the main stream.

There is one Equelle function that is not supported in the CUDA back-end, and that
is NewtonSolveSystem. The reason for why implicit methods of systems of PDEs
are harder to solve than for a single equation is that we get multiple primary variables.
Consider the shallow water equations, where h, u and v are our unknown. Variables
used in the numerical methods would depend on these three variables, and a variable
F = F (h, u, v) would get derivatives associated by all three of them, as ∇hF , ∇uF and
∇vF . Before we could solve a linear system we would have to combine these Jacobian
matrices in order to construct the matrix that would be used by the solver. Implementing
this functionality has not been prioritized in this thesis.

The class LinearSolver for solving linear systems has been implemented to cover
a minimum of what has been needed. As seen in Table 4.1 we have not implemented
all the combinations of solver and preconditioners we have mentioned. This class should
therefore be expanded in order to become more robust and flexible. It would perhaps not
be necessary to start developing more linear solvers for CUDA from scratch, but rather
keeping an eye out for new methods offered by Cusp in the future.

The next step after having a well performing CUDA back-end is to combine the CUDA
back-end with the MPI back-end in order to execute Equelle simulators on multi-GPU
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environments. This would increase the amount of total global memory, as well as compu-
tational resources, and would therefore help us run even larger simulations.



Chapter 7

Conclusion

In this master thesis we have developed a CUDA back-end for the Equelle compiler. This
has been done without changing the way the Equelle front-end generates the interme-
diate C++ code, and the back-end has therefore been implemented as a CUDA/C++
library. This is according to the idea that new Equelle back-ends should be implemented
as libraries with similar user interfaces matching the intermediate code.

We have shown correctness of the implemented back-end by using three different sim-
ulators written in Equelle. Two heat equation simulators using explicit and implicit
methods, and a simulator for the shallow water equations which was implemented in the
Specialization Project[20]. In order to solve the linear system arising in implicit methods,
we have used operator overloading to implement automatic differentiation of first order
successfully for the GPU. We have also shown that we do not require Cartesian grids, but
are able to run the simulators on unstructured grids as well.

Performance has been measured by giving different grid sizes as input to the three
simulators, and we experienced a significant speed-up by running the Equelle simulators
on a Tesla K40 GPU compared to using the serial back-end. For the largest cases we
obtained a 83 times speed-up. However, when comparing the Equelle program to a highly
optimized shallow water simulator written in CUDA, our code runs 110 times slower. We
therefore see that at the current stage, our CUDA back-end is a good alternative to the
serial back-end, but it is not yet ready to compete against hand-tuned CUDA code.

In order to find the performance limiting factors, we have used a profiler to identify
bottlenecks and to look at memory usage. We have shown how we have optimized and
redesigned parts of our code, resulting in a 4 times more efficient simulator.

The main problem with the CUDA back-end however, seems to be in the design of
the intermediate code, resulting in one CUDA kernel call for each operation used in the
Equelle source code. The same design is also causing a huge amount of internal memory
usage on the GPU, which should be decreased in order to achieve higher performance.
We therefore suggest that the future development should be focused on implementing
optimizations in the front-end, and generate CUDA kernels directly instead of the current
C++ code that calls a library for each operation.

In summary we have managed to provide the first prototype of a CUDA back-end for
Equelle, based on the existing front-end and intermediate code design. We have seen that
we are able to achieve performance far better than what is available on the CPU, and
this back-end is therefore an attractive alternative to the serial back-end when it comes
to implementing more test simulators in Equelle.
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Appendix A

Build Instructions

We will here go through the main required steps for downloading the Equelle compiler
and its back-ends, and running the simulators and tests shown in this thesis. The first
thing to do is to visit the Equelle project’s Github pages [16], where the wiki found at

https://github.com/sintefmath/equelle/wiki

states the requirements needed for compiling the front-end and the serial back-end. The
wiki is written for users on the operating system 12.04. The compiler has to be downloaded
as source code and compiled by the user.

Since the build instructions are clearly written on the Github pages, we will not go
through every step here. The most important steps are the following:

• Install the necessary programs and dependencies for the serial back-end.

• Clone the repository from Github, using

git clone https://github.com/sintefmath/equelle.git

• Do the out-of-source build as recommended, using CMake to generate the make file.

In order to build the CUDA back-end, follow the instructions found on

https://github.com/sintefmath/equelle/wiki/CUDA-backend

First of all, the user needs a CUDA enabled GPU, and to install CUDA as described on
Nvidia’s webpages1. The Thrust and cuSPARSE libraries used by the CUDA back-end
are included in the CUDA software package, but Cusp has to be downloaded separately,
and is available through Github as well2.

In order to set up CMake correctly with the CUDA compiler nvcc, CMake version 2.8.9
is required. This is because the CMake script FindCUDA.cmake was updated by that ver-
sion, and we have provided the CMake script on Github (equelle/extras/FindCUDA.cmake)
as it may be hard to find the correct subversion of CMake.

Create a separate out-of-source folder, and build the CUDA back-end by the following
command:

1https://developer.nvidia.com/cuda-downloads
2git clone https://github.com/cusplibrary/cusplibrary.git
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cmake -DEQUELLE_BUILD_CUDA=ON ../equelle

make

The CUDA back-end should then be ready for use.

In order to run the unit tests to ensure correctness of the library, run

make test

Building a simulator

The simulators used in this thesis can be found under

equelle/examples/simulators/

with sub-folders containing Equelle source code, Matlab pre- and post-processing scripts
and CMake scripts for the second compile stage. An Equelle program is compiled in-source
as follows, by assuming we are in a sub-folder of simulators/,

$ {path_to_build}/compiler/ec -i mySim.equelle --backend=cuda > mySim.cpp

cmake -DEquelle_DIR={path_to_build} .

make

The first line represents the front-end, and writes the C++ intermediate code to mySim.cpp,
while the two others are for compiling and linking the C++ program to the back-end.

Final Version

The Equelle language is in continuous development, and it is likely that there will be made
changes in the source code we have discussed in this thesis. This can be optimizations,
restructuring, expansion of functionality etc. In order to be able to download the version
that we have described through this thesis, we have made a git tag at the final commit
done through this thesis work.

The code at the time of completion of this thesis can be downloaded in two way. The
first way is to follow the steps above by cloning the git repository, then checkout the
following tag:

git checkout tags/version_20140609

All files will now be in the same state as they were on 9th of June 2014. Note that in
order to use the compiler from this state, the software needs to be recompiled by

cd {path_to_build}

make

The second way is to visit the Equelle Github page3, press “release” in the bar above
the directory contents, and download version_20140609 as a .zip or .tar.gz.

3https://github.com/sintefmath/equelle
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Table A.1: The git commit hash-keys representing each optimization step for explicit
heat equation. Version number is as follows: 1) First prototype before profiling, 2)
Remove computations of transpose matrices, 3) Using our own kernels instead of
sparse matrix-vector products, 4) Lazy evaluation of grid subsets, 5) Lazy evaluation
of Gradient and Divergence matrix operators.

Version number Commit hash-key
1 be557bfc64f0aff1e2a730f44f93e223eded6c0e
2 07d40eea08ab1e4245c77806dd81629782209913
3 3c1f1cf9857e6bbdf43056a5c6b8d4c8a3a72fa1
4 fdec65787409b1e89d3668f3ef79a78b301a36e2
5 5702e388577cb7a1db9edc57c5ca9b103c095c3c

Reproducibility

All performance tests and numerical results presented in this thesis can be reproduced by
using the code from the final commit and the tag described above. The exception is the
step-by-step optimization procedure done for the explicit heat equation.

In order to build and run the different steps in the optimization procedure we went
through in Section 6.1, it is possible to go back in the git commit history and retrieve the
code at the state of each test. The following command turns the code into the state of a
specific commit:

git checkout <commit>

where <commit> is the hash-key representing the commit we want. It is often enough to
only use the first 6-8 symbols of the hash-key in order to checkout the correct commit.

Table A.1 lists the commit hash-keys associated to the optimization steps we went
through in Section 6.1, where the version number corresponds to the ones given in Figure
6.1.

Documentation

We have added documentation readable by the documentation generator Doxygen. In
order to generate the documentation run the following commands, assuming you are
standing in the base folder, equelle.

$ cd backends/cuda

$ doxygen doxyconfig

This should generate a new folder named docs, containing two more sub-folders, html
and latex. In order to browse the documentation in a html reader, open the file
docs/html/index.html in a web browser. Enter the tab Namespaces and equelleCUDA
to get to the list of classes and other namespaces discussed in this thesis.

In order to create a pdf document with the entire documentation for the CUDA back-
end, do the following:

$ cd docs/latex/

$ make

This should create the file refman.pdf which contains the entire documentation.
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Appendix B

Test Cases

We will use this appendix chapter to contain both numerical methods of the test cases,
as well as Equelle code.

B.1 The Heat Equation

In this thesis we have used the heat equation as an example, a validator of the correctness
of the CUDA back-end, and for performance measuring. We will therefore briefly give an
overview of the numerical methods the Equelle simulators are based on. We will refer to
the Equelle code shown in Listing B.1, which shows implicit formulation of the problem.

The heat equation is stated as

∂u

∂t
− k∇2u = 0, (B.1)

where u = u(x, t). By using f(u) = −k∇u, we recognise the standard form we used in
Equation (2.1). By following the same steps as in Section 2.2.1 and letting Un be the
approximation of u(x, tn) we get

Un+1 = Un +
∆t

|Ω|
kF∂Ω (B.2)

where the numerical flux F∂Ω is

F∂Ω ≈
1

∆t

∫ tn+1

tn

∫
∂Ω

∇u · n dγ dt. (B.3)

Recall that for an implicit method, F∂Ω is calculated by using the new unknown solution,
u(x, tn+1). For the explicit solution u(x, tn) is used to compute F∂Ω.

The first thing we do, is to assume constant flux in the time interval (tn, tn+1), and to
model ∇u by a first order finite difference method. Let the cell be surrounded of K faces,
and ni be the unit normal of face i, i = 1, ..., K. The gradient across face i becomes

∇ui =
Gradient(ui)

|Centroid(SecondCell(i))− Centroid(FirstCell(i))|
(B.4)

The integral across the cell boundary interprets to the sum of the weighted gradients across
the faces. Since a positive gradient is increasing from FirstCell to SecondCell, we do
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not know if this corresponds to positive or negative x, y or z direction. The Divergence

function uses the same definition of positive direction, and because of that we get the dot
product with the outward normal vector into the equation for free. Meaning that

F∂Ω ≈ Divergence (∇u · |InteriorFaces()|) (B.5)

where the |InteriorFaces()| is the area of each corresponding face. Observe that the | · |
statements are independent of u, and can therefore be computed once at the beginning of
the program. This, multiplied by k, is stored in the itrans variable at line 21. Equation
(B.5) is represented in the Equelle program as computeInteriorFlux starting at line 33.

The simulator is implemented to use Dirichlet boundary conditions, where a user
defined subset of BoundaryFaces(), called dirichlet_boundary, has constant user pro-
vided values dirichlet_val. We have to compute fluxes from these values, and therefore
compute Equation (B.4) based on the values and centroids on the dirichlet_boundary

and the values and centroids on the cells attached to these faces. The definition of
positive direction that comes for free with the Gradient function has to be computed
manually (bf_sign and dir_sign in lines 26 and 30), and the resulting function is
computeBoundaryFlux starting at line 38.

For finding an implicit solution by the NewtonSolve, we require a function that cal-
culates a residual function taking a solution guess as input. This function is defined in
the for loop across the lines 66-69. Note how this function uses two more variables, u0
and dt, from the above scope and call computeResidual defined on line 49. The residual
used here is Equation (B.2) written as

r = Un+1 − Un − ∆t

|Ω|
kF∂Ω. (B.6)

The function NewtonSolve on line 71 returns the input to the computeResidualLocal

such that the function becomes zero.

Explicit Solution

In order to get an explicit simulator, we need to modify the Equelle program in Listing
B.1 slightly. We can omit the call to NewtonSolve, and instead put a modified version of
the computeResidual function inside the for loop. Instead of finding the residual we find
the next solution at once using Equation (B.2) directly.

The explicit formulation also requires sufficiently small time steps in order to give us
stable solutions. Let ∆x, ∆y and ∆z denote the size in each direction of the cells in the
grid, and ∆t be the time step. The Courant-Friedrichs-Lewy (CFL) condition states that
in order to get a stable explicit solution of Equation (5.1), we need to choose ∆t such that

1

2
> max

{
k∆t

∆x2
,
k∆t

∆y2
,
k∆t

∆z2

}
(B.7)

is satisfied. For unstructured grids, it might not be as easy to find a measurement to
match ∆x, ∆y and ∆z, and some conservative educated guess has to be made.
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The Equelle Code

Listing B.1 shows the Equelle implementation of the above method, while Listing B.3
shows the intermediate code for the CUDA back-end produced by the Equelle front-
end. Listing B.2 shows the changes needed in Listing B.1 in order to get the explicit
formulation.

Listing B.1: Implicit finite volume method for solving the heat equation written in
Equelle.

1 # Heat conduction with no boundary cond i t i ons or source terms .
2
3 # Physics t ha t r e qu i r e s s p e c i f i c a t i o n
4 k : Scalar = InputScalarWithDefault ( ”k” , 0 . 3 ) # Heat d i f f u s i o n constant .
5
6 # u i n i t i a l shou ld be g iven i n i t i a l va lue s ( in user input )
7 u i n i t i a l : Collection Of Scalar On AllCells ( )
8 u i n i t i a l = InputCollectionOfScalar ( ” u i n i t i a l ” , AllCells ( ) )
9

10 # Trying to add support f o r D i r i c h l e t boundaries
11 d i r i c h l e t b o u n d a r y : Collection Of Face Subset Of ( BoundaryFaces ( ) )
12 d i r i c h l e t b o u n d a r y = InputDomainSubsetOf ( ” d i r i c h l e t b o u n d a r y ” , BoundaryFaces ( ) )
13 d i r i c h l e t v a l : Collection Of Scalar On d i r i c h l e t b o u n d a r y
14 d i r i c h l e t v a l = InputCollectionOfScalar ( ” d i r i c h l e t v a l ” , d i r i c h l e t b o u n d a r y )
15
16 # Compute i n t e r i o r t r a n sm i s s i b i l i t i e s .
17 vo l = | AllCells ( ) | # Deduced type : Co l l e c t i on Of Sca lar On

A l lC e l l s ( )
18 i n t e r i o r f a c e s = InteriorFaces ( ) # Deduced type : Co l l e c t i on Of Face
19 f i r s t = FirstCell ( i n t e r i o r f a c e s ) # Deduced type : Co l l e c t i on Of Ce l l On

i n t e r i o r f a c e s
20 second = SecondCell ( i n t e r i o r f a c e s ) # Deduced type : Same as f o r ’ f i r s t ’ .
21 i t r a n s : Collection Of Scalar On i n t e r i o r f a c e s = k ∗ | i n t e r i o r f a c e s | /

| Centroid ( f i r s t ) − Centroid ( second ) |
22
23 # Compute boundary t r a n sm i s s i b i l i t i e s .
24 bf = BoundaryFaces ( )
25 b f c e l l s = IsEmpty ( FirstCell ( bf ) ) ? SecondCell ( bf ) : FirstCell ( bf )
26 b f s i g n = IsEmpty ( FirstCell ( bf ) ) ? (−1 Extend bf ) : (1 Extend bf )
27 btrans = k ∗ | bf | / | Centroid ( bf ) − Centroid ( b f c e l l s ) |
28
29 # Compute q u an t i t i e s needed fo r boundary cond i t i ons .
30 d i r s i g n = b f s i g n On d i r i c h l e t b o u n d a r y
31
32 # Compute f l u x f o r i n t e r i o r f a c e s .
33 computeInter iorFlux : Function (u : Collection Of Scalar On AllCells ( ) ) −> Collection

Of Scalar On InteriorFaces ( )
34 computeInter iorFlux (u) = {
35 −> − i t r a n s ∗ Gradient (u)
36 }
37
38 # Compute f l u x f o r boundary f a c e s .
39 computeBoundaryFlux : Function (u : Collection Of Scalar On AllCells ( ) ) −> Collection

Of Scalar On BoundaryFaces ( )
40 computeBoundaryFlux (u) = {
41 # Compute f l u x at D i r i c h l e t boundaries .
42 u d i r b d y c e l l s = u On ( b f c e l l s On d i r i c h l e t b o u n d a r y )
43 d i r f l u x e s = ( btrans On d i r i c h l e t b o u n d a r y ) ∗ d i r s i g n ∗ ( u d i r b d y c e l l s −

d i r i c h l e t v a l )
44 # Extending with zero away from D i r i c h l e t boundaries ( i . e . assuming no−f l ow

e l sewhere ) .
45 −> d i r f l u x e s Extend BoundaryFaces ( )
46 }
47
48 # Compute the r e s i d ua l f o r the heat equat ion .
49 computeResidual : Function (u : Collection Of Scalar On AllCells ( ) , u0 : Collection Of

Scalar On AllCells ( ) , dt : Scalar ) −> Collection Of Scalar On AllCells ( )
50 computeResidual (u , u0 , dt ) = {
51 i f l u x e s = computeInter iorFlux (u)
52 b f l u x e s = computeBoundaryFlux (u)



98 APPENDIX B. TEST CASES

53 # Extend both i f l u x e s and b f l u x e s to Al lFaces () and add to ge t a l l f l u x e s .
54 f l u x e s = ( i f l u x e s Extend AllFaces ( ) ) + ( b f l u x e s Extend AllFaces ( ) )
55 # Deduced type : Co l l e c t i on Of Sca lar On A l lC e l l s ( )
56 r e s i d u a l = u − u0 + ( dt / vo l ) ∗ Divergence ( f l u x e s )
57 −> r e s i d u a l
58 }
59
60 t imes teps : Sequence Of Scalar

61 t imes teps = InputSequenceOfScalar ( ” t imes teps ” )
62 u0 : Mutable Collection Of Scalar On AllCells ( )
63 u0 = u i n i t i a l
64
65 For dt In t imes teps {
66 computeResidualLocal : Function (u : Collection Of Scalar On AllCells ( ) ) −>

Collection Of Scalar On AllCells ( )
67 computeResidualLocal (u) = {
68 −> computeResidual (u , u0 , dt )
69 }
70 u guess = u0
71 u = NewtonSolve ( computeResidualLocal , u guess )
72 Output ( ”u” , u)
73 Output ( ”maximum of u” , MaxReduce (u) )
74 u0 = u
75 }

Listing B.2: Explicit finite volume method for solving the heat equation written in
Equelle. Note that this listing starts at line 48, as the first part is identical to the
implicit version.

48 ##
49 ## Above code i s omit ted as i t i s i d e n t i c a l wi th the
50 ## imp l i c i t program .
51 ##
52
53 expU : Mutable Collection Of Scalar On AllCells ( )
54 expU = u0
55 For dt In t imes teps
56 {
57 i f l u x e s = computeInter iorFlux (expU)
58 b f l u x e s = computeBoundaryFlux (expU)
59 # Extend both i f l u x e s and b f l u x e s to Al lFaces () and add to ge t a l l f l u x e s .
60 f l u x e s = ( i f l u x e s Extend AllFaces ( ) ) + ( b f l u x e s Extend AllFaces ( ) )
61 # Deduced type : Co l l e c t i on Of Sca lar On A l lC e l l s ( )
62 expU = expU − ( dt / vo l ) ∗ Divergence ( f l u x e s )
63 Output ( ”expU” , expU)
64 Output ( ”maximum of u” , MaxReduce (expU) )
65 }
66 Output ( ”expU” , expU)

Intermediate Code

The intermediate code for the implicit heat equation simulator follows in Listing B.3.

Listing B.3: Intermediate code for the implicit heat equation produced by the
Equelle front-end for the CUDA back-end

1
2 // This program was crea ted by the Eque l l e compi ler from SINTEF.
3
4 #include <opm/ core / u t i l i t y / parameters /ParameterGroup . hpp>
5 #include <opm/ core / u t i l i t y / ErrorMacros . hpp>
6 #include <opm/ core / g r id . h>
7 #include <opm/ core / g r id /GridManager . hpp>
8 #include <algor ithm>
9 #include < i t e r a t o r >

10 #include <iostream>
11 #include <cmath>
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12 #include <array>
13
14 #include ”EquelleRuntimeCUDA . hpp”
15
16 void ensureRequirements ( const EquelleRuntimeCUDA& er ) ;
17 void equel leGeneratedCode ( equelleCUDA : : EquelleRuntimeCUDA& er ) ;
18
19 #ifndef EQUELLE NO MAIN
20 int main ( int argc , char∗∗ argv )
21 {
22 // Get user parameters .
23 Opm: : parameter : : ParameterGroup param ( argc , argv , fa l se ) ;
24
25 // Create the Eque l l e runtime .
26 equelleCUDA : : EquelleRuntimeCUDA er ( param ) ;
27 equel leGeneratedCode ( er ) ;
28 return 0 ;
29 }
30 #endif // EQUELLE NO MAIN
31
32 void equel leGeneratedCode ( equelleCUDA : : EquelleRuntimeCUDA& er ) {
33 using namespace equelleCUDA ;
34 ensureRequirements ( er ) ;
35
36 // ============= Generated code s t a r t s here ================
37
38 const Sca la r k = er . inputSca larWithDefaul t ( ”k” , double ( 0 . 3 ) ) ;
39 const Col lOfSca la r u i n i t i a l = er . i npu tCo l l e c t i o nOfS ca l a r ( ” u i n i t i a l ” ,

e r . a l l C e l l s ( ) ) ;
40 const CollOfFace d i r i c h l e t b o u n d a r y =

er . inputDomainSubsetOf ( ” d i r i c h l e t b o u n d a r y ” , e r . boundaryFaces ( ) ) ;
41 const Col lOfSca la r d i r i c h l e t v a l = er . i np u tC o l l e c t i onO fSca l a r ( ” d i r i c h l e t v a l ” ,

d i r i c h l e t b o u n d a r y ) ;
42 const Col lOfSca la r vo l = er . norm( er . a l l C e l l s ( ) ) ;
43 const CollOfFace i n t e r i o r f a c e s = er . i n t e r i o r F a c e s ( ) ;
44 const Col lOfCe l l f i r s t = er . f i r s t C e l l ( i n t e r i o r f a c e s ) ;
45 const Col lOfCe l l second = er . s econdCe l l ( i n t e r i o r f a c e s ) ;
46 const Col lOfSca la r i t r a n s = ( k ∗ ( e r . norm( i n t e r i o r f a c e s ) /

er . norm ( ( er . c en t r o id ( f i r s t ) − er . c en t r o id ( second ) ) ) ) ) ;
47 const CollOfFace bf = er . boundaryFaces ( ) ;
48 const Col lOfCe l l b f c e l l s = er . t r i n a r y I f ( e r . isEmpty ( er . f i r s t C e l l ( bf ) ) ,

e r . s econdCe l l ( bf ) , e r . f i r s t C e l l ( bf ) ) ;
49 const Col lOfSca la r b f s i g n = er . t r i n a r y I f ( e r . isEmpty ( er . f i r s t C e l l ( bf ) ) ,

e r . operatorExtend(−double (1 ) , bf ) , e r . operatorExtend (double (1 ) , bf ) ) ;
50 const Col lOfSca la r btrans = ( k ∗ ( e r . norm( bf ) / er . norm ( ( er . c en t r o id ( bf ) −

er . c en t r o id ( b f c e l l s ) ) ) ) ) ;
51 const Col lOfSca la r d i r s i g n = er . operatorOn ( b f s i g n , e r . boundaryFaces ( ) ,

d i r i c h l e t b o u n d a r y ) ;
52 std : : funct ion<Col lOfSca la r ( const Col lOfSca la r &)> computeInter iorFlux = [& ] ( const

Col lOfSca la r& u) −> Col lOfSca la r {
53 return (− i t r a n s ∗ er . g rad i en t (u) ) ;
54 } ;
55 std : : funct ion<Col lOfSca la r ( const Col lOfSca la r &)> computeBoundaryFlux = [& ] ( const

Col lOfSca la r& u) −> Col lOfSca la r {
56 const Col lOfSca la r u d i r b d y c e l l s = er . operatorOn (u , e r . a l l C e l l s ( ) ,

e r . operatorOn ( b f c e l l s , e r . boundaryFaces ( ) , d i r i c h l e t b o u n d a r y ) ) ;
57 const Col lOfSca la r d i r f l u x e s = ( ( er . operatorOn ( btrans , e r . boundaryFaces ( ) ,

d i r i c h l e t b o u n d a r y ) ∗ d i r s i g n ) ∗ ( u d i r b d y c e l l s − d i r i c h l e t v a l ) ) ;
58 return er . operatorExtend ( d i r f l u x e s , d i r i ch l e t boundary , e r . boundaryFaces ( ) ) ;
59 } ;
60 std : : funct ion<Col lOfSca la r ( const Col lOfSca la r &, const Col lOfSca la r &, const

Sca la r &)> computeResidual = [& ] ( const Col lOfSca la r& u , const Col lOfSca la r&
u0 , const Sca la r& dt ) −> Col lOfSca la r {

61 const Col lOfSca la r i f l u x e s = computeInter iorFlux (u) ;
62 const Col lOfSca la r b f l u x e s = computeBoundaryFlux (u) ;
63 const Col lOfSca la r f l u x e s = ( er . operatorExtend ( i f l u x e s , e r . i n t e r i o r F a c e s ( ) ,

e r . a l l F a c e s ( ) ) + er . operatorExtend ( b f luxes , e r . boundaryFaces ( ) ,
e r . a l l F a c e s ( ) ) ) ;

64 const Col lOfSca la r r e s i d u a l = ( ( u − u0 ) + ( ( dt / vo l ) ∗
er . d ive rgence ( f l u x e s ) ) ) ;

65 return r e s i d u a l ;
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66 } ;
67 const SeqOfScalar t imes teps = er . inputSequenceOfSca lar ( ” t imes teps ” ) ;
68 Col lOfSca la r u0 ;
69 u0 = u i n i t i a l ;
70 for ( const Sca la r& dt : t imes teps ) {
71 std : : funct ion<Col lOfSca la r ( const Col lOfSca la r &)> computeResidualLocal =

[& ] ( const Col lOfSca la r& u) −> Col lOfSca la r {
72 return computeResidual (u , u0 , dt ) ;
73 } ;
74 const Col lOfSca la r u guess = u0 ;
75 const Col lOfSca la r u = er . newtonSolve ( computeResidualLocal , u guess ) ;
76 er . output ( ”u” , u) ;
77 er . output ( ”maximum of u” , e r . maxReduce (u) ) ;
78 u0 = u ;
79 }
80
81 // ============= Generated code ends here ================
82
83 }
84
85 void ensureRequirements ( const EquelleRuntimeCUDA& er )
86 {
87 (void ) e r ;
88 }

B.2 The Shallow Water Equations

We will here give a short presentation of the numerical scheme on which the Equelle
simulator for the shallow water equations is written. The simulator was written as part
of the Specialization Project[20], and a more thorough presentation of the method can be
found there. The method is based on the second order scheme presented by Kurganov
and Levy [22] but simplified to a first order scheme suitable for Equelle.

The equations model the water depth h and the water velocities u and v in x and y
direction respectively, when the free surface is only under the influence of gravity g. We
use source terms to account for bottom topography B. The equations are stated as hhu

hv


t

+

 hu
hu2 + 1

2
gh2

huv


x

+

 hv
huv

hv2 + 1
2
gh2


y

=

 0
−ghBx

−ghBy

 . (B.8)

The numerical method is based on considering the conserved variables q = [q1, q2, q3]T ,
where q1 = ω := h + B, q2 = hu and q3 = hv. The variable ω becomes the surface
elevation. These variables are inserted in Equation (B.8), and written in vector form

qt + f(q)x + g(q)y = hB(q). (B.9)

We consider a general domain Ω ∈ R2 discretised in a regular recangular grid with
cells Ωj,k defined by

Ωj,k = {(x, y) ∈ R2, xj−1/2 ≤ x ≤ xj+1/2, yk−1/2 ≤ y ≤ yk+1/2}. (B.10)

We use ∆x and ∆y as width and height for the cells respectively.
The method is written as in Section 2.2.1, where Equation (B.9) is integrated over

Ωj,k while the divergence theorem is applied on the flux terms. This leads to

∂

∂t

∫
Ωj,k

q dΩj,k +

∫
∂Ωj,k

[f g] · n dγ =

∫
Ωj,k

hB dΩj,k. (B.11)
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Using the rectangular domain, we can express the line integral on the cell boundary as∫
∂Ωj,k

[f g] dγ =

∫ yk+1/2

yk−1/2

[
f(q(xj+1/2, y))− f(q(xj−1/2, y))

]
dy

+

∫ xj+1/2

xj−1/2

[
g(q(x, yk+1/2))− g(q(x, yk−1/2))

]
dx.

(B.12)

Approximate values for q, hB, and the flux terms are then defined as

Qj,k ≈
1

∆x∆y

∫
Ωj,k

q(x, y) dΩ, (B.13)

Fj±1/2,k ≈
1

∆y

∫ yk+1/2

yk−1/2

f(q(xj±1/2, y)) dy, (B.14)

Gj,k±1/2 ≈
1

∆x

∫ xj+1/2

xj−1/2

g(q(x, yk±1/2)) dx, (B.15)

Sj,k ≈
1

∆x∆y

∫
Ωj,k

hB(x, y) dΩ. (B.16)

Equation (B.11) then becomes

∂

∂t
Qj,k +

Fj+1/2,k − Fj−1/2,k

∆x
+
Gj,k+1/2 −Gj,k−1/2

∆y
= Sj,k (B.17)

We then use a central-upwind scheme using the following numerical fluxes

Fj+1/2,k =
a+
j+1/2,kf(Qj,k)− a−j+1/2,kf(Qj+1,k)

a+
j+1/2,k − a

−
j+1/2,k

+
a+
j+1/2,ka

−
j+1/2,k

a+
j+1/2,k − a

−
j+1/2,k

(Qj+1,k −Qj,k) (B.18)

Gj,k+1/2 =
b+
j,k+1/2g(Qj,k)− b−j,k+1/2g(Qj,k+1)

b+
j,k+1/2 − b

−
j,k+1/2

+
b+
j,k+1/2b

−
j,k+1/2

b+
j,k+1/2 − b

−
j,k+1/2

(Qj,k+1 −Qj,k) (B.19)

where

a+
j+1/2,k = max

{
λ3

(
∂f

∂q
(Qj+1,k)

)
, λ3

(
∂f

∂q
(Qj,k)

)
, 0

}
(B.20)

a−j+1/2,k = min

{
λ1

(
∂f

∂q
(Qj+1,k)

)
, λ1

(
∂f

∂q
(Qj,k)

)
, 0

}
(B.21)

b+
j,k+1/2 = max

{
λ3

(
∂g

∂q
(Qj,k+1)

)
, λ3

(
∂g

∂q
(Qj,k)

)
, 0

}
(B.22)

b−j,k+1/2 = min

{
λ1

(
∂g

∂q
(Qj,k+1)

)
, λ1

(
∂g

∂q
(Qj,k)

)
, 0

}
(B.23)

Here, λ(·) denotes the eigenvalues of the Jacobian matrices of their argument, such that
λ1 ≤ λ2 ≤ λ3. The eigenvalues we need are

λ1

(
∂f

∂q

)
= u−

√
g(ω −B), λ3

(
∂f

∂q

)
= u+

√
g(ω −B), (B.24)
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λ1

(
∂g

∂q

)
= v −

√
g(ω −B), λ3

(
∂g

∂q

)
= v +

√
g(ω −B). (B.25)

The source term is treated as Sj,k = [0, S
(2)
j,k , S

(3)
j,k ]T , where

S
(2)
j,k = g

B(xj+1/2, yk)−B(xj−1/2, yk)

∆x
·

(ωj,k −B(xj+1/2, yk)) + (ωj,k −B(xj−1/2, yk))

2
,

S
(3)
j,k = g

B(xj, yk+1/2)−B(xj, yk−1/2)

∆y
·

(ωj,k −B(xj, yk+1/2)) + (ωj,k −B(xj, yk−1/2))

2
.

(B.26)

It should be said that we read the bottom topography by its values on the faces of the
grid. The surface elevation ω = h+B is then calculated by using the mean value of each
cell’s face values.

We now have all terms for Equation (B.17) such that it is in semi-discrete form. We
solve by the time derivative by using a second-order stability preserving Runge-Kutta
method as used in [8]. Denote time step n of the solution in cell Ωj,k as Qn

j,k. We
reorganize Equation (B.17) and denote the new right hand side as R(Q)j,k as

∂

∂t
Qj,k = −

Fj+1/2,k − Fj−1/2,k

∆x
−
Gj,k+1/2 −Gj,k−1/2

∆y
+ Sj,k =: R(Q)j,k. (B.27)

The Runge-Kutta method is then given as

Q∗j,k = Qn
j,k + ∆tR(Qn)j,k

Qn+1
j,k =

1

2
Qn

j,k +
1

2

[
Q∗j,k + ∆tR(Q∗)j,k

]
,

(B.28)

which solves the shallow water equations in cell Ωj,k for time step n+ 1.
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