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Abstract 

In order to design and operate current and future CCS system and processes, accurate predictions of the behavior of the fluids 
involved is necessary. Currently, there are large knowledge gaps for fundamental properties needed to build models that can 
provide such predictions. Pure CO2 is relatively well known, but in real processes there will be impurities that may have large 
impact. Hence, SINTEF Energy Research, Norwegian University of Science and Technology, and Ruhr-Universität Bochum are 
performing a project to close some of these knowledge gaps named CO2Mix. In the current paper, the need for new data will be 
explained, and some of the results produced so far in the project will be presented, including the establishment of highly accurate 
setups for the measurement of phase equilibria, density, and speed of sound, as well as new property data produced by these 
setups. Although the project has and will close important data gaps, more work is needed both with regards to the aforementioned 
target properties and other thermos-physical properties. 
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VLE Vapour-liquid equilibria 
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Fig. 1. Facilities of SINTEF ER for accurate phase equilibrium measurement using the analytical method developed in the CO2Mix project. 

1. Introduction 

For any process involving fluids, knowledge of relevant thermophysical properties is essential in order to design 
and operate it in an efficient manner and at the same time maintaining robustness and safety [1, 2]. This is the case 
for the various processes involved in CCS as well, and it is essential to optimize cost while ensuring safety in order 
to realize large-scale deployment.   

For pure CO2, thermodynamic and transport properties are fairly accurately described by established models [3, 
4]. However, in the CO2 product of CCS capture processes impurities will be present [5] which will change the fluid 
properties. Even for small amounts of impurities, changes in for instance phase behavior and density can be fairly 
large [6], affecting processes both in capture, transport and storage of CO2-rich fluids [5]. Hence, accurate models 
are needed to predict properties of mixtures between CO2 and the most relevant impurities. As shown by [5, 7-10], 
there are large gaps in available data for all thermodynamic and transport properties at conditions relevant for CCS. 
Thus, good models cannot be developed for all relevant situations, meaning that, in the best case, implementation of 
safe and robust processes will depend on large and expensive safety margins, for instance by excessive purification.  

To cover some of these knowledge gaps, SINTEF Energy Research (SINTEF ER), Norwegian University of 
Science and Technology (NTNU), and Ruhr-Universität Bochum (RUB) have since 2010 conducted the BIGCCS 
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[11, 12] spin-off project CO2Mix. The project aim is to improve the thermodynamic-property data situation relevant 
for conditioning and transport in CCS, regarding phase equilibria, density, and sound speed by developing new 
infrastructure and provided highly accurate measurement data [6]. Measurements of vapor-liquid equilibria are 
performed by SINTEF Energy Research and NTNU, whereas density and speed of sound are measured by RUB. 

In the current paper, Section 2 will in brief terms provide an overview of the current unsatisfactory state of 
thermophysical properties of fluids and conditions relevant for CCS, and its implications for the implementation of 
future CCS system, Section 3 will present an overview of the projects VLE measurements, Section 4 will discuss the 
density and speed of sound measurements, before the conclusions of Section 5. 

2. Project motivation and data needs 

In order to design any process system in an efficient and robust way, accurate predictions regarding the fluids 
involved are required, which again necessitates that their thermodynamic and transport properties are known within 
acceptable uncertainty limits. That these properties can change drastically with a relatively small amount of 
impurities, for instance present in the CO2 product from capture processes, and that the impact of impurities in many 
cases currently is not satisfactory quantifiable, are facts that perhaps are not always realized.  

For instance, phase behavior must be known in order to design transportation systems based on both pipelines 
and shipping. The gas-liquid phase boundary of pure CO2 spanning between the critical point at 31 °C/ 74 bar and 
triple point at -57 °C/ 5.2 bar is centrally located with regards to conditions experienced during transport. Hence, 
unlike natural gas, there is lower pressure limit in pipeline transport in order to avoid two-phase flow, and care must 
be taken for instance when designing compression processes. As will be shown in Section 3, relatively small levels 
of impurities can change this phase behavior drastically. In order to avoid corrosion, it is also very important to 
predict the conditions where a water rich phase is formed. Unfortunately water solubility is known to be lower in the 
presence of other impurities such as methane, SO2, and NOx [13-15], and, like methane, CO2 also forms hydrates at 
unfavorable conditions [16] that can block processes or wear down process equipment. Planned and or accidental 
depressurization may lead to strong cooling which can lead to e.g. the formation of dry ice or hydrates. In addition, 
water solubility is much lower in gas than in liquid phase [17]. 

Density is another thermodynamic property of obvious importance, which determines the dimensions of all 
equipment and in the end the storage capacity. Density is however also very important with respect to energy use in 
process equipment, and is also needed to high degree of accuracy for most mass flow measurement principles. 
Hence, to enable fiscal metering, necessary for a working CO2 market, high fidelity models for CO2 mixture density 
must be created. As seen in Fig. 2, according to the most accurate models today, only 5 % of N2 may drastically alter 
the density of the fluid when getting close to the critical point. For instance at 40 °C, 9 degrees above the critical 
point, the reduction in density is up to 45 %. For other impurities the effect could be opposite [6].  

Speed of sound is needed in the modeling of transient fluid dynamic phenomena, and is also useful for fitting 
equations of state, as in classical mechanics the speed of sound can be expressed through the relation 

, where the subscript S means that the derivative is performed with constant entropy. 
Although not the focus of this project, there are a range of other properties that have to be known in order to design 
different processes in CCS. For instance, viscosity data are needed in order to calculate pressure drop in for instance 
pipes, wells, during injection, and in heat exchangers, and to calculate the power consumption of rotating 
machinery. Diffusion coefficient, another transport property, and the interfacial property surface tension are needed 
in a range of different fluid dynamic problems including reservoir modeling. The transport property thermal 
conductivity and the thermodynamic property heat capacity are needed for a range of heat transfer problems, 
especially relevant for CCS chains involving shipping and/or low-temperature CO2 separation. As exemplified in 
Fig. 3, also these properties are strongly affected by impurities. 
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Fig. 2: Ratio between the density of CO2 mixed with 5 mol % N2 and pure CO2 as a function of pressure for selected temperatures calculated 
using REFPROP v 9.1 using GERG 2008 EOS for mixture and Span-Wagner EOS for pure CO2 [3, 18-20]. Curve of 0 °C is discontinuous since 
the viscosity is not defined in the two-phase region. 

 

Fig. 3. Ratio between dynamic and kinematic viscosities of CO2 mixed with 5 mol % N2 and pure CO2 as a function of pressure calculated using 
REFPROP v. 9.1 [19]. Curves of 0 °C are discontinuous since the viscosity is not defined in the two-phase region. 

Although molecular modeling has come a long way for simple gases [21] like helium, but in general the accuracy 
is still questionable mixtures and conditions relevant for CCS. Hence, the best property predictions are currently still 
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dependent on empirical models. However, recent studies have shown that there are large gaps in the public available 
data suitable to fit such models [7-10]. For instance, for VLE, only a few systems like CO2-methane and CO2-N2, 
seem to be fairly well covered, but, as seen in for instance Refs. [9, 22] and Section 3, even here the available data 
could be so old and inconsistent that further studies are warranted. For transport properties the situation is much 
worse. For instance, there are no measurements available in the liquid phase except for some data on CO2 mixtures 
containing water [5, 10]. 

On the modeling side, a fairly accurate reference model of state, GERG-2008, has now been established for 
natural gas [18]. Similar work has started for CO2-rich mixtures relevant for CCS [7, 8], but until the data situation 
is improved, these models do not have the required accuracy, as exemplified in Section 3. In order to tune 
thermodynamic models, measured data on binary mixtures are normally most useful, while multicomponent 
mixtures can be measured for model verification. 

The effects of impurities discussed above have large impact on the design and economics of CCS systems in 
general and on transport systems in particular. A number of studies have been made on the cost of CO2 transport, 
varying from a few euros to several tens of euros per tonne [23-30], and tools have been developed to estimate the 
future costs [31-33]. With the estimated annual needs for CO2 capture numbering 6.3 gigatonne by 2050 in the 2 
degree scenario of IEA [34], better estimates for the transportation costs are imperative. As discussed in [6], only 5 
mol % of nitrogen could under certain conditions lead to a theoretical increase of the power consumption by a factor 
of 2.9. Hence, a significant part of the uncertainty in the cost picture is due to the uncertain property situation, and 
more data are needed in order to be able to make an optimized trade-off between level of purification and 
transportation costs, a fact which motivated this project.  

3. Phase Equilibrium Measurements 

In the CO2Mix project, a new facility, shown in Fig. 1, has been designed for highly accurate measurements of 
primarily vapor liquid equilibria (VLE). The setup is described in detail in Refs. [22, 35-37]. An analytical principle 
is employed, where the both the dew and bubble point composition at equilibrium conditions for a given temperature 
and pressure are measured. Due to the large span in pressures (< 200 bar) and temperatures ( -50 – 150 °C) of 
interest, and safety considerations relating to the gases to be studied, careful and custom design was required in 
order to reach the accuracy needed and at the same time maintain the safety and robustness of the setup. The setup 
has been verified and has so far been used to provide new phase equilibrium data for binary mixtures of CO2 and N2 

 

Fig. 4. CO2-N2 phase equilibrium measurements compared with existing models [22, 37]. For this mixture, EOS-CG is identical to GERG-2008 
[8, 18]. 
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and CO2 and O2 [22, 37, 38]. Accuracy is ensured by using traceable and certified standards for temperature, 
pressure, and composition. 

Two measured isotherms of the CO2-N2 are shown in Fig. 4, detailed data will soon be published [38]. Both 
around 25 and around -50 °C, models based on existing literature data predict that the two-phase regions extend to 
significant higher pressure than our data suggest. Note that the two-phase pressure envelope around -50 extends 
almost to 200 bar, and the envelope around 25 °C covers a pressure range of approximately 20 bar, hence the shifts 
seen are highly relevant from an operating perspective. For the measurements around 25 °C, nearby literature data is 
included in Fig. 4, illustrating that even for nominally well covered systems there is a need to improve the data 
situation, especially for high CO2-concentrations / high temperatures and near critical conditions. 

In Fig. 5 some measured isotherms of the CO2-O2 binary system are shown [38]. For this system, the data 
situation is much more scarce than CO2-N2, most likely due to its lack of relevance for natural gas. Only four works 
are available on CO2-O2 VLE measurements in the literature with reasonable data consistence, and latest of these 
sources was published in 1972 [39-42]. As an example, a single isotherm measured in CO2Mix is shown with related 
literature data in Fig. 6, indicating both the scatter of the literature data at this temperature, fidelity of the 
measurement around the critical point, and lack of model fit. The deviation between the model and the new data is in 
this case not only around the critical region, but also at lower temperatures. Some of the existing literature data seem 
to be inconsistent with the very accurate data available for pure CO2. The green marker in the plot indicates a 
supercritical data point, where two phases could not be separated neither visually or through sampling, illustrating 
the high resolution of the setup. 

4. Density and speed of sound measurements 

Due to the nature of the CO2 mixtures, existing methods and designs for the measurement of density and speed of 
sound had to be revisited, and also for these properties a new facility has been constructed, pictured to the left in Fig. 
8. For density measurements, a single sinker setup based on the principles developed by Wagner et al. [43, 44], 
illustrated in Fig. 7 was employed. The buoyancy of the single sinker is measured using a magnetic coupling to an 
accurate weight comparator.  

 

Fig. 5: New CO2-O2 VLE measurements and comparison with the EOS-CG model [8, 38]. 
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Fig. 6. Measured VLE isotherm of CO2-O2 plotted with existing literature data and best available reference model (EOS-CG) [8, 38]. 

 

Fig. 7: Single sinker densimeter setup 
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The densimeter has now been verified and currently produces accurate data for mixtures. The instrument has 
been compared against a two-sinker setup, which has high accuracy, but has a narrower range, using CO2-Ar 
mixtures. An example is shown to the right in Fig. 8. The measurements of the two instruments have a similar 
deviation from GERG-2008 and a new reference equation of state developed for CCS fluids, EOS-CG [8]. 

Originally, the plan was to measure speed of sound of CO2 mixtures using a pulse-echo method [6, 45]. 
Unfortunately, due to the high sound absorption and frequency used, the apparatus is not suitable for mixtures with 
CO2. Alternative methods are now pursued [46], but the pulse-echo instrument can be used for secondary mixtures 
relevant for CCS. 

5. Conclusions and summary 

In order to design and operate systems and processes for CCS, extensive new and accurate measurements of 
thermophysical properties are needed. For the large amount of CO2 that should be captured, transported, and stored 
according to the IEA 2 degree scenario, the current uncertainty in CO2 mixture properties will translate to huge 
costs. 

In the CO2Mix project, the three important properties, VLE, density, and speed of sound are addressed for a 
selected set of mixtures. From an operational point, measurements should be more accurate than the process data 
available in order further uncertainty in the process control, and the empirical models themselves can never be more 
accurate than the data on which they build. Hence, it has been a major goal of the project to provide as accurate data 
as possible. Due to the properties of CO2 and typical impurities, design and construction of highly specialized and 
advanced setups have been required. New and very accurate property data have been and are being produced, of 
which some examples have been reported here. These data will soon be presented in the reference  

 

 

Fig. 8. Left: Density and speed of sound setup at RUB. Right (top): Comparison between single and two-sinker density measurements of a 25/75 
of CO2-Ar. Right (bottom): Same results shown within a narrower density ratio range. 
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literature. Especially for phase equilibria measurements, relatively large deviations are found between the new data 
and established models, especially in the critical regions. 

Although the project are closing important knowledge gaps, especially with regards to VLE and density, there 
should be continued focus on obtaining better data also for systems and conditions that cannot be covered within the 
CO2Mix project. Equally important, there is a large need to cover other properties, for instance transport properties 
such as viscosity and thermal conductivity and heat capacity. To cover all knowledge gaps, international cooperation 
is key, and hence the state of the art infrastructure established by SINTEF ER CO2Mix project is currently also 
involved in the IMPACTS project [47] and included in the ECCSEL network [48]. 
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