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In many models in condensed matter and high-energy physics, one finds inhomogeneous phases at high
density and low temperature. These phases are characterized by a spatially dependent condensate or order
parameter. A proper calculation requires that one takes the vacuum fluctuations of the model into account.
These fluctuations are ultraviolet divergent and must be regularized. We discuss different ways of
consistently regularizing and renormalizing quantum fluctuations, focusing on momentum cutoff,
symmetric energy cutoff, and dimensional regularization. We apply these techniques calculating
the vacuum energy in the Nambu-Jona-Lasinio model in 1þ 1 dimensions in the large-Nc limit and in
the 3þ 1 dimensional quark-meson model in the mean-field approximation both for a one-dimensional
chiral-density wave.
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I. INTRODUCTION

There are many systems in condensed matter and high-
energy physics where some of the phases are inhomo-
geneous. These are phases where an order parameter or a
condensate depends on position. The simplest case is where
only the phase of the order parameter is varying; the general
case is where both magnitude and phase are functions of
position. The idea of inhomogeneous phases is rather old
going back to the work of Fulde and Ferrell as well as by
Larkin and Ovchinikov in the context of superconductors
[1,2], density waves in nuclear matter by Overhauser [3],
and pion condensation by Migdal [4]. In recent years,
inhomogeneous phases have been studied in, for example,
cold atomic gases [5], color superconducting phases [6–8],
quarkyonic phases [9,10], as well as chiral condensates
[11–22]; see Refs. [23,24] for recent reviews.
In the case of QCD, these inhomogeneous phases exist at

large baryon chemical potential μB or isospin chemical
potential μI, and low temperature. In the case of large μB,
they cannot be studied by lattice simulations due to the
infamous sign problem and one must use low-energy
models of QCD. Examples of such models are the
Nambu-Jona-Lasinio (NJL) model and the quark-meson
(QM) model or their Polyakov-loop extended versions, the
PNJL and PQM models. Most of the calculations in 3þ 1
dimensions have been inspired by corresponding calcula-
tions in 1þ 1 dimensions using Ansätze for the inhomo-
geneities that are one dimensional [25–33]. Interestingly,

some of these models in 1þ 1 dimensions can be solved
exactly in the large-Nc limit and show a rich phase
diagram [28,29].
When calculating the thermodynamic potential in these

models, one faces ultraviolet divergences due to vacuum
fluctuations. The ultraviolet divergences in the NJL model
are typically regularized using a sharp momentum cutoff Λ
[34]. However, in the case of inhomogeneous condensates,
a naive application of a momentum cutoff leads to an
incorrect expression for the vacuum energy in the limit
where the magnitude of the order parameter vanishes
[30,31]. Instead, proper time regularization [12], symmetric
energy cutoff regularization” [30,31] and Pauli-Villars
regularization have been applied [13–16]. In this paper,
we will discuss how to use momentum cutoff, symmetric
energy cutoff, and dimensional regularization in the case of
inhomogeneous phases. In order to obtain a meaningful
expression for the vacuum energy, it is necessary to perform
a unitary transformation (that depends on the wave vector)
on the free Hamiltonian and subtract the vacuum energy of
the noninteracting system.
In the NJL model, one cannot throw away the quantum

fluctuations since chiral symmetry breaking is induced by
them; i.e. there is no symmetry breaking at tree level.1 This
is in contrast to the quark-meson model, where the Higgs
mechanism is implemented by choosing a negative mass
term in the tree-level potential. In many finite-temperature
applications of the quark-meson model, one ignores the
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1In the NJL model, there is symmetry breaking for a coupling
constant larger than a critical one, Gc, which depends on the
cutoff Λ.
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vacuum fluctuations hoping that their effects on the chiral
transition are negligible [13,35]. However, it turns out that
vacuum fluctuations are important [36]. In the two-flavor
QM model, the chiral transition is first order in the whole
μB–T plane without vacuum fluctuations. Adding the
quantum fluctuations, the transition changes from being
first order (in the chiral limit) to being second order at zero
baryon chemical potential μB, while it remains first order at
zero temperature. Thus, including the vacuum fluctuations,
the first-order line that starts at T ¼ 0 ends at a tricritical
point somewhere in the μB–T plane. Similarly, when
allowing for an inhomogeneous phase such as a chiral-
density wave, it exists in the entire μB–T plane in the
absence of quantum fluctuations. Including quantum fluc-
tuations, the inhomogeneous phase emerges from a tricrit-
ical point and exists in a region of low temperatures down
to T ¼ 0 [16].
Conventionally, dimensional regularization has been used

in the context of the quark-mesonmodel. However, a priori,
there is nothing that prevents us from treating the quark-
meson model as a cutoff field theory [37] and regularizing it
using a sharp ultraviolet momentum cutoff Λ. Having
introduced an ultraviolet cutoff Λ, one can renormalize,
i.e. redefine the parameters of the model and take the limit
Λ → ∞at theend.In thiscase,onetrades theultravioletcutoff
for a renormalization scale μ. In fact, this procedure yields
results that are reminiscent of dimensional regularization in
which power divergences are set to zero and logarithmic
divergences showup as poles. Thepoles are then removedby
renormalization of the parameters of the theory. Either way,
there is an ambiguity, since there is a dependence on ultra-
violet cutoff Λ or the renormalization scale μ.
The article is organized as follows. In Sec. IIwe discuss the

problem of a simple momentum cutoff in the context of an
NJL type model in 1þ1 dimensions. We will show that by
subtracting the vacuum energy of the free theory after a
unitary transformation, one can obtain a meaningful vacuum
energy using a momentum cutoff, an energy cutoff, or
dimensional regularization. In Sec. III, we show how to
apply these techniques to the quark-meson model in three
dimensions. InSec. IV,we summarize anddiscuss our results.

II. NJL MODEL IN 1þ 1 DIMENSIONS

A. Lagrangian and thermodynamic potential

The Lagrangian of the NJL model in 1þ 1 dimensions is

L ¼ ψ̄

�
i∂ −m0 þ

�
μþ 1

2
τ3μI

�
γ0
�
ψ

þ G
Nc

½ðψ̄ψÞ2 þ ðψ̄iγ5τψÞ2�; ð1Þ

where Nc is the number of colors and m0 is the current
quark mass. Moreover ψ is a color Nc-plet, a two-
component Dirac spinor as well as a flavor doublet

ψ ¼
�
u

d

�
: ð2Þ

Here μB ¼ 3μ ¼ 3
2
ðμu þ μdÞ and μI ¼ ðμu − μdÞ are the

baryon and isospin chemical potentials expressed in terms
of the quark chemical potentials μu and μd. The γ-matrices
are γ0 ¼ σ2, γ1 ¼ iσ1, and γ5 ¼ γ0γ1 ¼ σ3, where σi are the
three Pauli matrices, and τa are the three Pauli matrices in
flavor space. The Lagrangian (1) has a global SUðNcÞ
symmetry and for m0 ¼ μI ¼ 0, it is also invariant under
UBð1Þ × SULð2Þ × SURð2Þ. For m0 ≠ 0 and μI ¼ 0, the
SULð2Þ × SURð2Þ symmetry is reduced to SUIð2Þ. For
m0 ¼ 0 and μI ≠ 0, the symmetry SULð2Þ × SURð2Þ is
reduced to UI3Lð1Þ×UI3Rð1Þ, where I3 is the third com-
ponent of isospin. Ifm0≠0 and μI≠0 the SULð2Þ×SURð2Þ
symmetry is reduced to UI3ð1Þ.
We next introduce the collective sigma and pion fields

σ ¼ −2
G
Nc

ψ̄ψ ; ð3Þ

πa ¼ −2
G
Nc

ψ̄iγ5τaψ : ð4Þ

The Lagrangian (1) then becomes

L ¼ ψ̄

�
i∂ −m0 þ

�
μþ 1

2
τ3μI

�
γ0 − σ − iγ5πaτa

�
ψ

−
Ncðσ2 þ π2aÞ

4G
: ð5Þ

The chiral condensate that we choose is a chiral-density
wave of the form2

hσi ¼ M cosð2bzÞ −m0; ð6Þ

hπ3i ¼ M sinð2bzÞ; ð7Þ

where b is a wave vector. The Mermin-Wagner-Coleman
theorem normally forbids spontaneous symmetry breaking
in 1þ 1 dimensions; however, it does not apply in the
large-Nc limit [38,39]. We denote the last term in Eq. (5) by
−V0 such that V0 is the tree-level potential. Note that for

nonzero z, the crossterm − Ncm0M cosð2bzÞ
2G averages to zero

when the spatial extent L of the system is large enough.
This term can then be written as − Ncm0Mδb;0

2G and the
expression for V0 is

2With a nonzero isospin chemical potential, there is also the
possibility of a pion condensate Δ. For simplicity, we do not
include this in the present analysis.
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V0 ¼
NcðM2 þm2

0 − 2Mm0δb;0Þ
4G

: ð8Þ

In the homogeneous case, V0 ¼ NcðM−m0Þ2
4G .

With the Ansatz (6)–(7), the Dirac operator D can be
written as

D ¼ ψ̄

�
i∂ þ

�
μþ 1

2
τ3μI

�
γ0 −Me2iγ

5τ3bz

�
ψ : ð9Þ

We next redefine the quark fields, ψ → e−iγ
5τ3bzψ and

ψ̄ → ψ̄e−iγ
5τ3bz. The Dirac operator then reads

D ¼ ½i∂ þ ðμþ b0τ3Þγ0 −M�; ð10Þ

where b0 ¼ ðbþ 1
2
μIÞ and 2b0 is an effective isospin

chemical potential. The transformation of the field ψ
amounts to a unitary transformation of the Dirac
Hamiltonian, H → H0 ¼ eiγ

5τ3bzHe−iγ
5τ3bz. It turns out that

there is a spurious dependence on b in the free energy: For
some regulators, the free energy depends on b in the limit
M → 0. However, physical quantities cannot depend on the
wave vector when the modulus of the condensate is zero.
This unphysical behavior of the free energy requires the
introduction of a subtraction term that by construction
guarantees that the free energy is independent of b in the
limitM → 0. We will return to this issue below. There is an
additional complication for nonzero isospin chemical
potential since the spurious dependence of b translates
into additional dependence on the isospin chemical poten-
tial in the free energy. We therefore set μI ¼ 0 for now and
return to the case of nonzero μI at the end of this section.
Going to momentum space, Eq. (10) can be written as

D ¼ ½pþ ðμþ bτ3Þγ0 −M�: ð11Þ

It is now straightforward to derive the fermionic spectrum
in the background (7). It is given by the zeros of the Dirac
determinant and reads [30]

E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þM2

q
� b

�
2

r
: ð12Þ

We notice that the lower branch, E−, has zero energy for
nonzero momentum, p ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 −M2

p
, if b > M. It is this

nonmonotonic behavior that allows for inhomogeneous
condensates at finite chemical potential by lowering the
energy and at the same time populating only the lower
branch E−.
We can now integrate over the fermions to obtain the free

energy in the mean-field approximation. After integrating
over p0, this yields the standard expression

V ¼ V0 − Nc

Z
∞

−∞

dp
2π

ðEþ þ E−Þ: ð13Þ

B. Momentum versus energy cutoff

The starting point is the one-loop correction to the
effective potential,

V1 ¼ −Nc

Z
∞

−∞

dp
2π

ðEþ þ E−Þ: ð14Þ

If we regulate the integral by a simple momentum cutoff Λ,
we can write

V1 ¼ −
Nc

π

Z
Λ

0

ðEþ þ E−Þdp: ð15Þ

It will prove useful to change the variable to u ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
. The integral then becomes

V1 ¼−
Nc

π

Z ffiffiffiffiffiffiffiffiffiffiffi
Λ2þM2

p

M
ðjuþbjþ ju−bjÞ uduffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 −M2
p : ð16Þ

We next write V1 ¼ Vþ þ V−. In the limit of large Λ, we
find

Vþ ¼ −
Nc

π

Z ffiffiffiffiffiffiffiffiffiffiffi
Λ2þM2

p

M
juþ bj uduffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 −M2
p

¼ −
Nc

2π

�
Λ2 þ 2bΛþ 1

2
M2

�
log

4Λ2

M2
þ 1

��
: ð17Þ

The other contribution V− is given by

V− ¼ −
Nc

π

Z ffiffiffiffiffiffiffiffiffiffiffi
Λ2þM2

p

M
ju − bj uduffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 −M2
p : ð18Þ

Here we must be careful distinguishing between the cases
u > b and u < b. In the large-Λ limit, one finds

V− ¼ −
Nc

2π

�
Λ2 − 2bΛþ 1

2
M2

�
log

4Λ2

M2
þ 1

��
þ θðb −MÞfðM; bÞ; ð19Þ

where we have defined the function fðM; bÞ

fðM; bÞ ¼ −
Nc

π

�
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 −M2

p
−M2 log

bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 −M2

p

M

�
:

ð20Þ

The one-loop contribution to the free energy is then given
by the sum of Eqs. (17) and (19). After renormalizing the
vacuum energy by removing the term proportional to Λ2,
the effective potential in the mean-field approximation
becomes
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V¼V0−
NcM2

2π

�
log

4Λ2

M2
þ1

�
þθðb−MÞfðM;bÞ: ð21Þ

We note that the terms linear in b cancel and that the final
result is an even function of b as it must be; cf. Eq. (16).
However, the vacuum energy is unbounded below due to
the term b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 −M2

p
implying that the system is unstable.

Moreover, in the limit M → 0, the effective potential

reduces to V ¼ − Ncb2

π (for m0 ¼ 0). This is clearly unphys-
ical; the effective potential must be independent of the wave
vector bwhen the magnitudeM of the condensate vanishes.
As pointed out in [30,31], the problem is that the cutoff is
imposed on the momentum and not the energy. Using a
momentum cutoff Λ, the effective cutoff on the energy isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

p
� b, which is different for the two branches for

nonzero b. The idea put forward in [30,31] is to use a cutoff
Λ on the energy rather than the momentum of the particles;
i.e. one restricts the integration by imposing the same cutoff
on the two branches,

E� < Λ: ð22Þ

This is referred to as symmetric energy cutoff [30,31]. This
restriction can be expressed as an upper limit for the
integration variable u and yields u < Λ ∓ b. The contri-
bution Vþ from Eþ is in the large-Λ limit then becomes

Vþ ¼ −
Nc

π

Z
Λ−b

M
juþ bj uduffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 −M2
p

¼ −
Nc

2π

�
Λ2 − b2 þ 1

2
M2

�
log

4Λ2

M2
− 1

��
: ð23Þ

The contribution V− from E− is in the large-Λ limit
given by

V− ¼ −
Nc

π

Z
Λþb

M
ju − bj uduffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 −M2
p

¼ −
Nc

2π

�
Λ2 − b2 þ 1

2
M2

�
log

4Λ2

M2
− 1

��
þ θðb −MÞfðM;bÞ: ð24Þ

Note that Vþ ¼ V− when M > b. The final result for the
vacuum energy is given by the sum of the tree-level term,
Eqs. (23) and (24)

V ¼ V0 −
Nc

2π

�
−2b2 þM2

�
log

4Λ2

M2
− 1

��
þ θðb −MÞfðM; bÞ; ð25Þ

where we again have added the vacuum counterterm Nc
π Λ2.

In the limitM → 0, the b-dependent terms in Eq. (25) drop
out and the effective potential vanishes (again for m0 ¼ 0).

Thus the symmetric-energy cutoff provides us with a well-
defined effective potential.
Returning to the momentum cutoff, one can of course

simply subtract the term − Ncb2

π from the effective potential,
but this requires some justification. The idea is to subtract
the vacuum energy of the noninteracting system, i.e. that of
a free Fermi gas, as a part of the renormalization pre-
scription [40]. As explained above, the redefinition of the
quark fields immediately after Eq. (9) corresponds to a
unitary transformation of the Hamiltonian of the system.
We must therefore also perform the same transformation on
the free Hamiltonian. The subtraction term is then obtained
by making the substitution M → m0 in Eq. (21). The total
effective potential is given by the sum of

V ¼ V0 −
NcM2

2π

�
log

4Λ2

M2
þ 1

�
þ θðb −MÞfðM; bÞ

− θðb −m0Þfðm0; bÞ; ð26Þ

where we have dropped terms that depend on Λ and m0.
Taking the limitsm0 → 0 andM → 0 (in this order), we see
that all the b-dependent terms cancel as they should. We
note in passing that the subtraction term is not unique. We
could have subtracted the vacuum energy of a massless

Fermi gas, Vsub ¼ − Ncb2

π , which was done in Ref. [30]. If
we use this prescription, the expression for the vacuum
energy becomes

V ¼ V0 −
Nc

2π

�
−2b2 þM2

�
log

4Λ2

M2
þ 1

��
þ θðb −MÞfðM; bÞ: ð27Þ

C. Dimensional regularization

Let us next consider the vacuum energy using dimen-
sional regularization. The one-loop energy is given by the
sum of the two terms

V� ¼ −Nc

Z
p
E�; ð28Þ

where the integral is defined in d ¼ 1 − 2ϵ dimensions:

Z
p
¼

�
eγEΛ2

4π

�
ϵ Z ddp

ð2πÞd : ð29Þ

Here Λ is the renormalization scale associated with the MS
renormalization scheme. We first change variables u ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
and integrate over angles, This yields

V� ¼ −
NcðeγEΛ2Þϵffiffiffi
π

p
Γð1

2
− ϵÞ

Z
∞

M
ju� bj udu

ðu2 −M2Þ12þϵ
: ð30Þ
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We first consider the contribution Vþ to the effective
potential from Eþ. We find

Vþ ¼ NcM2

4π

�
eγEΛ2

M2

�
ϵ

Γð−1þ ϵÞ: ð31Þ

The contribution Vþ is independent of b, which is most
easily understood by going back to momentum space in
Eq. (30). The b-dependence is then given by an integral
over p with no mass scale multiplied by b, and this integral
vanishes in dimensional regularization.
The contribution V− from the negative solution E− is

given by

V− ¼ −
NcðeγEΛ2Þϵffiffiffi
π

p
Γð1

2
− ϵÞ

Z
∞

M

ju − bjudu
ðu2 −M2Þ12þϵ

:

¼ −
NcðeγEΛ2Þϵffiffiffi
π

p
Γð1

2
− ϵÞ

�Z
∞

M

ðu − bÞudu
ðu2 −M2Þ12þϵ

þ 2θðb −MÞ
Z

b

M

ðb − uÞudu
ðu2 −M2Þ12þϵ

�

¼ NcM2

4π

�
eγEΛ2

M2

�
ϵ

Γð−1þ ϵÞ

þ θðb −MÞfðM; bÞ ð32Þ

where the second integral has been evaluated directly in one
dimension. We note that the first term in Eq. (32) is equal
to Vþ.
The total vacuum energy is given by the sum of the tree-

level term, Eqs. (31) and (32). Expanding this expression in
powers of ϵ, we obtain

V ¼ V0 −
NcM2

2π

�
Λ2

M2

�
ϵ
�
1

ϵ
þ 1

�
þ θðb −MÞfðM; bÞ: ð33Þ

The pole in ϵ is removed by renormalizing the quark mass
m0 and the constant coupling G. This is carried out by the
substitutionsm0 → Zm0

m0, and 1
G → ZG−1

1
Gwhere the mass

and inverse coupling renormalization constants are

Zm0
¼

�
1þ 2G

πϵ

�
−1
; ð34Þ

ZG−1 ¼
�
1þ 2G

πϵ

�
: ð35Þ

Note that ZG−1 ¼ ZG
−1 and that the ratio m0

G is the same for
bare and renormalized quantites since Zm0

ZG−1 ¼ 1. This
yields the renormalized effective potential in the mean-field
approximation

V¼V0−
NcM2

2π

�
log

Λ2

M2
þ1

�
þθðb−MÞfðM;bÞ: ð36Þ

We note in passing that the substitutions (34)–(35) corre-
spond to a nonperturbative renormalization. In perturbation
theory, it amounts to summing an infinite series of diagrams
from all orders of perturbation theory. This can be seen, for
example, by analyzing the model in terms of the two-
particle irreducible effective action formalism to leading
order in the 1=Nc expansion in analogy with the bosonic
case in three dimensions [41,42]. Moreover, the running
coupling G and the running mass m0 satisfy the renorm-
alization group equations

Λ
dG
dΛ

¼ −
4G2

π
; ð37Þ

Λ
dm0

dΛ
¼ −

4m0G
π

: ð38Þ

However, Eq. (36) is still problematic. Taking the limit

M → 0, we find V ¼ − Ncb2

π (for m0 ¼ 0) which is unphys-
ical. In order to understand the source of the problem, we
must go back to the contribution V� and take the limit
M → 0:

V� ¼ −
Nc

π

�
eγΛ2

4π

�Z
∞

0

jp� bjp−2ϵdp: ð39Þ

Vþ can be written as a sum of two integrals in which there
is no mass scale. These integrals are then set to zero in
dimensional regularization. In V−, the wave vector b is the
only scale in the integral and according to the rules of
dimensional regularization, the integral will be proportional
to the appropriate power of b.3 Dimensional analysis gives
V− ∼ b2−2ϵ. The coefficient is finite and in the limit ϵ → 0

one finds V− ¼ − Ncb2

π . This expression is exactly the
vacuum energy of Nc massless fermions after a unitary
transformation of the Hamiltonian. As in the case of a
momentum cutoff, we subtract the vacuum energy in the
normal phase as part of the renormalization procedure. This
is given by the second and third term in Eq. (36) after the
substitution M → m0. Dropping trivial terms that depend
on m0 and Λ, we find

V ¼ V0 −
NcM2

2π

�
log

Λ2

M2
þ 1

�
þ θðb −MÞfðM; bÞ

− θðb −m0Þfðm0; bÞ: ð40Þ
Our results for the vacuum energy in the three regulariza-
tion regularization schemes are given by Eqs. (25), (26),

3Alternatively, we note that V− is proportional toR
∞
0 ðp − bÞp−2ϵdpþ 2

R
b
0 ðb − pÞp−2ϵdp, where only the latter

integral is nonzero.
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and (40). In the case of nonzero isospin chemical potential,
these results are still somewhat problematic. Consider the
free energy Eq. (25) in the case b ¼ 0. It does not reduce to
the free energy of a massive Fermi gas at T ¼ 0 due to the
extra term − Nc

4π μ
2
I . The problem can be solved simply by

adding the b-independent term Nc
4π μ

2
I to the vacuum energy

[30]. This term or θð1
2
μI −m0Þfðm0; 12 μIÞ should be added

to the vacuum energy calculated in the momentum cutoff
scheme (26) and dimensional regularization (40).
We close this section by noting that in the chiral limit, the

gap equation dV
dM ¼ 0, in the vacuum where b ¼ 0, has two

solutions, either M0 ¼ 0 or

M0 ¼ Λe−
π
4G: ð41Þ

Using the renormalization group equation (37), it is easy to
verify that M0 is renormalization group invariant. The
nonanalytic behavior ofM0 as a function of G shows that it
is a nonperturbative result. As mentioned above, it corre-
sponds to summing an infinite series of diagrams from all
order of perturbation theory.
Equation (41) can be used to trade the cutoff or the

renormalization scale for the mass scaleM0. In dimensional
regularization, we find

V ¼ −
NcM2

2π

�
log

M2
0

M2
þ 1

�
: ð42Þ

The RG invariance ofM0 implies the RG invariance of V in
(42). As pointed out in [30], the unrenormalized expression
for the vacuum energy contains a dimensionless parameter
G, while the renormalized result (42) contains a dimen-
sionful mass scale M0. This is an example of dimensional
transmutation.

III. QUARK-MESON MODEL

A. Lagrangian and thermodynamic potential

The Euclidean Lagrangian of the two-flavor quark-
meson model is

L¼ 1

2
½ð∂μσÞ2þð∂μπÞ2�þ

1

2
m2ðσ2þπ2Þ

−hσþ λ

24
ðσ2þπ2Þ2

þ ψ̄

�
∂−

�
μþ1

2
τ3μI

�
γ0þgðσþ iγ5τ ·πÞ

�
ψ ; ð43Þ

where ψ is a color Nc-plet, a four-component Dirac spinor
as well as a flavor doublet

ψ ¼
�
u

d

�
: ð44Þ

Here μB ¼ 3μ ¼ 3
2
ðμu þ μdÞ and μI ¼ ðμu − μdÞ are the

baryon and isospin chemical potentials expressed in terms
of the quark chemical potentials μu and μd, τi (i ¼ 1, 2, 3)
are the Pauli matrices in flavor space, and π ¼ ðπ1; π2; π3Þ.
Apart from the global SUðNcÞ symmetry, the Lagrangian

(43) has a Uð1ÞB × SUð2ÞL × SUð2ÞR symmetry for h ¼ 0
and aUð1ÞB×SUð2ÞV symmetry for h ≠ 0. When μu ≠ μd,
this symmetry is reduced toUð1ÞB × UI3Lð1Þ ×UI3Rð1Þ for
h ¼ 0 and Uð1ÞB ×UI3ð1Þ for h ≠ 0. In the remainder of
this paper we take h ¼ 0, i.e. we work in the chiral limit.
We also set μu ¼ μd.
In order to study inhomogeneous phases, we must make

an Ansatz for the space-time dependence of the mesonic
mean fields. In the literature, mainly one-dimensional
modulations have been considered, for example, chiral-
density waves (CDW) and soliton lattices. Since the results
seem fairly independent of the modulation [16], we opt for
the simplest, namely a chiral-density wave. The Ansatz is

σðzÞ ¼ ϕ0 cosðqzÞ; π3ðzÞ ¼ ϕ0 sinðqzÞ; ð45Þ

where ϕ0 is the magnitude of the condensate and q is the
wave vector. The mean fields can be be combined into a
complex order parameter as MðzÞ ¼ g½σðzÞ þ iπ3ðzÞ� or

MðzÞ ¼ Δeiqz; ð46Þ

where we have introduced Δ ¼ gϕ0. After averaging over a
sufficiently large volume V3 in three dimensions, the tree-
level effective potential is then

V0 ¼
1

2
q2

Δ2

g2
þ 1

2
m2

Δ2

g2
þ λ

24

Δ4

g4
: ð47Þ

In analogy with the previous example, we can derive the
spectrum by finding the zeros of the Dirac determinant. The
result is [43]

E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
∥ þ Δ2

q
� q

2

�
2

þ p2⊥

s
; ð48Þ

where p2⊥ ¼ p2
1 þ p2

2, and p∥ ¼ p3. Note that the lower
branch has a vanishing minimum, E− ¼ 0, for nonzero

momentum p∥ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

4
− Δ2

q
and p⊥ ¼ 0 in the case

q
2
> Δ. It is this nonmonotonic behavior that allows for

inhomogeneous condensates at finite density; it may be
energetically favorable for the system to develop a nonzero
value of q and populate only the lower branch E−.
Although inhomogeneous phases are possible only for
nonzero chemical potentials, the vacuum energy is inde-
pendent of μf so the chemical potentials play no role in the
calculation below.
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B. Energy and momentum cutoff

The vacuum part of the one-loop contribution to the
effective potential is given by the expression

V1 ¼ −2Nc

Z
p
ðEþ þ E−Þ; ð49Þ

where the integral is in three spatial dimensions. We first
use an energy cutoff to evaluate Eq. (49). In the case of E−,

we must distinguish between the cases
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
∥ þ Δ2

q
− q

2
> 0,

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
∥ þ Δ2

q
− q

2
< 0. As in 1þ 1 dimensions, there is an

extra term in the case
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
∥ þ Δ2

q
− q

2
< 0, which we denote

by fðΔ; qÞ. We first integrate over p⊥ from zero to pmax⊥ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 − ðu� q

2
Þ2

q
, and then integrate over u (u ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
∥ þ Δ2

q
)

from u ¼ Δ to u ¼ Λ ∓ q
2
(upper sign for Eþ and lower

sign for E−). The expressions for the integrals are

Vþ ¼ −2Nc

Z
p
Eþ

¼ −
2Nc

ð4πÞ2
�
1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Λ −

q
2

�
2

− Δ2

s ��
Λ −

q
2

�
ð12Λ2 þ 4Λqþ q2Þ − Δ2ð6Λþ 13qÞ

�

−ðΔ4 þ Δ2q2Þ log
ðΛ − q

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΛ − q

2
Þ2 − Δ2

q
Þ

Δ

�
; ð50Þ

V− ¼ −2Nc

Z
p
E−

¼ −
2Nc

ð4πÞ2
�
1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Λþ q

2

�
2

− Δ2

s ��
Λþ q

2

�
ð12Λ2 − 4Λqþ q2Þ − Δ2ð6Λ − 13qÞ

�

−ðΔ4 þ Δ2q2Þ log
ðΛþ q

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΛþ q

2
Þ2 − Δ2

q
Þ

Δ

�
þ θ

�
q
2
− Δ

�
fðΔ; qÞ; ð51Þ

where the function fðΔ; qÞ is defined as

fðΔ; qÞ ¼ Nc

3ð4πÞ2
"
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

4
− Δ2

r
ð26Δ2 þ q2Þ − 12Δ2ðΔ2 þ q2Þ log

qþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

4
− Δ2

q
2Δ

#
: ð52Þ

In the limit Δ → 0, Vþ þ V− reduces to − 8Nc
ð4πÞ2 Λ

4 showing

that the thermodynamic potential is independent of q in this
limit. Subtracting this term then corresponds to a trivial
renormalization of the vacuum energy. In the limit Λ → ∞,
the sum of (50) and (51) behaves as

Vþ þV− ¼−
2Nc

ð4πÞ2
�
4Λ4− 4Λ2Δ2−q2Δ2

�
log

4Λ2

Δ2
− 2

�

−Δ4

�
log

4Λ2

Δ2
−
1

2

�
þ 1

12
q4
�
þfðΔ;qÞ; ð53Þ

in agreement with the result first obtained by Broniowski
and Kutschera [44].
Let us briefly discuss the calculation of the vacuum

energy using a momentum cutoff Λ. Integrating Eqs. (50)
and (51) and taking the limit Δ → 0, we find

Vþ þ V− ¼ − 8Nc
ð4πÞ2

�
Λ4 þ 2

3
q2Λ2 þ 1

15
q4
�
, which must be

subtracted. For large Λ, the final result is

Vþ þV− ¼−
2Nc

ð4πÞ2
	
4Λ2Δ2−Δ2q2

�
log

4Λ2

Δ2
−
5

3

�

−Δ4

�
log

4Λ2

Δ2
−
1

2

�
þ 1

12
q4


þfðΔ;qÞ: ð54Þ

Comparing Eqs. (53) and (54), we see that the coefficients
of some of the terms are different. However, the coefficients
of the logarithmic terms are identical.

C. Dimensional regularization

We next consider dimensional regularization. The inte-
grals needed are
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V� ¼ −2Nc

Z
p
E�; ð55Þ

where the integral is in d ¼ 3 − 2ϵ dimensions,

Z
p
¼

�
eγEΛ2

4π

�
ϵ Z ddp

ð2πÞd

¼
�
eγEΛ2

4π

�
ϵ Z

p⊥

dd−1p⊥
ð2πÞd−1

Z
p∥

dp∥

2π
: ð56Þ

We first integrate over angles in the ðp1; p2Þ-plane and

introduce the variable u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
∥ þ Δ2

q
. The integral then

becomes

V� ¼ −
NcðeγEΛ2Þϵ
π2Γð1 − ϵÞ

Z
∞

Δ

uduffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − Δ2

p

×
Z

∞

0

dp⊥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
u� q

2

�
2 þ p2⊥

r
p1−2ϵ⊥ : ð57Þ

In contrast to calculation in the 1þ 1 dimensional NJL
model, we were not able to calculate directly in dimen-
sional regularization the vacuum energy given by
V1 ¼ Vþ þ V−. We therefore use another strategy. In order
to isolate the ultraviolet divergences, we expand the
integrand in powers of q and identify appropriate sub-
traction terms. This yields

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
u� q

2

�
2 þ p2⊥

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ p2⊥

q
� uq

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ p2⊥

p
þ q2p2⊥
8ðu2 þ p2⊥Þ

3
2

∓ q3p2⊥u
16ðu2 þ p2⊥Þ

5
2

þ q4p2⊥ð4u2 − p2⊥Þ
128ðu2 þ p2⊥Þ

7
2

þ � � � ð58Þ

We denote the right-hand side of (58) by sub�ðu; p⊥Þ and
write the integrals in (57) as

V� ¼ Vdiv� þ Vfin� − Vfin�; ð59Þ

where

Vdiv� ¼ −
NcðeγEΛ2Þϵ
π2Γð1 − ϵÞ

Z
∞

Δ

uduffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − Δ2

p

×
Z

∞

0

sub�ðu; p⊥Þp1−2ϵ⊥ dp⊥; ð60Þ

Vfin� ¼ −
NcðeγEΛ2Þϵ
π2Γð1 − ϵÞ

Z
∞

Δ

uduffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − Δ2

p

×
Z

∞

0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
u� q

2

�
2 þ p2⊥

r
− sub�ðu; p⊥Þ

�
× p1−2ϵ⊥ dp⊥: ð61Þ

The integral Vfin� can now be calculated directly in three
dimensions. After integrating over p⊥, we find

Vfin� ¼−
Nc

3π2

Z
∞

Δ

uduffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2−Δ2

p
�
u�q

2

�
2
��

u�q
2

�
−
����u�q

2

����
�
:

ð62Þ

Thus Vfinþ vanishes identically and Vfin− becomes

Vfin− ¼ −
2Nc

3π2

Z
∞

Δ

uduffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − Δ2

p
�
u −

q
2

�
3

θ

�
q
2
− Δ

�

¼ Nc

3ð4πÞ2
�
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

4
− Δ2

r
ð26Δ2 þ q2Þ

− 12Δ2ðΔ2 þ q2Þ log
qþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

4
− Δ2

q
2Δ

�
θ

�
q
2
− Δ

�
¼ fðΔ; qÞ: ð63Þ

We next integrate Vdiv� using dimensional regularization.
This is done by first integrating over p⊥ and then over u.
This yields

Vdiv ¼ Vdivþ þ Vdiv−

¼ 2Nc

ð4πÞ2
�
eγEΛ2

Δ2

�
ϵ
�
2Δ4Γð−2þ ϵÞ þ q2Δ2ΓðϵÞ

þ q4

12
ð−1þ ϵÞΓð1þ ϵÞ

�
: ð64Þ

Expanding Vdiv to zeroth order in powers of ϵ, we obtain

Vdiv ¼
2Nc

ð4πÞ2
�
Λ2

Δ2

�
ϵ
��

1

ϵ
þ 3

2

�
Δ4 þ 1

ϵ
Δ2q2 −

q4

12
þOðϵÞ

�
:

ð65Þ

The one-loop effective potential is then given by the sum of
Eqs. (63) and (65). It contains poles in ϵ, which are
removed by coupling-constant and wave-function renorm-
alization. This amounts to making the substitutions
m2 → Zm2m2, λ → Zλλ, and g2 → Zg2g

2, where

Zm2 ¼ 1þ 4Ncg2

ð4πÞ2ϵ ; Zλ ¼ 1þ 8Nc

ð4πÞ2ϵ ½λg
2 − 6g4�;

Zg2 ¼ 1þ 4Ncg2

ð4πÞ2ϵ : ð66Þ
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After renormalization, the effective potential in the mean-
field approximation reads

V ¼ 1

2
q2

Δ2

g2
þ 1

2
m2

Δ2

g2
þ λ

24

Δ4

g4
þ 2Ncq2Δ2

ð4πÞ2 log
Λ2

Δ2

þ 2NcΔ4

ð4πÞ2
�
log

Λ2

Δ2
þ 3

2

�
−

Ncq4

6ð4πÞ2 þ fðΔ; qÞ: ð67Þ

In contrast to the example in 1þ 1 dimensions, we need
not subtract a term proportional to the appropriate power of
the wave vector (here q4) to obtain an effective potential
with the right properties. The reason is simply that the
vacuum energy is independent of q.
We close this section by discussing how dimensional

regularization can be used in conjunction with a Landau-
Ginzburg (GL) analysis of the quark-meson model. In this
case we expand the effective potential in powers of Δ and
its derivatives. Up to a temperature-dependent constant, we
find

V ¼ 1

2
q2

Δ2

g2
þ 1

2
m2

Δ2

g2
þ λ

24

Δ4

g4
þ β1Δ2

þ β2Δ4 þ β3ð∇ΔÞ2 þ � � � ; ð68Þ

where the coefficients are

β1 ¼ −4Nc

XZ
fPg

1

P2
; ð69Þ

β2 ¼ 2Nc

XZ
fPg

1

P4
; ð70Þ

β3 ¼ −Nc

XZ
fPg

�
4p2

∥

P6
−

3

P4

�
: ð71Þ

Here, the sum integral is defined by

XZ
fPg

¼
�
eγEΛ2

4π

�
ϵ

T
X
fP0g

Z
ddp
ð2πÞd ; ð72Þ

where P0 ¼ ð2nþ 1ÞπT þ iμ are the fermionic Matsubara
frequencies with n ¼ 0;�1;�2…. Using integrating by
parts in d ¼ 3 − 2ϵ dimension, it is straightforward to show
that β2 ¼ β3. This result was first obtained in [16] using
Pauli-Villars regularization. For the special value of the
sigma mass mσ ¼ 2mq, it was shown in [16] that this
implies that the tricritical point is actually a Lifschitz point.
In the NJL model this is always the case when using a
regulator where the total derivative vanishes [13]. Because
of infinite surface terms, such an expansion is problematic

in the case of a momentum cutoff. This problem is avoided
in the NJL model in 1þ 1 dimensions, since the coef-
ficients in the GL functional are finite.

IV. SUMMARY AND DISCUSSION

In this paper, we have for the first time discussed
momentum cutoff regularization, symmetric energy cutoff
regularization, and dimensional regularization in the con-
text of one-dimensional inhomogeneities in the NJL and
QMmodels. We have shown that all regularization schemes
can be used to define a physically meaningful vacuum
energy. In the case of symmetric energy cutoff regulariza-
tion, the result is independent of the wave vector when the
magnitude of the condensate vanishes, while in the other
cases one must subtract a wave-vector-dependent term. We
propose to subtract such a term for all regularizations as a
part of the renormalization procedure. In the examples
considered in this paper, an appropriate term is the
Hamiltonian of a free Fermi gas after a unitary trans-
formation. After this subtraction, one must also add a term
that depends on the isospin chemical potential in order to
obtain the correct expression for the free energy and isospin
density in the limit b ¼ 0.
We have also briefly discussed finite temperature and a

Ginzburg-Landau analysis of critical points. Because of the
absence of surface terms in the coefficients of the GL
functional, dimensional regularization can always be used
in the analysis of critical points. The application of
momentum cutoff or symmetric energy cutoff at finite
temperature is restricted to the cases where the GL
coefficients are finite, for example the NJL model in
1þ 1 dimensions. Results for the phase diagram of the
1þ 1 dimensional NJL model is presented in [45].
There are other regularization schemes that we have

briefly mentioned, namely Schwinger’s proper time regu-
larization and Pauli-Villars regularization. The latter
method was successfully applied to the problem of
inhomogeneous phases in the NJL model [13] and the
QM model [16], where the equality of the two coefficients
β2 and β3 was shown. In other words, Pauli-Villars
regularization has the same virtues as dimensional regu-
larization although the final expressions for renormalized
quantities are not so compact.
It is often argued that since the NJL model in three

dimensions is “nonrenormalizable,” one cannot use dimen-
sional regularization but is forced to use cutoff (momentum
or energy) regularization or Pauli-Villars regularization. We
disagree with this view. Nonrenormalizability alone cannot
be an argument against applying dimensional regulariza-
tion since it has been applied successfully to nonrenorma-
lizable models. For example, it has been used in chiral
perturbation theory [46] and in the theory of weakly
interacting Bose gases and Bose condensation, both
involving nonrenormalizable field theories [47,48].
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