
S I M U L AT I O N O F N O N L I N E A R WAV E
P R O PA G AT I O N I N U LT R A S O U N D

håkon seljåsen

Master Thesis for the degree of
Sivilingeniør / Master of Science

Department of Physics
The Faculty of Natural Sciences and Technology

The Norwegian University of Science and
Technology

June 2014 – version 1.0

Supervisors:
Professor Hans Torp1

Professor Catharina de Lange Davies2

1 The Department of Circulation and Medical Imaging
2 The Department of Physics

Håkon Seljåsen:
Simulation of nonlinear wave propagation in ultrasound.
Copyright © 2014

supervisors:
Professor Hans Torp
Professor Catharina de Lange Davies

Trondheim,
June 2014

P R E FA C E

This master thesis is submitted in fulfillment of the require-
ments for the degree of Sivilingneniør/Master of Science, at
The Norwegian University of Science and Technology, Depart-
ment of Physics.

The given problem is shown in the following quote:

Discuss the theoretical fundament in different ap-
proaches to simulations of nonlinear wave propaga-
tion in ultrasound, and make a fast implementation
using the quasi-linear approximation, based on the
"Propose" method.

Compare the results to a state-of-the-art simulation
method; e.g. "Abersim", for a typical cardiac ultra-
sound probe. The comparison should include both
magnitude and phase mapping at multiple depth
ranges.

A C K N O W L E D G M E N T S

I want to thank:

• Professor Hans Torp at the Department of Circulation and
Medical Imaging, for helpful supervising and encourage-
ments during my project work.

• Bjørn Kolbrek at the Department of Acoustics for valuable
debugging help and advises on Matlab.

• Randi Seljåsen for structural and linguistic advices on the
text.

• Alfonso Rodriguez at the Department of Circulation and
Medical Imaging. He has tested the sinc(x) implementa-
tion used in my specialization project [1], finding results
contradictory to the original conclusion. His findings in-
spired the study that lead to the report in App. A, and he
also gave helpful discussions on the matter.

iii

colophon

Any colored text or numbers in this thesis indicate a clickable
hyperlink, the colored numbers in the table of contents indicate
page numbers. References are given as green numbers inside
bold brackets, other hyperlinks are specified as chapter, section,
appendix, figure, table or listing. Equations are by default only
denoted by their numbers inside soft brackets, but the bracket
will be preceded by the word Equation in the start of a sentence.

Simulation software packages like Abersim and Propose are
denoted with capital letter, as names and emphasized in italics.
Sub-routines and other special names which originally does not
have capital letter, like sinc(x) and prop2harm, are emphasized
in italics, without capital letter. All words in section and chapter
headings, will be typeset using the style that is defined for the
specific heading.

Well known programming languages like Matlab® and other
trademarks like Windows® will be denoted with capital letter,
as names, and will not be emphasized further, other than receiv-
ing the trademark symbol or the registered trademark symbol
the first time they are mentioned. All trademarks and regis-
tered trademarks mentioned in this text are properties of their
respective owners.

This document was typeset using the LATEX version of the ty-
pographical look-and-feel classicthesis developed by André
Miede. The style was inspired by Robert Bringhurst’s seminal
book on typography, The Elements of Typographic Style.

iv

A B S T R A C T

Nonlinear wave propagation has, for the last couple of decades,
become an increasingly more important tool in medical ultra-
sound imaging. Creating ultrasound images from echoes in the
second harmonic frequency band provides a major enhance-
ment to the image quality, reducing body wall reverberation
and also reducing perturbations from off-axis echoes.

The aim of this study has been to make a fast implementation
of nonlinear wave simulation in ultrasound, based on the Pro-
pose method, and investigate its agreement with the state-of-the
art simulation tool, Abersim. Agreement between the methods
has been investigated for a typical cardiac probe in the fun-
damental and second harmonic frequency band. The compari-
son showed good agreement for phase, amplitude, wave form
and beam profile. Some overestimation of the center lobe in
the beam profile was found, but this is expected for quasilinear
methods.

A fast implementation for simulation of nonlinear wave prop-
agation in ultrasound has been made, based on the Propose
method [2]. The new implementation and is performing sim-
ulations in the second harmonic frequency band 74% – 93%
faster than the original implementation.

v

S A M M E N D R A G

Ikkelineær bølgeforplanting har i de siste par tiår spilt en stadig
viktigere rolle innen medisinsk ultralydavbildning. Ved å generere
bilder fra ekko i det andreharmoniske frekvensbåndet, frem-
for fundamentalbåndet, oppnås en forbedret bildekvalitet. Hov-
edårsaken til dette er redusert reverberasjonstøy fra overflatela-
gene i medisinsk vev.

Målet med denne masteroppgaven har vært å implementere
en rask simulator for ikkelineær bølgeforplanting i ultralyd,
basert på Propose metoden, og deretter undersøke graden av
samsvar mot det anerkjente simuleringsverktøyet Abersim.

Sammenligningen av en rektangulær hjertetransducers ultra-
lydfelt i fundamentalbåndet og andre harmoniske frekvensbånd
viste godt samsvar for hovedloben og de sentrale delene av fel-
tet, både når det gjelder fase, amplitude bølgeprofil og puls-
form. Noe overestimering av effekten i senterloben ble observert,
men dette er helt å forvente når man bruker kvasilineær teori.

En rask implementasjon for simulering av ikkelinær bølgefor-
planting i ultralyd har blitt laget, basert på Propose metoden
[2]. Den nye utgaven utfører nå simuleringer i det andre har-
moniske frekvensbånd med 74% – 93% redusert kjøretid, sam-
menlignet med den opprinnelige versjonen.

vi

C O N T E N T S

1 introduction 1

2 theory 4

2.1 Review of nonlinear ultrasound simulation 4

2.1.1 General methods 5

2.1.2 Quasilinear methods 6

2.2 Nonlinear ultrasound wave equation 7

2.3 The Angular Spectrum method – an overview 8

2.4 The Abersim method 10

2.4.1 Governing equation 10

2.4.2 Operator splitting 11

2.5 The Propose method 15

2.5.1 The Matlab implementation of Propose [2] 15

2.5.2 The quasilinear approximation 15

2.5.3 Mathematical foundation 16

2.6 Programming theory 20

2.6.1 Formula for relative time reduction 20

2.6.2 MEX files 21

2.6.3 The OpenMP® compiler directives 22

2.6.4 Parallelization of a triple nested for-loop 25

2.7 Relevant results from my specialization project
[1] and some implications 26

2.8 The Mechanical Index (MI) 27

3 method 29

3.0.1 Explanation of coordinates referred to in
plots and comments 29

3.1 Computers and configurations 29

3.1.1 Simulated systems 30

3.2 Comparison of Propose and Abersim 31

3.2.1 Filtering 31

3.3 Implementations 33

3.3.1 New implementations in the Propose soft-
ware 33

3.4 Simulation performance tests 35

4 results 36

4.1 Comparison of Propose and Abersim 36

4.1.1 Determination of the Mechanical Index (MI)
in Abersim 36

vii

contents viii

4.1.2 Comparison of fundamental starting sig-
nal 37

4.1.3 Normalized Root Mean Square (RMS) beam
profiles 37

4.1.4 Field comparisons 42

4.2 Performance of the fast implementation 48

5 discussion 50

5.1 Comparison of Propose and Abersim simulations 50

5.2 Computational performance of optimized imple-
mentations 52

5.2.1 Simulation time consumption in Abersim
and Propose 55

5.3 Limitations to the quasilinear method 56

5.4 Possible sources of error 56

6 conclusion 57

a optimization results – sinc(x) 59

a.1 Introduction and motivation 59

a.2 Theory 60

a.3 Method 60

a.4 Results and discussion 60

a.4.1 Closing comments 62

a.5 Conclusion 62

b efficient data access in a 3d matrix 63

b.1 Introduction and Theory 63

b.2 Method 64

b.3 Results and Discussion 64

b.4 Conclusion 65

c c++ source code 66

c.1 Conversion between triple and single indexing 66

c.2 Source code to the MEX version of the sinc(x)
function 67

c.3 Source code to the MEX version of prop2harm 69

bibliography 84

A C R O N Y M S

CPU Central Processing Unit

FFT Fast Fourier Transform

FFTW Fastest Fourier Transform in the West

FT Fourier Transform

GCC GNU Compiler Collection

GPU Graphical Processing Unit

IFFT Inverse Fast Fourier Transform

IFT Inverse Fourier Transform

KZK Khokhlov-Zabolotskaya-Kuznetsov

MEX Matlab Executable

MI Mechanical Index

OpenMP Open Multi-Processing

OS Operating System

PDE Partial Differential Equation

RAM Random Access Memory

RMS Root Mean Square

THI Tissue Harmonic Imaging

ix

L I S T I N G S

Listing 1 C++ Simple OpenMP example. 22

Listing 2 A typical triple nested for-loop in C++. 63

Listing 3 C++ subfunction used for calculation of
one or zero based triple indices from a
zero based 3D single index. Part of the
MEX function in Listing 5. 66

Listing 4 C++ implementation of sinc based on the
one used in my specialization project [1]. 67

Listing 5 Source code for the C++ Matlab Executable
(MEX) function used in simulations of the
2

nd harmonic field. Based on the imple-
mentation used in my specialization project
[1]. 70

x

1
I N T R O D U C T I O N

A sound pulse transmitted through a nonlinear medium, such
as water, will propagate with pressure dependent local velocity.
This causes deformations in the propagating pulse because the
local pressure is different in various parts of the sound wave.
Peak compressions will tend to catch up on the peak rarefac-
tions resulting in a sawtooth shaping [3, 4] of the original sine
wave. In the frequency domain, this effect is visible as the gener-
ation of higher order frequency modes. Effects and applications
of nonlinearity in medical ultrasound are explained and illus-
trated thoroughly in Duck’s review article on the subject [4].

During the last two decades, nonlinear wave propagation
has become an increasingly important key for enhancing im-
age quality in medical ultrasound imaging. In Tissue Harmonic
Imaging (THI), echoes in the second harmonic frequency band
are used to construct the ultrasound picture instead of those at
fundamental frequency.

A reason for the enhanced image quality is that ultrasound
imaging in the fundamental mode contains multiple reflections
from the transition surface between the transducer and layers in
the body wall. These echoes will generate reverberation noise,
obscuring the imaging of tissue located inside the body. For
THI such surface noise will be avoided, because the second har-
monic waves are generated from the fundamental pulse dur-
ing propagation. Therefore waves with imaging frequency are
not present in the initial transition through the body wall [4, 5].
Dense boundary surfaces inside the body of a patient may how-
ever reduce the enhancing effect [6]. The reason for this being
that the second harmonic waves may have reached amplitudes
where they are no longer negligible.

THI is documented to improve diagnostic image quality in
general [7], and also in many specific applications. Concrete ex-
amples of this are obstetrics and abdominal imaging [8], mea-
surement of heart functions [8, 9, 10], examination of liver [8,

1

introduction 2

11, 12] and examination of kidneys [8, 13]. The use of THI is
documented to provide better means to distinguish structure
and clutter inside fluid filled organs such as the gall bladder
and the pregnant uterus [8, 14]. This is explained by improved
ability to define edges of structures. Improved recognition of
edges is also useful in endocardial border definition [8, 15, 16].

An important prerequisite for obtaining high quality ultra-
sound pictures, is the ability to predict the magnitude and spa-
tial distribution of the transmitted pulse[27]. Because of this, a
large effort has been made in the international research commu-
nity to develop efficient ultrasound simulation tools. The differ-
ent methods have slightly varying approaches to the same prob-
lem, which is to make accurate and fast prediction of nonlinear
ultrasound fields. Unfortunately, fast and accurate is not two
qualities which necessarily fit together, and compromises often
need to be made in the favor of one of them. Mathematically
the approaches may perform calculations in the time domain,
in the Fourier domain or partly in both [17].

Examples of simulation tools where the accuracy is high, is
the time domain method called KZK-Texas [18], the Fourier
domain method KZK-Bergen [19, 20] and the Abersim method
[21, 22], which performs calculations partly in both domains.

In the Fourier domain, multiple implementations has been
made [2, 23, 24] which relies on a quasilinear approximation
[25]. In these methods, computational speed has been priori-
tized at the expense of some accuracy. However, when the non-
linear effects are small, they provide sufficiently accurate re-
sults for many applications.

The quasilinear simulation method, Propose, has earlier been
implemented using Matlab® [2, 26, 27, 28]. The aim of the present
thesis is to make a fast implementation of nonlinear wave sim-
ulation in ultrasound, based on the Propose method, and inves-
tigate its agreement with the state-of-the art simulation tool,
Abersim. Agreement between the methods are investigated for
a typical cardiac probe, with respect to both magnitude and
phase, at multiple depth ranges.

outline of this thesis

Chapter 2 in thesis opens with a short review of the theoreti-
cal fundament in different approaches to simulations of nonlin-
ear wave propagation in ultrasound. Especially the quasilinear
approach is emphasized. Further, a general wave equation is

introduction 3

presented, from which the rest of the mathematical theory is
developed. Governing equations in both Abersim and Propose
will be presented thoroughly. at the end of the chapter, some
results from my specialization project [1] and theory about the
Mechanical Index (MI) are presented.

The methods are discussed in Chapter 3. First, the computers
used in the study are presented, followed by setup parameters
used for comparisons of Propose and Abersim. The comparison
study itself will also be presented, followed by an outline of the
methods used to determine how fast the presented implemen-
tation of Propose performs simulations.

In Chapter 4 the results are presented, starting with the com-
parable figures of beam profiles and field plots and at multiple
depth ranges. In the end of the chapter the computational speed
of the new implementation are presented, in a way which en-
ables comparison to earlier presented methods.

The discussion, presented in Chapter 5, follows a pattern
similar to the one in Chapter 4. First the accordance between
Propose, and the state-of-the-art simulation tool, Abersim is dis-
cussed, and related to previously presented studies. Secondly
the speed of the new implementation is discussed. Multiple in-
teresting elements regarding generality of the results and per-
formance in different Operating System (OS)es is also empha-
sized. This chapter closes with a discussion on possible errors
in the study and possible drawbacks in the Propose method.

The final conclusion and objectives for future studies, are pre-
sented in Chapter 6.

In Appendix A, a preliminary study of new findings post-
poning the results in my specialization project [1] is presented.
The specific issues are also presented in Section 2.7.

Appendix B presents a second preliminary study. This study
is included to justify some optimization choices made in Sec-
tion 3.3, and statements about the matter made in Section 2.6.4.

Finally, the source code for all the C++ implementations are
included in Appendix C. Initial versions of the MEX functions
in Listing 4 and 5 have previously been presented as part of
my specialization project [1]. Preceding each listing is a note on
updates made as part of the current study.

2
T H E O RY

2.1 review of nonlinear ultrasound simulation

To obtain optimal quality in ultrasound images, the ability to
predict amplitude level and the spatial distribution of the trans-
mitted wave is of high importance [2]. Therefore, a large num-
ber of numerical simulation methods have been developed to
model nonlinear wave propagation. According to [17], the vari-
ous algorithms may be divided into three main categories: Cal-
culations performed in the time/space domain, in the frequency
domain or a combination of these. Important model equations
used in numerical implementations are derived from funda-
mental principles in [29]. The nonlinear wave equation most
widely used is the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equa-
tion [30, 31], from which many methods both in time domain
and the Fourier domain draw their foundational concepts.

Direct time domain approaches rely on finite difference meth-
ods to make approximate solutions regarding every aspect of
the governing equations. In this approach the waveform may be
arbitrarily chosen because all frequency components are simul-
taneously accounted for in the time domain. The drawback of
the time domain algorithms is that they require stepwise prop-
agation from the source to the point of interest, and thus will
require increasingly more computational time as the propaga-
tion distance is increased. The computational time needed to in-
clude nonlinearity in a time domain method is proportional to
the number of points N in the time domain waveform, regard-
less of how many frequency components the signal consists of
[18].

In the frequency domain approach it is assumed that a finite
pulse may be written as a superposition of multiple periodical
signals. This makes it possible to express the pulse by its fre-
quency components in the Fourer domain. By calculating wave
propagation in the Fourier domain one is able to simulate the

4

2.1 review of nonlinear ultrasound simulation 5

wave field in a desired plane directly by applying a phase shift
in the Fourier domain, instead of performing stepwise propa-
gation. This is known as the angular spectrum method, and is
described mathematically in Section 2.3.

Computationally efficient description of a system in the Fourier
domain requires source waveforms which can be described by a
limited number of frequency components. The computational
time in a spectral method is proportional to M2, where M is
the number of frequency components included in the Fourier
domain description of the pulse. The M2 dependence in the fre-
quency domain is related to the nonlinear part of the frequency
domain KZK equation. The absorption and diffraction is solved
in a speed proportional to M [18].

2.1.1 General methods

The best known time domain implementation is the KZK-Texas
code [18] which uses the finite difference method and the method
of fractional steps to simulate an axisymmetric system term by
term.

The first numerical implementation of the KZK equation in
the frequency domain is the KZK-Bergen code [19, 20]. This
method was created for simulation of the near field radiated
from axisymmetric sources. The method used two coupled sets
of equations to determine the Fourier series coefficients and did
not use an expanding coordinate grid, resulting in high com-
putational time for the far field. An improved version of the
method was later presented in [32]. Details of the KZK-Bergen
method are outlined briefly in [25].

A problem with the KZK equation is that it depends on a
parabolic approximation, assuming that the acoustic energy is
propagating in a narrow beam. This is not true when the source
is strongly focused, its dimensions approaches one wavelength
or when the observation point is close to the source or far off
the axis. Therefore, algorithms using the equation often assume
directional sound beams.

To simulate more general problems, a frequency domain method
that does not rely on the parabolic approximation has been pre-
sented in [33]. This method introduces diffraction using an ex-
act Kirchhoff-Helmholtz integral [17] which is solved using a
discrete Hankel transform [34]. As it performs calculations in
the frequency domain it is limited by the M2 dependency on
the number of frequency components M in the signal.

2.1 review of nonlinear ultrasound simulation 6

A well established hybrid method is the Abersim algorithm
[21, 22] which has been used as a reference tool in this thesis
and is presented in detail in Section 2.4. Other hybrid meth-
ods are presented in [35, 36]. In these combined methods, the
diffraction and absorption part of the KZK equation is solved
in the frequency domain, and the effects of nonlinearity is han-
dled in the time domain. All the physical processes in the wave
propagation are regarded as independent, allowing for calcula-
tions of each process in the domain that gives highest benefits
in regard to speed and accuracy, before combining them to a
final solution using superpositioning. These methods apply a
Fast Fourier Transform (FFT) which requires a computational
time proportional to M logM [18].

2.1.2 Quasilinear methods

If a system can be sufficiently described using the fundamen-
tal and the second harmonic frequency mode, the quasilinear
approximation [25] may be deployed to ease the computational
load of frequency domain approaches (Section 2.5.2). The simu-
lations employing the quasilinear approximation avoid the ear-
lier mentioned M2 computational time dependency, because
the fundamental field is regarded as an unaffected source term
of the second harmonic field (Section 2.5.3).

One algorithm utilizing this approximation is presented in
[24]. The method uses a generalized angular spectrum method
(Section 2.3) to simulate a second harmonic signal in a hetero-
geneous medium. Because the coefficient of nonlinearity β [37]
varies in a hetrogeneous medium, the method rely on stepwise
propagation in resemblance with time domain methods.

A nonlinear extension to the Field II [38] simulator is pre-
sented in [23] utilizing quasilinear theory. This method neglect
interactions between temporal frequency components, which
introduces limitations to the bandwidth for which the method
is valid.

A method of special interest is the Propose method [2, 26, 27]
treated more thoroughly in Section 2.5. This method is the ba-
sis for the fast implementation that will be presented in this
thesis. The method rely on the quasilinear approximation (Sec-
tion 2.5.2) and assumes homogeneous medium, ensuring a con-
stant coefficient of nonlinearity β. Diffraction is solved using
the angular spectrum method (Section 2.3) over arbitrary dis-
tances, allowing for direct simulation of the pulse amplitude

2.2 nonlinear ultrasound wave equation 7

at any depth. The objective of the Propose method is to be fast
enough to allow seamless automatic adjustment of setup pa-
rameters in a medical scanner, whenever a user alters the imag-
ing parameters [2]. The method is also suggested as a possible
everyday tool for transducer designers [27].

The results obtained in [27] has been further exploited in [39],
where the quasilinear Propose method was compared to water
tank measurements as well as to an early version of the Aber-
sim simulation software [40]. The comparisons were done for
annular symmetry and it was found that the quasilinear ap-
proximation gives reasonable results when the MI (Section 2.8)
is small. It was found that when the MI becomes higher than
approximately 0.5, side lobe levels will be underestimated in
the Propose method. This is because the higher order harmon-
ics no longer will be negligible, as is the premiss for using a
quasilinear approach (Section 2.5.2).

In [26], further verification was carried out, this time both the
annular array probe and a rectangular probe was compared to
measurements and the early Abersim version [40]. It was found
that the second harmonic magnitudes are underestimated by
less than 0.1 MPa for MI below 0.4 in the axial symmetrical
case, and below 1 for the rectangular probe. In the present the-
sis, the simulated field from an identically shaped rectangular
transducer will be explored and compared to simulations from
the current Abersim version [22, 21].

2.2 nonlinear ultrasound wave equation

Nonlinear wave propagation can for sound in an absorbing, ho-
mogeneous fluid without dispersion, generally be described by
the second order Partial Differential Equation (PDE) [2]:

∇2p− 1

c2
∂2p

∂t2
= −

βκ

c2
∂2p2

∂t2
+Λ (p) . (1)

In this equation, ∇2 is the Laplace operator denoting partial
differentiation in all spatial directions, c is the local speed of
sound, p is the acoustical pressure and Λ (p) is an operator ac-
counting for losses. The density dependent coefficient of com-
pressibility is denoted as κ = 1/ρc2 and β = 1− B/2A is the
coefficient of nonlinearity defined by the Taylor coefficients A
and B in the pressure-density relation addressed further in [37].
In medical ultrasound the variations of the phase velocity with

2.3 the angular spectrum method – an overview 8

frequency is very small and therefore the dispersion is usually
neglected in simulations [41, 2].

A generalized Westervelt equation [42, 29], assuming plane
waves and neglecting dispersion [43, 22, 44] can be obtained by
setting the loss operator Λ(p) = 1/c2 · ∂2Lp/∂t2:

∇2p− 1

c2
∂2p

∂t2
= −

βκ

c2
∂2p2

∂t2
−
1

c2
∂2Lp

∂t2
. (2)

In this equation, L can be viewed as the kernel of a convolution
operator describing attenuation properties (28) [44, pp. 40 & 44].
This equation is true for homogeneous media, and accounts for
both diffraction and attenuation.

In Abersim, heterogeneities can be included in the simula-
tion. This is done by introducing a delay screen body wall to
impose a phase shift between propagation steps. This way the
density between to screens may be regarded constant, and the
homogeneous propagation equation may be used [22, 44]. To be
able to use the Propose method, homogeneous media is required.
Hence, all simulations presented in this thesis will picture ul-
trasound pulsed propagating in distilled water.

To transform (2) into a directional equation, the retarded time
variable

τ = t− z/c, (3)

is introduced. For directional sound beams the parabolic ap-
proximation1 is valid [22, 45] and we get ∇ ≈ ∇2⊥. This will
lead to the PDE:

∂2p

∂τ∂z
=
1

2
∇2⊥p− εt

∂2p

∂τ2
+
εn

2

∂2p2

∂τ2
+
1

2c2
∂2Lp

∂τ2
, (4)

where ∇2⊥ = ∇2 − ∂2/∂z2. The scaling variables εn and εt will
depend on the medium and its temperature and are constant
in regard to τ and z. Specific values for different types of bio-
logical tissue are given in [22, p. 186].

2.3 the angular spectrum method – an overview

The angular spectrum method is used for calculating the diffrac-
tion in both Abersim and Propose. The difference between the
two methods is mainly in the step length h. While Propose per-
forms simulation of the field at an arbitrary depth z in one sin-
gle step. Abersim will obtain the wave field at the same depth by

1 The parabolic approximation leads to: ∂2p/∂z2 ≈ 0.

2.3 the angular spectrum method – an overview 9

a series of small steps according to (14). The articles regarding
the two methods have slightly different approaches, depending
on whether or not a retarded time variable is used in the equa-
tions. Therefor both sets of equations will be developed in the
in Sections 2.4.2 and 2.5.3, for Abersim and Propose respectively

In this section the general idea of the method is presented
to provide a general overview of the concepts. This section is
based on discussions in [47, 46].

Consider a source free half space where a pulse, p, with fre-
quency f0, is transmitted. Further, assume that this pulse can
be decomposed into a set of monochromatic plane waves with
various wave numbers in the three dimensions x, y and t:

p (x,y, z, t) =
∫∫∫

P (x,y, z, t) ei(ωt+kxx+kyy)dtdxdy. (5)

The angular spectrum for the given depth z, denoted by P, is a
three dimensional matrix containing information about all the
amplitudes related to the various frequency components.

In (5) one can recognize the three dimensional Fourier Trans-
form (FT) in time and the spatial dimensions x and y. Hence,
the angular spectrum P(~k, z) for a plane z may be computed
from its corresponding space-time sound pressure field using
an Inverse Fourier Transform (IFT):

P
(
~k, z
)
=

∫∫∫
p (x,y, z, t) e−i(cktt+kxx+kyy)dtdxdy, (6)

where

~k = [kt,kx,ky] (7)

is a vector containing the three wave numbers, kt = ω
c and ω

denotes the angular frequency of the signal.
By knowing the FT of the sound field at a given depth, one

may calculate the field at any other depth by multiplying with
a phase factor in the Fourier domain:

P
(
~k, z
)
= P (x,y, z0, t) e−iκ(

~k)(z−z0). (8)

This is the angular spectrum method. The variable κ(~k) is a
complex three dimensional wave number operator which de-
pends on the governing wave equations. It will also depend on
whether or not retarded time is used and whether or not any
loss operators have been included. This operator will be devel-
oped in the following for both Abersim (22) and Propose (37).

As shown in (5), a known angular spectrum (8) is easily used
to obtain the pressure field in time and space, using an IFT.

2.4 the abersim method 10

2.4 the abersim method

The Abersim simulation software has been verified through mul-
tiple articles the last decade [21, 22, 39, 40] and is designed to
simulate directional wave propagation in retarded time, using
a sine signal multiplied with a Gaussian envelope function. The
software is able to simulate waves in both forward propagation
and back scattering, however not at the same time. Back scatter-
ing is modeled from the known field of a forward propagating
wave, using either a small group of point scatters, or a single
one. Because back scattering is omitted in the Propose method
(Section 2.5), it is not discussed further in the present thesis.

Effects of nonlinearity and attenuation is built into the under-
lying, directional wave equation (4), which the Abersim method
is solved using an operator splitting approach [22].

Abersim is written in Matlab under the GNU Public License
[50] and can be downloaded from the project web page [51].
The Abersim download package contain several tutorials to help
new users get acquainted with the software. There is also in-
cluded a detailed manual describing the software [44]. A user
may choose to instal an included C version or a MEX accel-
erated Matlab version but none of these will compile on the
GNU Compiler Collection (GCC) 4.8 or 4.9 at the time of writ-
ing. Hence, the Matlab-only version of is used in this thesis.
Using C or MEX versions would only affect the computational
speed, and not the simulation output.

2.4.1 Governing equation

The directional and dimensionless plane wave equation which
is used in Abersim is obtained by integration of (4) over all his-
tory in retarded time [22]:

∂p

∂z
=
1

2

∫
∇2⊥pdτ+ (εnp− εt)

∂p

∂τ
+ ε

∂Lp

∂τ
. (9)

Here, the first term accounts for diffraction, the second for non-
linearity and the third for attenuation. Introduction of the tissue
dependent variable2 ε provides a change from L to L, defined
by εL = L/2c2.

2 If heterogeneous media were considered, ε would also depend on z.

2.4 the abersim method 11

2.4.2 Operator splitting

The operator splitting approach outlined in [22], is based on the
Lie-Trotter product formula [52] and the product integral [53].
Operator splitting can be performed when each term on the
right hand side of (9) yield independent solutions. Leaning on
corresponding sections in [22] and [44], this section will briefly
present each of the three terms.

Equation (9) is in the form

∂p

∂z
= (Ad +An +Aa)p, (10)

with Ad,An,Aa accounting for diffraction, nonlinearity and at-
tenuation respectively. Following this notation we may parse (9)
into three independent parts:

Adp =
1

2

∫
∇2⊥pdτ, (11)

Anp = (εnp− εt)
∂p

∂τ
, (12)

Aap = ε
∂Lp

∂τ
, (13)

where ε is a tissue dependent constant (27).
A forward propagating wave is calculated in Abersim using

an evolution equation which is performing a propagation in
steps of length h in the direction of z. The operator which per-
forms the transition from an initial state ψ(0) to the next state
ψ(h) is described by the exponential function exp (h

∑
iAi)

where the sum includes all Ai terms of (10):

p(zk+1) ≈ e(h
∑
iAi)p(zk). (14)

The z-axis position at a given step number k, is expressed as
zk = kh, and the evolutionary solution from step k, to step k+1.
The approximation in (14) is of first order and has a formal
error of order O(h2). This method is called Gudonov splitting
[54], and according to [22] an alternative model called Stang
splitting [55] may also be used.

2.4 the abersim method 12

Implementation in Abersim

Abersim models the forward propagating wave using an evolu-
tion equation. Starting with the initial condition

p(x,y, 0, t) = p0(x,y, t),

in z = 0 the wave is propagated in steps of length h, in the
positive z-direction [22]. The total numerical solution may be
denoted as

p(zk+1, t) = ΨhAd(zk) ·Ψ
h
An

(zk) ·ΨhAa(zk) · p(zk, t), (15)

where ΨhAi denotes the numerical approximation of exp(hAi)
from (14).

Diffraction term – angular spectrum method in retarded time

The diffraction in Abersim is accounted for using the angular
spectrum method (Section 2.3) in small steps h.

From the Westervelt equation (4), the diffraction term may be
recognized as the linear wave equation for a lossless, homoge-
nous medium [44]:

∂2p

∂τ∂z
=
1

2
∇2⊥p. (16)

Extracting the term in ∇2 that depends on the z direction, we
obtain a PDE which is coupled in x, y and τ:

∂2p

∂z2
− 2

∂2p

∂τ∂z
+∇2⊥p = 0. (17)

By performing a three dimensional FT3 in retarded time τ and
the two spatial directions x and y, we get a decoupling in space
and time:

∂2P

∂z2
− 2ikτ

∂P

∂z
− (k2x + k

2
y)P = 0. (18)

In (18), P denotes the FT of p in retarded time τ and the spatial
dimensions x and y. Note that the direction of propagation, z

3 The FT properties used to obtain (18):

F

{
∂np

dtn

}
= (iω)nF{p} and F

{
∂np

dsn

}
= (iks)

nF{p}

where ω = ckτ is the angular frequency in the temporal domain and s

denotes a spatial direction (here: x and y) [48].

2.4 the abersim method 13

is left out of the FT. The variables kx and ky denotes the spa-
tial wave numbers in the x and y directions, expressed in m−1.
The variable, kτ = ω/c, may be viewed as a wave number in
retarded time , which is expressed in m−1.

A solution to (18) will be on the form [22]:

P(zo+h) = Ae
i(
√
k2τ−k

2
x−k

2
y−kτ))h+Be−i(

√
k2τ−k

2
x−k

2
y−kτ)h, (19)

where the first wave propagates in positive z-direction, and the
second one propagates in negative z-direction. Ignoring the so-
lution that propagates backwards, the solution becomes

p(zo + h) = F−1
{
P(z0) · e−iKzh

}
, (20)

where, F−1 denotes the IFT in x, y and τ and we have defined
the scalar, frequency domain wave number operator:

Kz =
√
k2τ − k

2
x − k

2
y − kτ. (21)

Equations (20) and (21) corresponds to the conceptual angular
spectrum equation (8) presented in Section 2.3.

Very close to the transducer, the transversal wave numbers,
kx and ky, might be large enough for (21) to become imaginary.
This is caused by the presence of evanescent waves which are
quickly attenuated [49], but the solution has to be treated with
special care to avoid rising the exponent term in (20) by a posi-
tive real power.

In Abersim, the evanescent waves are suppressed in (20) by
the following modification of the Kz operator in (21)4:

Kz =


√
k2τ − k

2
x − k

2
y − kτ for k2τ − k2x − k2y > 0

−
√
k2τ − k

2
x − k

2
y + kτ otherwise.

(22)

This multiplication by −1 is equivalent to picking the back-
wards propagating solution in (19). The modification ensures
that the solution (20) does not diverge, but are quickly sup-
pressed as the exponent now contains a negative real term [22].

From (20) the diffraction term of (15) may be recognized as:

ΨhAd(z) = F−1
{
e−iKzh

}
. (23)

4 This problem has been approached a little differently in Propose (Sec-
tion 2.5.3).

2.4 the abersim method 14

Nonlinearity term

Equation (12) governes the nonlinearity properties in Abersim.
For small step sizes h, a solution is found by the method of char-
acteristics [56]:

p(zk+1, τ) = p (zk, τk − h ·∆ [zk,p(zk, τk)]) (24)

with

∆ [zk,p(zk, τk)] = p(zk, τk) ·
εn(zk) + εn(zk+1)

2
−
εt(zk) + εt(zk + 1)

2
.

In (24), the grid points may experience a perturbation which de-
pends on the local pressure. This in turn will cause the points
to become in-equally spaced in time. To compensate, the pres-
sure is re-sampled with equal time intervals introducing an in-
terpolation error. This error will for sufficiently high sampling
frequency become negligible. The step size and sampling fre-
quency are adapted at runtime in Abersim to avoid shock forma-
tion [22]. The solution operator (24), including the re-sampling
routine, defines the nonlinear term ΨhAn(z) in (15).

Attenuation term

The attenuation term presented in (13) may for ultrasound in
soft tissue be modeled using a frequency dependent power law
of the form

α(f) ∝ afb, (25)

where a and b are tissue dependent parameters [57, p. 112].
With this model, the right hand side of (13) is defined by its
temporal FT [22]:

F

{
∂Lp

∂τ

}
= −|ω|bFτ{p}, (26)

and the tissue dependent variable

ε =
ln10

20

a

(2π)b
. (27)

Equation (26) does not obey causality and therefore a modified
definition is used in Abersim:

F

{
∂Lp

∂τ

}
=
(
−|ω|b + iH

{
|ω|b
})

Fτ{p}, (28)

2.5 the propose method 15

where H denotes the Hilbert transform [58] and i is the imag-
inary unity vector. From this definition the attenuation contri-
bution to (15) is defined as

ΨhAa(z) = F−1
[
eε·(−|ω|bz+iH{|ω|bz})

]
. (29)

For simulations and comparison of methods in this study we
have omitted attenuation, simulating propagation in distilled
water.

2.5 the propose method

2.5.1 The Matlab implementation of Propose [2]

A Matlab implementation of the Propose method has been de-
veloped as part of the work in [2] and [27]. An overview and
explanation of the work flow in the program, and various sub-
routines are given in my specialization project [1]. The opti-
mization work in the present thesis has been done on the sub-
routine prop2harm, which calculates the second harmonic field.

2.5.2 The quasilinear approximation

A foundational concept in the Propose method is to simulate
propagation in the second harmonic frequency band using the
quasilinear approximation [25]. In this theory it is assumed that
wave modes at higher order frequencies are generated without
perturbating the fundamental field. This is approximately true
when the fundamental signal contains much more energy than
the second harmonic, p1 >> p2. With this premise the funda-
mental signal p1 may first be calculated independently. Know-
ing the fundamental signal, the second harmonic signal p2 is
found, using the the fundamental signal as part of its source
term. The total pressure p, will afterwords be found by super-
imposing the two contributions [59]:

p = p1 + p2. (30)

The quasilinear approximation is only applicable up to the sec-
ond harmonic frequency band, hence we neglect contributions
of higher order than O(2).

Calculations in the Propose method are performed in the Fourier
space using the angular spectrum approach (Sec 2.5.3). The
method allows for calculation of the sound field in any plane z,

2.5 the propose method 16

from a known reference plane zo without stepwise propagation
between the two states.

2.5.3 Mathematical foundation

In this section, the mathematical theory of the Propose simula-
tion method is presented. The outline is based on correspond-
ing sections in [2] and [27]. We start out with the assumptions
and the nonlinear wave equation (1) presented in Section 2

Using the quasilinear approximation (30) we may prepare
two independent versions of (1), one with the signal pressure
in the fundamental frequency band

∇2p1 −
1

c2
∂2p1
∂t2

+Λ (p1) = 0, (31)

and one determining the second harmonic field

∇2p2 −
1

c2
∂2p2
∂t2

+Λ (p2) = −
βκ

c2
∂2p21
∂t2

. (32)

The right hand side of (32) can be interpreted as a source term
for the second harmonic field p2 which depends on the funda-
mental field p1.

The angular spectrum approach in Propose

The diffraction in propose is solved using the angular spectrum
method, presented in Section 2.3. The simulation is performed
in a single step from a reference depth z0 to the depth of interest
z, without stepwise propagation.

Using properties of the FT, the Eqs. (31) and (32) may be ex-
pressed in the Fourier domain as

∂2P1

(
~k, z
)

∂z2
+K2(~k)P1

(
~k, z
)
= 0 (33)

and

∂2P2

(
~k, z
)

∂z2
+K2(~k)P2

(
~k, z
)
=
βκω2

2c2
P1

(
~k, z
)
⊗P1

(
~k, z
)

. (34)

The symbol ⊗ represents a convolution over all three dimen-
sions in ~k, P1 and P2 is the angular spectrum for the funda-
mental and second harmonic signal pressure respectively. K is
a scalar three dimensional wave number operator

K
(
~k
)
=
√
k2t − k

2
x − k

2
y, (35)

2.5 the propose method 17

where kt = ω/c can be viewed as a time domain wave number.
The equations (33) and (34) are solved in the Fourier domain,
and the space-time pressure distrbutions p1 and p2 are obtained
from their angular spectrum using FFT to solve (5).

As mentioned for the Abersim case (Section 2.4.2), evanescent
waves, may cause (35) to become imaginary. In the original Mat-
lab implementation [2], evanescent waves are suppressed by ig-
noring all imaginary values of K:

p(zo + h) =

F−1
{
P(z0) · e−iKzh

}
when Kz is real

F−1 {0} othervise.
(36)

This approach is relaying on the fact that the evanescent waves
are quickly attenuated and thus represent a small contribution
to the total field, which can be neglected without loss of preci-
sion [2, 49].

In the new implementation of Propose (Listing 5), the more
precise (22) has been used in stead of (36). The reason for this
is that (22) does not represent a computationally more demand-
ing process in the C++ implementation. All data points in the
field are included in the for-loop, and there are little time gained
by using the simplified version. The structure of the Matlab
implementation benefits more from using (36), because some
values in the field might be excluded from the main Fourier
domain computations.

Equation (37) is in accordance with the corresponding equa-
tion in [2] and [27], and the reason why it does not correspond
directly to the Abersim version (21) is that retarded time has not
been taken into account in the Propose articles. However, the ex-
pression used for K

(
~k
)

in the original Matlab implementation
[2], corresponds to the version used in Abersim (21).

It is fortunate to use retarded time in the Propose method as
well as in Abersim, because this will ensure that the simulated
field is placed in the center of the output matrix. The Fourier
domain algorithm repletes the simulated field periodically in
all directions and dismissing retarded time will allow the grid
of periodic repetitions to move around in the matrix, and hence
also in the output plots. Use of retarded time will avoid this,
therefor (22) has been used in the new MEX implementation,
according to the original Matlab version.

A retarded time variable τ = t− z/c in Propose can, analogue
to the Abersim approach (Section 2.4.2), be inferred before the
FT of (31) and (32), leading to a parallel reasoning, which will

2.5 the propose method 18

result in an expression identical to (21). The rest of the Propose
theory will be unaffected by either choice of K.

Attenuation

Attenuation is accounted for in Propose by appending a negative
imaginary part to (35) leading to [2]:

K
(
~k
)
=
√
k2t − k

2
x − k

2
y − ia

(
f

106

)b
, (37)

where f denotes frequency and a and b are tissue dependent
parameters governing the power law attenuation (25) in biolog-
ical media. The appended expression can be interpreted as the
frequency domain version of the attenuation operator Λ in (1).

Combining (26) and (27) and knowing that ω = 2πf. One
may discover that the attenuation term appended in (37), only
differs from the Abersim version (13) by a frequency indepen-
dent factor.

As mentioned earlier, lossless medium is assumed in this the-
sis by setting a and b to zero.

Solutions used in the Propose method

A solution to (33) is

P1

(
~k, z
)
= P1

(
~k, z0

)
e−iK(

~k)(z−z0), (38)

where the sign of the exponent is chosen in conjunction with
the sign of the attenuation term in K (37) to prevent the so-
lution from diverging when z → ∞. Note that this equation
corresponds to the conceptual angular spectrum equation (8)
presented in Section 2.3.

The second harmonic field is governed by (34) and consists of
a particular solution P2p

(
~k, z
)

and the homogeneous solution

P2h

(
~k, z
)

. The particular solution is developed in [2] using the
Green’s function for a half space defined by the source plane
and the direction of propagation. Any secondary waves, which
have been reflected once in the source plane z0 before it reaches
observation depth z, is neglected. Contributions from sources
beyond the observation plane propagating backwards are also
neglected. The resulting solution describe a forward propagat-
ing wave, created by sources between the transducer z0 and the

2.5 the propose method 19

observation depth z, which represents the dominating second
harmonic contribution [2, 60]:

P2

(
~k, z
)
≈ iM

2K(~k)

∫ z
0

{
P1

(
~k, z ′

)
⊗ P1

(
~k, z ′

)}
e−iK(

~k)(z−z ′)dz ′,

(39)

where M = (βκω2)/(2c2) and P1

(
~k, z ′

)
is the angular spec-

trum of the fundamental field given by (38).
At the transducer surface z = 0, we assume the total second

harmonic field to be zero

P2

(
~k, 0
)
= P2p

(
~k, 0
)
+ P2h

(
~k, 0
)
= 0.

Note that the integral in (39) becomes zero in z = 0 as well.
Therefore, the homogeneous solution has to be zero also, and
the total second harmonic field is described by its particular
solution:

P2 = P2p.

Using this result, and inserting the expression for P1 (38) into
(39) the following expression for the second harmonic field is
obtained:

P2

(
~k, z
)
=

iM

2K(~k)

∫∫∫
P1

(
~k ′, z0

)
·P1
(
~k−~k ′, z0

)
·Hp

(
~k,~k ′, z, z0

) d~k ′

(2π)3
,

(40)

where

Hp
(
~k,~k ′, z, z0

)
= ze−iK(

~k)(z−z0) ·e−iγ(~k,~k ′)(z0−z/2) · sinc
(
γ(~k,~k ′)

z

2π

)
.

Here, z0 denotes a plane in which the fundamental field P1
(
~k ′, z0

)
is known. The observation depth is denoted by z, and the fol-
lowing substitution has been introduced:

γ(~k,~k ′) = −K(~k) +K(~k ′) +K(~k−~k ′).

Where the K defined in (37) is used in [2, 27], and the Matlab
implementation of Propose relies on K, defined in (21).

Provided that the criteria for quasilinear propagation holds5

for all combinations of x, y and z. Equation (40) can be used
to compute the angular spectrum of P2 for any plane z, in the
half space defined by the transducer and its transmit direction.
The only information needed is the known angular spectrum
for the fundamental field in any one reference plane z0.

5 p1 >> p2

2.6 programming theory 20

Choice of reference plane z0

The reference plane z0 can in theory be arbitrary chosen, but the
most efficient choice numerically is the focal plane zd. The rea-
son for this can be shown using the Fraunhofer approximation
of the Huygens principle. This theory states that the FT of the
fundamental field in the focal plane P1(x,y, zd), is proportional
to the spatial aperture function A(x,y) [61, pp. 74-76].

By assuming symmetric aperture in the x and y directions6,
neglecting the proportionality factor and neglecting all terms
that are constant in regard to x and y, the following relation of
proportionality is developed in [2]:

P1(kx,ky,d) ∝ P(ω)A(
kxdc

ω
,
kydc

ω
)⊗F

{
e
iω
2dc(x

2+y2)
}

. (41)

The symbol ⊗ represents a two dimensional convolution in k-
space, P(ω) is the temporal FT of the transmitted pulse and d
is the focal depth of the transducer.

2.6 programming theory

In this section, different tools used in the fast Propose imple-
mentation are presented. The tools explained to a great level of
details, in an effort to make the concepts easily accessable for
readers who wish to try out the methods in their own projects.

First in this section a comparison formula is presented, which
will be used to calculate relative time reductions between ear-
lier presented versions of Propose [2, 1], and the additional op-
timizations implementations presented in this thesis. Then the
concept of MEX files are explained and reasoned for, succeeded
by Section 2.6.3, in which the Open Multi-Processing (OpenMP)
[62] technology is thoroughly explained. The last subsection de-
velops a mathematical foundation for conversion between sin-
gle and triple indices used to access elements in at three dimen-
sional mxArray, which is the C/C++ representation of a Matlab
matrix.

2.6.1 Formula for relative time reduction

For relative comparisons undertaken in Chapter 5, between the
different simulation times presented in Section 4.2. The follow-

6 A(−x,−y) = A(x,y)

2.6 programming theory 21

ing formula has been used to calculate time reductions R ex-
pressed in percentage:

R =
thigh − tlow
thigh

· 100%. (42)

2.6.2 MEX files

The MEX framework included in Matlab®[28] provides means to
export data between Matlab and a compiled C/C++ or Fortran
program. In C/C++ the framework consist of two header-files7

which are included in the Matlab installation package. These
header files contains information about Matlab data types and
the entry function which is named mexFunction instead of the
usual main.

A MEX function will operate like any other C or C++ program,
with access to standard libraries or custom functions and tem-
plates. The code is compiled from the Matlab command win-
dow, and the compiled file is called from Matlab like any other
Matlab function saved in the current workspace, using standard
syntax.

For a complete guide on how to get started with MEX func-
tions, the reader is referred to the online Matlab documentation
[63].

Motivation for using MEX functions in a Matlab program

Matlab® is a powerful programming language in many ways.
Especially because of powerful matrix and vector support. Ad-
vanced tools for visualization, profiling and debugging are also
arguments for using the software. Because Matlab is running
in a virtual machine framework, a program written in the Mat-
lab language will be executable on any system with Matlab
installed. This is both a strength and a drawback, because most
of the program is interpreted at runtime. Built-in functions
like matrix operations are pre-compiled and highly optimized
and perform overall the same league as a C++ program (Ap-
pendix A). However, a user developed routine will require ex-
tensively more computational time than a compiled program
[64]. Therefore such routines will have great potential for opti-
mization by conversion to a compiled language.

7 The C/C++ header files are named mex.h and matrix.h.

2.6 programming theory 22

Listing 1: C++ Simple OpenMP example.

#pragma omp parallell for <<optional clauses>>

for(int i=0;i<END;i++){

(...)

}; �
A for-loop construct is especially slow in an interpreted lan-

guage, like Matlab, because each line inside the loop is inter-
preted at every iteration of the loop. In a compiled language
like C or C++ this is not the case, because the code is trans-
lated to native machine code by the compiler only once, as the
executable file is created. Later when the file is executed, no
human programming language has to be interpreted, because
the entire program consists of native processor and memory
commands. [64]

A MEX function enables the Matlab programmer to take ad-
vantage of all the powers of Matlab, and still write computa-
tionally efficient programs.

2.6.3 The OpenMP® compiler directives

In a modern computer, the processors are able to execute many
commands at the same instance, because the processor has mul-
tiple physical or virtual cores. For a program to take full ad-
vantage of this opportunity, it is important to tell the compiler
which parts of the program that are independent of each other.
Independent parts may be calculated simultaneously, utilizing
the multi-core Central Processing Unit (CPU) in an efficient way.

OpenMP® [62] provides a powerful tool in C, C++ or Fortran
programs, to inform the compiler about parallelizable parts of
the code without altering the original structure. To parallelize
an existing for-loop in a program, a "#pragma" statement (List-
ing 1) can be used to tell the compiler that the following loop
may be executed in parallel. A main advantage in this approach
is that any compiler without OpenMP support will ignore the
statement completely and compile a serial program. This makes
the source code backwards compatible, and one will not have
to maintain multiple versions of the same source file. OpenMP
is parallelizing with respect to logical CPU cores, meaning that
it supports virtual threads [65, 66]. The remaining parts of this
section is leaning exclusively on information obtainable in [67].

2.6 programming theory 23

By default, OpenMP assumes all variables to be shared be-
tween the computational units (hereafter called threads). Shar-
ing of the same variables is preferable for large arrays of inde-
pendent data points, because it would consume a lot of memory
to make individual copies of this data. Also because we are in-
terested in having the different threads work together on the
same array of data, instead of editing some random parts of
individual copies. If however, there in a loop exists variables
which are not supposed to be shared by the different threads,
this can be specified by appending a private(tempA, tempB, ...)
clause. If the programmer for clarity reasons wants to account
for all variables in the loop, it is also optional to specify the
shared variables in a similar manner.

The Schedule clause in OpenMP

A clause for OpenMP (Listing 1) that will be exploited in this
thesis is the schedule. This clause might take one or two argu-
ments, where the first one tells the compiler how the iterations
in a loop are to be divided among the available threads. Argu-
ment number two is a number restricting the compiler to make
every chunk of work contain a number of iterations equal to or
greater than the given integer. If no second argument is given
the default integer 1 is assumed, providing the compiler com-
plete freedom to decide how many iterations every chunk will
contain. In the present studies the default setting has been used
as second argument in all implementations. The first argument,
which defines the scheme after which the work is divided, can
be either static, dynamic, guided or runtime.

A static scheme will divide the loop into equally sized chunks
of iterations, each assigned to a specific thread. This scheme is
specifically suited for computations where each loop requires
approximately the same time to complete, and no thread needs
to wait for others to finish. Such a case is shown in Appendix A.

The dynamic scheme divides the total number of iterations
into equal chunks, but does not pre-assign any chunk to a spe-
cific thread. Under this scheme, every thread will start working
on a random waiting tread whenever it finishes a chunk. This
approach will introduce a bit more book-keeping and address-
ing of chunks and may therefore cause more overhead. It will be
beneficial compared to the static work flow, if the iterations re-
quire variable amounts of time. An example where this scheme
gives the best optimization, will appear in Section 4.2.

2.6 programming theory 24

Figure 1: Graphical illustration of the different schedule settings in
OpenMP, for a computer running through a loop of 200 it-
erations using four logical threads (0, 1, 2, 3). The thick
lines distributed among the threads indicate iterations of
the loop, assigned to the respective thread. Reprinted with
permission from the MIT-Press, Cambridge, MA. [67, p. 88].

The guided scheme gives idling threads the same freedom to
choose random waiting chunks of iterations, as is the case with
dynamic scheme. Additionally, the guided scheme will have
variable chunk size, starting with large number of iterations
in each chunk and using small chunks in the end when the
threads needs to synchronize their contributions to the work
load and finish as simultaneous as possible. The guided scheme,
like the dynamic, is best suited for computations with variable
amounts of work in each iteration.

The runtime work scheme may be used if one want the sched-
ule to be determined at runtime, using the OMP_SCHEDULE
environment variable. This will make it possible to change sched-
ule without re-compiling the code.

In Figure 1, the work flow is illustrated for the three possi-
ble work schemes. The static schedule will allocate chunks of
data in a deterministic way while the others will allocate non-
deterministic, depending on various factors, among which is
the current load of the system.

2.6 programming theory 25

2.6.4 Parallelization of a triple nested for-loop

The Matlab matrix is stored in an object containing a one-dimensional
array and information about the size in various directions [68].
This provides an opportunity to access elements in a three di-
mensional matrix using a single index and one long for-loop
instead of three indices and a nested triple for-loop. In my spe-
cialization project [1] a C++ function was developed calculating
the zero-based single index S for a three dimensional matrix us-
ing three known subscripts i, j, k and the size I and J of in the
first two dimensions in the matrix.

S = i+ j · I+ k · I · J. (43)

In the preliminary study presented in Appendix B, it is shown
that it will be computationally efficient to apply OpenMP on one
extensive for-loop instead of parallelizing a smaller, outer loop
in a nest of loops. This can be explained by noting that every it-
eration in the loop may require different amounts of work from
the CPU thread. Merging nested for-loops will provide larger
chunks of work, and thus even out the overhead. Another fa-
vorable effect of merging the for-loops is that a more extensive
loop will easier lend itself to Graphical Processing Unit (GPU)
parallelization at a later point. In GPU applications there will
be a performance growth proportional to the number of iter-
ations distributed among the computational kernels, favoring
extensive for-loops above smaller ones [69].

Calculation of triple indices from the single index and sizes of a matrix

If the original triple subscripts are used in parts of the loop
body, one has to calculate them from (43). This can be done
by knowing two dimensions of the three dimensional matrix,
in addition to the single index. Considering (43) we see that
the single index S consists of three possible bulk sizes. First
we have the Matlab column number i, secondly the number of
rows expressed as j · I and at last the layer number in the third
dimension, expressed as k · I · J.

If I or J is zero, the matrix would have no elements at all and
would not exist. When I or J equals unity the matrix reduces
to two dimensions. Having both I and J equal to unity reduces
the array to a singleton matrix with k as the only running index.
Assuming a three dimensional matrix8, it is possible to find the

8 I.e. assuming that the lengths in all three dimensions I, J, K is greater than
unity.

2.7 relevant results from my specialization project [1] and some implications 26

triple indices i, j and k in (43) from a known single index S

and the two dimensional sizes by using congruence theory and
back substitution [70].

Rearranging (43) and applying the modulo operator gives

R = i+ j · I ≡ S mod I · J, (44)

where I and J still denotes the matrix size in the ith and jth di-
mensions, and R denotes the remaining elements in the matrix
after all the full layers of the third dimension is subtracted. The
symbol ≡ is the congruence sign. From (44) the first index is
found by taking R modulo the number of elements in a row

i ≡ R mod I. (45)

The row-number is found by back substitution of i into a re-
arranged version of (44)

j =
R− i

I
. (46)

The third index is found through back substitution of i and j
into a rearranged (43):

k =
S− i− j · I

I · J
. (47)

The C++ implementation of this algorithm is shown in Ap-
pendix C (Listing 3).

2.7 relevant results from my specialization project

[1] and some implications

Some issues regarding the results presented in my specializa-
tion project [1] need to be presented here, because they have
effected choices made about further optimization, conducted
in the current study. The relevant issues are briefly presented
in the following section.

An optimized version of the Propose Matlab program and the
sinc(x) function (App. A) was made in my specialization project
[1]. The optimization was done by implementing a C++ MEX
version of the sub function governing nonlinear wave propaga-
tion in Propose. A MEX version of Matlab’s built-in sinc(x) func-
tion was also created. The implementation was not optimized
using OpenMP [67] and thus did not take advantage of multiple
processor cores. It was found that a serial MEX implementation

2.8 the mechanical index (mi) 27

of Propose was running approximately two times faster than the
Matlab implementation.

The calculation of sinc-values for all elements in a 100×100×
100 complex matrix was executed requiring 49% less comput-
ing time. Both observations were done using Computer 3 from
Table 1 Section 3.1.

Further examination of the results showed that running Mat-
lab under Windows 7 resulted in results contradictory to the
original study. The MEX version of sinc(x) was found to perform
slower computations than its corresponding Matlab version9.
These findings suggests that the implementation made in [1]
needs further optimization to become a general improvement.

Exploration of these issues would provide insights regarding
the potential present in OpenMP, for optimizations in the MEX
version of Propose. Therefore a preliminary study has been un-
dertaken, to enlighten issues regarding sinc(x) execution time
on different OSes, with and without MEX and OpenMP. The re-
sults are presented in Appendix A, and led to insights used for
the OpenMP optimizations of Propose (Section 3.3).

2.8 the mechanical index (mi)

If ultrasound is transmitted at high power though biological
tissue, there is a risk of inducing cavitation [71]. Cavitation is
a process where the local minimum pressure is lower than the
current boiling pressure of the propagation medium10, causing
bubbles to form in the fluid. As the pressure rises again, the
bubbles will implode fast enough to satisfy the criteria for an
adiabatic process. This quick implosion may locally give rise to
temperatures up to thousands of kelvin [72].

The MI is developed to give a qualitative indication of the
likelihood that a certain ultrasound pulse may induce cavita-
tion, and is used to define threshold values under which no
danger is imposed [73]. This index is calculated using the fol-
lowing formula [73]:

MI = CMI
Pr√
fc

, (48)

where fc is the pulse center frequency in MHz and Pr is the
peak rarefaction pressure in MPa, often found at focal depth

9 Thanks to Alfonso Rodriguez Molares at the department of Circulation and
Medical Imaging, for making this observation.

10 The boiling temperature of a fluid depends proportionally on its pressure,
at lowered pressure, the boiling temperature will be lowered as well

2.8 the mechanical index (mi) 28

or shortly ahead of it. To make the index dimension less, the
factor CMI of magnitude 1MHz/MPa is included in the for-
mula. When the measurements or simulations are performed
in homogeneous tissue like water, it is derated by a factor of
0.3dB/cm/MHz. For a center frequency at 1.7 MHz and focal
depth at 7 cm, this deration factor will be 1.497.

As the pressure amplitudes in a pulse increases, the nonlin-
ear effects also will rise. The MI serves as a useful mean to
express which amplitude is used in a simulation and thus also
how much nonlinear effects that are present. The quasilinear
approximation used in Propose, will give a less accurate esti-
mates as the transmit amplitude rises (Section 2.5.2). Therefore
it has earlier been found less correlation between Abersim and
Propose simulations, as the MI was increased [39]. Some more
details about this article is given in Section 2.1.2.

3
M E T H O D

3.0.1 Explanation of coordinates referred to in plots and comments

The coordinates referred to in this study is related to each other
in the following way:

• All z values in the plots have been rendered from the
transducer (z = 0) with positive z in the direction of prop-
agation.

• The azimuth plane corresponds to the Cartesian xz-plane
where all y values are zero.

• The elevation plane are equivalent to the Cartesian yz-
plane, where all x values are zero.

When retarded time is used, this indicates a time laps observed
from stationary plane with constant z value.

3.1 computers and configurations

The various computers used in this thesis are listed in Table 1.
The three computers represent three different price levels, and
are comparable in the sense that they all are relatively standard
consumer market computers.

Computer 3 in Table 1, has also been used for simulations
and performance tests in my specialization project [1], and was
chosen to provide an extra verification of the results obtained
there. The use of this computer also provided a good mean to
compare the optimization achieved to results in the specializa-
tion project. Computer 2 is a standard Linux® desktop avail-
able at the Department of Physics as part of a desktop clus-
ter. Computer 1 is a high-end Linux desktop, used at the De-
partment of Circulation and Medical Imaging for simulation of

29

3.1 computers and configurations 30

computationally demanding problems. Computer 1 and 2 com-
puters were chosen as good middle-end and high-end alterna-
tives running another OS than Computer 3, thus not restricting
the generality of the results to a specific system. Because they
also have different Linux versions, namely Ubuntu 12.04 and
Fedora 18, they were expected to provide extra insight to vari-
ations between different Linux based systems. No Windows®

computer were chosen, because the available Windows version
of Matlab[28] did not support any open-source compilers with
OpenMP awareness.

High-end Standard MacBook® Pro
desktop PC desktop PC

Computer number 1 2 3

OS Ubuntu®
12.04 Fedora™

18 OS X®
10.9.1

CPU type Intel® Xeon® Intel® Core™ i7 Intel® Core™ i5
CPU architecture x86_64 bit x86_64 bit x86_64 bit
CPU cores (physical) 12 4 2

CPU cores (logical) 12 8 4

CPU clock frequency 2.67 GHz 1.60 GHz 2.30 GHz
Total RAM 96.7 Gb 12.0 Gb 8.0 Gb
Matlab version 2011b [74] 2011b [74] 2013b [28]

Table 1: Overview of computers and specifications. Machine number-
ing in this table will be used for later reference.

3.1.1 Simulated systems

In the comparison studies (Section 3.2) the simulated system
has been set in conjunction with [26] to make better compar-
isons to this work. The transmit frequency only, has been cho-
sen differently (2.7 Mhz), because this study is not restricted
by limitations in experimental measurements, and the chosen
transmit frequency correspond better to a typical cardiac probe.
Details of the setup used for comparisons is presented in Ta-
ble 2.

The system in used in the performance studies (Section 3.4)
is chosen in conjunction with my specialization project [1] to
make the optimization results directly comparable to those ob-
tained there. Table 3 display the details in this setup.

3.2 comparison of propose and abersim 31

3.2 comparison of propose and abersim

To qualitatively compare Abersim and Propose, the system in Ta-
ble 2 has been simulated using both methods. Comparison of
normalized RMS beam profiles and sound fields have been per-
formed at three different simulation depth in both azimuth and
elevation directions. The near field initial signals are also com-
pared.

In Abersim, the propagation medium was set to water at 293

K and Propose was set to simulate homogeneous medium with
no attenuation. Sampling frequencies have been set to 40 MHz
and 23 MHz for Abersim and Propose respectively.

The Abersim plots were shifted backwards in time to align
better with the Propose version. This time difference between
the plots depends on the range in the z-direction chosen in
Propose, and is of no special significance.

To display agreement between the new Propose implementa-
tion and Abersim two types of figures have been made. The
RMS beam profiles were chosen because they provide a precise
comparison between the magnitude levels in the two simulated
plots, because they are normalized. Any overestimation in the
center lobe will be apparent as lowered side lobes, because they
are normalized by a center lobe which is too high. Decibel scale
have been chosen on the magnitude scale, to better visualize
weak side lobes together with the center lobe.

The grayscale field plots used in Section 4.1.4 were created
by normalizing the sound field matrix, and taking a logarithm
of all absolute values, with dynamic range, 40 dB. To visualize
the phase of the waves, and not just the absolute values, each
element of the matrix was afterwards multiplied by its original
sign. Once again, decibel scale is used to enhance the weak side
lobes, in the same plot as the center lobe.

3.2.1 Filtering

Since the Abersim signal is generated in the time domain, it con-
tains all frequency components. To be able to compare the fun-
damental and second harmonic frequency individually, band-
pass filters have been applied. The fundamental frequency was
extracted using a Butterworth filter [75] of 6

th order with center
frequency fc = 1.7MHz and a total bandwidth of fb = 1.3MHz.
The second harmonic frequency band was extracted using a
Butterworth filter of 8

th order with center frequency fc = 3.4

3.2 comparison of propose and abersim 32

Setting Value or information

Aperture shape Rectangular
Transducer focal depth, azimuth 70 mm
Transducer focal depth, elevation 70 mm
Transmit aperture, azimuth 22 mm
Transmit aperture, elevation 13 mm
Transmit apodization none
Transmit center frequency 1.7 MHz
Bandwidth of transmitted pulse 1.1 MHz
Dynamic range in plots 40 dB
Attenuation none

Table 2: Compared system, simulated both in Propose and Abersim.

MHz and bandwidth fb = 1.0 MHz. The magnitude response
of the two filters are displayed in Figure 2, together with the
raw-signal simulated in Abersim at depth z = 2.5 mm.

0 2 4 6 8 10 12
−140

−120

−100

−80

−60

−40

−20

0

20

40

Freq uency [MHz]

M
a
gn

it
u
d
e
[d

B
]

F re q uency d istr ibu tion

Abersim raw signal
Fundamental filter
Second harm. filter

Figure 2: Magnitude respond for the filters applied to the signal sim-
ulated in Abersim. The simulated raw-signal at depth z = 2.5
mm is also included to illustrate the adequacy of the chosen
filter characteristics.

3.3 implementations 33

3.3 implementations

3.3.1 New implementations in the Propose software

An optimized implementation of the nonlinear wave propaga-
tion routine in Propose has been developed based on the origi-
nal Matlab implementation [2] and on the MEX implementation
created as part of my specialization project [1].

The choice to address the subroutine prop2harm, which is cre-
ated for calculating the second harmonic field, is justified thor-
oughly in [1] as a result of initial profiling that identified this
subroutine as the most computationally demanding part of the
program. Much of the computational time in this function is
spent in a triple nested for-loop1 which is known to be a bottle
neck in Matlab programs (Section 2.6.2).

As a basis for the new, fast implementation of nonlinear wave
simulation, the MEX version prop2harm, which initialy was pre-
sented in my specialization project [1]. To obtain a generally
high performance, which did not depend on OS or OpenMP (Sec-
tion 2.6.3) had been qualified as a useful tool through the pre-
liminary study presented in Appendix A.

Some structural optimizations have also been undertaken in
the code. A complete copy of the source code, accompanied
with an overview of updated features2 is given in Section C.3.
The optimizations made in the current study have been ex-
plored using three different computers and operational systems
(Table 1) and the results are presented in Section 4.2, Figure 14.

Another structural optimization in the C++ code was found
through a preliminary study presented in Appendix B. That
study was undertaken to compare two different ways to access
elements in a 3-dimensional matrix. This study lead to an imple-
mentation choice where a triple for-loop in prop2harm (Listing
5) was replaced by a single, more extensive one. Because some
of the triple indices also are needed inside the loop, a function
shown in Listing 3 (Appendix C) was made to extract them
from the single index used in the new loop. Some theoretical
insights regarding this, has been presented in Section 2.6.4.

In the implementation phase it became evident that the new,
single for-loop slowed down simulations utilizing symmetrical

1 Calculating a triple integral in Fourier space (Eq. 40).
2 prop2harm v. 2.0

3.3 implementations 34

Setting Value or information

Aperture shape Superelliptic (elliptic exp=4)
Transducer focal depth, azimuth 90 mm
Transducer focal depth, elevation 86 mm
Transmit aperture diameter, azimuth 22 mm
Transmit aperture diameter, elevation 13 mm
Transmit apodization, azim. and el. 0.1 and 0.1 (R value in Tukey window)
Transmit center frequency 1.67 MHz
Bandwidth of transmitted pulse 1.0 MHz
Resolution, dx - dy - dz 0.150 mm 0.150 mm 0.100 mm
Phase correction (non-spherical surface) ON

Table 3: Simulation setup used for the performance measurements
(Section 4.2). This table and setup has previously also been
used in my specialization project [1].

properties3. The reason for this was that the symmetrical prop-
erties is built into the runtime determination of the triple-loop
indices, meaning that only 1/4 of the data points are accessed
and calculated inside the loop4. A single for-loop is accessing
the data in memory ordered sequence [68] and do not have the
option to adjust limits of sub-loops at runtime. This forces the
processor to access every data point in the matrix, and start by
checking whether it is to be calculated, or can be disregarded.
The resulting overhead arises as 3/4 of all iterations subscribed
to a certain thread is aborted. To maintain the possibility for a
user to specify that symmetry properties apply, version 2.0 of
prop2harm includes an if-clause choosing a triple loop if sym-
metry utilization is requested, and the single loop otherwise.

For complex computations in the new MEX implementation,
the standard template library complex.h for C++ has been used.
The C++ code was compiled using the GCC 4.8.1 for Linux and
the GCC 4.9.1 for OS X. On OS X the compiled file requires
GCC 4.7 or a newer version to be installed on the computer,
otherwise it will not execute. The version compiled for Linux is
more portable between computers, the same MEX file is working
on both Fedora and Ubuntu.

3 The slowdown was of magnitude 3-4 times compared to the triple-loop cal-
culation time

4 The rest are copied afterwords

3.4 simulation performance tests 35

3.4 simulation performance tests

To determine the effect of the new optimizations, the computa-
tional time of a second harmonic field containing 66× 38× 11
matrix elements were measured using Matlab’s tic-toc function.
Each simulation were executed 2500 times, and the uncertainty
was calculated using the sample standard deviation on the re-
sulting set of data [76]. The results are presented in Section 4.2.
All three computers (Table 1) were set to simulate the system
summarized in Table 3. The reason for performing the same
tests on various computers was to explore the effect of MEX op-
timization on different OSes, ensuring that the results were not
limited to a specific one.

For reference, both the original Matlab implementation [2]
and a serial MEX implementation with no OpenMP was mea-
sured. The serial implementation was not the version used in
my specialization project [1], but the version included in this
thesis (Section C.3) with all OpenMP calls commented out at
compile time. The new implementation was measured for all
three OpenMP schedules (Section 2.6.3). This was done to give
a picture of the variations among them, as well as determine
which one is best suited for the problem at hand.

4
R E S U LT S

In the first section of this chapter, simulation outputs from Pro-
pose and Abersim are presented in comparable figures. Results
presented here serve as foundation for the discussion in Sec-
tion 5.1, regarding the accuracy of simulated sound fields, com-
pared to the state-of-the-art simulation tool, Abersim. Section 4.2
is dedicated to the performance results obtained for the new,
fast implementation of nonlinear wave simulation, and timing
of older versions of the program, for comparison.

The three depths at which figures have been produced is z =
2.5 mm, z = 70 mm and z = 90 mm, where the focal depth in
all cases has been at z = 70 mm.

4.1 comparison of propose and abersim

Figures containing comparable simulations from Abersim and
Propose will in the following be presented for three different
observation depths. Both azimuth (y = 0) and elevation (x = 0)
sections have been included in the figures.

Note that Abersim applies a window function to the funda-
mental signal at every propagation step, to suppress peripheral
side lobes [44]. This will especially be visible in the RMS beam
profiles.

All the comparison plots are simulated using the set up in
Table 2, Section 3.2.

4.1.1 Determination of the Mechanical Index (MI) in Abersim

The MI for all presented figures, are calculated from the peak
rarefaction Pr at focal depth, which is shown in Figure 3. Using
the formula (48) and deration factor given in Section 2.8, the MI
is found to be 0.13. In Propose, the MI is not accounted for, but

36

4.1 comparison of propose and abersim 37

it will affect the output in Abersim simulations, therefore it is
included in the figure labels.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Time [µs]

P
r
e
s
s
u
r
e
[M

P
a
]

Figure 3: Nonlinear Abersim pulse at focal depth, z = 70 cm. Transmit
frequency is 1.7 MHz, propagation medium is water, and
peak rarefaction value is 0.25 MPa. This leads to a MI of
0.13, which has been kept constant for all the comparisons
in this chapter.

4.1.2 Comparison of fundamental starting signal

Initially the fundamental signals have been compared in Fig-
ure 4 to verify that both simulations start with signals of com-
parable frequency and amplitude. The figure shows a good
agreement in frequency and pulse length. There are minor dif-
ferences in the amplitude at the start and the end of the pulse.
The Abersim pulse is of highest amplitude at the start of the
pulse and the Propose pulse is highest at the end.

4.1.3 Normalized RMS beam profiles

In this section, normalized RMS beam profiles in the fundamen-
tal and second harmonic frequency bands, are presented for all
three comparison depths. In all beam profiles, the Propose sim-
ulation is displayed in red, and the blue line showed the corre-

4.1 comparison of propose and abersim 38

−3 −2 −1 0 1 2 3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time [µs]

N
o
r
m
a
li
z
e
d

P
r
e
s
s
u
r
e

Fundamental s ignal z=2.5 mm

Abersim

Propose

Figure 4: Simulated fundamental signals in water, at depth z = 2.5
mm, and MI = 0.13. Red and blue line represent Propose
and Abersim respectively.

sponding Abersim simulation. The vertical scale is logarithmic,
ranging from 0 dB to −40 dB for the fundamental profile, and
from 0 dB to −70 dB for the second harmonic frequency band.

The normalized RMS beam profiles at depth z = 2.5 mm ared
presented in Figure 5. In this figure the sides of the central
lobe display some similarities for intensities above −25 dB. In
the fundamental profiles, and above −30 dB in the second har-
monic case. Some agreement is present but limited in the sense
that Abersim include details in the beam profile which is are
missed by Propose. On the top of the profiles the central inten-
sities are overestimated in Propose by an average of 1.8 dB for
the fundamental intensities and 2.6 dB in the second harmonic
case. Along the sides, the profiles sometimes coincide, but in
the fundamental azimuth plot there is approximately 5 dB dis-
agreement, along the right slope of the beam profile.

At focal depth (Figure 6), the normalized RMS center lobes
from Propose and Abersim coincide for both azimuth and eleva-
tion in both frequency modes. The first side lobes also coincides
quite well. From the figure there is found less than 1.5 dB dis-
agreement for all fundamental side lobes above −20 dB, and

4.1 comparison of propose and abersim 39

for all second harmonic side lobes above −35 dB. For lower in-
tensities, the side lobes are generally underestimated by more
than 1.5 dB in version Propose.

Normalized RMS beam profiles obtained at depth z = 90 mm
are presented in Figure 7. The second harmonic azimuth plot
in this figure display no disagreement larger than 2 dB for side
lobe intensities above −40 dB, and no disagreement larger than
1 dB for side lobes above −35 dB. The second harmonic eleva-
tion plot disagree no more than 2 dB for side lobes above −32

dB, and with no more than 1.5 dB for side lobes above −26 dB.
For the fundamental plots, the any disagreement is not higher
than 1.5 dB, for side lobes above −23 dB.

−20 −10 0 10 20
−40

−30

−20

−10

0
Fundamental b eam profi le

In
t
e
n
s
it
y
[d

B
]

−20 −10 0 10 20
−40

−30

−20

−10

0
Fundamental b eam profi le

−20 −10 0 10 20
−70

−60

−50

−40

−30

−20

−10

0

Azimuth [mm]

2nd harm. b eam profi le

In
t
e
n
s
it
y
[d

B
]

−20 −10 0 10 20
−70

−60

−50

−40

−30

−20

−10

0

Elevat ion [mm]

2nd harm. b eam profi le

Figure 5: Normalized RMS beam profiles displayed for azimuth and
elevation at depth z = 2.5 mm and MI = 0.13. Red and blue
line represent the beam profile from Propose and Abersim
respectively. Note the different decibel scales.

4.1 comparison of propose and abersim 40

−20 −10 0 10 20
−40

−30

−20

−10

0
Fundamental b eam profi le

In
t
e
n
s
it
y
[d

B
]

−20 −10 0 10 20
−40

−30

−20

−10

0
Fundamental b eam profi le

−20 −10 0 10 20
−70

−60

−50

−40

−30

−20

−10

0

Azimuth [mm]

2nd harm. b eam profi le

In
t
e
n
s
it
y
[d

B
]

−20 −10 0 10 20
−70

−60

−50

−40

−30

−20

−10

0

Elevat ion [mm]

2nd harm. b eam profi le

Figure 6: Normalized RMS beam profiles displayed for azimuth and
elevation at focal depth z = 70 mm and MI = 0.13. Red
and blue line represent the beam profile from Propose and
Abersim respectively. Note the different decibel scales.

4.1 comparison of propose and abersim 41

−20 −10 0 10 20
−40

−30

−20

−10

0
Fundamental b eam profi le

In
t
e
n
s
it
y
[d

B
]

−20 −10 0 10 20
−40

−30

−20

−10

0
Fundamental b eam profi le

−20 −10 0 10 20
−70

−60

−50

−40

−30

−20

−10

0

Azimuth [mm]

2nd harm. b eam profi le

In
t
e
n
s
it
y
[d

B
]

−20 −10 0 10 20
−70

−60

−50

−40

−30

−20

−10

0

Elevat ion [mm]

2nd harm. b eam profi le

Figure 7: Normalized RMS beam profiles displayed for azimuth and
elevation at depth z = 90 mm and MI = 0.13. Red and blue
line represent the beam profile from Propose and Abersim
respectively. Note the different decibel scales.

4.1 comparison of propose and abersim 42

4.1.4 Field comparisons

Comparable sound fields presented in Figures 8–13 are illus-
trated using logarithmic grayscale plots. The magnitude of the
presented sound fields are normalized to one, and are given a
logarithmic dynamic range of 40 dB.

The sub figures are ordered in the same manner for all Fig-
ures 8–13. Abersim simulations are displayed in the upper row
and Propose simulations are shown in the lower row. Cross sec-
tions in azimuth is shown in the left column, and elevation is
located in the right column.

A
z
im

u
t
h

[m
m
]

Ab er s im

−5 0 5

−20

−10

0

10

20

E
le
v
a
t
io
n

[m
m
]

Ab er s im

−5 0 5

−20

−10

0

10

20

A
z
im

u
t
h

[m
m
]

Ret arded t ime [µs]

Pr op os e

−5 0 5

−20

−10

0

10

20

E
le
v
a
t
io
n

[m
m
]

Pr op os e

Ret arded t ime [µs]
−5 0 5

−20

−10

0

10

20

Figure 8: Field plot of the fundamental (1.7 MHz) pulse in retarded
time, at depth z = 2.5 mm and MI = 0.13. The magni-
tudes are normalized to one, and the logarithmic grayscale
is given a dynamic range of 40 dB. The figures display sim-
ulations in azimuth (left) and elevation (right) directions,
simulated using Abersim (top) and Propose (bottom).

In Figure 8 the field at z = 2.5 mm is displayed for the funda-
mental frequency band. Both pulse shape, length and frequency
are comparable. The edges surrounding the pulses are not sim-
ilar, this is is due to the different nature of the methods. The
interference patterns surrounding the fundamental field sim-
ulated in Propose are caused by the periodicity of the FT. At

4.1 comparison of propose and abersim 43

A
z
im

u
t
h

[m
m
]

Ab er s im

−5 0 5

−20

−10

0

10

20

E
le
v
a
t
io
n

[m
m
]

Ab er s im

−5 0 5

−20

−10

0

10

20

Prop os e

E
le
v
a
t
io
n

[m
m
]

Ret arded t ime [µs]
−5 0 5

−20

−10

0

10

20

Prop os e

A
z
im

u
t
h

[m
m
]

Ret arded t ime [µs]
−5 0 5

−20

−10

0

10

20

Figure 9: Field plot of the second harmonic (3.4 MHz) pulse in re-
tarded time, at depth z = 2.5mm and MI = 0.13. The magni-
tudes are normalized to one, and the logarithmic grayscale
is given a dynamic range of 40 dB. The figures display sim-
ulations in azimuth (left) and elevation (right) directions,
simulated using Abersim (top) and Propose (bottom).

the same depth, simulations of the second harmonic field is
displayed in Figure 9. In this plot the edges are more similar,
though the Propose plots contain less details about the edge
shapes, than the corresponding Abersim simulations.

The fundamental field at focal depth (z = 70 mm) is dis-
played in Figure 10. Pulses agree well in regard to both shape
and frequency. Traces of the slightly lowered side lobes for Pro-
pose can be observed at the edges of the sub figures. Interference
patterns can be seen in both propose plots, these are traces of
the neighboring solutions shaped by the IFT. Figure 11 show
the second harmonic field at focal depth. Here, the shape, and
phase pulses are also in agreement, but the underestimated side
lobes has become more apparent. This too, is in agreement with
the earlier presented beam profiles at focal depth (Figure 6).
They predict a more evident disagreement in the beam profiles,
for the second harmonic, than in the fundamental frequency
band.

4.1 comparison of propose and abersim 44

A
z
im

u
t
h

[m
m
]

Ab er s im

−5 0 5

−20

−10

0

10

20

E
le
v
a
t
io
n

[m
m
]

Ab er s im

−5 0 5

−20

−10

0

10

20

A
z
im

u
t
h

[m
m
]

Ret arded t ime [µs]

Pr op os e

−5 0 5

−20

−10

0

10

20
E
le
v
a
t
io
n

[m
m
]

Pr op os e

Ret arded t ime [µs]
−5 0 5

−20

−10

0

10

20

Figure 10: Field plot of the fundamental (1.7 MHz) pulse in retarded
time, at focal depth z = 70 mm and MI = 0.13. The magni-
tudes are normalized to one, and the logarithmic grayscale
is given a dynamic range of 40 dB. The figures display sim-
ulations in azimuth (left) and elevation (right) directions,
simulated using Abersim (top) and Propose (bottom).

Figure 12 display the fundamental field at z = 90 mm. Again,
the pulse shape, length and amplitude are in good agreement.
Other than some traces of the IFT visible in in the propose plots.
In accordance with the beam profiles for z = 90 mm (Figure 7),
there are little traces of underestimated side lobes here. Also for
the two azimuth plots one can see that even details like height
levels, following the side lobes, are accurately represented in
the new Propose method. The second harmonic field at z = 90

mm is presented in Figure 13. Here to pulse shape and phase
are in good agreement. The Propose side lobe levels are underes-
timated more for the elevation case, than the azimuth direction.
This, again is in accordance with effects shown in the beam
profile for z = 90 mm (Figure 7).

4.1 comparison of propose and abersim 45

A
z
im

u
t
h

[m
m
]

Ab er s im

−5 0 5

−20

−10

0

10

20
E
le
v
a
t
io
n

[m
m
]

Ab er s im

−5 0 5

−20

−10

0

10

20

Prop os e

E
le
v
a
t
io
n

[m
m
]

Ret arded t ime [µs]
−5 0 5

−20

−10

0

10

20

Prop os e

A
z
im

u
t
h

[m
m
]

Ret arded t ime [µs]
−5 0 5

−20

−10

0

10

20

Figure 11: Field plot of the second harmonic (3.4 MHz) pulse in re-
tarded time, at focal depth z = 70 mm and MI = 0.13. The
magnitudes are normalized to one, and the logarithmic
grayscale is given a dynamic range of 40 dB. The figures
display simulations in azimuth (left) and elevation (right)
directions, simulated using Abersim (top) and Propose (bot-
tom).

4.1 comparison of propose and abersim 46

A
z
im

u
t
h

[m
m
]

Ab er s im

−5 0 5

−20

−10

0

10

20

E
le
v
a
t
io
n

[m
m
]

Ab er s im

−5 0 5

−20

−10

0

10

20

A
z
im

u
t
h

[m
m
]

Ret arded t ime [µs]

Pr op os e

−5 0 5

−20

−10

0

10

20

E
le
v
a
t
io
n

[m
m
]

Pr op os e

Ret arded t ime [µs]
−5 0 5

−20

−10

0

10

20

Figure 12: Field plot of the fundamental (1.7 MHz) pulse in retarded
time, at depth z = 90 mm and MI = 0.13. The magni-
tudes are normalized to one, and the logarithmic grayscale
is given a dynamic range of 40 dB. The figures display sim-
ulations in azimuth (left) and elevation (right) directions,
simulated using Abersim (top) and Propose (bottom).

4.1 comparison of propose and abersim 47

A
z
im

u
t
h

[m
m
]

Ab er s im

−5 0 5

−20

−10

0

10

20
E
le
v
a
t
io
n

[m
m
]

Ab er s im

−5 0 5

−20

−10

0

10

20

Prop os e

E
le
v
a
t
io
n

[m
m
]

Ret arded t ime [µs]
−5 0 5

−20

−10

0

10

20

Prop os e

A
z
im

u
t
h

[m
m
]

Ret arded t ime [µs]
−5 0 5

−20

−10

0

10

20

Figure 13: Field plot of the second harmonic (3.4 MHz) pulse in re-
tarded time, at depth z = 90 mm and MI = 0.13. The
magnitudes are normalized to one, and the logarithmic
grayscale is given a dynamic range of 40 dB. The figures
display simulations in azimuth (left) and elevation (right)
directions, simulated using Abersim (top) and Propose (bot-
tom).

4.2 performance of the fast implementation 48

4.2 performance of the fast implementation

In this section, the results of the optimization studies are pre-
sented. The new implementation is based on a Matlab imple-
mentation of the Propose presented in [2], and on initial opti-
mizations conducted as part of my preliminary specialization
project [1]. Method and implementation details are presented
in Section 3.2, where the computers and the simulated system
are specified in Table 1 and 3 respectively. The complete, up-
dated MEX source code are displayed in Appendix C. All time
recordings will be presented in seconds, and sample standard
deviations have been included in Figure 14 as error bars.

11,81	
 s	

6,01	
 s	

0,98	
 s	
 0,86	
 s	
 0,81	
 s	

8,72	
 s	

8,88	
 s	

2,37	
 s	
 2,03	
 s	
 2,03	
 s	

8,66	
 s	

4,26	
 s	

2,46	
 s	
 2,31	
 s	
 2,28	
 s	

0	
 s	

2	
 s	

4	
 s	

6	
 s	

8	
 s	

10	
 s	

12	
 s	

14	
 s	

Original	
 Matlab	
 Serial	
 C++	
 MEX	
 Sta=c	
 OpenMP	
 Guided	
 OpenMP	
 Dynamic	
 OpenMP	

Computer	
 1	

Computer	
 2	

Computer	
 3	

Figure 14: Computation time required for simulation of an ultra-
sound field in the 2

nd harmonic frequency band contain-
ing 27588 matrix elements. The numbers used to denote
different computers correspond to Table 1. The first group
of bars display the performance of the initial Propose imple-
mentation presented in [2].

The results displayed in Figure 14 shows simulation time for
the reference system specified in Table 3. The colors are as-
signed to each of the three computers which has been used
for the benchmarking (Table 1).

The original Matlab implementation of Propose [2] represent
an initial situation, to which the other implementations may be

4.2 performance of the fast implementation 49

compared. The initial computational time requirements (8.66 s,
8.72 s and 11,81 s) are displayed in the leftmost group of bars
(Figure 14).

The second group of bars in Figure 14 shows the performance
of the new implementation, when OpenMP is disabled. Since the
new implementation is based on the MEX file presented in my
specialization project [1], this serial measurement is expected
to be a good representation of the performance provided in
that first stage of optimization. More generally, it illustrates
the difference between enabling and disabling OpenMP parallel-
processing for various OSes and computers, using programs
which are otherwise identical. The fastest computer here per-
forms the computations in 4.26 s, while the slowest computer
is finished after 6.01 s.

The three rightmost groups of bars in Figure 14, originate
from the new implementation, presented in this thesis. The
three OpenMP schedules display quite similar results, and the
simulation time required, using any OpenMP setting, range from
0.81 s to 2.46 s for the three computers.

The simulation at depth z = 90 mm, discussed in Section 4.1
was calculated in Abersim within 31560 s, in the new imple-
mentation of Propose, the plane was simulated in 25 s. The two
programs are not directly comparable in respect to time con-
sumption, but the numbers presented here can be used for ap-
proximation purposes.

5
D I S C U S S I O N

This chapter will first focus on the agreement between the new,
fast implementation of Propose and the state-of-the-art simula-
tion tool, Abersim. A discussion of improvement in performance
for the new method, compared to earlier versions are under-
taken in Section 5.2, evaluating whether the aim of making a
fast implementation has been reached. In the end of the chap-
ter a short discussion on the performance compared to Abersim
is given, followed by a section on limitations to the quasilinear
method, and a note on a possible error.

5.1 comparison of propose and abersim simulations

This section starts with a discussion regarding RMS beam pro-
files comparison plots (Figures 5-7), then the field plots (Fig-
ures 8–13) will be discussed.

The comparison results presented in Section 4.1 has provided
detailed figures describing the agreement and disagreement be-
tween Propose and Abersim.

At focal depth z = 70 mm and at depth z = 90 mm the beam
profiles presented in Section 4.1.3 showed good agreement in
the simulations performed with Propose and Abersim. The beam
plots agreed in center lobes, and also in the side lobes down
to at least -20 dB and -35 dB. The underestimation in the low-
est side lobes is expectable, and can be explained by the nature
quasilinear approximation [25] used in Propose (Section 2.5.2).
The quasilinear approximation neglects losses to higher order
frequency modes, and thus perform an over estimation of the
center lobe. In a normalized plot this will appear as an underes-
timation of the low side lobes. For the applied MI of 0.3, the non-
linear effects in the beam profiles in Figures 6 and 7 show good
comparison with the results presented in [39]. In that study a
comparison between the quasilinear method was compared to
an early version of Abersim [40] for various MIs. Other articles

50

5.1 comparison of propose and abersim simulations 51

have also confirmed that some over estimation is expectable,
but that it can be tolerated for propagation in media where the
nonlinear effects are small [2, 26, 27].

In the beam profiles at depth z = 2.5mm (Figure 5), the Pro-
pose simulations include considerable noise levels outside the
main beam profile. Non of the beam profiles fits well with the
Abersim version. This noise appears because we are close to the
rectangular transducer, meaning that the FT of the sound field
is close to a the FT of a rectangle, which is an infinite sinc func-
tion in the fourier domain [61, pp. 74-76]. Because Propose has
a finite range in the frequency domain, and hence will cut the
sinc function somewhere, some of the rectangular shape will be
lost after the IFT back to space and time. Thus, obscuring the
simulation. For Abersim, this issue is avoided, because the field
is described directly in real space and time. This will be noted
as a limitation to the method, but it might not be an important
one, because this close to the transducer, more accurate simu-
lation method would also produce results within a reasonable
amount of time.

As pointed out in Section 4.1.4, the effect of overestimation in
the Propose center lobe appears to be stronger in the second har-
monic case, than for the fundamental mode. A center lobe over-
estimation similar to the one present for the fundamental also
expected and found for the second harmonic case. The second
harmonic frequency mode will also be lose energy to higher or-
der frequency modes, as the effects of nonlinearity is increased.
This loss is not accounted for in the Propose method, therefore
an overestimation will occur. According to [26], there is also an
even more important contribution to the overestimation in the
second harmonic case. The second harmonic frequency band,
will be overestimated in Propose because it is calculated from an
already overestimated fundamental field. This might also argue
for more visible effects in the normalized plots, for the nonlin-
ear case. The apparent stronger effects might also be caused by
the relative numbers in view, because the side lobes are already
small, they are therefor easily affected by an overestimated cen-
ter lobe. There are figures supporting the hypothesis in [27, 39].

Section 4.1.4 present six field comparison figures which all
provide good agreement between Propose and Abersim. Even the
simulations at depth 2.5 mm, which earlier was disregarded in
the discussion, has provided good agreement in the field com-
parison plots (Figure 8 and 9). All the other field plots, also
show good comparison, and at those instances where they dis-

5.2 computational performance of optimized implementations 52

agree the side lobe amplitudes, this is in agreement with the
beam profiles in Section 4.1.3.

In the Propose simulations, an interference pattern is visible
outside the main pulse. As mentioned in Chapter 4, this is be-
cause the simulations are performed in the Fourier domain, and
will be reproduced in a periodic pattern. Neighbor pulses will
then be able to interfere with each other, giving rise to patterns
like the one clearly visible in the elevation column of Figure 10.
As Abersim is applying a window function between each prop-
agation step, the neighboring images are thus suppressed and
will not provide the same amount of interference. The phenom-
ena is more visible in the fundamental field when the absolute
amplitudes are high and the side lobes reach far out from the
center lobe. This is when the side lobes of neighboring images
are strong enough to create constructive interference.

The plots show all in all good agreement, given the limita-
tions expected for the quasilinear approximation. Thus, Propose
version compared to Abersim can be said to produce reasonable
results.

5.2 computational performance of optimized imple-
mentations

In this section, the results presented in Section 4.2 will be thor-
oughly discussed and examined. First, the results obtained for
different OpenMP implementations are discussed. Some relative
improvements and differences are pointed out by using (42) to
compare different simulation times recorded in Figure 14. Then
general observations and discussions are presented, succeeded
by a subsection regarding the required simulation time in Pro-
pose compared to the one needed in the Abersim implementa-
tion.

Figure 14 display the OpenMP simulation times for each of
the three possible schedule settings presented in Section 2.6.3.
The most important result from these three groups, is that there
are very little differences between the various schedule settings.
Absolute differences between the different schedules are small,
but the relative difference between the best and the worst choice
is 21%, 14% and 7% for Computer 1, 2 and 3 respectively (Ta-
ble 1). This shows that it is fortunate to measure all three pos-
sible schedules, when OpenMP is applied to a new program, to
ensure the best possible optimization. In the preliminary study
presented in Appendix A, the static schedule appeared to be the

5.2 computational performance of optimized implementations 53

best choice. This confirms the theory in Section 2.6.3, where it is
stated that the choice of schedule depends on the specific appli-
cation. The choice also depends on whether or not all iterations
require a similar amount of time to be executed.

The schedule which provides best optimization for all com-
puters, is the dynamic schedule (Section 2.6.3). Hece this scedule
may be regarded as the one best suited for this specific applica-
tion.

Regardless of the schedule used, parallel CPU computing with
OpenMP provides a vast, general optimization of the Propose im-
plementation, for all computers tested in this study. The achieved
time reduction depends stronger on hardware and OS than it
does on the specific OpenMP schedule chosen.

In this section, the simulation time needed for different im-
plementations of Propose is compared. All percentage values
presented, are calculated from Figure 14 using equation (42) in
Section 2.6.1.

The fastest simulation is performed on Computer 1, which by
using the fastest OpenMP implementation achieves a 93% reduc-
tion in computational time, compared to the original Matlab
implementation [2]. Compared to the serial MEX implementa-
tion, which is similar to the one presented in my specialization
project [1], the same number is 87%.

Running on Computer 2, the serial MEX needs 2% more time
to perform the simulation than the original Matlab implemen-
tation. The OpenMP implementation however, provides a 77%
reduction in computational time, compared to the original Mat-
lab implementation.

Computer 3 showed the best performance obtained for the se-
rial MEX implementation. Optimizing the program using OpenMP
resulted in 46% time reduction compared to the serial MEX
implementation. Compared to the original Matlab implemen-
tation the total reduced time consumption yields 74%.

Figure 14 display the OpenMP simulation times for each of
the three possible schedule settings presented in Section 2.6.3.
The most important result from these three groups, is that there
are very little differences between the various schedule settings.
Absolute differences between the different schedules are small,
but the relative difference between the best and the worst choice
is 21%, 14% and 7% for Computer 1, 2 and 3 respectively (Ta-
ble 1). This shows that it is fortunate to measure all three pos-
sible schedules, when OpenMP is applied to a new program, to
ensure the best possible optimization. In the preliminary study

5.2 computational performance of optimized implementations 54

presented in Appendix A, the static schedule appeared to be the
best choice. This confirms the theory in Section 2.6.3, where it is
stated that the choice of schedule depends on the specific appli-
cation. The choice also depends on whether or not all iterations
require a similar amount of time to be executed.

The schedule which provides best optimization for all com-
puters, is the dynamic schedule (Section 2.6.3). Hece this scedule
may be regarded as the one best suited for this specific applica-
tion.

Regardless of the schedule used, parallel CPU computing with
OpenMP provides a vast, general optimization of the Propose im-
plementation, for all computers tested in this study. The achieved
time reduction depends stronger on hardware and OS than it
does on the specific OpenMP schedule chosen.

A comparison between the serial MEX and the Matlab imple-
mentation (Figure 14), for Computer 3 in Table 1, shows a 51%
reduced computational time. This is very close to the relative
results obtained in my specialization project (55%) [1], where
Computer 3 was used in all simulations1. The relative results
from my specialization project [1] may thus be regarded as re-
produced for the serial MEX case. The simulation time is re-
duced by 46% compared to the absolute numbers presented in
my specialization project [1]. From the results shown in Fig-
ure 14, one also can find that the performance of the serial
MEX implementation is varying vastly with the hardware and
OS used. For the serial MEX times, Computer 3 shows a value
29% and 52% lower than Computer 1 and 2, respectively. This
shows that the results found in my specialization project [1]
is not as general the new ones obtained for the OpenMP imple-
mentation. This non-generality in the previous results render
the serial MEX implementation as an undesirable solution, com-
pared to any OpenMP configuration used. This OS dependency
explains the puzzle presented in Section 2.7 and Appendix C,
regarding results in my specialization project [1].

The strong OS dependency for the serial MEX case, may be
explained by the fact that the MEX file is dynamically linked to
all included libraries. Therefore, the OS dependency observed
in Figure 14, may indicate a varying efficiency in C++ runtime
libraries for the different OSes. At the first glance this seems un-
likely, because one will expect such variations to be present also
in the OpenMP case. From Figure 14 it is clear that the variations

1 Note that Computer 3 has been updated from 4 Gb to 8 Gb of Random
Access Memory (RAM) since the research in [1] was undertaken.

5.2 computational performance of optimized implementations 55

present for the serial MEX case between Computer 2 and 3 is
not proportional to the corresponding variations obtained for
the OpenMP implementation. However, considering that Com-
puter 2 has eight logical CPU threads while Computer 3 is re-
stricted to four, the variations between OSes might indeed be in
accordance for the serial MEX and the OpenMP case. If runtime
libraries in Fedora 18 performs computations at half the speed
of OS X 10.9.1, but the hardware provides twice as many logical
CPUs, it is plausible that the two computers in total perform at
a similar level for the OpenMP implementation.

Another explanation might be that the OS dependency is re-
lated to how well an OS performs runtime auto-parallelization.
The concept of auto-parallelization is briefly presented in [77].

5.2.1 Simulation time consumption in Abersim and Propose

Due to the different nature of the simulation methods used
in Propose and Abersim it is hard to compare the simulation
times in a precise way. While the quasilinear method simulates
a plane directly, Abersim uses stepwise propagation meaning
that the method depends strongly on the simulation depth. The
difference has earlier been commented on in [2], where it was
found that the Matlab implementation of Propose performed
simulations 1000 times faster than Abersim for depth below fo-
cal depth, and 100 times faster beyond focal depth.

The specific system defined in Section 3.2, simulated for depth
z = 90 mm, required 31560 s to complete in Abersim, and 25 s
using the new OpenMP version of Propose. This indicates that Pro-
pose performs this specific simulation approximately 1200 times
faster than Abersim. These measurements were performed on
Computer 1 of Table 1. Note that these comparisons does not
include the new C or MEX implementations of Abersim as they
are not yet possible to install on random computers.

As the Abersim software now ships with C and MEX versions,
which in the time of writing does not compile out of the box,
this is not a strictly fair comparison with respect to Abersim. If
the Abersim team has achieved a similar performance gain by
MEX implementation, it is plausible that the relative numbers
found in [2] will not have changed, comparing MEX implemen-
tations of both methods.

5.3 limitations to the quasilinear method 56

5.3 limitations to the quasilinear method

The Propose method uses quasilinear approximation theory to
obtain an estimate of the fundamental and second harmonic
field in the case of weak nonlinearity. The method will grad-
ually give less accurate results for propagation in media with
strong nonlinear effects, or for high MIs.

Water attenuates higher frequency modes far less efficient
than biological tissue. This will cause more energy to diffuse
from the fundamental and second order frequency mode, to
higher harmonic frequencies. Because of this, the quasilinear
method is expected to provide more accurate results in with
higher attenuation [26].

In Section 4.1.3 it has been shown, that the Propose method
is not suitable for describing sharp, rectangular pulses, such as
those present close to a rectangular transducer. The reason for
this, and implications, has been discussed in Section 5.1.

The Propose simulation contains a time-lap at a single depth
and not the continues sound field in space such as is the case
for Abersim. Occasionally one might desire spatial overview of
the pulse, and this will in Propose require multiple simulations
at different depths. Abersim already performs stepwise propa-
gation and thus, might be better suited for such a task than
Propose.

5.4 possible sources of error

The error bar on the highest column in Figure 14 is larger than
the others. This may be explained by the fact that Computer
1 in Table 1 is a shared computational server which I did not
have exclusive access to, thus it might have been set under addi-
tional load during the measuring period. This might also affect
the total height of the bar, and thus the relative performance
calculated. However, with 2500 samples, the sample standard
deviation is expected to define accurate limits for the possible
variations.

6
C O N C L U S I O N

In this study, a fast implementation of nonlinear wave simula-
tion in ultrasound, based on the Propose method, is presented.
The new implementation reduces the required simulation time
by 74% – 93%, compared to the original program.

The presented implementation provides a good prediction of
the ultrasound field, both with respect to magnitude and phase.
This has been found by comparison with the state-of-the-art
simulation tool, Abersim. Normalized beam profiles are in good
agreement for the center lobe and the highest side lobes at sim-
ulation depth 70 and 90 mm. This deviation is mainly visible
in side lobes below -20 dB and -35 dB, for the fundamental and
second harmonic field respectively.

The 90 mm depth simulated in this study, is calculated within
seconds using Propose, while the same setup needs more than
12 hours to complete in Abersim. This difference is of vast im-
portance for applications like transducer design, where the en-
gineer needs to experiment with various geometries and setups
during a work-day. For educational purposes, the fast imple-
mentation can provide an efficient method for students to ex-
plore responses in the ultrasound pulse, as different parameters
are adjusted. Propose may also represent an efficient tool for
making preliminary simulations, determining different specifi-
cations in the setup of other, more accurate and time consuming
methods.

The aim of this study has been reached, by providing an im-
plementation which performs simulations within less than 73%
of the earlier needed computational time.

suggestions for further studies

The simulation of nonlinear wave propagation (prop2harm) now
is so fast that the bottle neck for large number of simulation
points, is in the final Inverse Fast Fourier Transform (IFFT) of

57

conclusion 58

the simulated data from Fourier domain to space-time. Thus, a
natural step for further optimization of the program, is to write
the IFFT function called fourierToTimeSpace in a compiled lan-
guage using the Fastest Fourier Transform in the West (FFTW)
or a similar algorithm.

It is also possible to use embedded GPU functions and data
types in Matlab’s GPU toolkit. This approach might be well
suited for the IFFT subroutine fourierToTimeSpace in Propose, be-
cause the Matlab embedded IFFT function is directly available
for GPU. With only small amounts of modifications, this sub-
routine might be ported directly to GPU from Matlab using the
gpuArray data type. The edited function would still remain com-
patible with the MEX implementations presented in this study.

The Propose software has a text based user interface. To make
the method available to a larger audience of scientists, students,
and transducer designers, it is suggested to implement a graph-
ical wrapping to the program.

An interesting spin-off subject for future studies is to explore
runtime auto-parallelization and compare general performance
of various operative systems. This is suggested as an interesting
research subject in computational science.

A
O P T I M I Z AT I O N R E S U LT S – S I N C (X)

a.1 introduction and motivation

To exploit the general potential in MEX functions for accelerat-
ing Matlab® programs, it is interesting on a general basis to
compare the performance of a C++ MEX function to a routine
that is also built into Matlab as part of the distribution. In this
appendix the sinc(x) function has been exploited to reveal a the
ability for a MEX function to compete with the built in Matlab®

version.
In my specialization project [1], where it was found that a

non-parallelized C++ MEX version of the sinc(x) function was
able to compete with the Matlab version. However, a contra-
dictory result was found by Alfonso Rodriguez at the Depart-
ment of Circulation and Medical Imaging on a Windows® com-
puter (Section 2.7). This contradiction was calling for further ex-
ploration of the OS dependency in optimizations utilizing MEX
functions, and has thus inspired the current study.

The study can be viewed as an independent preliminary study
to search out the necessity for executing performance tests on
multiple OSes discussed in Section 3.4. It also provides a "worst-
case" environment for testing the optimizing potential related
to MEX functions (Section 2.6.2) and OpenMP (Section 2.6.3), as
no Matlab functions will be more efficient than its optimized
and embedded features[64]. Therefore the study has been im-
portant in the preliminary phase of this thesis, to explore whether
MEX functions and OpenMP provides a powerful mean to op-
timize the main implementations in the Propose method (Sec-
tion 3.3).

59

A.2 theory 60

a.2 theory

The mathematical task of the sinc(x) function is running through
every element of a matrix and computing the normalised sinc(x)
value of every element using the formula:

sinc(x) =

1, if x = 0.
sin(πx)
πx , otherwise.

Every computation done after this formula is independent of
other matrix elements and hence easily lends itself to parallel
computation routines. Since it is a precompiled part of the Mat-
lab distribution, it does not suffer from the same performance
issues as user provided Matlab code [64].

a.3 method

Measurements were made using tic-toc statements for the var-
ious implementations of sinc, with 900 measurements for each
value and the sample standard deviation as error indicator. The
computational time was measured on three different operating
systems: Ubuntu 12.04, Fedora 18 and MAC OS X 10.9.1 using
Matlab version 2011b [74]. Various OpenMP schedule settings
are discussed in Section 2.6.3. The C++ MEX implementation
was based on work earlier discussed in [1] and is presented in
Section C.3. In the new version, OpenMP has been implemented
and the gsl_complex.h library has been replaced by the standard
complex.h library. In the comparison, various schedule settings
in OpenMP (Section 2.6.3) are compared to the original MEX file1,
and the built in Matlab function, for a 100× 100× 100 matrix.

a.4 results and discussion

The results shown in Fig. 15 indicate that a MEX function will
have a hard time competing with a built in Maltab function
on a general basis. However it may show better performance
if parallelization opportunities are utilised, or the OS has an
efficient way of auto parallelizing a serial program at runtime
[77].

The results in Figure 15 indicate that Matlab is more easily
beaten by a serial C++ MEX function on a low end MacBook®

1 Version 1.0 of the program [1].

A.4 results and discussion 61

0,097	
 s	
 	

0,503	
 s	
 	

0,224	
 s	
 	
 0,061	
 s	
 	
 0,061	
 s	
 	

0,148	
 s	
 	

0,601	
 s	
 	

0,172	
 s	
 	
 0,123	
 s	
 	
 0,119	
 s	
 	

0,374	
 s	
 	

0,253	
 s	
 	

0,227	
 s	
 	
 0,132	
 s	
 	
 0,132	
 s	
 	

0,00	
 s	
 	

0,10	
 s	
 	

0,20	
 s	
 	

0,30	
 s	
 	

0,40	
 s	
 	

0,50	
 s	
 	

0,60	
 s	
 	

0,70	
 s	
 	

Built	
 in	
 Matlab	

implementa:on	

Serial	
 C++	
 MEX	
 (no	

paralleliza:on)	

OpenMP	
 dynamic	
 OpenMP	
 sta:c	
 OpenMP	
 guided	

`çãéìíÉê=N=

`çãéìíÉê=O=

`çãéìíÉê=P=

Figure 15: Summary of computational time required for computing
the sinc(x) value of every element in a 100× 100× 100 ma-
trix for various computers and operating systems. For a
thorough discussion of the various OpenMP settings, see
Section 2.6.3. The numbers used to denote different com-
puters correspond to Table 1.

.

Pro (Computer 3) than on a high end Linux desktop (Com-
puter 1). The main cause of this seem to be that Matlab runs
significantly slower on the MacBook® Pro than on the Linux
machines in this study. However, Apple® seem to provide the
best efficiency in their auto parallelization algorithm [77] as the
serial C++ implementation runs twice as fast there, as on the
best corresponding Linux machine2. Such a claim needs to be
verified using a large sample of various computers in order to
be proven, but it proposes an interesting problem for further
studies.

Using static or guided OpenMP schedule (Section 2.6.3), we
see that performance differences are reduced between Com-
puter 3 and Computer 2. Computer 1 shows the overall high-
est performance and reaches 1.58 times speed-up compared to
the built in function. Computer 2 speeds up 1.24 times while a
speed up by 2.83 times is obtained on Computer 1. These results
suggest that OpenMP implementations have especially high rela-
tive impact on the computational time in the low end MacBook
Pro.

2 Even though the fastest Linux desktop has a higher CPU clock frequency.

A.5 conclusion 62

a.4.1 Closing comments

It is important to note that this study provide a worst-case sce-
nario in regard to MEX functions as the Matlab sinc(x) function
is built into the main software and highly optimized. A user
implemented Matlab function will show vastly larger potential
for enhancement (Section 4.2).

In this study, a newer Matlab version has been used on Com-
puter 3 than on the other two. To explore the findings further,
all machines should be tested using the same version of Mat-
lab. However, it seems unlikely that Matlab has become slower
in the last two years. Such a finding would be a much more
astonishing result than the one suggested3.

a.5 conclusion

Compared to the built-in Matlab version, a serial C++ imple-
mentation of the sinc(x) function does not in general perform
faster computations. However, by OpenMP parallelization of the
C++ code, all the tested computers display higher performance
in the best MEX implementations4, compared to the built-in Mat-
lab version.

Hence, general optimizing results may be obtained using MEX
functions, if the C++ also is parallelized. In this study OpenMP
has successfully been used for parallelizing the implementation.
The results represent a "worst-case" scenario, as the reference
sinc(x) function is optimized and embedded in the compiled
parts of Matlab. Thus, the method is expected to provide much
higher optimizations to a user implemented Matlab function,
like the one discussed in Section 3.3.

3 That Matlab perform differently on different OSes.
4 Both the static and guided OpenMP schedules provide general improvements.

B
E F F I C I E N T D ATA A C C E S S I N A 3 D M AT R I X

b.1 introduction and theory

This study can be viewed as a preliminary study to the thesis,
regarding performance in different for-loop data access. The
question in view is whether a single, long for-loop or a nest of
shorter loops, will provide the fastest accessing of elements in
a 3D matrix.

In a C++ for-loop, a running variable is declared and initial-
ized at the start of the loop. This needs to be done one time
if we have a single loop. If we choose to use nested for-loops
(Listing 2) the inner ones will have to re-declare their running
variable every time the loop outside it finishes an iteration.

Listing 2: A typical triple nested for-loop in C++.

for (int k; k < SOME_BORDER_VALUE_K ; k++){

for (int i; i < SOME_BORDER_VALUE_I ; i++){

for (int j; j < SOME_BORDER_VALUE_J ; j++){

(...content...)

}

}

} �
In a MEX file, big chunks of data will often be stored in a Mat-

lab specific data type called mxArray. This construct stores the
data in the same way as Matlab, where a multidimensional ma-
trix is stored as a one dimensional array no matter how many
dimensions it consists of. The dimensionality is stored in inter-
nal object variables, and internal functions help a Matlab user
to access data in the intuitive M(i,j,k,...) manner [68]. This way
of storing the data gives the opportunity to ignore the dimen-
sionality altogether if every data element in the matrix is inde-
pendent of every other element. If one needs the conventional
triple indices in calculations or ordering of data, they may be

63

B.2 method 64

calculated from the major index using the modulo operator in
a manner discussed in Section 2.6.4.

In this appendix is examined whether a construct running a
single for-loop and the function in Listing 3 can be said to be
a more efficient way of accessing a C++ Matlab array of data,
than running a triple nested for-loop.

A known benefit from merging a number of nested loops in
to one bigger loop is that the catch memory is used in a more
efficient manner. In stead of moving through rows and columns,
we run though the data in the order it is stored in the memory,
making more efficient use of the memory addresses stored in
the processor cache. [67, p. 133]

b.2 method

The test has been performed using two versions of the prop2harm
C++ MEX function discussed in Chapter 3. The reference struc-
ture is the original version of prop2harm developed in [1], and
the other one is the 2.0 version included in App. C.3 of this
thesis.

The simulation time of an example matrix were measured
both using OpenMP with various parallelization settings and a
pure C++ implementation with no OpenMP directives. The com-
putations were performed under using Computer 1 from Table
1, and the simulated system is the one summarized in Table 3.

b.3 results and discussion

In this section, timing results from the implementations in view
at two different problem sizes are displayed.

Using (42) on the results displayed in Figure 16. one can find
that the implementation using a single for-loop achieves a cal-
culation time reduction by up to 24%, relative to the mean to-
tal time needed1. This speed-up is achieved under OpenMP and
may be related to reduced CPU overhead, as each thread has a
more extensive chunk of work containing iterations of various
duration. Therefore random differences in computation time
for different data points are smoothed out. For the serial im-
plementation, the total numbers show that the old nested loop
system is faster by 0.02 s. Relative to the corresponding mean
value this number represent a small change −0, 3%, but it does

1 For the dynamic OpenMP work flow

B.4 conclusion 65

5,99	
 s	

1,04	
 s	
 1,04	
 s	
 1,04	
 s	

6,01	
 s	

0,98	
 s	
 0,86	
 s	
 0,81	
 s	

0	
 s	

1	
 s	

2	
 s	

3	
 s	

4	
 s	

5	
 s	

6	
 s	

7	
 s	

MEX	
 without	

openMP	

OpenMP	
 sta=c	
 OpenMP	
 guided	
 OpenMP	
 dynamic	

Nested	
 triple	
 for-­‐loop	
 in	
 MEX	
 implementa=on	

Single	
 long	
 for-­‐loop	
 covering	
 all	

Figure 16: Summary of computational time required for simulation
of an ultrasound field in the 2

nd harmonic frequency band
containing x×y× z = 66× 38× 11 = 27652 elements using
various OpenMP settings.

show that the speed up achieved in the OpenMP versions of the
code is obtained because of reduced overhead and not because
of more efficient catch use [67, p. 133], as that also would have
given a speed-up for the serial implementation.

b.4 conclusion

In this preliminary study, it was found that parallel processing
using OpenMP used 24% less time on a nonlinear simulation
when the data access in a large, three dimensional matrix was
organized using a single for-loop instead of a nested one. The
re-structuring requires that every element of the matrix may
be accessed independently. For a serial implementation, a weak
negative effect (−0, 3%) is observed from this reordering. How-
ever, in relative numbers the difference is too small to defend
the use of multiple independent versions of the program, where
one is using OpenMP and the other is not.

C
C + + S O U R C E C O D E

c.1 conversion between triple and single indexing

Using all zero-based indexing, the subscripts of a matrix may
be calculated using the single index, and known dimensional
length for the two first indices. The theory of this calculation
is explained in Section 2.6.4 and the C++ implementation is
displayed in Listing 3. This function makes it possible to exploit
the advantages of using a single for-loop and a single index
to access elements in the 3D Matlab matrix (App. B), and still
have the ability to use the triple subscripts in calculations and
element addressing inside the loop.

Listing 3: C++ subfunction used for calculation of one or zero based
triple indices from a zero based 3D single index. Part of the
MEX function in Listing 5.

void tripleIndex(int singleIndex, int indexArray[3], int

sizeI, int sizeJ, bool baseOfReturnIndex){

/*The function trippleindex calculates three zero based

(baseOfReturnIndex=0) or 1-based (baseOfReturnIndex

=1) indices from a C++ MEX 0-based singleIndex, and

the 1st and 2nd array lengths.*/

//Foundational eq. is: singleIndex= i + sizeI*j + sizeI*
sizeJ*k;

int IxJ = sizeI * sizeJ;

int rem = singleIndex % IxJ; //i.e. rem=sizeI*j + i;

indexArray[0]=(rem % sizeI); //This is the final i

value (1st index)

indexArray[1]=((rem - indexArray[0]) / sizeI); //

This is the final j value (2nd index)

indexArray[2]=((singleIndex - indexArray[0] -

indexArray[1] * sizeI) / IxJ); //This is the final

k value (3rd index)

if (baseOfReturnIndex){indexArray[0]++; indexArray[1]++;

indexArray[2]++;}; //Modification of output if 1-

66

C.2 source code to the mex version of the sinc(x) function 67

based return indexing (MATLAB index) is specified (

defualt return value is 0-based (C++ index))

return;

}; �
c.2 source code to the mex version of the sinc(x)

function

The sinc(x) MEX function source code displayed in Listing 4 is
used in the studies of Appendix A and is based on the version
made as part of my specialization project [1]. As part of the
present thesis, the following updates have been made:

• The gsl_complex.h library has been replaced by the stan-
dard C++ complex.h library.

• Parallel CPU computing has been implemented using OpenMP
directives.

• Minor updates in the structure of the program.

Listing 4: C++ implementation of sinc based on the one used in my
specialization project [1].

1 //newSinc.cpp v. 2.0 - Haakon Seljaasen//

#include "mex.h"
3 #include "matrix .h"
#include "math.h"

5 #include <complex>

using namespace std;

7

#ifdef _OPENMP

9 #define ompWORKFLOW guided //Open MP schedule() setting

#include "omp.h"
11 #else

#define omp_get_thread_num() 0

13 #endif

15 void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const

mxArray *prhs[]){

/*The C++ MEX function "newSinc(x)" takes a matrix as

input argument and computes the sinc(x)

17 *value of any input element sinc(x.). */

//Validation of inputs:

19 if (nlhs!=1){

C.2 source code to the mex version of the sinc(x) function 68

mexErrMsgIdAndTxt("Toolbox : complexSinc : nlhs","only
one output is allowed");

21 };

if (nrhs!=1){

23 mexErrMsgIdAndTxt("Toolbox : complexSinc : nrhs","only
one input matrix is allowed");

};

25 //Declaration of variables

double pi =

3.1415926535897932384626433832795028841971693993751;

27 const mxArray * input=prhs[0];

complex<double> argument;

29 complex<double> I=complex<double>(0.0,1.0);

double * xInRe=NULL;

31 double * xInIm=NULL;

double * xOutRe=NULL;

33 double * xOutIm=NULL;

bool IsComplex=mxIsComplex(input);

35 int totalMatrixSize;

//Extracting dimmensions from the input Matrix:

37 mwSize ndim;

const mwSize *dims;

39 dims=mxGetDimensions(input);

ndim=mxGetNumberOfDimensions(input);

41 totalMatrixSize=mxGetNumberOfElements(input);

//Creating output Matrix:

43 mxClassID classid=mxDOUBLE_CLASS;

mxComplexity ComplexFlag;

45 if (IsComplex){

ComplexFlag=mxCOMPLEX;

47 }else{

ComplexFlag=mxREAL;

49 };

plhs[0]=mxCreateNumericArray(ndim, dims, classid,

ComplexFlag);

51 //Directing pointers;

xInRe=mxGetPr(input);

53 xOutRe=mxGetPr(plhs[0]);

if (IsComplex){

55 xInIm=mxGetPi(input);

xOutIm=mxGetPi(plhs[0]);

57 };

//Performing calculations on every element in the Matrix

:

59 if (IsComplex){

C.3 source code to the mex version of prop2harm 69

#pragma omp parallel for private(argument) shared(pi,xInRe,

xInIm,xOutRe,xOutIm) schedule(ompWORKFLOW) //openMP call

61 for (int i=0;i<totalMatrixSize;i++){

if((xInRe[i]==0)&&(xInIm[i]==0)){

63 xOutRe[i]=1;//if x=0, sinc(x)=1.

xOutIm[i]=0;

65 }else{

argument=(xInRe[i]+xInIm[i]*I)*pi;

67 argument=sin(argument)/argument;

xOutRe[i]=real(argument);

69 xOutIm[i]=imag(argument);

};

71 };

}else{

73 #pragma omp parallel for private(argument) shared(pi,xInRe,

xInIm,xOutRe,xOutIm) schedule(ompWORKFLOW) //openMP call

for (int i=0;i<totalMatrixSize;i++){

75 if(xInRe[i]==0){

xOutRe[i]=1;//if x=0, sinc(x)=1.

77 }else{

xOutRe[i]=sin(pi*xInRe[i])/(pi*xInRe[i]);

79 };

};

81 };//End parallel computing

return;

83 }; �
c.3 source code to the mex version of prop2harm

Version 1.0 of the C++ MEX function used to calculate the sec-
ond harmonic field (Listing 5) was created as part my special-
ization project, version 2.0 is a further development of that ver-
sion [1, App. C.3]. As part of the current research, a number of
important updates have been made:

• The gsl_complex.h library has been replaced by the stan-
dard C++ complex.h library.

• To allow for smooth parallel computing, changes have
been made in line 198 – 225 by replacing a triple nested
for-loop with one single long loop (App. B) utilizing the
function in listing.

• Parallel CPU computing has been implemented using OpenMP
directives.

C.3 source code to the mex version of prop2harm 70

• In the Angular Spectrum Method, (22) from Chapter 2

has been implemented on lines 335-339 and 386-390 to re-
duce approximation errors regarding potential evanescent
waves, which may appear close to the transducer.

The original program had an option for utilization of symmetri-
cal properties in simulations, requiring 1/4 of the computations
otherwise needed. This possibility is maintained in the new ver-
sion, but is still organized as a triple nested for-loop as it does
not benefit from being converted to a single loop. For clarity
reasons the duplicating of values to symmetrical matrix points
have been built into the sub-function utilizeSymmetry.

Listing 5: Source code for the C++ MEX function used in simulations
of the 2

nd harmonic field. Based on the implementation
used in my specialization project [1].

1 ///prop2harm v. 2.0, part of the Propose simulation program.

MEX-function written by

///master student Haakon Seljaasen fall 2013 (v. 1.0) and

spring 2014 (v. 2.0)

3 #include "math.h"
#include "mex.h"

5 #include "matrix .h"
#include "complex.h"

7 using namespace std;

9 #define ompWORKFLOW runtime //Open MP schedule() setting -

affects all calls

11 #ifdef _OPENMP

#include "headerFiles/omp.h"
13 #else

#define omp_get_thread_num() 0

15 #endif

17

//subfunctions:

19 double complex nodePointCalculation(const mxArray * P11,

const mxArray * K,int fxStart,int fxStop,int fyStart,int

fyStop,int fStart,int fStop,double z1,double z2,double

fx,double fy,double f,double a,double b,double c,double

complex Cfactor,double infinitesimalProduct,int m,int n,

int l,int NfHalf);

double complex katet(double fx, double fy, double f, double

* a, double * b, double c);

C.3 source code to the mex version of prop2harm 71

21 mxArray * katet(const double* fx, int Nfx1, const double* fy

, int Nfy1, const double* f, int fLen, const double* a,

const double* b, const double * c);

double mean (const double array[], const double length);

23 double complex csinc (double complex x);

mwIndex singleIndex(int i, int j, int k, int sizeI, int

sizeJ, bool baseOfIndex);

25 void tripleIndex(mwIndex singleIndex, int indexArray[3], int

sizeI, int sizeJ, bool baseOfReturnIndex);

void utlizeSymmetry(double complex P221, double * outputRe,

double * outputIm,int index[3], int dims[3],int Nx2, int

Ny2, bool baseOfInputIndex);

27

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const

mxArray *prhs[]){

29 /*The function prop3harm is computing the 2. harmonic

nonlinear propagation from plane P11 to P22, using

the

*quasi-linear approximation. Input parameters are (P11,

fx1,fy2,f1,z1,z2,a,b), output parameters are (P22,

fx2,fy2,f2).

31 * - P11 is the Fouriertransform of the field in pos. z1

, with freq. axes fx1,fy1,f1

* - P22 is the Fouriertransform of the 2. harm field in

pos. z2, with freq. axes fx1,fy1,f1.*/

33 //Tested 29.12.13 and working correct, Haakon Seljaasen.

//Validation of inputs:

35 if (nlhs!=4){

mexErrMsgIdAndTxt("Toolbox :prop2harm: nlhs"," exactly
4 output variables is allowed (P22 , fx2 , fy2 , f2) ")
;

37 };

if (nrhs!=8){

39 mexErrMsgIdAndTxt("Toolbox :prop2harm: nrhs"," exactly
8 inputs are needed: (P11 , fx1 , fy2 , f1 , z1 , z2 , a ,b) "
);

};

41 //Definition of pi:

long double pi =

3.1415926535897932384626433832795028841971693993751;

//(double)(*PI);

43 //Calculation method:

bool useSymmetry;//Assigned from pSettings in Propose

45 //Declaration of variables

const mxArray * P11=prhs[0];

47 const mxArray * Z1=prhs[4];

C.3 source code to the mex version of prop2harm 72

const mxArray * Z2=prhs[5];

49 const double * fx1=mxGetPr(prhs[1]);

const double * fy1=mxGetPr(prhs[2]);

51 const double * f1=mxGetPr(prhs[3]);

mxArray * Fx1=mxDuplicateArray(prhs[1]);

53 mxArray * Fy1=mxDuplicateArray(prhs[2]);

mxArray * Ff1=mxDuplicateArray(prhs[3]);

55 double * fx2;

double * fy2;

57 double * f2;

double * z1=mxGetPr(prhs[4]);

59 double * z2=mxGetPr(prhs[5]);

double * a=mxGetPr(prhs[6]);

61 double * b=mxGetPr(prhs[7]);

mxArray * A=mxDuplicateArray(prhs[6]);

63 mxArray * B=mxDuplicateArray(prhs[7]);

mxArray * P22;

65 mxArray * Fx;

mxArray * Fy;

67

double * P22Re=NULL;

69 double * P22Im=NULL;

//Various complex variables:

71 double complex Kf;

double complex P221;

73 double complex ImgPropFactor;

//Various framework variables:

75 double temp=0;

int Nfx1, Nfy1, Nf1, Nx, Ny, Nf, Nx2, Ny2, Nf2, NfHalf,

Nl, Nm, Nn;

77 int fxStart,fxStop,fyStart,fyStop,fStart,fStop;

double dfx, dfy, df, f0, limit, f, fy, fx;

79 mxArray * K;

mwIndex sizeOfMatrix;

81 int oneBasedIndex[3];

double kappa, betaN, c;//Acoustical properties

83 //Extracting setting values from the global workspace,

pSettings.

//

85 mxArray *pSettings=mexGetVariable("global ", "pSettings")
; // get the struct

if (pSettings==NULL){//error testing

87 //mexPrintf("\nError in prop2harm.cpp: Struct

pSettings not found\n");

C.3 source code to the mex version of prop2harm 73

mexErrMsgIdAndTxt("Toolbox :prop2harm: pSettings","
Matlab variable pSettings not found");

89 };

//-------------------------useSymmetry

?-------------------------------

91 mxArray *Symmetry = mxGetField(pSettings,0,"useSymmetry"
); // get the field

if (Symmetry==NULL){//error testing

93 mexErrMsgIdAndTxt("Toolbox :prop2harm:Symmetry","
Struct value pSettings .useSymmetry not found");

};

95 if ((*mxGetPr(Symmetry)==0.0)||(*mxGetPr(Symmetry)==1)){

//error testing

useSymmetry=(bool)(*mxGetPr(Symmetry));

97 }else{

mexErrMsgIdAndTxt("Toolbox :prop2harm:Symmetry","
Struct value pSettings .useSymmetry contains non−
boolean value");

99 };

101 mxArray *Kappa = mxGetField(pSettings,0,"kappa"); // get

the field

if (Kappa==NULL){//error testing

103 mexErrMsgIdAndTxt("Toolbox :prop2harm:Kappa"," Struct
value pSettings .Kappa not found");

};

105 kappa=(*mxGetPr(Kappa));

mxArray *BetaN = mxGetField(pSettings,0,"betaN"); // get

the field

107 if (BetaN==NULL){//error testing

mexErrMsgIdAndTxt("Toolbox :prop2harm:BetaN"," Struct
value pSettings .BetaN not found");

109 };

betaN=(*mxGetPr(BetaN));

111 mxArray *SpeedOfSound = mxGetField(pSettings,0,"c"); //

get the field

if (SpeedOfSound==NULL){//error testing

113 mexErrMsgIdAndTxt("Toolbox :prop2harm:SpeedOfSound","
Struct value pSettings . c not found");

};

115 c=*(mxGetPr(SpeedOfSound));

ImgPropFactor=0-(kappa*betaN*pow(pi,2)/pow(c,4))*I;

117 //Finding properties of input Matrix.

Nfx1=mxGetN(prhs[1]);

119 Nfy1=mxGetN(prhs[2]);

Nf1=mxGetN(prhs[3]);

C.3 source code to the mex version of prop2harm 74

121 mwSize ndim=3; //3D Matrix output

//Extracting dimmensions from the input Matrix:

123 const mwSize * P11Dims=mxGetDimensions(P11);

Nx=P11Dims[0];

125 Ny=P11Dims[1];

Nf=P11Dims[2];

127 mwIndex tempIndex[3];

//Allocating mxArrays and pointers for output:

129 tempIndex[0]=1; //Needed to make the output Arrays

column major.

tempIndex[1]=2*Nx; //using this temp. variable to

satisfy input requirements in mxCreateNumericArray.

131 plhs[1]=mxCreateNumericArray(2, tempIndex,

mxDOUBLE_CLASS, mxREAL);//Allocating output mxArray

fx2=mxGetPr(plhs[1]);//Making double pointer to output,

for use inside prop2harm.

133 tempIndex[1]=2*Ny;

plhs[2]=mxCreateNumericArray(2, tempIndex,

mxDOUBLE_CLASS, mxREAL);

135 fy2=mxGetPr(plhs[2]);//Making double pointer to output,

for use inside prop2harm.

tempIndex[1]=Nf;

137 plhs[3]=mxCreateNumericArray(2, tempIndex,

mxDOUBLE_CLASS, mxREAL);

f2=mxGetPr(plhs[3]);//Making double pointer to output,

for use inside prop2harm.

139 dfx=fx1[1]-fx1[0];

dfy=fy1[1]-fy1[0];

141 df=f1[1]-f1[0];

double infinitesimalProduct=dfx*dfy*df;

143 //Frequency axes for 2. harmonic:

f0=mean(f1,Nf1);

145 Nf2=Nf1;

for(int i=0;i<Nf1;i++){

147 f2[i]=f1[i]+f0;

};

149 //Initializing counters for determination of array length

Nx2 and Ny2:

Nx2=0;

151 temp=2*fx1[0];

limit=2*fx1[Nfx1-1]+dfx;

153 while(temp<limit){

fx2[Nx2]=2*fx1[0]+dfx*(Nx2);

155 temp=fx2[Nx2];

//mexPrintf("\nfx2=%f\n",temp);

157 Nx2++;

C.3 source code to the mex version of prop2harm 75

};

159 Ny2=0;

temp=2*fy1[0];

161 limit=2*fy1[Nfy1-1]+dfy;

while(temp<limit){

163 fy2[Ny2]=2*fy1[0]+dfy*(Ny2);

temp=fy2[Ny2];

165 //mexPrintf("\nfy2=%f\n",temp);

Ny2++;

167 };

//---

169 /*If one wish to include dispersion this can be included

here,

* this function may be called from matlab: cw=

dispersion(f2,2*f0,a,b)*/

171 //Creating output Matrix:

mwSize P22Dims[3];

173 P22Dims[0]=Nx2;

P22Dims[1]=Ny2;

175 P22Dims[2]=Nf2;

plhs[0]=mxCreateNumericArray(ndim, P22Dims,

mxDOUBLE_CLASS, mxCOMPLEX);

177 P22=plhs[0];

sizeOfMatrix=mxGetNumberOfElements(P22);

179 //Directing return Matrix pointers;

P22Re=mxGetPr(P22);

181 P22Im=mxGetPi(P22);

//Making Matrix/table with K values for use in the

nodePointCalculation function:

183 K=katet(fx1, Nfx1, fy1, Nfy1, f1 , Nf1, a, b, &c); //

Calculating katet() values for every combination of

fx, fy and f...

//Boundaries for the tripleIndecies

185 NfHalf=floor(Nf/2.0);

Nl=Nf;

187 if(useSymmetry){

Nm=round(Nx2/2.0);

189 Nn=round(Ny2/2.0);

}else{

191 Nm=Nx2;

Nn=Ny2;

193 };

195 //Main calculations:

if (! useSymmetry){

C.3 source code to the mex version of prop2harm 76

197 #pragma omp parallel for private(fy,fx,f,fyStart,fyStop,

fxStart,fxStop,fStart,fStop,P221,oneBasedIndex) shared(

P22Dims,P11,K,z1,z2,a,b,c,ImgPropFactor,

infinitesimalProduct,NfHalf,sizeOfMatrix) schedule(

ompWORKFLOW) //Calling openMP

for (mwIndex t=0; t<sizeOfMatrix; t++){

199

tripleIndex(t, oneBasedIndex, P22Dims[0],

P22Dims[1], 1);

201 //The oneBasedIndex values corresponds to the following

indecies used in the original MATLAB code:

// m=oneBasedIndex[0]; //x-dimension

203 // n=oneBasedIndex[1]; //y-dimension

// l=oneBasedIndex[2]; //f-dimansion

205 fx=fx2[oneBasedIndex[0]-1];

fxStart=fmax(1,1+oneBasedIndex[0]-Nx);

207 fxStop=fmin(Nx-1,oneBasedIndex[0]);

209 fy=fy2[oneBasedIndex[1]-1];

fyStart=fmax(1,1+oneBasedIndex[1]-Ny);

211 fyStop=fmin(Ny-1,oneBasedIndex[1]);

213 f=f2[oneBasedIndex[2]-1];

fStart=fmax(1,1+oneBasedIndex[2]-NfHalf);

215 fStop=fmin(Nf,oneBasedIndex[2]-NfHalf+Nf-1);

if (!((fStart>fStop)||(fyStart>fyStop)||(

fxStart>fxStop))){

217 P221=nodePointCalculation(P11,K,fxStart,

fxStop,fyStart,fyStop,fStart,fStop,*z1,*
z2,fx,fy,f,*a,*b,c,ImgPropFactor,

infinitesimalProduct,oneBasedIndex[0],

oneBasedIndex[1],oneBasedIndex[2],NfHalf

);

}else{

219 P221=0+0*I;

};

221 P22Re[t]=creal(P221);

P22Im[t]=cimag(P221);

223 }; // end of for (t=0 to sizeOfMatrix)

}else{

225 //----------------------if symmetry is enabled

#pragma omp parallel for private(fy,fx,f,fyStart,fyStop,

fxStart,fxStop,fStart,fStop,P221,oneBasedIndex) shared(

P22Dims,P11,K,z1,z2,a,b,c,ImgPropFactor,

C.3 source code to the mex version of prop2harm 77

infinitesimalProduct,NfHalf) schedule(ompWORKFLOW) //

Calling openMP

227 for (int l=1; l<=Nl; l++){

f=f2[l-1];

229 fStart=fmax(1,1+l-NfHalf);

fStop=fmin(Nf,l-NfHalf+Nf-1);

231 for (int m=1;m<=Nm;m++){

fx=fx2[m-1];

233 fxStart=fmax(1,1+m-Nx);

fxStop=fmin(Nx-1,m);

235 for (int n=1;n<=Nn;n++){

fy=fy2[n-1];

237 fyStart=fmax(1,1+n-Ny);

fyStop=fmin(Ny-1,n);

239 if (!((fStart>fStop)||(fyStart>fyStop)

||(fxStart>fxStop))){

P221=nodePointCalculation(P11,K,

fxStart,fxStop,fyStart,fyStop,

fStart,fStop,*z1,*z2,fx,fy,f,*a

,*b,c,ImgPropFactor,

infinitesimalProduct,m,n,l,

NfHalf);

241 }else{

P221=0+0*I;

243 };

oneBasedIndex[0]=m;

245 oneBasedIndex[1]=n;

oneBasedIndex[2]=l;

247 utlizeSymmetry(P221,P22Re,P22Im,

oneBasedIndex,P22Dims,Nx2,Ny2,1);

};//for m=0 to Nn

249 }; //for l=0 to Nm

}; //for l=0 to Nl

251 };//end of if-else statement regarding symmetry

253 return;

};

255

257 double complex nodePointCalculation(const mxArray * P11,

const mxArray * K,int fxStart,int fxStop,int fyStart,int

fyStop,int fStart,int fStop,double z1,double z2,double

fx,double fy,double f,double a,double b,double c,double

complex Cfactor,double infinitesimalProduct,int m,int n,

int l,int NfHalf){

C.3 source code to the mex version of prop2harm 78

/*The function nodePointCalculation is used for

computing the 2. harmonic nonlinear soundfield of a

node in P22 of prop2harm, using the

259 *quasi-linear approximation. Input parameters are (P11,

K,kf,fxStart,fxStop,fyStart,fyStop,fStart,fStop,z1,

z2,fx,fy,f,a,b,c,Cfactor,dfx,dfy,df,l,m,n,NfHalf)

*/

//Tested 29.12.13 and working correct, HS.

261 double pi =

3.1415926535897932384626433832795028841971693993751;

//Output:

263 double complex Node=0+0*I;

//Input

265 double * P11Re=mxGetPr(P11);

double * P11Im=NULL;

267 bool complexP11=mxIsComplex(P11);

if (complexP11){

269 P11Im=mxGetPi(P11);

}else{

271 mexErrMsgIdAndTxt("Toolbox :prop2harm:
nodePointCalculation","Non−complex P11 input
given , needs to be taken into account in the
prop2harm.cpp code before enabeling . ");

};

273 bool complexK=mxIsComplex(K);

double * K_Real=mxGetPr(K);

275 double * K_Imag=NULL;

if (complexK){

277 K_Imag=mxGetPi(K);//Taken into account later in the

code with the complexK-variable

};

279 double complex kf=katet(fx, fy, f, &a, &b, c);

const mwSize * Kdim=mxGetDimensions(K);

281 const mwSize * P11dim=mxGetDimensions(P11);

//Working variables

283 double complex gamma;

double complex K1;

285 double complex K2;

double complex P11A;

287 double complex P11B;

double Z1minusZ2_Half=((z1)-(z2)/2);//for use in Hp

289 double MinusZ2div2pi=-(z2)/(2*pi);//for use in Hp

mwIndex singleIndex1;

291 mwIndex singleIndex2;

mwIndex Ix2, Iy2, If2;

293 double complex Hp;

C.3 source code to the mex version of prop2harm 79

//Calculations

295 for (int h=fxStart; h<=fxStop; h++){

Ix2=1+m-h;

297 for(int i=fyStart; i<=fyStop; i++){

Iy2=1+n-i;

299 for(int j=fStart; j<=fStop; j++){

If2=l+1+NfHalf-j;

301 //Calculating single index

singleIndex1=singleIndex(h, i, j, Kdim[0],

Kdim[1],1);

303 singleIndex2=singleIndex(Ix2, Iy2, If2, Kdim

[0], Kdim[1],1);

if(complexK){

305 K1=K_Real[singleIndex1]+K_Imag[

singleIndex1]*I;

K2=K_Real[singleIndex2]+K_Imag[

singleIndex2]*I;

307 }else{

K1=K_Real[singleIndex1]+0*I;

309 K2=K_Real[singleIndex2]+0*I;

};

311 gamma=K1+K2-kf;

Hp=cexp(gamma*I*Z1minusZ2_Half)*csinc(gamma*
MinusZ2div2pi);

313 //Recalculating single index

singleIndex1=singleIndex(h, i, j, P11dim[0],

P11dim[1],1);

315 singleIndex2=singleIndex(Ix2, Iy2, If2,

P11dim[0], P11dim[1],1);

P11A=P11Re[singleIndex1]+P11Im[singleIndex1

]*I;

317 P11B=P11Re[singleIndex2]+P11Im[singleIndex2

]*I;

Node=Node+(P11A*P11B*Hp);

319 };

};

321 };

Node=Node*cexp((-kf*I)*(z2-z1))*z2*pow(f,2)*
infinitesimalProduct;

323 Node=Node*(Cfactor / (kf+2*pi*f/c));

return Node;

325 };

327 double complex katet(double fx, double fy, double f, double

* a, double * b, double c){

C.3 source code to the mex version of prop2harm 80

/*The function katet is ment for computing sqrt(f^2-f_x

^2-f_y^2). Input is

329 * (fx[],fy[],f[],a,b,c) Output is double a scalar that

is negative if the answer is complex. a and b are

not used unless we want to include attenuation in

the formula.*/

//Definition of pi:

331 double pi =

3.1415926535897932384626433832795028841971693993751;

int int_b=*b;

333 double complex K;

double arg=pow(f,2)-pow(fx,2)-pow(fy,2);

335 if (arg<0) {

K=(-csqrt(arg)+f)*((2*pi)/(c));

337 }else{

K=(csqrt(arg)-f)*((2*pi)/(c));

339 };

//Subtracting attenuation:

341 K=K-(*a)*pow(f/pow(10.0,6),int_b)*I;

return K;

343 };

345 //katet.cpp - Haakon Seljaasen//

mxArray * katet(const double* fx, int Nfx1, const double* fy

, int Nfy1, const double* f, int fLen, const double* a,

const double* b, const double * c){

347 /*The function katet is ment for computing sqrt(f^2-f_x

^2-f_y^2). Input is

* (fx[],Nfx,fy[],Nfy,f[],Nf,a,b,c)*/

349 //Definition of pi:

double pi =

3.1415926535897932384626433832795028841971693993751;

351 //Declaration of variables

mxArray * output;

353 double * sqrtRe=NULL;

double * sqrtIm=NULL;

355 int int_b=*b;

double proportionalityFactor=(2*pi)/(*c);

357 double arg;

double complex K;

359 //Declaring dimmensions on the output array.

mwSize ndim=3;

361 mwSize dims[3];

//Creating output Matrix

363 //Set dimmensions:

dims[0]=Nfx1;

C.3 source code to the mex version of prop2harm 81

365 dims[1]=Nfy1;

dims[2]=fLen;

367 mxClassID classid=mxDOUBLE_CLASS;

mxComplexity ComplexFlag=mxCOMPLEX;

369 mwIndex It;

if((Nfx1==1)&&(Nfy1==1)&&(fLen)){

371 output=mxCreateDoubleMatrix(1, 1, mxCOMPLEX);

}else{

373 output=mxCreateNumericArray(ndim, dims, classid,

ComplexFlag);

sqrtIm=mxGetPi(output);

375 };

sqrtRe=mxGetPr(output);

377 // #pragma omp parallel for private(arg,root,K,

attenuation,It) schedule(ompWORKFLOW) //Usually too

small matrixes to make any positive difference

//The function is only called once.

379 for(int i=0;i<fLen;i++){

for(int j=0;j<Nfx1;j++){

381 for(int k=0;k<Nfy1;k++){

/* According to original matlab souce code

here we make a change

383 * to make sure that the imaginary part of K

is negative, so that the solution

* does not diverge as z approaches infinity

. */

385 arg=pow(f[i],2)-pow(fx[j],2)-pow(fy[k],2);

if (arg<0) {

387 K=(-csqrt(arg)+f[i])*
proportionalityFactor;

}else{

389 K=(csqrt(arg)-f[i])*
proportionalityFactor;

};

391 //Accounting for power law attenuation:

K=K-((*a)*pow(f[i]/pow(10.0,6),int_b))*I;

393 //Shipping out results:

It=singleIndex(j, k, i, dims[0], dims[1],0);

395 sqrtRe[It]=creal(K);

sqrtIm[It]=cimag(K);

397 };

};

399 };

return output;

401 };

C.3 source code to the mex version of prop2harm 82

403 double complex csinc (double complex x){

//Definition of pi:

405 double pi =

3.1415926535897932384626433832795028841971693993751;

if((creal(x)==0.0)&&(cimag(x)==0.0)){

407 return 1+0*I;

}else{

409 x=x*pi;//Normalized sinc uses x times pi as argument

return csin(x)/x;

411 };

};

413

double mean (const double array[], const double length){

415 double sum = 0;

for (int i = 0; i < length; i++){

417 sum =sum+ array [i];

}

419 return sum/length;

};

421

mwIndex singleIndex(int i, int j, int k, int sizeI, int

sizeJ, bool baseOfIndex){

423 /*Creates a 0-based single subscript from the 1-based

matlab indexi of a 3D matrix

* if baseOfIndex==1, and a 0 base index of 0 based

indices if baseOfIndex==0 indices of a 3D matrix.

425 * i, j, k are indices wished to access, I and J denotes

the first two dimmensions of the 3D Matrix*/

if(baseOfIndex){

427 return (i-1)+(j-1)*sizeI+(k-1)*sizeI*sizeJ;

}else{

429 return (i)+(j)*sizeI+(k)*sizeI*sizeJ;

};

431 };

433 void tripleIndex(mwIndex singleIndex, int indexArray[3], int

sizeI, int sizeJ, bool baseOfReturnIndex){

//This function is displayed separate in Listing 3.

435 };

437

void utlizeSymmetry(double complex P221, double outputRe[],

double outputIm[],int index[3], int dims[3],int Nx2, int

Ny2, bool baseOfInputIndex){

439 ///This function is used to distribute a computed value

in prop2harm to all 4 destinations in the output

C.3 source code to the mex version of prop2harm 83

array where it applies according to symmetry

properties.

mwIndex tempIt;

441 tempIt=singleIndex(index[0], index[1], index[2], dims

[0], dims[1], baseOfInputIndex);

outputRe[tempIt]=creal(P221);

443 outputIm[tempIt]=cimag(P221);

445 tempIt=singleIndex(Nx2-index[0]+1, index[1], index[2],

dims[0], dims[1], baseOfInputIndex);

outputRe[tempIt]=creal(P221);

447 outputIm[tempIt]=cimag(P221);

449 tempIt=singleIndex(Nx2-index[0]+1, Ny2-index[1]+1, index

[2], dims[0], dims[1], baseOfInputIndex);

outputRe[tempIt]=creal(P221);

451 outputIm[tempIt]=cimag(P221);

453 tempIt=singleIndex(index[0], Ny2-index[1]+1, index[2],

dims[0], dims[1], baseOfInputIndex);

outputRe[tempIt]=creal(P221);

455 outputIm[tempIt]=cimag(P221);

return;

457 }; �

B I B L I O G R A P H Y

[1] H. Seljåsen, “Fast simulation of nonlinear wave prop-
agation in medical ultrasound,” 1 2014. Specialization
project, Norwegian University of Science and Tech-
nology. http://folk.ntnu.no/seljasen/Arbeider/

Specialization_project_2013.pdf. Accessed: 2013-03-
04.

[2] F. Prieur, T. F. Johansen, S. Holm, and H. Torp, “Fast simu-
lation of second harmonic ultrasound field using a quasi-
linear method,” J. Acoust. Soc. Am., vol. 131, no. 6, pp. 4365–
4375, 2012.

[3] S. N. Gurbatov, O. V. Rudenko, and A. Saichev, Waves and
Structures in Nonlinear Nondispersive Media: General Theory
and Applications to Nonlinear Acoustics. Springer, 2012.

[4] F. A. Duck, “Nonlinear acoustics in diagnostic ultrasound,”
Ultrasound in medicine & biology, vol. 28, no. 1, pp. 1–18,
2002.

[5] P. H. Torp, “Guest lecture on medical signal processing.”
TTT4120 – Digital Signal Processing. The The Norwegian
University of Science and Technology, November, 14 2013.

[6] R. Hansen, S.-E. Måsøy, T. A. Tangen, and B. A. Angelsen,
“Nonlinear propagation delay and pulse distortion result-
ing from dual frequency band transmit pulse complexes,”
The Journal of the Acoustical Society of America, vol. 129, no. 2,
pp. 1117–1127, 2011.

[7] R. S. Shapiro, A. Stancato-Pasik, and S. E. Sims, “Diagnos-
tic value of tissue harmonic imaging compared with con-
ventional sonography,” Computers in biology and medicine,
vol. 35, no. 8, pp. 725–733, 2005.

[8] T. S. Desser, T. Jedrzejewicz, and C. Bradley, “Native tis-
sue harmonic imaging: Basic principles and clinical appli-
cations,” Ultrasound Quarterly, vol. 16, no. 1, pp. 40–hyhen,
2000.

84

http://folk.ntnu.no/seljasen/Arbeider/Specialization_project_2013.pdf
http://folk.ntnu.no/seljasen/Arbeider/Specialization_project_2013.pdf

bibliography 85

[9] G. A. Whalley, G. D. Gamble, H. J. Walsh, N. Sharpe, and
R. N. Doughty, “Quantitative evaluation of regional endo-
cardial visualisation with second harmonic imaging and
contrast left ventricular opacification in heart failure pa-
tients,” European Journal of Echocardiography, vol. 6, no. 2,
pp. 134–143, 2005.

[10] G. A. Whalley, G. D. Gamble, H. J. Walsh, S. P. Wright,
S. Agewall, N. Sharpe, and R. N. Doughty, “Effect of tissue
harmonic imaging and contrast upon between observer
and test-retest reproducibility of left ventricular ejection
fraction measurement in patients with heart failure,” Eur.
J. Heart Failure, no. 6, pp. 85–93, 2004.

[11] C.-L. Yen, C.-M. Jeng, and S.-S. Yang, “The benefits of com-
paring conventional sonography, real-time spatial com-
pound sonography, tissue harmonic sonography, and tis-
sue harmonic compound sonography of hepatic lesions,”
Clinical imaging, vol. 32, no. 1, pp. 11–15, 2008.

[12] S. Tanaka, O. Oshikawa, T. Sasaki, T. Ioka, and
H. Tsukuma, “Evaluation of tissue harmonic imaging for
the diagnosis of focal liver lesions,” Ultrasound in medicine
& biology, vol. 26, no. 2, pp. 183–187, 2000.

[13] T. Schmidt, C. Hohl, P. Haage, M. Blaum, D. Honnef,
C. Weiβ, G. Staatz, and R. Gunther, “Diagnostic accuracy
of phase-inversion tissue harmonic imaging versus fun-
damental b-mode sonography in the evaluation of focal
lesions of the kidney,” American Journal of Roentgenology,
vol. 180, no. 6, pp. 1639–1647, 2003.

[14] A. Van der Steen, J. Poulsen, E. Cherin, and F. Foster, “Har-
monic imaging at high frequencies for ivus,” in Ultrasonics
Symposium, 1999. Proceedings. 1999 IEEE, vol. 2, pp. 1537–
1540, IEEE, 1999.

[15] H. Becher, K. Tiemann, T. Schlosser, C. Pohl, N. C. Nanda,
M. A. Averkiou, J. Powers, and B. Lüderitz, “Improvement
in endocardial border delineation using tissue harmonic
imaging,” Echocardiography, no. 15, pp. 511–517, 1998.

[16] R. J. Graham, W. Gallas, J. S. Gelman, L. Donelan, and
R. E. Peverill, “An assessment of tissue harmonic versus

bibliography 86

fundamental imaging modes for echocardiographic mea-
surements,” J Am Soc Echocardiography, no. 14, pp. 1191–
1196, 2001.

[17] J. H. Ginsberg and M. F. Hamilton, “Computational meth-
ods,” in Nonlinear Acoustics (M. F. Hamilton and D. T.
Blackstock, eds.), pp. 309–341, San Diego: Academic press,
1998.

[18] Y.-S. Lee, M. F. Hamilton, and R. Cleveland, “Kzktexas.”
Accessed January 4, 2014.

[19] S. I. Aanonsen, T. Barkve, J. N. Tjo, et al., “Distortion and
harmonic generation in the nearfield of a finite amplitude
sound beam,” The Journal of the Acoustical Society of America,
vol. 75, no. 3, pp. 749–768, 1984.

[20] J. Berntsen, “Numerical calculations of finite amplitude
sound beams,” in Frontiers of Nonlinear Acoustics: Proceed-
ings of 12th ISNA (M.F.Hamilton and D.T.Blackstock, eds.),
pp. 191–196, Elsevier Applied Science, 1990.

[21] M. E. Frijlink, H. Kaupang, T. Varslot, and S.-E. Masoy,
“Abersim: a simulation program for 3d nonlinear acoustic
wave propagation for arbitrary pulses and arbitrary trans-
ducer geometries,” in Ultrasonics Symposium, 2008. IUS
2008. IEEE, pp. 1282–1285, IEEE, 2008.

[22] T. Varslot and S.-E. Masøy, “Forward propagation of acous-
tic pressure pulses in 3d soft biological tissue,” Modeling,
Identification and Control, vol. 27, no. 3, pp. 181–200, 2006.

[23] Y. Du, H. Jensen, and J. A. Jensen, “Angular spectrum ap-
proach for fast simulation of pulsed non-linear ultrasound
fields,” in Ultrasonics Symposium (IUS), 2011 IEEE Interna-
tional, pp. 1583–1586, IEEE, 2011.

[24] F. Varray, C. Cachard, A. Ramalli, P. Tortoli, and O. Basset,
“Simulation of ultrasound nonlinear propagation on GPU
using a generalized angular spectrum method,” EURASIP
Journal on Image and Video Processing, vol. 2011, no. 1, p. 17,
2011.

[25] J. H. Ginsberg, “Model equations,” in Perturbation Methods
(M. F. Hamilton and D. T. Blackstock, eds.), pp. 279–308,
San Diego: Academic press, 1998.

bibliography 87

[26] S. Dursun, T. Varslot, T. Johansen, B. Angelsen, and
H. Torp, “Fast 3d simulation of 2nd harmonic ultrasound
field from arbitrary transducer geometries,” IEEE Ultrason-
ics Symposium, vol. 2, pp. 1964–1967, 2005.

[27] H. Torp, T. F. Johannsen, and J. S. Haugen, “Nonlinear
wave propagation – A fast 3D simulation method based on
quasi-linear approximation of the second harmonic field,”
in Proceedings of the IEEE Ultrasonics Symposium 2002, vol. 1,
(Munich, Germany), pp. 567–570, 2002.

[28] MATLAB®, Version 8.2.0.701 (R2013b). The MathWorks
Inc., Natrick, MA, August 2013. Software.

[29] M. F. Hamilton and C. L. Morfey, “Model equations,” in
Nonlinear Acoustics (M. F. Hamilton and D. T. Blackstock,
eds.), pp. 41–64, San Diego: Academic press, 1998.

[30] E. A. Zabolotskaya and R. V. Khokhlov, “Quasi-plane
waves in the nonlinear acoustics of confined beams,” Sov.
Phys. Acoust, vol. 15, no. 1, pp. 35–40, 1969.

[31] V. P. KUZNETSO, “Equations of nonlinear acoustics,” SO-
VIET PHYSICS ACOUSTICS-USSR, vol. 16, no. 4, p. 467,
1971.

[32] M. F. Hamilton, J. N. Tjo, et al., “Nonlinear effects in the
farfield of a directive sound source,” The Journal of the
Acoustical Society of America, vol. 78, no. 1, pp. 202–216,
1985.

[33] P. T. Christopher and K. J. Parker, “New approaches to
the linear propagation of acoustic fields,” The Journal of
the Acoustical Society of America, vol. 90, no. 1, pp. 507–521,
1991.

[34] H. F. Johnson, “An improved method for computing a dis-
crete hankel transform,” Computer physics communications,
vol. 43, no. 2, pp. 181–202, 1987.

[35] N. Bakhvalov, Y. M. Zhileikin, E. Zabolotskaya, and R. T.
Beyer, Nonlinear theory of sound beams. American Institute
of Physics Melville, 1987.

[36] K. Frøysa, J. N. Tjøtta, and J. Berntsen, “Finite amplitude
effects in sound beams. pure tone and pulsed excitation,”
Advances in nonlinear acoustics, pp. 233–238, 1993.

bibliography 88

[37] R. T. Beyer, “The parameter b/a,” in Nonlinear Acoustics
(M. F. Hamilton and D. T. Blackstock, eds.), pp. 25–39, San
Diego: Academic press, 1998.

[38] J. A. Jensen, “Field: A program for simulating ultrasound
systems,” in 10TH NORDICBALTIC CONFERENCE ON
BIOMEDICAL IMAGING, VOL. 4, SUPPLEMENT 1, PART
1: 351–353, Citeseer, 1996.

[39] T. Varslot, S. Dursun, T. Johansen, R. Hansen, B. Angelsen,
and H. Torp, “Influence of acoustic intensity on the second-
harmonic beam-profile,” in Ultrasonics, 2003 IEEE Sympo-
sium on, vol. 2, pp. 1847–1850, IEEE, 2003.

[40] T. Varslot, G. Taraldsen, T. Johansen, and B. A. J. Angelsen,
“Computer simulation of forward wave propagation in
non-linear, heterogeneous, absorbing tissue,” in Ultrason-
ics Symposium, 2001 IEEE, vol. 2, pp. 1193–1196 vol.2, 2001.

[41] M. O’Donnell, E. Jaynes, and J. Miller, “Kramers–kronig re-
lationship between ultrasonic attenuation and phase veloc-
ity,” The Journal of the Acoustical Society of America, vol. 69,
no. 3, pp. 696–701, 1981.

[42] P. A. Westervelt, “Parametric acoustic array,” J. Acoust. Soc.
Am., vol. 35, pp. 535–537, 1963.

[43] G. Taraldsen, “A generalized westervelt equation for non-
linear medical ultrasound,” The Journal of the Acoustical So-
ciety of America, vol. 109, no. 4, pp. 1329–1333, 2001.

[44] H. Kaupang, “Abersim 2.x – reference manual with tutori-
als,” 2008. Abersim: Users manual. http://folk.ntnu.no/
sveinmas/Abersim/abersim2_manual.pdf. Accessed: 2013-
04-19.

[45] A. Bamberger, B. Engquist, L. Halpern, and P. Joly,
“Parabolic wave equation approximations in heterogenous
media,” SIAM Journal on Applied Mathematics, vol. 48, no. 1,
pp. 99–128, 1988.

[46] E. G. Williams, Fourier Acoustics, ch. 2.9, pp. 31–32. London:
Academic Press, 1999.

[47] B. r. Angelsen, Ultrasound imaging: Waves, signals, and signal
processing, vol. 2. Emantec, 2000.

http://folk.ntnu.no/sveinmas/Abersim/abersim2_manual.pdf
http://folk.ntnu.no/sveinmas/Abersim/abersim2_manual.pdf

bibliography 89

[48] K. Rottmann, Matematisk formelsamling, vol. 11. Spektrum
forlag, 2003.

[49] D. Belgroune, J. de Belleval, and H. Djelouah, “Modelling
of the ultrasonic field by the angular spectrum method in
presence of interface,” Ultrasonics, vol. 40, no. 1, pp. 297–
302, 2002.

[50] Free Software Foundation, Inc, “GNU General Public Li-
cense,” Boston, USA, version, vol. 3, 2007.

[51] B. Angelsen, M. Frijlink, T. F. Johansen, H. Kaupang,
R. Hansen, S.-E. Måsøy, P. Näsholm, T. A. Tangen,
G. Taraldsen, and T. Varslot, “Abersim simulation software
– download page,” 10 2009. http://www.ntnu.edu/isb/

ultrasound/abersim/download. Accessed: 2013-04-19.

[52] I. Kappel, “Evolution equations and approximations,”
1997.

[53] J. D. Dollard and C. N. Friedman, “Product integration
with applications to differential equations,” 1979.

[54] S. K. Godunov, “A difference method for numerical calcu-
lation of discontinuous solutions of the equations of hydro-
dynamics,” Matematicheskii Sbornik, vol. 89, no. 3, pp. 271–
306, 1959. Translated by US Joint Publ. Res. Service, JPRS
7226, 1969.

[55] G. Strang, “On the construction and comparison of differ-
ence schemes,” SIAM Journal on Numerical Analysis, vol. 5,
no. 3, pp. 506–517, 1968.

[56] M. B. Abbott, An introduction to the method of characteristics.
New York, NY: American Elisever Publishing Company,
Inc., 1966.

[57] F. A. Duck, Physical properties of tissue: a comprehensive refer-
ence book. San Diego, CA: Academic Press, 1990.

[58] T. L. Szabo, “Time domain wave equations for lossy media
obeying a frequency power law,” The Journal of the Acousti-
cal Society of America, vol. 96, no. 1, pp. 491–500, 1994.

[59] M. F. Hamilton, “Spund beams,” in Nonlinear Acoustics
(M. F. Hamilton and D. T. Blackstock, eds.), pp. 233–261,
San Diego: Academic press, 1998.

http://www.ntnu.edu/isb/ultrasound/abersim/download
http://www.ntnu.edu/isb/ultrasound/abersim/download

bibliography 90

[60] Y. Jing, M. Tao, and G. T. Clement, “Evaluation of a wave-
vector-frequency-domain method for nonlinear wave prop-
agation,” The Journal of the Acoustical Society of America,
vol. 129, no. 1, pp. 32–46, 2011.

[61] J. W. Goodman, Introduction to Fourier Optics. Englewood,
CO: Roberts & Company Publishers, 3 ed., 2005.

[62] OpenMP Architecture Review Board, “The OpenMP® API
specification for parallel programming.” http://openmp.

org/wp/. Accessed: 2014-04-15.

[63] “Use and create mex-files,” in The MathWorks Documen-
tation Center, The MathWorks Inc., 2013. http://www.

mathworks.se/help/matlab/. Accessed: 2013-03-04.

[64] S. Gorlin, “Why is Matlab so slow?,” Part of MIT lecture:
"Advanced Matlab", 2008. http://www.scottgorlin.com/

wp-content/uploads/2008/01/day2.pdf. Accessed: 2013-
03-04.

[65] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty,
J. A. Miller, and M. Upton, “Hyper-threading technology
architecture and microarchitecture.,” Intel Technology Jour-
nal, vol. 6, no. 1, 2002.

[66] X. Tian, A. Bik, M. Girkar, P. Grey, H. Saito, and
E. Su, “Intel® OpenMP® C++/Fortran Compiler for
Hyper-Threading Technology: Implementation and Perfor-
mance.,” Intel Technology Journal, vol. 6, no. 1, 2002.

[67] B. Chapman, G. Jost, and R. Van Der Pas, Using OpenMP:
portable shared memory parallel programming, vol. 10. The
MIT Press, 2008.

[68] “Matlab data,” in The MathWorks Documentation Center,
The MathWorks Inc., 2014. http://www.mathworks.se/

help/matlab/. Accessed: 2014-03-04.

[69] J. Kowalik and T. Puźniakowski, Using OpenCL: Program-
ming Massively Parallel Computers, vol. 21. IOS Press, 2012.

[70] D. M. Burton, Elementary number theory. Tata McGraw-Hill
Companies, Inc., 7 ed., 2011.

[71] R. E. Apfel and C. K. Holland, “Gauging the likelihood
of cavitation from short-pulse, low-duty cycle diagnostic

http://openmp.org/wp/
http://openmp.org/wp/
http://www.mathworks.se/help/matlab/
http://www.mathworks.se/help/matlab/
http://www.scottgorlin.com/wp-content/uploads/2008/01/day2.pdf
http://www.scottgorlin.com/wp-content/uploads/2008/01/day2.pdf
http://www.mathworks.se/help/matlab/
http://www.mathworks.se/help/matlab/

bibliography 91

ultrasound,” Ultrasound in medicine & biology, vol. 17, no. 2,
pp. 179–185, 1991.

[72] H. Flynn, “Generation of transient cavities in liquids by mi-
crosecond pulses of ultrasound,” The Journal of the Acousti-
cal Society of America, vol. 72, no. 6, pp. 1926–1932, 1982.

[73] J. G. Abbott, “Rationale and derivation of MI and TI —-
a review,” Ultrasound in Medicine & Biology, vol. 25, no. 3,
pp. 431–441, 1999.

[74] MATLAB®, Version 7.13.0.564 (R2011b). The MathWorks
Inc., Natrick, MA, August 2011. Software.

[75] J. G. Proakis and D. G. Manolakis, Digital Signal Processing:
Principles, Algorithms and Applications. Upper Saddle River,
NJ: Pearson Prentice-Hall, 4 ed., 2007.

[76] R. E. Walpole, H. R. Myers, L. S. Myers, and K. Ye, Proba-
bility & statistics for engineers & scientists, Person Education.
Upper Saddle River, NJ: Inc., 2007. ISBN 0-13-204767-5.

[77] G. Rünger, “Parallel programming models for irregular
algorithms,” in Parallel Algorithms and Cluster Computing,
pp. 3–23, Springer, 2006.

	Preface
	Acknowledgments
	Colophon
	Abstract
	Sammendrag
	Contents
	Acronyms
	Listings
	1 Introduction
	2 Theory
	2.1 Review of nonlinear ultrasound simulation
	2.1.1 General methods
	2.1.2 Quasilinear methods

	2.2 Nonlinear ultrasound wave equation
	2.3 The Angular Spectrum method – an overview
	2.4 The Abersim method
	2.4.1 Governing equation
	2.4.2 Operator splitting

	2.5 The Propose method
	2.5.1 The Matlab implementation of Propose propose
	2.5.2 The quasilinear approximation
	2.5.3 Mathematical foundation

	2.6 Programming theory
	2.6.1 Formula for relative time reduction
	2.6.2 MEX files
	2.6.3 The OpenMP® compiler directives
	2.6.4 Parallelization of a triple nested for-loop

	2.7 Relevant results from my specialization project prosjekt and some implications
	2.8 The Mechanical Index (MI)

	3 Method
	3.0.1 Explanation of coordinates referred to in plots and comments
	3.1 Computers and configurations
	3.1.1 Simulated systems

	3.2 Comparison of Propose and Abersim
	3.2.1 Filtering

	3.3 Implementations
	3.3.1 New implementations in the Propose software

	3.4 Simulation performance tests

	4 Results
	4.1 Comparison of Propose and Abersim
	4.1.1 Determination of the Mechanical Index (MI) in Abersim
	4.1.2 Comparison of fundamental starting signal
	4.1.3 Normalized RMS beam profiles
	4.1.4 Field comparisons

	4.2 Performance of the fast implementation

	5 Discussion
	5.1 Comparison of Propose and Abersim simulations
	5.2 Computational performance of optimized implementations
	5.2.1 Simulation time consumption in Abersim and Propose

	5.3 Limitations to the quasilinear method
	5.4 Possible sources of error

	6 Conclusion
	A Optimization results – sinc(x)
	A.1 Introduction and motivation
	A.2 Theory
	A.3 Method
	A.4 Results and discussion
	A.4.1 Closing comments

	A.5 Conclusion

	B Efficient data access in a 3D matrix
	B.1 Introduction and Theory
	B.2 Method
	B.3 Results and Discussion
	B.4 Conclusion

	C C++ source code
	C.1 Conversion between triple and single indexing
	C.2 Source code to the MEX version of the sinc(x) function
	C.3 Source code to the MEX version of prop2harm

	Bibliography

