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Abstract

The trading activity in the German intraday electricity market has increased
significantly over the last years. This is partially due to an increasing share
of renewable energy, wind and photovoltaic, which requires power generators
to balance out the forecasting errors in their production. We investigate the
bidding behaviour in the intraday market by looking at both last prices and
continuous bidding, in the context of a reduced-form econometric analysis.
A unique data set of 15-minute intraday prices and intraday-updated fore-
casts of wind and photovoltaic has been employed. Price bids are explained
by prior information on renewables forecasts and demand/supply market-
specific exogenous variables. We show that intraday prices adjust asymmet-
rically to both forecasting errors in renewables and to the volume of trades
dependent on the threshold variable demand quote, which reflects the ex-
pected demand covered by the planned traditional capacity in the day-ahead
market. The location of the threshold can be used by market participants
to adjust their bids accordingly, given the latest updates in the wind and
photovoltaic forecasting errors and the forecasts of the control area balances.
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1. Introduction1

Trading in the intraday electricity markets increased rapidly since the2

opening of the market. This may be driven by the need of photovoltaic3

and wind power operators to balance their production forecast errors, i.e.4

deviations between forecasted and actual production. Evidence for this is a5

jump in the volume of intraday trading as the direct marketing of renewable6

energy was introduced. Furthermore, there may be a generally increased7

interest in intraday trading activities due to proprietary trading. Our main8

goal is to identify explanatory variables, specific to the electricity intraday9

market, that influence the bidding behavior in the 15-minute intraday market10

at the European Power Exchange (EPEX).11

Along the basic timeline of electricity trading activities, see Figure 1, the12

intraday activities relate mostly to further adjustments of positions after the13

closure of the day-ahead market.14

Figure 1: Timing Electricity Trading

While day-ahead trading offers the possibility to correct the long-term15

production schedule (build on the forward markets) in terms of hourly pro-16

duction schedule of power plants (Delta Hedging) and to adjust for the resid-17

ual load profiles on an hourly basis, the increasing share of renewable energy18

sources (wind, solar) in electricity markets requires a finer adjustment.19

According to the Equalization Mechanism Ordinance (ger.: Verordnung20

zur Weiterentwicklung des bundesweiten Ausgleichsmechanismus, abbr.:21

AuglMechV) all electricity generated by renewable sources has to be traded22
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day-ahead. This is usually done by the transmission system operator (TSO)23

with the plant operator receiving a legally guaranteed feed-in-tariff. From24

2012 on the inclusion of a market premium led direct marketers within the25

feed-in premium support scheme to enter the market as well. Trading of elec-26

tricity from a renewable energy source is based on forecasts which may have27

a horizon of up to 36 h (taking some data-handling into account). To correct28

errors in forecasts the AusglMechV requires the marketers of renewable en-29

ergy to use the intraday market to balance differences in actual and updated30

forecasts. Intraday trading starts at 3 pm and takes place continuously until31

up to 30 min before the start of the traded quarter-hour. As forecasts change32

regularly, marketers may sell and buy the same contract at different times33

during the trading period.34

After the closure of the intraday market balancing energy has to be used35

to close differences between available and forecasted electricity. As a smaller36

number of power plants are used for balancing energy the merit-order curve37

is steeper than that in the intraday market. Thus on average larger prices38

are paid and marketers aim at minimising this difference, see [5]. In addition,39

TSOs may impose sanctions on marketers who frequently require balancing40

energy.41

Balancing energy is supplied by generators with the necessary flexibility to42

balance the market. In case generation is below demand positive balancing43

energy is used, otherwise negative balancing energy. [6] and [13] contain44

a detailed description of the integration of renewable energy in electricity45

markets and the regulatory requirements and we refer the reader to these46

sources for further information.47

The day-ahead market (spot market) and the balancing markets have48

been investigated extensively. For example, [22] show that the day-ahead49

price formation process at EPEX depends on the interaction/substitution50

effect between the traditional production capacity (coal, gas, oil) with the51

fluctuant renewable energies (wind and photovoltaic (PV)). Further empirical52

studies on intraday/balancing markets include [1], [16]. Also, [18] studies53

strategic behaviour linking day-ahead and balancing markets.54

An investigation in the merit-order effect is given by [2], who find that55

electricity generation by wind and PV has reduced spot market prices con-56

siderably by 6 e/MWh in 2010 rising to 10 e/MWh in 2012. They also show57

that merit order effects are projected to reach 14-16 e/MWh in 2016.58

Recent studies of the intraday high-frequency electricity prices at EPEX59

are [8] and [9] who look at liquidity effects and forecast determinants on a60
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hourly basis. Also, [3] considers trading strategies to minimise costs from61

imbalances for both PV and wind, but generates price changes in terms of a62

reduced-form model (using a stochastic process). The focus lies in develop-63

ing a trading strategy for a given setting, and not on explaining the relevant64

price process. Several studies have discussed the effects of prognosis errors65

for wind generation (see [15] and [20]). As Figure 2 suggests, a PV pro-66

duction introduces quarter-hour ramps quite naturally. In addition, changes67

in forecasts of renewable energy production require a timely correction of68

day-ahead positions. However, photovoltaic has not been investigated so far.69

Figure 2: Quarter Hour Ramps

[8] and [9] used the ex-post published wind infeed data to explain ex-ante70

their impact on the day-ahead market. These are publicly available data71

from the Transparency Platform EPEX. However, the actual infeed is only72

known ex-post and therefore it cannot be used directly to explain the price73

formation on the intraday market. In fact, the intraday market participants74

have access to updated forecasts of wind. In our study, we will extend the75

existing literature by taking into account the intraday updated forecasts for76

wind and PV, which have been supplied by EWE Trading GmbH.77

Each day, hourly day-ahead electricity prices are revealed around 2 pm78

at EPEX (see [23]). At the same time, market participants have access to79

forecasts for wind and PV published by each Transmission System Operator80

(TSO) in 15-minute intervals for the next day. However, wind and PV fore-81

casts are updated frequently during the trading period. Thus, at the time82
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when market participants place their bids for a particular intraday delivery83

period (hour, quarter of hour), updated information about the forecasting84

errors of renewables becomes available. In consequence, also deviations be-85

tween the intraday prices and the day-ahead price for a specific hour are86

expected to occur. Our main research question is, thus, to which extent do87

market participants change their bidding behavior when new information on88

wind and PV forecasts becomes available. We will employ a unique data set89

of the latest forecasts of wind and PV available at the time of the bid.90

Our analysis is twofold: Firstly, we analyse the difference between the91

last price bid for a certain quarter of hour and the day-ahead price for that92

hour. We distinguish between summer/winter, peak/off-peak hours. We test93

for asymmetric behavior of prices to forecasting errors of renewable energy94

dependent on the demand quote regime and investigate further the typical95

zigzag pattern of intraday prices. Thus, we identify a seasonality shape that96

provides traders important information about the time of the day when they97

can bid, dependent on their demand/supply profiles. Furthermore, the ef-98

fect of volume of trades/market liquidity is investigated. Secondly, we are99

interested in the bidding behavior of market participants in the continuous100

intraday electricity market. We thus analyse the continuous trades and dis-101

entangle the effect of explanatory variables dependent on the time of the day.102

The econometric analysis is replicated for several traded hourly quarters, at103

different time of the day. In particular, we are interested to see how delta104

bid prices change when new information becomes available in the intraday105

renewable forecasts for wind and PV. We look at the trade-off between au-106

toregressive terms and the market-related exogenous variables impacting the107

intraday price formation process.108

Our contribution to the existing literature is twofold: we use ex-ante fore-109

casts of wind and photovoltaic and employ high-frequency intraday prices for110

specific quarter hours. Overall, our paper aims at understanding historically111

the continuous bidding in the intraday market, and proposes a one-period112

reduced-form forecasting model based on exogenous variables which are ob-113

served by market participants at the time of the bid. We show that estimation114

results are stable over time, but it is highly relevant to reestimate the ecopno-115

metric model separately for summer/winter, peak/off-peak periods. We used116

as benchmark an autoregressive model and show that the price formation117

process is rather driven by market-specific explanatory variables, especially118

for mid-day delivery periods. The list of explanatory variables includes ex-119

pected demand, an aggregate index for the power plant availability including120
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traditional capacity planned day-ahead, the volume of trades, control area121

balances, and intraday updated forecasting errors of wind and photovoltaic.122

This is the first study which includes ex-ante updates in forecasting errors123

of renewable energies. This study proves that intraday updated forecasts of124

wind and PV impact the bidding behavior: we show that market participants125

access updated forecasts in renewables to have more private information and126

thus to bid more accurately.127

The rest of the paper is organized as follows: In Section 2 we explain128

the modeling assumptions. Sections 3 and 4 show the data used as input129

and a theoretical representation of our concept. Section 5 proceeds with130

the formulation of our reduced-form econometric analysis. Results and their131

interpretation are given in Section 6 and Section 7 concludes.132

2. Theoretical considerations133

Our main assumption is that the electricity intraday price formation pro-134

cess depends on how much traditional capacity has been allocated in the135

day-ahead market and in which proportion it covers the forecasted demand.136

Let us consider two possible market regimes:137

1. The traditional capacity planned for the day-ahead satisfies the ex-138

pected demand for a certain hour;139

2. There is a certain demand quote uncovered by the planned capacity.140

Thus, in scenario 2, negative forecasting errors of wind and PV will increase141

faster the intraday prices than in scenario 1, due to the excess demand pres-142

sure. Viceversa, in scenario 1, positive forecasting errors in renewables will143

put pressure on traditional suppliers to reduce the production, since renew-144

ables are fed into the grid with priority (on average, 20% of electricity pro-145

duction in Germany is wind and PV based). Thus, prices will decrease faster146

than in scenario 2, where the excess of renewables (positive updated fore-147

casts) will balance out the excess demand. Therefore, in the context of a148

threshold model, we investigate whether there is an asymmetric adjustment149

of the intraday prices to forecasting errors in renewables, dependent on the150

demand quote regime (proportion of the forecasted demand for electricity151

in the planned traditional capacity for the day-ahead). The location of the152

threshold in the demand quote is estimated and this gives an indication of the153

bidding behavior in the intraday market. Market participants can compare154
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the historically derived threshold value to the currently computed forecasted155

demand quote for a certain hour to identify the market regime and to further156

define a bidding strategy.157

Employing the demand quote as threshold variable is supported by the158

literature as several papers have found that total electricity demand influ-159

ences price behaviour strongly. In [14] it is shown that the ratio between160

wind and conventional power production affects the electricity price most161

(the so-called wind penetration). [19] identify the residual load, the electric-162

ity demand that needs to be met by conventional power, as an important163

variable.164

To include the trading volume as explanatory variable is also supported165

by the literature, as e.g. [6] find that the forecast balancing costs in intraday166

trading are linked to the trading volume. This is in line with earlier papers,167

such as [17] and [4], who estimate asymmetric GARCH models and include168

traded electricity volume in the variance equation to study its impact on169

price volatility.170

In a first part of our analysis, we examine the difference between the171

last intraday bid price for a certain quarter of an hour and the day-ahead172

price for that specific hour. As a prerequisite for our analysis, we investigate173

the typical zigzag pattern of the 15-minute intraday prices and control for174

seasonality. Figures 3 and 4 show the long-term mean of last prices and175

average prices bid for a certain quarter of an hour between 01/01/2014–176

01/07/2014 for peak and off peak hours, respectively. During the day, the177

zigzag pattern is mainly explained by the following situation: Renewable178

energy providers sell day-ahead the full hour (average of all quarters). In the179

first part of the day, up to 1400, as the sun goes up, there is a buy-pressure on180

them in the first quarter as they are not able to produce the hourly average181

(see Figure 3, upper graph). On the other hand, in the fourth quarter they182

produce too much and have to sell. By contrary, in the second part of the183

day (between 1400–2000) the ramping down effect of the sun determines a184

sell-pressure in the first quarter, which turns into buy-pressure in the last185

quarter. The buy/sell pressure becomes obvious in the evolution of volume186

of trades (see Figure 3, lower graph): we observe that the volume of trades187

is highest during the first and last quarters of each peak hour, reflecting188

demand/supply side pressures.189

We also found a persistent zigzag pattern of prices during off-peak hours190

(between 2000–0800), as shown in Figure 4. This is driven by the production191

design of fossil power plants (supply side: when it starts low and ends high)192
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or power-intensive industry (demand side: when it starts high and ends low).193

A reason for that may be inter-temporal restrictions in using fossil plants.194

In addition to fuel costs, these plants have ramp-up and ramp-down costs,195

which prevent plant operators from shutting down plants in case of drops in196

demand or starting up plants in case of spikes in demand. The short-term197

marginal costs from this may dominate fuel costs.198

The typical zigzag seasonality pattern of intraday quarter-hourly prices199

will be corrected by dummy variables in the econometric model specification.200

3. Input variables: definition and data sources201

As motivated in section 2, for the analysis we employed historical day-202

ahead and intraday electricity prices for 15-minute products in the continuous203

trading system between 01/01/2014–30/06/2014. As explanatory variables204

selected in this study we refer to demand forecast, power plant availability,205

intraday updated forecasts for wind and photovoltaic, volume of trades in206

the continuous trading, and the control area balance. The latter represents207

the corresponding use of balancing power in the balancing market1. In par-208

ticular, the control area balance corresponds to the sum of all balance group209

deviations of balance groups registered at the Transmission System Operator210

and of the relevant balance groups owned by the transmission system oper-211

ator (e.g. EEG, grid losses, unintentional deviation)2. In Tables 1 and 2 we212

give an overview of the data sources and their frequency, respectively.213

4. Asymmetric econometric model for intraday prices214

4.1. Threshold model specification215

The technical specification of our model follows [21] and reads:216

yi = θ
′

1xi + εi, ωi ≤ τ, (1)

1As balance group deviations are not immediately available online the control area
balance is calculated on the basis of the corresponding use of balancing power. The
published data are values from operating measurements that are adjusted by measurement
corrections if necessary. The actual settlement-relevant data can be retrieved under the
prices for grid balancing.

2see http://www.tennettso.de
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Figure 3: Seasonality pattern of the last prices and average prices bid for a certain
quarter of an hour during the peak hours in summer. The right axes show the
sunshine duration (upper graph) and the sum of volumes traded (lower graph).
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Variable
units

Description Data Source

Day-ahead Price
EUR/MWh

Market clearing price for a cer-
tain hour in the day-ahead auc-
tions (Phelix)

European Power Exchange (EPEX)
https://www.epexspot.com/en/

Intraday Price
EUR/MWh

Intraday electricity prices for
15-minute products in the con-
tinuous trading

European Energy Exchange Trans-
parency Platform:
http://www.eex-transparency.com/de

Intraday Volume
Trades
MWh

Intraday volume trades for 15-
minute products in the contin-
uous trading

European Energy Exchange Trans-
parency Platform:
http://www.eex-transparency.com/de

Wind Forecast
MW

Sum of intraday forecasted in-
feed of wind electricity into the
grid

EWE TRADING GmbH
http://www.ewe.com/en/

PV Forecast
MW

Sum of intraday forecasted in-
feed of PV electricity into the
grid

EWE TRADING GmbH
http://www.ewe.com/en/

Expected Power
Plant Availability
MW

Ex-ante expected power plant
availability for electricity pro-
duction on the delivery day
(daily granularity), daily pub-
lished at 10:00 am

European Energy Exchange
& transmission system operators:
ftp://infoproducts.eex.com

Expected Demand
MW

Demand forecast for the rele-
vant hour on the delivery day

European Network of Transmission
System Operators (ENTSOE):
https://transparency.entsoe.eu/

Control area bal-
ance
MW

Balancing market margins,
available ex-post for a certain
delivery period

Transmission system operators:
http://www.50Hertz.com,
http://www.amprion.de,
http://www.transnetbw.de,
http://www.tennettso.de

Table 1: Overview of explanatory variables used in the analysis

Variable Daily Hourly quarter-hourly

Day-ahead Price ×
Intraday Price ×
Intraday Volume Trades ×
Wind Forecast ×
PV Forecast ×
Expected Power Plant Availability ×
Expected Demand ×
Control area balance ×

Table 2: Data granularity of explanatory variables

217

yi = θ
′

2xi + εi, ωi > τ, (2)

where ωi is the threshold variable used to split the sample into two regimes.218

The random variable εi is a regression error.219
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Our observed sample is {yi, xi, ωi}ni=1, where yi represent the dependent220

variable and xi is an m-vector of independent variables. The threshold vari-221

able ωi may be an element of xi and is assumed to have a continuous dis-222

tribution. To write the model in a single equation3, we define the dummy223

variable di(τ) = 1[ωi ≤ τ ], where 1[·] is the indicator function and we set224

xi(τ) := xidi(τ). Furthermore, let λ
′
n = θ

′
2 − θ

′
1 denote the threshold effect.225

Thus, equations (1) and (2) become:226

yi = θ′xi + λ′nxi(τ) + εi (3)

In order to simplify the threshold estimation procedure, we rewrite equa-227

tion (3) in matrix notation. We define the vectors Y ∈ Rn and ε ∈ Rn
228

by stacking the variables yi and εi, and the n×m matrixes X ∈ Rn×m and229

X(τ) ∈ Rn×m by stacking the vectors x′i and xi(τ)′. Then (3) can be written230

as:231

Y = Xθ +X(τ)λn + ε (4)

The regression parameters are (θ, λn, τ) and the natural estimator is least232

squares (LS).233

4.2. Hansen’s grid search to locate the most likely threshold234

To determine the location of the most likely threshold, we will apply235

Hansen’s grid search. In the implementation of this threshold estimation236

procedure, we follow [11] and [12]. This paper develops a statistical theory for237

threshold estimation in the regression context. As mentioned in the previous238

section, the regression parameters are (θ, λn, τ). Let239

Sn(θ, λ, τ) = (Y −Xθ −X(τ)λ)′(Y −Xθ −X(τ)λ) (5)

be the sum of squared errors function. Then, by definition, the LS estima-
tors θ̂, λ̂, τ̂ jointly minimize (5). For this minimization, τ is assumed to be
restricted to a bounded set [τ , τ̄ ] = Ω. The LS estimator is also the MLE
when εi is i.i.d. N(0, σ2). Following [11], the computationally easiest method
to obtain the LS estimates is through concentration. Conditional on τ , equa-
tion (4) is linear in θ and in λn, yielding the conditional OLS estimators θ̂(τ)

3see Hansen (2000)
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and λ̂(τ) by regression of Y on X(τ)∗ = [XX(τ)]. The concentrated sum of
squared errors function is

Sn(τ) = Sn(θ̂(τ), λ̂(τ), τ) = Y ′Y − Y ′X(τ)∗(X(τ)∗
′
X(τ)∗)−1X(τ)∗

′
Y,

and τ̂ is the value that minimizes Sn(τ), i.e.,

τ̂ = argminSn(τ)

To test the hypothesis H0 : τ = τ0, a standard approach is to use the like-240

lihood ratio statistic under the auxiliary assumption that εi is i.i.d. N(0, σ2).241

Let

LRn(τ) := n
Sn(τ)− Sn(τ̂)

Sn(τ̂)
.

The likelihood ratio test of H0 is to reject for large values of LRn(τ0).
Using the LRn(τ) function, asymptotic p-values for the likelihood ratio test
are derived:

pn = 1−
(
1− exp(−1/2 · LRn(τ0)2)

)2
.

5. Analysis of intraday prices242

We examine whether intraday prices in the continuous bidding system243

are caused by market-specific variables. As already mentioned earlier in this244

study, marketers of renewable energy use the intraday market to balance245

out differences between actual/updated forecasts of wind and PV. Indeed,246

discussions with energy traders revealed that at the time of the bid market247

participants have private access to the freshest weather forecasts for a certain248

quarter of an hour (delivery period) and use this information for adjusting249

their bids accordingly. Intuitively, this adjustment causes deviations between250

the intraday and day-ahead prices for a certain delivery period. An under-251

standing of these deviations is furthermore important for strategic bidding.252

The impact of forecasting errors in renewables on intraday prices should253

however not be judged in isolation, but dependent on the demand quote,254

meaning the extent at which forecasted demand for a certain hour is covered255

by the traditional capacity planned in the day-ahead market. Keeping in256

mind that renewables are fed with priority into the electricity grid, accord-257

ingly, more or less traditional capacity is planned (and more or less demand258

gap or demand quote is realized). Thus, intuitively, the higher the expecta-259

tion from the renewables in the market day-ahead, the higher the demand260
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quote: power producers plan overall less traditional capacity, since the resid-261

ual demand is expected to be covered by wind/PV infeed.262

As discussed in section 2, dependent on the demand quote regime, thus, if263

there is excess demand or not in the market, positive and negative forecasting264

errors in wind and PV are expected to have different impact on price devia-265

tions. In the context of a threshold model specification, where the threshold266

variable is the demand quote, we will examine these dynamics.267

5.1. Analysing deviations of last prices from the day-ahead price268

In the first part of our analysis, we analyze the differences between the269

historical last prices bid for a certain 15-minute delivery period in the intra-270

day market and the day-ahead price for the corresponding hour. We used271

historical last prices sorted for quarter-hourly products between 01/01/2014–272

30/06/2014. As exogenous variables we include positive/negative forecasting273

errors in wind and PV, defined as deviations between the latest forecast274

available at the time when the last prices are observed and the day-ahead275

available forecasts. The last prices for a certain delivery period are placed in276

the market not later than 30 minutes before the delivery period starts4. At277

this time, market participants also forecast the volume in the balancing mar-278

ket, namely positions that could not be filled in the intra-day market. These279

positions are defined by the Transmission System Operators as “control area280

balances”5.281

We derive the forecasts of control area balances based on an autoregressive282

model.6 Results are shown in Table 3. The order of lags has been identified283

by examining the autocorrelation function and we further performed Akaike284

(AIC) and Bayesian (BIC) information criteria to select the best model7.285

We found that the control area balances for a certain 15-minute delivery286

period can be forecasted based on the last 8 observations (up to 2 hours287

ago). Forecasts based on this model are further included in our estimation.288

The demand quote is defined as:289

DemandQuotet = DemandForecastt/PPAdt (6)

4Since 16th July, 2015, EPEX Spot will shorten the lead time from 45- to 30 minute be-

fore delivery (see European Power Exchange (EPEX) https://www.epexspot.com/en/).
5see http://www.tennettso.de
6Discussions with traders revealed that this is a common praxis in the industry.
7Results are available upon request
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where d is the day-ahead and t one hour in day d. DemandForecastt is290

the demand forecast for the relevant hour t on the delivery day d overall291

Transmission System Operators (source ENTSOE8). Based on the expected292

demand, power producers plan traditional capacity day-ahead. The PPA is293

the ex-ante expected power plant availability for electricity production on294

the delivery day (daily granularity), daily published at 10:00 am (see Table 1295

for the exact data sources). These data exclude the renewable capacity and296

include only the traditional plants9. EPEX publishes data on installed and297

available capacities. Although these publications are voluntary, participating298

companies have tripled in 2010 and by the end of the year represented 89%299

of all relevant companies (see [22]). Thus, the numbers provided can be300

considered a reasonable approximation for the entire market. We use ex-301

ante demand quote as explanatory variable to take into account to which302

extent the expected demand for electricity for the day-ahead is covered by303

the planned traditional capacity.304

In Tables A.10 and A.11 we show descriptive statistics of the selected305

input variables. We distinguish between summer/winter, peak/off peak hours306

(as shown in [23]). We observe that, independent on the season, on average307

the intraday last price for 15-minute delivery periods is below the day-ahead308

price for the corresponding hour. Furthermore, the difference becomes larger309

and more volatile for peak than for off-peak hours and in winter than in310

summer. The control area balances are, on average, negative in winter and311

turn into positive in summer. On average, the demand quote is higher and312

more volatile during peak than in off-peak hours.313

To test for stationarity we perform an augmented Dickey-Fuller test (ADF314

test). For all variables we reject the null hypothesis of a unit root at a 95%315

significance level meaning that the data is stationary.316

As shown in Figures 3 and 4, there is a clear zigzag seasonality in the317

last prices, independent of the season. Based on the information of the long-318

term dynamics of historical last prices, we control for the seasonal pattern319

by introducing dummy variables as follows:320

• Summer peak321

8European Energy Exchange & Transmission System Operators
9The PPA includes: coal, gas, lignite, oil, pumped-storage, run-of-the-river, seasonal-

store and uranium planned capacity day-ahead.
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Table 3: Autoregressive model for control area balances

Dependent Variable: Balances

Method: Least Squares

Included observations: 2535 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C 18.551* 6.228 2.978 0.002

Balances(-1) 0.818 0.019 41.195 0

Balances(-2) 0.055 0.025 2.160 0.031

Balances(-3) -0.072 0.025 -2.809 0.005

Balances(-4) 0.162 0.025 6.359 0

Balances(-5) -0.132 0.025 -5.166 0

Balances(-6) -0.013 0.025 -0.543 0.586

Balances(-7) -0.004 0.025 -0.185 0.852

Balances(-8) 0.047 0.019 2.369 0.017

R-squared 0.727 Mean dependent var 131.686

Adjusted R-squared 0.726 S.D. dependent var 577.588

S.E. of regression 301.8479 Akaike info criterion 14.261

Sum squared resid 2.30E+08 Schwarz criterion 14.281

Log likelihood -18067.2 Hannan-Quinn criter. 14.268

F-statistic 844.035 Durbin-Watson stat 1.998

Prob(F-statistic) 0

The order of lags has been identified by examining the autocorrelation function and we further performed

Akaike (AIC)and Bayesian (BIC) information criteria to select the best model.

16



– We introduce one Dummy variable for each of the Q1–Q4 quarters322

for the interval 08:00–13:00 (Morning pattern)323

– We introduce one Dummy variable for each of the Q1–Q4 quarters324

for the interval 14:00–18:00 (Afternoon pattern)325

• Winter peak326

– We introduce one Dummy variable for each of the Q1–Q4 quarters327

for the interval 08:00–12:00 (Morning pattern)328

– We introduce one Dummy variable for each of the Q1–Q4 quarters329

for the interval 13:00–17:00 (Afternoon pattern)330

• Summer off-peak331

– We introduce one Dummy variable for each of the Q1–Q4 quarters332

for the interval 20:00–01:00 (Evening descending pattern)333

– We introduce one Dummy variable for each of the Q1–Q4 quarters334

for the interval 03:00–07:00 (Early morning ascending pattern)335

• Winter off-peak336

– We introduce one Dummy variable for each of the Q1–Q4 quarters337

for the interval 20:00–21:00 and 04:00–07:00 (Descending pattern)338

– We introduce one Dummy variable for each of the Q1–Q4 quarters339

for the interval 23:00–03:00 (Night, ascending pattern)340

The model specification reads:341
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As threshold variable, the demand quote splits the data in two regimes:342

high/sufficient demand quote (“h”) or low (“l”). The indicator function 1
p/n
t343

further distinguishes in each regime between positive/negative forecasting344

errors in renewables.345

5.2. Analysis of the continuous trades for quarter-hourly products346

In the second part, we examine the continuous trades for several quarter-347

hourly products. In particular, we are interested to see how delta bid prices348

for a certain quarter of an hour change when new information on the fore-349

casts for wind and PV becomes available. We look at the trade-off between350

autoregressive terms and market-specific factors impacting the intraday price351

formation process.352

The model specification reads:353
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The examination of autocorrelation function of price changes for a cer-354

tain quarter of an hour shows that the first 3 lags of price changes should355

be selected in the autoregressive part of the model. Changes in the wind,356

∆WindIDt , and in the PV, ∆PV ID
t , are real time updated forecasts, avail-357

able at the time when bids are placed.10 V olumeIDt is the volume trade at358

the time when the price change is observed. The bids for a certain quarter359

of an hour do not occur at equal time intervals in the continuous bidding.360

In fact, market participants start bidding around 4 pm, after the day-ahead361

prices are published at EPEX and continuous trades go up to 30 minutes362

before the beginning of the delivery period. Thus, the time steps between363

consecutively placed bids are not equal, but can vary from some seconds to364

several hours. We take into account this time discontinuity by including in365

our list of explanatory variables the control variable
√

∆t.366

In Tables A.12 and A.13 we show descriptive statistics for the price367

changes and volume of trades for the 15-minute continuous trading for de-368

livery periods at different times of the day. We observe that the volatility of369

intraday price changes increases continuously between the morning quarter of370

hours (H7Q1) up to noon (H12Q4) and decreases again towards the evening371

(quarters of hour 18). Thus, the higher the demand, the larger the average372

price changes in the continuous trading. The volume of trades is on average373

the highest and most volatile for the first and last quarters of each one of the374

investigated hours, independent on the time of the day. This explains the375

sell/buy pressure, as explained in Section 2.376

10Results are available upon request
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6. Estimation results and interpretation377

6.1. Analysis of the deviations of last prices from the day-ahead price378

Equation (7) has been estimated for the historical differences between the379

last prices and the day-ahead prices separately for winter and summer and we380

further distinguished between peak (8 am and 8 pm) and off-peak hours. This381

approach is justified by the different price levels in summer compared to the382

winter time and by the different demand profiles during peak and off-peak383

hours (see [23] for an extensive discussion on the seasonality of electricity384

prices).385

As a preliminary analysis, we estimated the model without allowing for386

a threshold effect, to assess whether there is a linear adjustment of intraday387

(last) prices to exogenous variables. The overall OLS estimation results for388

each case study are shown in Table 4.389

Throughout all variables are significant and show the expected sign (see390

Table 4). Dummy variables which explain the zigzag pattern are statisti-391

cally significant and their inclusion still allows significant marginal effects392

of the other explanatory variables on delta prices. The coefficients of posi-393

tive/negative forecasting errors in wind and PV are significant at 1% signifi-394

cance level. Positive forecasting errors of wind/PV signal market participants395

more capacity available in the market than planned. This will have a decreas-396

ing effect on the residual demand and will further decrease last price bids.397

Viceversa, when updated forecasts signal less infeed from renewables than398

planned in the day ahead (negative forecasting errors), market participants399

will increase their bid prices intraday accordingly.400

At the time of the last price bids, market participants do not know yet the401

real control area balances, but forecasts of those are used in practice. This402

is reflected in the coefficients of balances forecasts which are statistically403

significant in all case studies and have a positive sign. Higher control area404

balances are a signal of excess demand which has not been yet balanced out in405

the intraday market, and this will be reflected in higher intraday last prices.406

We observe that the coefficient of demand quote is negative during the407

off-peak regimes, but it turns into positive during peak hours. The mean408

value of demand quote in the off-peak hours is slightly below one, touching409

a maximum of 1.291 and 1.178, respectively (as shown in Tables A.10 and410

A.11). Thus, on average, the traditional capacity planned in the market411

covers the expected demand for the day-ahead. In Figure 5, the upper graph412

illustrates such a theoretical case, where the demand quote is 1. However, at413
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higher levels of demand quote (up to a maximum observed in off-peak hours414

of about 1.2), power producers plan less capacity for the day ahead, due to415

a higher expectation of renewables infeed in the market (see Figure 5, lower416

graph).11. That means, less expensive capacity is planned, which situates the417

prices in the less convex area of the merit order. The input from renewable418

energies is expected to be, on average, 20% of the total input production mix419

in Germany (see [22]). Renewables will be fed with priority into the grid,420

decreasing the residual demand and thus market participants will bid lower421

prices intraday. This assumption is confirmed by the negative sign of the422

coefficients of demand quote in the off-peak hours winter/summer, as shown423

in Table 4.424

For the peak hours descriptive statistics show that on average, the demand425

quote exceeds 1.2 (see Table A.11), which means that there is more than426

20% of the expected demand uncovered by the planned traditional capacity.427

Thus, power producers plan less capacity in the market, given a high market428

expectation for renewables infeed in peak hours. We illustrate graphically429

this situation in Figure 6, lower graph. However, demand quotes above 1.2430

reflect the situation where the 20% expected infeed from renewables will not431

suffice and there will be still high residual demand in the market. This will432

have an increasing effect on intraday prices in general and on the last prices433

in particular, which is confirmed by the positive sign of the coefficient of434

demand quote (see Table 4)12.435

We further tested for a threshold effect in the demand quote in each case.436

The threshold variable is the demand quote and the threshold location is esti-437

mated using the methodology described in section 4.2. All model parameters438

in Equations (7) are allowed to vary among regimes. We found evidence for439

significant threshold effect only in the case of winter peak case study. Results440

are available in Table 5.441

We found no significant threshold effect in the demand quote in summer-442

related case studies and in winter off-peak. This shows that in those seasons,443

market participants adjust linearly last prices (and implicitly the spreads444

last prices-day-ahead prices) to our market-specific explanatory variables.445

However, in winter peak time we found evidence for asymmetric behavior (see446

11It is known that in the night hours extreme wind infeed occur (see [23]).
12This is reflected in the high maximum spreads between the last prices and day-ahead

prices observed in summer peak, as shown in Table A.11.
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Figure 5: Theoretical example explaining the impact of ex-ante demand quote on

intraday electricity prices.
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Figure 6: Theoretical example explaining the impact of ex-ante demand quote on

intraday electricity prices (continuation).
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Table 5). Thus, a threshold in the demand quote was found significant at the447

level of 1.058. In the regime of low levels of demand quote (regime 1, < 1.058),448

we observe that coefficients are generally not statistically significant. That is,449

power producers have low expectation of renewable infeed in the day-ahead,450

and in consequence plan sufficient traditional capacity to satisfy expected451

demand. However, when demand levels are high, thus in regime 2, delta452

prices adjust linearly to forecasting errors in renewable energy, to control453

area balances and to demand quote. An increase in demand quote in this454

regime will furthermore suppress bid prices in the intraday market, since455

again higher demand quote levels reflect a high expectation of infeed from456

renewable energies, which will lower the price level. The coefficient of control457

area balances is positive and significant. This reflects two situations: if there458

is high infeed from renewables in the market, negative forecasts of control area459

balances will suppress the intraday last prices. By contrary, in the presence of460

high demand quote not fully covered by renewables infeed, positive forecasts461

in control area balances will increase intraday price bids.462

Our results can be used to forecast the last prices submitted for a certain463

quarter of one hour intraday. This is based on a rigourous forecasting model464

for the control area balances. The insights of our econometric analysis are465

highly relevant for practitioners: the main goal of market participants is466

to clear their positions in the day-ahead and intraday markets and avoid467

participating in the more expensive balancing market.468

6.2. Analysis of continuous trades for quarter-hourly products469

In this section, we show the impact of explanatory variables on the (con-470

tinuous) bidding behavior. We checked for both linear and asymmetric ad-471

justment of intraday price changes to explanatory variables, dependent on472

the time of the day. We therefore replicated the analysis to different delivery473

periods (peak/off-peak) corresponding to different demand profiles: quarters474

1–4 of hours 7, 12 and 18 have been investigated. The estimation results475

of (OLS) linear estimation, without threshold, of Equation (8) are shown476

in Table 6, B.14 and B.15. The main threshold estimation results following477

the specification in Equation (8) are shown in Tables 7–9. In all cases the478

demand quote has been found to be the only significant threshold variable.13
479

13The threshold values are significant, accordingly to the likelihood ratio test, as dis-

cussed in section 4.1. The graphs and calculations corresponding to each threshold values
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Table 4: Estimation results of the model shown in Equation 7. Global OLS without

threshold
Dependent variable Delta Last Price- Price DayAhedd

Summer off-peak Summer peak Winter off-peak Winter peak

Coeff Std. err. Coeff Std. err. Coeff Std. err. Coeff Std. err.

Co 7.388* (1.971) -20.956* (6.128) 14.469* (4.762) -9.015 (10.354)

DemandQ -7.438* (2.159) 10.929** (4.852) -12.715* (4.605) -0.354 (8.728)

Balancing 0.007* (0.001) 0.008* (0.001) 0.014* (0.001) 0.009* (0.001)

DeltaWindP -0.005* (0.001) -0.002** (0.001) -0.003* (0.001) -0.003* (0.001)

DeltaWindN -0.007* (0.001) -0.012* (0.001) -0.004* (0.001) -0.004* (0.001)

DeltaPVP – – -0.003* (0.001) – – -0.003* (0.001)

DeltaPVN – – -0.004* (0.001) – – -0.005* (0.001)

DQ1M 10.170* (1.112) 10.022* (1.462) -4.561* (1.729) 23.808* (2.340)

DQ2M 3.515* (1.144) 2.192 (1.507) -5.094* (1.717) 11.336* (2.148)

DQ3M -6.519* (1.122) -1.486 (1.463) -3.148 (1.704) 2.740 (2.207)

DQ4M -10.454* (1.139) -6.031* (1.622) -1.187 (1.719) -0.548 (2.296)

DQ1A -13.845* (1.219) -8.111* (1.539) 3.114 (1.848) -6.098* (2.173)

DQ2A -6.852* (1.229) 0.268 (1.374) -0.948 (1.802) 3.203 (2.016)

DQ3A 0.349 (1.161) 3.458** (1.341) -4.578** (1.793) 16.773* (2.118)

DQ4A 4.842* (1.203) 13.132* (1.451) -4.568** (1.825) 25.588* (2.294)

Rsquared 35.43% 37.99% 28.76% 36.63%

No. Obs. 2543 2483 2447 2363

Standard errors are shown in parenthesis. * and **, denote a test statistic is statistically significant at the

1% and 5% level of significance, respectively. DemandQ=Demand Quote defined in Equation (6); Balanc-

ing=control area balances; DeltaWindIntrP/N=positive/negative forecasting errors in wind; DeltaPVIn-

traP/N=positive/negative forecasting errors in PV; DQ1M–DQ4M=Dummies for the four quarters of each

morning hours (where morning defines the first part of the day: 0800–1400); DQ1A–DQ4A=Dummies for

the four quarters of each afternoon hours (where afternoon defines the second part of the day: 1400–2000)
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Table 5: Winter peak, threshold estimation results. Threshold variable: Demand Quote

Threshold estimation (threshold variable DemandQ)

Dependent variable Delta Last Price- Price Dahd

Regime 1 Regime 2

Threshold value <= 1.058 > 1.058

Coeff Std. Err. Coeff Std. Err.

Co -48.973* (15.527) 63.563* (22.987)

DemandQ 26.810** (12.806) -61.545* (19.412)

Balancing 0.003 (0.002) 0.010* (0.001)

DeltaWindP -0.004 (0.003) -0.002** (0.001)

DeltaWindN -0.006** (0.003) -0.004* (0.001)

DeltaPVP -0.003 (0.002) -0.004* (0.001)

DeltaPVN -0.006* (0.001) -0.006* (0.001)

DQ1M 41.322* (8.710) 21.500* (2.324)

DQ2M 21.880* (7.985) 10.443* (2.129)

DQ3M 4.806 (7.948) 3.682 (2.205)

DQ4M 2.266 (8.284) 0.298 (2.329)

DQ1A -8.175 (7.420) -1.367 (2.340)

DQ2A 8.898 (7.325) 3.440 (2.207)

DQ3A 30.651* (7.536) 12.192* (2.235)

DQ4A 45.249* (7.616) 17.453* (2.369)

Rsquared 48.61% 35.93%

No. Obs. 652 1711

Standard errors are shown in parenthesis. * and **, denote a test statistic is statistically significant at the

1% and 5% level of significance, respectively. DemandQ=Demand Quote defined in Equation (6); Balanc-

ing=control area balances; DeltaWindIntrP/N=positive/negative forecasting errors in wind; DeltaPVIn-

traP/N=positive/negative forecasting errors in PV; DQ1M–DQ4M=Dummies for the four quarters of each

morning hours (where morning defines the first part of the day: 0800–1400); DQ1A–DQ4A=Dummies for

the four quarters of each afternoon hours (where afternoon defines the second part of the day: 1400–2000)
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In Table 6 we benchmarked our results by a version excluding the market-480

specific variables (see lower panel). By comparing the values of the R2 be-481

tween the lower and upper panels we observe that at noon market-specific482

exogenous variables increase the explanatory power of the model by up to 4483

times. This effect is however less obvious in the case of morning and evening484

peak quarter-hourly products (see Tables B.14 and B.15).485

More specifically, results reveal that during morning and evening the486

information from lagged price changes become more relevant for the price487

formation process than exogenous variables. However, the market-specific488

exogenous variables become significant during noon (see Table 6). This can489

be due to the fact that over noon, given the high demand for electricity in490

the market, the merit order (MO) curve is usually very steep, since more ex-491

pensive plants are on use. Thus, market participants become more sensitive492

to market-specific variables, in particular to forecasting errors of renewable493

energies, given their low marginal costs of production. Negative forecast-494

ing errors in wind and PV would further increase the steepness of the MO,495

which leads to increased intraday prices, while positive forecasting errors in496

renewables will have a suppressing effect on prices.497

In Table 8 we allow for threshold effect in the demand quote for quarters498

1–4 of hour 12. Similarly to the results in section 6.1, a threshold has been499

found significant when the demand quote is around 1.2, which allows a nice500

interpretation, given the 20% expected infeed from renewables in the German501

power market. Given this expectation, less traditional plants are planned502

day-ahead (see Figures 5 and 6). Also in this case, we conclude an asymmetric503

adjustment of intraday price changes to forecasting errors of wind and PV,504

dependent on the demand quote regime. In particular, results reveal that505

market participants adjust their intraday bids to updated forecasts moreover506

in the high demand quote regime. Thus, when there is a high expected infeed507

from renewables day-ahead, market participants follow updated forecasted508

errors in wind and PV and incorporate this information in adjusting their509

bids accordingly intraday. This effect becomes more obvious for noon hours,510

when the demand is high and the MO is usually steeper than during morning511

and evening hours. Thus, Tables 7 and 9 show that the role of forecasting512

errors of renewables for the morning and evening quarters drops, independent513

are available upon request. We have tested for threshold significance also in the other

explanatory variables, but no conclusive results were obtained.
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of the demand quote regime.514

Still, during morning and evening delivery periods (Tables 7 and 9) we515

observe that market related variables help explaining the zigzag pattern of516

intraday prices: positive forecasting errors in PV decrease prices in quarter517

4 of hour 7 in regime 2, which reflects the ramping up effect of the sun.518

By contrary, forecasting errors of wind and PV impact intraday prices in the519

first 3 quarters of hour 18. After this quarter, however, the role of forecasting520

errors of PV drops, showing the ramping down effect of the sun.521

Results reveal further evidence for the ramping up/down effects of the522

sun, reflected in the sign of the volume of trades. We observe that the523

corresponding coefficient is significant only for quarter 4 of hour 7 (see Table524

B.14) and has a negative sign. This pattern is again observed in the threshold525

model for hour 7 (see Table 7) in regime 1, when the demand quote is below526

1.415 (see Tables 7). For the last quarter of hour 7 the intraday price is below527

the average price bid for hour 7 in the day-ahead due to the sun ramping528

up effect, reflecting an oversupply of the accounting grid (see Figure 2).529

However, for hour 18 this effect is reverted. As shown in Tables B.15 and 9,530

the coefficient of volume of trades is significant and has a negative sign for531

the first quarter of hour 18 and turns into positive in the last quarter. This532

reflects the sun ramping down effect, which causes the zigzag pattern for the533

evening hours: the intraday price for quarter 1 is below the average price bid534

in the day-ahead for the respective hour (oversupply of the accounting grid)535

and it ends above it for quarter 4, reflecting shortfalls in the accounting grid.536
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7. Conclusion537

In this study, we investigate the bidding behavior in the intraday elec-538

tricity market, in the context of a reduced-form econometric analysis. In539

particular, we shed light on the impact of updated forecasting errors of wind540

and photovoltaic (PV) on the 15-minute electricity price changes in the con-541

tinuous bidding. We employ a unique data set of the latest forecasts of wind542

and PV available to traders prior to the placements of their price bids intra-543

day. To our knowledge, this is the first study in the literature which models544

intraday prices based on prior information on weather forecasts. We further545

control for the demand/supply disequilibria, volume of trades, forecasts of546

control area balances and model the typical zigzag seasonality pattern of547

15-minute prices.548

Our analysis is twofold. We firstly study the changes between last prices549

bid intraday for a certain quarter of an hour and the corresponding day-ahead550

price. This is highly relevant, since market participants are mainly interested551

in squeezing their positions in the day-ahead or intraday markets and avoid552

ending into the control area balancing market. Secondly, we analysed the553

price changes in the continuous bidding. We found clear evidence that the554

bidding behavior is influenced by forecasting errors in renewables, available555

at the time of the bid. Intuitively, intraday prices increase in negative fore-556

casting errors, while positive forecasting errors have a suppressing effect on557

prices.558

We account for both linear and asymmetric adjustments of price changes559

to market-specific explanatory variables. The asymmetries are driven by the560

threshold variable demand quote. This shows market participants the pro-561

portion in which the expected demand is covered by the planned traditional562

capacity in the day-ahead market. Our analysis disentangles the effect of ex-563

ogenous variables dependent on the regime of the demand quote and further564

dependent on the time of the day. Tangentially, demand/supply variables565

and weather forecasting errors influence more the bidding behavior in the566

middle of the day than during mornings and evenings. There is an asymmet-567

ric adjustment of electricity prices with respect to both volume of trades and568

forecasting errors in renewables. Namely, in the high regime of the demand569

quote, where there is too little planned traditional capacity in the day-ahead570

market, traders incorporate the information of the latest available forecast-571

ing errors of renewables in their bids with a higher speed. This effect is572

more obvious for the mid-day quarters, but less obvious during morning and573

33



evening hours. Thus, the historically derived threshold in the demand quote574

for a specific delivery period is a highly relevant information for strategically575

bidding in the intraday market. The actual demand quote can be compared576

to the historical threshold value and, dependent whether the market is in the577

low/high demand quote regime, market participants can us our insights for578

one-period forecasts accordingly.579

The identification of regimes in the demand quote helps also to disentangle580

the demand/supply side volume of trades. In the regime of high demand581

quote, demand-side volume of trades have an increasing effect on prices.582

Vice versa, supply-side volumes have a suppressing effect on intraday prices,583

which becomes obvious in the low regime of the demand quote.584

Outlook585

Our analysis sheds light on the bidding behavior historically speaking586

and offers a solid basis for one-period forecast of last intraday prices and587

continuous bids. Since all variables used as input can be computed based588

on the information available at the time of the bid (demand quote, updated589

forecasts in renewables), the econometric model can be used for forecasting590

the (next) continuous bid. We prove the superiority of this econometric591

model specification over the classical AR model representation. As this is592

the first study which employs intraday-updated renewables forecasts, it is593

certainly the most realistic representation existing in the literature up to594

present. Practitioners use in reality updated forecasted errors as private595

information to bid more accurately in the intraday electricity market. In this596

context, our one-period proposed reduced-form forecasting model is highly597

relevant for both academics and practitioners.598

Appendix A. Descriptive statistics599
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Appendix B. OLS estimation without threshold, morning and evening600

delivery periods601
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Table B.14: Estimation results hour 7, Quarters 1–4, global OLS without threshold, entire

sample

OLS estimation of the model including all explanatory variables

Dependent variable Delta Price

H7Q1 H7Q2 H7Q3 H7Q4

Coeff Std. err. Coeff Std. err. Coeff Std. err. Coeff Std. err.

Co 0.288 (0.645) -0.450 (0.965) -1.392 (1.139) -1.102 (0.858)

DeltaPrice1 -0.208* (0.030) -0.320* (0.032) -0.244* (0.035) -0.281* (0.033)

DeltaPrice2 -0.157* (0.032) -0.159* (0.021) -0.121* (0.027) -0.175* (0.020)

DeltaPrice3 -0.084* (0.017) -0.080* (0.018) -0.084* (0.019) -0.086* (0.016)

DemandQuote -0.300 (0.543) 0.381 (0.829) 0.966 (0.965) 1.011 (0.736)

Volume 0.008 (0.005) 0.015 (0.009) 0.001 (0.009) -0.020* (0.006)

SqrTimeStep -0.833 (1.420) -1.212 (1.359) 4.101* (1.319) 4.127* (1.547)

DeltaWindIntrP 0.0001 (0.0002) 0.0002 (0.0002) -0.001 (0.001) -0.001 (0.001)

DeltaWindIntrN-0.001* (0.0001) 0.0001 (0.0002) 0.0002 (0.001) 0.001 (0.001)

DeltaPVIntraP 0.0001 (0.001) 0.001 (0.001) 0.0002 (0.001) 0.002 (0.002)

DeltaPVIntraN 0.001 (0.001) 0.002** (0.001) -0.001 (0.001) 0.000 (0.001)

Rsquared 5.989% 10.930% 7.333% 9.481%

No. Obs. 6979 4873 4977 7175

OLS estimation of the autoregressive model, excluding the market-specific explanatory variables

Dependent variable Delta Price

H7Q1 H7Q2 H7Q3 H7Q4

Coeff Std. err. Coeff Std. err. Coeff Std. err. Coeff Std. err.

Co 0.004 (0.061) 0.005 (0.086) 0.010 (0.086) 0.007 (0.072)

DeltaPrice1 -0.207* (0.012) -0.321* (0.014) -0.243* (0.014) -0.276* (0.012)

DeltaPrice2 -0.158* (0.012) -0.159* (0.015) -0.119* (0.014) -0.175* (0.012)

DeltaPrice3 -0.083* (0.012) -0.080* (0.014) -0.085* (0.014) -0.082* (0.012)

Rsquared 5.055% 9.718% 6.170% 8.085%

No. Obs. 6979 4873 4977 7175

Standard errors are shown in parenthesis. *, and ** denote a test statistic is statistically significant at the

1% and 5% level of significance, respectively. The interpretation of variables is: DeltaPrice(x)=lagged price

changes 1–3; DemandQuote=demand quote; Volume=volume of trades; SqrTimeStep=
√

∆t; DeltaWind-

IntrP/N=positive/negative forecasting errors in wind; DeltaPVIntraP/N=positive/negative forecasting

errors in PV.
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Table B.15: Estimation results hour 18, Quarters 1–4, global OLS without threshold

OLS estimation of the model including all explanatory variables

Dependent variable Delta Price

H18Q1 H18Q2 H18Q3 H18Q4

Coeff Std. err. Coeff Std. err. Coeff Std. err. Coeff Std. err.

Co -0.156 (0.809) 0.068 (0.941) -1.861 (0.980) -1.160 (1.087)

DeltaPrice1 -0.206* (0.032) -0.276* (0.036) -0.254* (0.033) -0.214* (0.036)

DeltaPrice2 -0.163* (0.033) -0.149* (0.025) -0.173* (0.030) -0.105* (0.023)

DeltaPrice3 -0.131* (0.024) -0.090* (0.024) -0.101* (0.020) -0.149* (0.045)

DemandQuote 0.324 (0.642) 0.186 (0.772) 1.274 (0.806) 0.708 (0.908)

Volume -0.025* (0.004) -0.028* (0.006) 0.041* (0.007) 0.037* (0.005)

SqrTimeStep 0.143 (1.319) -1.628 (1.062) -0.233 (0.921) -3.565* (1.258)

DeltaWindIntrP 0.000 (0.000) 0.000 (0.000) -0.001* (0.000) 0.000 (0.000)

DeltaWindIntrN -0.003* (0.001) -0.001 (0.001) -0.001 (0.001) -0.001 (0.001)

DeltaPVIntraP 0.011 (0.009) -0.006 (0.013) -0.004 (0.011) -0.055 (0.033)

DeltaPVIntraN -0.014** (0.007) 0.004 (0.011) -0.012 (0.027) 0.087 (0.105)

Rsquared 11.135% 8.929% 8.048% 7.037%

No. Obs. 8507 5982 6162 8936

OLS estimation of the autoregressive model excluding the market-specific explanatory variables

Dependent variable Delta Price

H18Q1 H18Q2 H18Q3 H18Q4

Coeff Std. err. Coeff Std. err. Coeff Std. err. Coeff Std. err.

Co -0.005 (0.058) -0.001 (0.073) 0.005 (0.082) 0.005 (0.078)

DeltaPrice1 -0.201* (0.011) -0.276* (0.013) -0.252* (0.013) -0.207* (0.010)

DeltaPrice2 -0.163* (0.011) -0.146* (0.013) -0.170* (0.013) -0.100* (0.011)

DeltaPrice3 -0.131* (0.011) -0.088* (0.013) -0.098* (0.013) -0.144* (0.010)

Rsquared 6.099% 7.715% 7.247% 5.859%

No. Obs. 8507 5982 6162 8936

Standard errors are shown in parenthesis. *, and ** denote a test statistic is statistically significant at the

1% and 5% level of significance, respectively. The interpretation of variables is: DeltaPrice(x)=lagged price

changes 1–3; DemandQuote=demand quote; Volume=volume of trades; SqrTimeStep=
√

∆t; DeltaWind-

IntrP/N=positive/negative forecasting errors in wind; DeltaPVIntraP/N=positive/negative forecasting

errors in PV.
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