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Abstract—The design of cloud computing technologies need
to guarantee high levels of availability and for this reason there
is a large interest in new fault tolerant techniques that are able
to keep the resilience of the systems at the desired level. The
modeling of these techniques require input information about
the operational state of the systems that have a stochastic nature.
The aim of this paper is to provide insights into the stochastic
behavior of cloud services. By exploiting the willingness of
service providers to publicly expose failure incident information
on the web, we collected and analyzed dependability features of
a large number of incident reports counting more than 10,600
incidents related to 106 services. Through the analysis of failure
data information we provide some useful insights about the
Poisson nature of cloud service’s failure processes by fitting well
known models and assessing their suitability.

I. INTRODUCTION

As the cloud computing technology adoption enters its sec-
ond decade, it continues to drive innovation for organizations
and their customers. More and more new services, from cus-
tomer service to financial transactions, from social networks to
e-commerce, are continuously shifting to cloud models. Given
this growth and our rising reliance on these cloud services,
it become necessary that providers and customers themselves
demand high level of a crucial aspect that is dependability, as
the ability to deliver a service that can justifiably be trusted [1].

In addition to that, cloud services are provided through the
interaction of different and complex building blocks. A cloud
service relies on complex software, hardware and network
infrastructure architecture that can be arbitrarily large in scale.
That is why, when referring to their dependability, any of these
blocks may fail and it becomes quite challenging to assess a
cloud service reliability.

There have been different empirical studies performing
failure analysis of cloud computing enviroments and services
but while these prior works provide some very useful insights,
they suffer from a few limitations that in our opinion leave a
knowledge gap in understanding the failure process character-
istics of such services. Prior studies have focused on specific
infrastructure components [2]–[4]. For cloud operators and the
dependability community it is important to understand not
only specific component’s reliability, but the reliability of the
service as a whole. In this work we consider a diverse set
of services where the collected data provide comprehensive
information about the service reliability.

Other works have performed reliability and failure analysis
of specific or limited set of cloud service providers (i.e. IaaS or
SaaS) [5]–[7]. While, these studies have provided an in-depth
analysis of the reliability of a few services they fail to capture
a broader view of todays’s cloud reliability. In a recent report,

Skyhigh Networks [8] estimated that the average number of
cloud-based applications usage has tripled in the past years
reaching 1,427 distinct cloud services per company in 2016.
That is why, we think that assessing a larger set of applications
would be undoubtedly useful in helping operators to provide
and design more dependable systems.

In order to overcome the above limitations, failure data
about a large set of cloud services are mandatory. In this work,
we take advantage of the fact that today’s cloud service oper-
ators provide detailed failure incident information on custom
web sites [9], [10]. Indeed, more and more service operators
do promptly notify customers and media by reporting service
incidents through several channels like, social media, corporate
custom websites, third party monitoring tools or press releases.
They publicly disseminate information about the current status
of their services, usually including: 1) start and end times of
an incident, 2) root cause, 3) failure impact on the services, 4)
steps taken to repair a failure and 5) maintenance events.

We collected such publicly available incident reports pub-
lished by a large number of cloud services with our own web
crawling framework. Using this approach, we conduct the first
large-scale measurement study of the dependability attributes
and aggregated failure process characteristics for 106 cloud
services, covering more than 10,600 failure incidents over a
period of up to 3 years.

This paper is organized as follows: In section II we
presents the most relevant related work and their main findings
regarding failure process dynamics. In section III, we introduce
the data sources used to collect the failure incident reports, the
methodology used in collecting the data as well as the incident
information regarding reliability data. In addition, we provide
some high-level statistics about the data set characteristics.
Section IV presents the various graphical and statistical tech-
niques we utilized in modeling the failure process and estimat-
ing parameters for various well-known lifetime distributions.
In Section V we show the results of the different methods
we employed and finally in Section VI we conclude our work
by summarizing the most important findings in this study and
highlight some future investigations.

II. RELATED WORKS

Several recent works have analyzed and modeled depend-
ability of cloud computing systems. In this section we cover
the most relevant and closely related to our study.
Specific Reliability Studies: There have been a number of
studies focusing on data center systems, specific components
or service providers infrastructure dependability [2]–[4], [6],
[11]–[15]. While studies are important to understand the char-
acteristics of the different components and help in designing



new approaches to overcome their failures at a different level
(e.g., through redundancy and fault-tolerant approaches), they
are also limited because it is not clear how these individual
component failures would affect a service’s overall depend-
ability. Not surprisingly, many of these studies originate from
major cloud service providers because they have the means
to conduct such studies. Examples are from Google [3], [6],
Microsoft [13]–[15] or NetApp [11].

Di Martino et al. [7] study platform failures of a specific
SaaS and expose some interesting insights as they found out
that failure rates are directly proportional to the workload in-
tensity but not to the workload volume (i.e., size of customer’s
data). The authors of [16] conduct a large scale analysis
comparing and relating physical and virtual machine failures
from commercial data centers. However, their study is limited
due to an inconsistent clarity across different data sources they
use.
Failure Process Characterization: Many of the previously
mentioned studies have performed specific failure process
characterization and here we report their findings so that the
reader could have a better comparison with our findings.

The authors of [12] report that the number of failures
per node are not Poisson processes and that normal and
lognormal distributions are a better fit. They also report that
time between failures (TBFs) are well modelled with Weibull
distribution and repair times are with a lognormal distribution.
Potharaju et al. [13], [15] show that network appliances (i.e.,
middleboxes) and network equipment failure inter-arrival times
may be suitably modeled with heavy-tailed distributions using
kernel density functions (in particular a mixture of lognormal),
similarly the time to repair of middleboxes.

Di Martino et al. [7] reports that the distribution of TBFs
of all failure types in a SaaS platform can be successfully fitted
with a Fatigue life distribution whereas the distribution for all
failure types except timeout errors may be well represented
with an exponential distribution. The authors of [6] performed
a failure analysis of a well known cloud provider and they
found out that for server type failures, the Weibull distribution
is the best model to represent the TBFs whereas, the lognormal
and the loglogistic distributions are better models for the
downtime duration. Instead, for task issues, they find that for
different task priorities, various distributions are the best fits
for TBFs, spanning from the Weibull with decreasing hazard
rate to lognormal, loglogistic and gamma with shape less than
one, i.e., decreasing rate. As for the time to repair, they report
that the lognormal and 3-parameter loglogistic distributions are
the best fits.

Birke et al. [16] suggest that virtual and physical machine
TBFs have very similar distributions and the best fit is the
gamma distribution with decreasing hazard rate, whereas the
times to repair are well modelled with lognormal distribu-
tion. Instead, Viswanath et al. [14] shows that time between
successive failures on the same machine fits well an inverse
function model. Another work regarding failure analysis of
cloud computing systems is performed by [17]. They report
that outage and vulnerability incident intensity of various cloud
services is best modeled by an exponential with intercept
model. However, we are not sure how they have performed
the data collection and more important the data consistency,
as the service they refer to is unavailable at this time, i.e.,
cloutage.org.

III. DEPENDABILITY DATA

In this section, we present our measurement methodology
including the data sources we used, how we collected the data,
and the information contained in the collected data that we
used to characterize the failure nature of the different cloud
services. Moreover, we also present some high-level statistics
of our data set and discuss the information trustworthiness.

In order to obtain data about failure events, we exploited
the fact that cloud services continuously provide detailed inci-
dent reports publicly available on the web today. For example,
the file sharing cloud application box.com reports such in-
formation about its incidents at https://status.box.com/history.
This status page provides us rich data about failure events.
Of course, not all cloud services release status information.
While searching the web for such status pages, we noticed
an interesting trend: many cloud services rely on a few
popular frameworks that provide a status page for web services
to publish incident reports (failures and maintenance tasks)
as well as real-time health (i.e., response time) reports of
the services. A few of these frameworks are statuspage.io,
status.io, cachet.io, and statuscast.com.

After identifying such frameworks, we searched on the
web to discovered a large number of cloud services that
use these frameworks and identified 142 cloud services using
statuspage.io and status.io. We cast those using cachet.io
and statuscast.com when we later realized that many of the
reports had missing information about the down time of failure
incidents. In addition to these 142 cloud services 1, we further
included 3 top cloud service providers, Amazon, Google Cloud
and Azure, into our sample, even though they were not using
any of the above four status publishing frameworks.

To obtain the reliability data reported on the status pages
of the services, we developed ad-hoc web crawlers using
Selenium [18]. We carried out the web crawls starting from
October 31, 2016 to November 12, 2016. During the crawls,
we scraped the entire incident reporting history (i.e., including
incidents before our crawling start date) for each of the
145 cloud services. Therefore, for all cloud services in our
data set, we have the complete historical information about
their incidents starting from the begining of their respective
reporting period until November 12, 2016. Not all services
have the same reporting period and this could be due to
different reasons, e.g., services have started adopting such
frameworks in different time frames. The reporting period of
the services composing our data set spans from a minimum
of 3 months up to a maximum of 3 years for the different
services. Furthermore, since maximum likelihood estimation
(MLE), in our analysis, plays an important role in estimating
lifetime distribution parameters, we apply a rule of thumb
stating that MLE could be heavily bias if the data sample’s
size is lower than 10 [19]. For our study, in order to be on a
safer side, i.e. better minimum estimation, we consider only the
aggregated failure process that contain more than 15 events per
each service. Applying this threshold, the number of services
analyzed is reduced to 106.

To characterize the 106 cloud services, we additionally
identified the cloud service model type. In our data set, we
consider only Infrastructure-as-a-Service (IaaS) providers as

1The full list of the services may be found at:
https://gitlab.com/Tola/Service_List/blob/master/service_list.txt



providers. Whereas, the two other cloud service models (i.e.
SaaS and PaaS) have been considered as a single model, i.e.,
applications, due to the fact that distinguishing among them
in today’s cloud ecosystem is not straightforward. Thus, the
overall data set consists in 91 applications and 15 providers.
In addition, in order to mitigate any concern about possible
bias in out data set we identified their categories as derived
from Alexa’s categories 2. We observe that applications fall
into 20 distinct categories and examples of these categories
are social networking, collaborative tools and communication
services. While not shown here due to lack of space, they are
reported in the service list 1.

After the data collection, we parsed the scraped HTML
pages to extract the useful information, i.e., start and end
time of each incident, title and operator annotations about the
incident’s severity. The later one being operator’s indication
about the severity level of each incident. We noted that the
status pages frameworks provide an interface for the operators
to annotate the incident impact on the overall service from a
small list of severity levels that include full disruption, partial
disruption, critical, major, minor and a few other annotations
indicating service degradation or informational message related
to scheduled maintenance events. For the scope of this paper,
in our analysis, we exclude the scheduled maintenance reports
and separate the remaining incidents into two severity cate-
gories, ’major’ and ‘minor’. Major incidents include events
related to service outages and minor incident those related
to service degradation. This way, we assume that a service
disruption/degradation has taken place only when the operators
report so, by using the above annotations in each incident. We
correlate these pieces of information with the external data we
collected (i.e., application/provider) during our analysis.

Table I gives some high-level statistics of our collected
incident reports. Consider that the number of cloud providers
is small because we only consider IaaS cloud providers. It
is interesting to observe that, on average, there are twice as
many major incidents per provider compared to applications,
indicating that despite various redundant systems utilized,
providers experience more frequent service disruption.

TABLE I: High-level data statistics.
Applications Providers

#Cloud Services 91 15
#Incident Reports 8278 2357
#Major incidents 968 311
#Minor incidents 7310 2046

Our study is based on incidents reported by cloud services
themselves. We rely on their trustworthiness, and we think
that cloud service operators do not have an incentive to report
wrong or falsified information about service failures to their
customers; the whole point of releasing such information is
to improve the transparency. Misleading failure reports can
damage the reputation of cloud services and may even lead to
significant financial losses if they lose customers. That is why,
our aim is to only interpret the information that is publicly
reported by operators themselves even though we are aware
that this could lead to a limitation on our study.

2http://www.alexa.com/topsites/category

IV. FAILURE PROCESS CHARACTERIZATION

In this section we introduce the procedure utilized to
characterize the failure process that cloud enabled services
experience on a service level basis. In our investigation, we
assume a single service as a whole system made of differ-
ent components that may fail and thus result or not to its
unavailability. The information contained in the reports does
not always provide insights on what kind of failures they
experience (i.e. root cause) that is why we treat the system as
a black box by not considering how the system ’looks inside’.
Thus, each failure process consist in an aggregated process of
different components that fail, and hence, leading to a service
degradation or service interruption. In this sense, it is outside
the scope of this paper to investigate what kind of failures such
system components undergo.

In doing the assesment of service reliability, for each of
them, we exclude the maintenance events and consider only
events that have caused a service outage or a service degrada-
tion by regarding them as failures, just as stated by operators
themselves. In addition to that, each service is considered as
a repairable system [20], since these are systems where the
components are mostly repaired rather than discarded every
time they experience a failure.

The analysis of failure data from repairable systems gener-
ally follows a similar procedure: A) Identify the process type
and model, B) Perform a model assessment and C) Choose the
lifetime distribution that best fits the empirical time between
failures. Such analysis can be performed using both, graphical
and quantitative methods. The graphical techniques provide
many advantages like, being quick and easy to use, require
some simple calculations as well as achieve a visual test of
model representation. On the other hand, they have the disad-
vantage of not being the most precise, are subjective to visual
interpretation and can often be biased. These disadvantages
may be overcome by the use of quantitative techniques. In
performing the failure process analysis we make use of both
of them.

A. Process Type and Model

Typically, the modeling of failure times of repairable
systems regard the point process theory as the main tool
used. The most typical used models for the failure process
of such systems are the renewal process (RP), where the
observations are independent and identically distributed (i.i.d),
the homogeneous Poisson process (HPP), being it a special
case of RP, and the non homogeneous Poisson process (NHPP)
which handles inter-failure time trends through specific time
dependent failure intensity functions.

When considering repairable systems, the rate at which
failures occur during the normal operation is referred to as the
rate of occurrence of failures (ROCOF) or ’failure intensity’.
Let N(t) be a function that counts the number of failures from
a starting observation time until t. This is a step function that
increases by one every time a failure is experienced. Since we
are considering repairable systems, i.e. more than one failure
happens, the failure intensity is defined as the infinitesimal
increase in the number of expected failures by time t as
follows:

z(t) = lim
∆t→0

E [N(t+ ∆t)]− E [N(t)]

∆t
=

dE [N(t)]

dt
(1)



and the expected number of failures by time t is often referred
to as the cumulative failure intensity, i.e.,

Z(t) =

∫ t

0

z(u)du = E [N(t)] (2)

The simplest model for repairable systems is the HPP
model where Z(t) = λt, z(t) = λ and the times between
failures are i.i.d exponentially distributed with mean 1/λ. The
probability of having n number of failures within an interval T
is given by the Poisson distribution with parameter λT . In this
case, the cumulative distribution function (CDF) of inter-arrival
time between failures is F (t) = 1 − e−λt and the mean time
between failures (MTBF) equals the reciprocal of the failure
intensity λ.

As for the NHPP model, we have considered two
commonly used models, the power-law [21], alternatively
called Duane model, and the exponential (or log-linear) law
model [22], sometimes called Cox-Lewis model, where the
failure intensity in both cases are not constant in time and
defined as:

z(t) = αt−β , α > 0, β < 1 (3)

z(t) = exp (α+ βt) , −∞ < α, β < +∞ (4)

respectively. The number of failures in any interval of length T
is distributed as a Poisson distribution with parameter Z(T ).
In the former, the failure intensity illustrated in (3) has a
polynomial nature and can model both, increasing (β < 0)
and decreasing (0 < β < 1) failure intensity. Whereas, the
exponential law (4) models a decreasing failure intensity for
β < 0 and an increasing intensity if β > 0. When β = 0, both
models reduces to the HPP constant failure intensity model.
For additional details, we suggest the reader may refer to [20].

A very important aspect of repairable system’s data anal-
ysis is testing for a possible trend in inter-failure times. As
previously stated, NHPP models are characterized by time
dependent failure intensity functions governing inter-failure
times. In order to identify the possible process type and
consequently observe a possible time trend we make use of
a graphical technique called scaled Total Time on Test (TTT)
plot [23] and evaluate the statistical significance using various
trend tests for the failure inter-arrival times. The scaled TTT
plot is similar to a plot of the cumulative number of failures
vs. the operating time but scaled to a unit square and with
the axes interchanged. The absence of a trend is evidenced
when the data are located close to the diagonal. The idea is
that if z(t) is constant, so that the processes are HPP, then
the TTT plot is expected to lie near the diagonal. In case the
plot shows a convex, concave or an S-shaped form it means
that the failure intensity is decreasing, increasing or bath-tube
shaped, respectively, and in such case the appropriate model
could be a NHPP.

In reliability literature, there are various statistical trend
tests based on different null hypothesis (H0). Typical ones are
those that consider the null hypothesis of ’the process is HPP’
with the alternative being NHPP with a monotone intensity,
and for sure the Laplace test and the Military Handbook 189
(MHB) are the most known ones. They are both optimal
tests against the alternative of NHPP’s with exponential-law
intensity and power-law intensity, respectively [20]. On the

other hand, the rejection of the null hypothesis means simply
that the process is not a HPP but it could still, however, be
a RP and thus still evidence a trend absence as the authors
of [24], [25] showed. Using simulations, they proved that the
Laplace and MHB may be misleading when used to detect
trend departures from general renewal processes and this goes
in contrast with [7]. To overcome this, several other tests have
been proposed where the null hypothesis is a RP, like the
Lewis-Robinson, the Mann test or variants of them [26].

However, since these tests are valid when the alternative
hypothesis have a monotone trend, i.e., monotone increasing or
decreasing failure intensity, we make use of a different test that
is more powerful against both monotonic and nonmonotonic
trends as proposed by Kvaløy et al. [26]. This test is a gen-
eralized Anderson Darling (GAD) test for RP null hypothesis
where the null hypothesis is rejected at a 5% significance level
if the test statistic is greater than 2.492.

B. Model Assessment

In assessing the HPP model assumption we perform a
distribution fitting for the time between failures and check
whether the exponential distribution is a reasonable fit as
well as validate the fitting using a goodness of fit (GOF)
statistical test. For the processes that may be modeled with
a non homogeneous Poisson process, we make use of specific
graphical methods to assess their suitability in modeling the
time dependent failure intensity.

A quick and simple graphical technique in identifying
whether a process may be modeled with a power-law model
is the Duane plot [21]. It is a plot of the cumulative MTBF
measures vs. cumulative failure times on a log-log graph. In
case the data are consistent with a power-law model, the points
in the graph will approximately follow a straight line with
slope β and intercept -log10α. Whereas, in the case of an
exponential model failure intensity, a plot of the cumulative
number of failures vs. failure times on a log-linear graph is
used and the points should roughly follow a straight line with
slope β and intercept −α ln β [27]. In both cases, in addition
to the plot we fit a cubic polynomial curve to the data, using
a robust least-square method, in order to estimate α and β
model parameters.

C. Time Between Failures Distribution Fitting

In order to identify which parametrized distribution is the
best model that may be used for the times between failures
of each service we apply the method of maximum likelihood
estimation (MLE) for the parameters of the theoretical dis-
tribution that may best fit the data. In addition, we obtain
the 95% confidence bounds and check whether the empirical
cumulative distribution (CDF) is a suitable fit of the theoretical
one and does not ecceed the confidence bounds. Then, we
validate the outcome using the well-known Chi-Square GOF
test [28]. This test determines if a data sample comes from
a specified probability distribution, i.e, null hypothesis, with
parameters estimated from the data.

As possible theoretical distribution candidates we consider
the exponential, gamma, Weibull and lognormal distribution.
We compute the MLE for each of them and visually plot the
comparisons.



V. ANALYSIS RESULTS

First, we start our analysis by investigating the failure
process autocorrelation in order to identify whether the failure
events have a temporal correlation. We utilize the autocorrela-
tion function to measure the correlation of a random variable
with itself at different time lags. The graphs in Figure 1
show the autocorrelation together with it’s 95% confidence
bounds, considering different time granularity, i.e., day, week
and month, of only the first two services as mere examples.
The obtained plots give a clear indication that the hypothesis of
independence for the number of failures occurring in different
time intervals cannot be rejected. Autocorrelation is stronger
in a monthly granularity but still significantly low as it does
not exceed the 95% confidence bounds. Moreover, we notice
that even in a lower granularity, i.e., hours, and for all the
services under analysis, that due to lack of space we will not
present, the results are similar and show a low or no correlation
of failure events in time, suggesting that the counting process
N(t) has independent increments.
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Fig. 1: Failure process autocorrelation.
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Fig. 2: Scaled TTT plots.

Next, in Figure 5 we illustrate the scaled TTT plots for the
first four services (service number is just for identification).
Notice that the choice of showing just some service plots

is just for illustration purposes. We observe that each of
the four services shows different trends. Through a close
inspection of the plots for all the services, we may exclude
the trend presence for 56 services, i.e., data located close to
the diagonal, 24 have a convex shape and 18 have a concave
shape, indicating that processes show a monotonic decreasing
and increasing failure intensity, respectively. Only 8 of them
show an S-shaped form suggesting that such processes have a
non monotonic intensity function.

Table II gives the result of the statistical trend test analysis.
It shows the number of services together with their cloud
model separation, i.e., applications and providers, that the
various trend tests reject and do not reject their respective H0.
Observing the results from the GAD test we may conlcude with
a 95% confidence level, that out of 106 services, 72 of them do
not reject the H0 of RP and 34 of them do. This means that,
72 service failure processes may be modeled as RP having no
reliability improvement or deterioration due to a trend absence
and 34 of them may be modeled with NHPP model having
either a monotone or a nonmonotone failure intensity. Notice
that being a RP means that the times between failures may be
distributed according to any lifetime distribution [29], and only
in case they are exponentially distributed the process is a HPP
with constant failure intensity. In particular, when comparing
the results of GAD vs. MHB test, we note that 64 out of 72 do
not reject the H0 corresponding to HPP processes with 95%
confidence. The 8 additional services that MHB rejected the
H0 correspond to services that the test rejected as not being
HPP but still having ’no trend’ because the GAD does not
reject them and thus being RP with i.i.d failure inter-arrival
times. Specifically, they are the 8 services that show an S-
shape failure intensity in the scaled TTT plots.

TABLE II: Number of services (applications, providers)
resulting from the different trend tests.

#Services (#Applications, #Providers)
Reject H0 Do not Reject H0

Laplace (HPP H0) 43 (36,7) 63 (55,8)
MHB (HPP H0) 42 (35,7) 64 (56,8)
GAD (RP H0) 34 (27,7) 72 (64,8)

Within the set of 34 services that have either a monotonic
or a non monotonic trend as resulted from the GAD test, we
notice that 18 services may be reasonably well modeled with
a NHPP power-law model as indicated from the fitting quality
of the Duane plots. Though, only 12 of them may be modeled
with an exponential-law model. The remaining 4 services does
not fit either one of the models.

Figure 3 illustrate examples of the plots we have used
to visually check the validity of the models. Specifically,
Figures 3(a) and 3(b) are log-log plots including a fitted line
that we have used to asses the fitting quality and estimate the
model parameters. Whereas, Figures 3(c) and 3(d) show two
of the services that are modeled according to an exponential
model and we may notice that in both cases the points follow
approximately a straight line.

In terms of failure intensity model parameters, Figure 4
shows the various model parameter values. The services having
an intensity according to the power-law model yield a much
more variable β compared to the exponential-law model. In
particular, 9 services experience a deteriorating reliability (i.e.,
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Fig. 3: Power-law and exponential-law model plots.

increasing failure intensity with β < 0) and 9 have a reliability
growth (i.e., decreasing intensity with 0 < β < 1). Whereas,
all the services having a failure intensity modeled with an
exponential-law experience a reliability deterioration. Note that
β values in this case are relatively small but not equal to zero
and such values are between 0.004 and 0.017.
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Fig. 4: NHPP Power law and exponential law model
parameters.

Figure 5 shows the time between failures MLE computation
for each of the theoretical distributions considered, together
with their respective 95% confidence bounds, for service nr.
1. We report a single service just as illustration and due to
space limitation. We observe that it is quite difficult to assess
which of the distributions is the best fit. For example, take
the exponential and gamma distribution, they both seem to be
reasonably good fits of the empirical CDF. Moreover, we note
that this difficulty is present in most of the services and thus
we were not able to clearly decide which one was the best fit.

An additional confirmation to such observation comes
from the computation of the GOF test. Specifically, when
computing the Chi-Square test for a service, we notice that the
null hypothesis (i.e., theoretical distribution) for the different
considered candidates may not be rejected and thus we are
still not able to choose the best fit for the empirical CDF. This
issue results for many of the services and we may overcome
this only by choosing the distribution that has the minimum
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Fig. 5: CDF fitting for time between failures.

test statistic among those not being rejected. With this decision,
we were able to select the best fit for the failure inter-arrival
times of each service. Notice that this does not mean that
only a single distribution, among those that we have taken
into consideration, is a reasonable fit.

Applying the Chi-Square test, we discover that within the
set of 64 services that the MHB do not reject the H0 of HPP,
60 of them, at a 5% significance level, do not reject the expo-
nential H0 for the times between failures (53 Applications and
7 Providers). This test provides statistical significance that a
HPP model may be a justifiable assumption for the majority of
the services in our data set. Nonetheless, we still face the case
of not rejection for some of the other distributions. Table III,
shows the number of services, in brackets applications and
providers, when we apply the minimization of the test statistic.
For the 4 remaining services that MHB test suggests a trend
absence and the additional 8 services that the GAD test does
not reject the RP H0, i.e. General RP in the table, the GOF
test indicates that the majority of them may be modeled with
a Weibull and lognormal distributions, 5 and 4 respectively, all
being applications.

TABLE III: Number of services resulting from the Chi-
Square GOF test for inter-failure times distribution when
minimizing the test statistic.

#Services (#Applications, #Providers)
Exp Gamma Weibull LogN

General RP 2 (2,0) 1 (1,0) 5 (5,0) 4 (4,0)
NHPP Power 3 (3,0) 5 (5,0) 6 (5,1) 4 (3,1)
NHPP Exp 1 (1,0) 4 (1,3) 7 (7,0) 0

Among the services with a power-law failure intensity
model, we find out that 3 of them have the exponential
distribution as the best fit for time between failures, 5 have
the gamma distribution and 6 of them Weibull, whereas the
remaining 4 have the lognormal distribution. Instead, regarding
those with an exponential model, as reported in table III, 7
of them have the Weibull distribution as the best fit, 4 have
the gamma and only one has the exponential distribution.
Furthermore, we observe that despite the different counting
processes, the majority of application’s time between failures



may be well modeled with an exponential distribution. In the
cases of general RP and NHPP model failure intensity, the
majority of applications have a Weibull distribution as the best
fit for the time between failures followed by gamma, 18 and
10 services, respectively.

VI. CONCLUDING REMARKS

We presented the first large-scale study of cloud-enabled
service aggregated failure process dynamics. By exploiting
the willingness of cloud service operators to publicly report
failure data we analyzed different reliability growth models
and investigated their suitability in characterizing service fail-
ure processes. Our findings suggest that assuming a Poisson
process for the number of failures in cloud environments is
valid for more than half of the services we analyze, and
thus assuming a memory less property is not a ’cardinal sin’.
Moreover, we notice that in case service failure intensity is
well modeled through time dependent functions there is not
a single lifetime distribution that represents the best fit for
the majority of the service’s time between failures. On the
contrary, we find that there are different statistical models that
may properly fit the same failure process and we were able to
decide a certain one only by making an additional decision,
i.e. minimizing the GOF test statistics.

In our investigation we have considered common and rather
simple models as possible fitting candidates. Having in mind
the famous Box’s quotes; "All models are wrong but some
are useful" and "Overparameterization is often the mark of
mediocrity", it would be interesting to examine the appropri-
ateness of more refined and flexible failure intensity models
(e.g., 3 parameter models) that could be derived through a
combination of our considered models. Similarly, examining
the pertinence of more adjustable life ageing distributions,
i.e., Weibull-Poisson/Exponential-Poisson, and applying more
choosy model selection criteria (e.g., Akaike Information Cri-
terion) rather than GOF tests could lead to a more generalized
model to describe cloud service failure processes.
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