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Casimir force between a half-space and a plate of finite thickness
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Zero-frequency Casimir theory is analyzed from different viewpoints, with the aim of obtaining further
insight into the delicate Drude-plasma issue that turns up when one considers thermal corrections to the
Casimir force. The problem is essentially that the plasma model, physically inferior in comparison to the
Drude model since it leaves out dissipation in the material, apparently gives the best results when comparing
with recent experiments. Our geometric setup is quite conventional, namely, a dielectric plate separated from
a dielectric half-space by a vacuum gap, both media being made of the same material. Our investigation
is divided into the following categories: (1) Making use of the statistical-mechanical method developed by
J. S. Høye and I. Brevik [Physica A (Amsterdam, Neth.) 259, 165 (1998)], implying that the quantized
electromagnetic field is replaced by interaction between dipole moments oscillating in harmonic potentials, we
first verify that the Casimir force is in agreement with the Drude prediction. No use of Fresnel’s reflection
coefficients is made at this stage. (2) Then turning to the field-theoretic description implying use of the
reflection coefficients, we derive results in agreement with the forgoing when first setting the frequency equal
to zero, before letting the permittivity become large. With the plasma relation the reflection coefficient for TE
zero-frequency modes depends on the component of the wave vector parallel to the surfaces and lies between
0 and 1. This contradicts basic electrostatic theory. (3) Turning to high-permeability magnetic materials, the
TE zero-frequency mode describes the static magnetic field in the same way the TM zero-frequency modes
describe the static electric fields in electrostatics. With the plasma model magnetic fields, except for a small part,
cannot pass through metals; that is, metals effectively become superconductors. However, recent experimental
results clearly favor the plasma model. We briefly discuss a possible explanation for this apparent conflict with
electrostatics.

DOI: 10.1103/PhysRevA.93.052504

I. INTRODUCTION

The finite-temperature issue related to the Casimir effect
has turned out to be surprisingly difficult to resolve (see [1–9];
this list of references is not exhaustive; readers interested
in general reviews of the Casimir effect may consult
Refs. [10–13]). The problem arises already in the simple
standard setup where there are two parallel dielectric or
metallic plates separated by a width a. We will assume that the
two media are of the same material and that the temperature T

is the same everywhere, and we will be concerned only with
the transverse force (pressure) per unit surface, denoted fs .

A key element in the theoretical description of the effect is
the choice of dispersion relation in the material. One would
expect that the Drude relation

ε(iζ ) = 1 + ω2
p

ζ (ζ + ν)
(1)

is the natural choice here, where ζ denotes the imaginary
frequency, ωp is the plasma frequency, and ν is a dissipative
term that describes Ohmic resistance. An alternative dispersion
relation has, however, often been proposed in the literature,
namely, the plasma relation which corresponds simply to
setting ν = 0 in Eq. (1).

Unless very special effects are at play in this problem,
one would think that the Drude alternative is physically the
most correct one. We ought to emphasize that there is no
fundamental conflict with basic laws of thermodynamics here;

in particular, there is no conflict with the Nernst theorem.
A detailed calculation has shown that the Nernst theorem is
satisfied when the temperature approaches zero [4]. This point
ought to be mentioned, as statements to the contrary have
repeatedly been made in the literature.

The most important point is, however, the following: what
is the experimental status concerning the Casimir force?
Thanks to theoretical developments of Boström and Sernelius
[7] and others, it has been recognized that according to
the Drude relation, there is no contribution to the force
from the transverse-electric (TE) zero-frequency mode. This
gives in turn rise to a characteristic dependence of the
force on the separation width at room temperature: at large
separations the Drude-related prediction is only one half of
the plasma-related prediction. Moreover, for metals the force
actually decreases with increasing temperature in a certain
temperature interval before it again increases to reach the clas-
sical limit for T → ∞ where only the zero-frequency mode
contributes.

There are thus possibilities to distinguish experimentally
between the two models for the dispersion. The measurements
of Sushkov et al. [8] were made for a large range of distances,
from 0.7 to 7.3 μm, and were found to agree with the Drude
prediction to a good accuracy. This is as we would expect
beforehand. The situation is, however, more complex: the
experiment needed large subtractions to be done in view of the
so-called patch potentials and so brought in some uncertainty
regarding the conclusion [14]. Moreover, there have been other
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experiments, such as the accurate ones of Decca et al. [9],
which have obtained results agreeing with the plasma model
instead. This disagreement between experimental groups
has left the community in a state of uncertainty for some
years.

A new and interesting approach to this problem is to assume
a thin metal plate of varying thickness, typically Au, overlying
a thicker plate of a different material like the transition-metal
Ni, which is ferromagnetic. Then the small difference in the
Casimir force can be measured as a variation in it when the
plate moves near a metal sphere that can be either Ni or
nonmagnetic Au. This idea was proposed by Bimonte [15–17]
and is also generalized to the case of unequal temperatures
for the two plates [18]. (The same kind of technique has
been used in the search for non-Newtonian gravity in the
submicron range [19,20].) The argument goes roughly as
follows: the important point is whether the TE ω = 0 mode
contributes to the force or not. The transverse-magnetic (TM)
ω = 0 mode, where ω is frequency, represents static electric
fields; they are screened out and do not contribute to the
force. Likewise, the TE zero-frequency mode represents static
magnetic fields and can “see” through the thin gold layer if the
penetration length is larger than the width w of the layer. In the
Drude approach, this mode is, in principle, detectable. In the
plasma approach, however, this mode gives only a very small
contribution since when modeled as a nondissipative plasma,
gold effectively behaves as a superconductor and screens out
the static magnetic fields. This method is also proposed for
nonmagnetic materials like Si. There the expected difference
in Casimir force for the plasma and Drude models is smaller.
With this method, the Fresnel reflection coefficients are used
at the plane boundaries between the media.

Conventionally, the Casimir force between two half-spaces
is found using the Lifshitz formula in combination with
the reflection coefficients of the two media. One integrates
over transverse wave vectors (transverse to the normal of
the plates) and sums over Matsubara frequencies (imaginary
frequencies). For layered media it might, at first sight, seem
reasonable to generalize to this situation by merely inserting
the corresponding reflection coefficients. This was done in
Refs. [15–18] to draw conclusions about the interpretation of
experimental results. Earlier, Pirozhenko and Lambrecht used
the same method to evaluate the reduction of Casimir force in a
variety of situations with Si and VO2 plates (or films) of finite
thickness [21]. The Si plates had varying degrees of doping in
addition to its intrinsic case. VO2 was considered both above
and below the critical temperature that separates its metallic
and nonmetallic versions. A central issue in this connection, as
mentioned, is the possibility to distinguish between the Drude
and plasma models for a metal.

By such experiments with ferromagnetic Ni only a small
variation in the force has been measured, in agreement
with results evaluated using the plasma model [22]. For
nonmagnetic materials similar experimental results are not
available so far, to our knowledge. Anyway, this has resulted
in the firm conclusion that the plasma model, not the Drude
one, is the correct model to evaluate the Casimir force for
metals.

A problem with this conclusion is that real metals have
after all a finite conductivity, which is neglected in the plasma

model. Accordingly, with the plasma model real dielectric
data should be irrelevant when obtaining the proper Casimir
force. This seems physically questionable. It may seem natural
therefore to reconsider the straightforward extension of the
Lifshitz formula to layered structures. We will consider only
the ω = 0 limit for simplicity.

Another point worth attention is the role of the electric
and magnetic energies when ω → 0. Consider for definiteness
a plane wave falling normally upon a metallic surface.
The penetration depth is δ = (μ0ωσ/2)−1/2, where σ is the
conductivity; thus δ is large in the low-frequency limit. In the
interior of the metal the electric field is E ∼ (ωδ/c)e−x/δ → 0
when ω → 0. The electric field energy thus goes to zero and
so cannot play any role in the experiment. The magnetic field
energy exceeds the electric field energy by a factor σ/(εω) � 1
and may from this argument be of importance.

In our calculation below we will first make use of the
statistical-mechanical method used by Høye and Brevik to
rederive the appropriate version of the Lifshitz formula for
the present configuration for nonmagnetic materials [1]. The
basis for this method is the induced interaction between a pair
of polarizable particles. Then the quantized electromagnetic
field is replaced by the dipolar interaction between dipole
moments that oscillate in harmonic potentials. In view of
the path-integral formalism for quantized systems this may
also cover the general situation with the time-dependent
radiating dipole-dipole interaction where Fourier transform
in imaginary time is utilized [23]. But this more demanding
situation will not be considered as here we are mostly
interested in the electrostatic limit. The pair of polarizable
particles is then extended to a pair of polarizable media, e.g.,
plates. At low densities the resulting force must again be the
sum of contributions from pairs of particles. But for higher
densities, interactions between dipole moments must be taken
into account. Thus one will need the resulting pair-correlation
function between particles, one particle in each medium. As
shown in Ref. [1], this, apart from a simple factor, is the
Green’s function of the macroscopic electromagnetic problem.
For simplicity we will limit ourselves to the static case in the
following, as mentioned. Our method in Sec. III does not
involve using the Fresnel reflection coefficients.

For the electrostatic ω = 0 situation we recover the known
result by using reflection coefficients; there is no TE zero mode
for a nonmagnetic system. We will, in Sec. V, discuss in more
detail how the plasma model is in conflict with the absence of
static electric fields in metals.

Apparently, for some reason, the relatively large difference
for magnetic systems seems to favor the plasma description in
conflict with the electrostatic picture. A possible reason for this
may be the absence of thermal equilibrium in the experimental
setup. We discuss this possibility briefly in Sec VI, in relation
to magnetic materials. In Sec. VII we summarize our results.

II. BASIC FORMALISM

Consider a pair of harmonic oscillators with oscillator
coordinates s1 and s2 (one dimension for simplicity) with
potential energy (s2

1 + s2
2 )/(2α), where α is polarizability.

They interact via an interaction ψs1s2. The partition function
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for this system is

Z =
∫

exp

(
− β

2α

(
s2

1 + s2
2

) − βψs1s2

)
ds1ds2

= πα

β
√

1 − (αψ)2
, (2)

with β = 1/(kBT ), where kB is Boltzmann’s constant and
T is temperature. The total free energy Ftot is given by
−βFtot = ln Z. (The kinetic energy of the classical system
has been disregarded here as it does not depend upon ψ .) The
contribution to the free energy due to the pair interaction ψ is
clearly

−βF = −1

2
ln[1 − (αψ)2] = 1

2

∞∑
n=1

1

n
(αψ)2n. (3)

The latter series expansion is Eq. (3.1) of Ref. [1], which
explains it in terms of the graph structure of statistical
mechanics. The graphs corresponding to expression (3) are
the ring graphs occurring in the so-called γ ordering for
long-range forces, with γ being the inverse range of the
interaction [24–26]. Also it turns out that these graphs yield
the exact result for coupled harmonic oscillators [27].

The Casimir force follows by differentiation of the free
energy with respect to the distance a between the two bodies,

K = −∂F

∂a
= 1

β

αψα ∂ψ/∂a

1 − (αψ)2
. (4)

In this expression ∂ψ/∂a is the derivative of the (dipole)
interaction, while the remaining part is the pair-correlation
function for the fluctuating dipole moments of the two
particles, one in each medium.

Expressions (2) and (3) for a pair of particles can formally
be extended to a pair of planes. Then the Fourier transform
of the dipole-dipole interaction is utilized. The static dipole-
dipole interaction between a pair of dipole moments s1 and s2

separated by a distance r is (r > 0)

φ(12) = − s1s2

r3
D(12), D(12) = 3(r̂ · ŝ1)(r̂ · ŝ2) − ŝ1 · ŝ2,

(5)
where the hat denotes unit vectors. Its full Fourier transform
in three dimensions is

φ̃(12) = 4π

3
s1s2D̃(12), D̃(12) = 3(k̂ · ŝ1)(k̂ · ŝ2) − ŝ1 · ŝ2.

(6)
However, with planes normal to the z direction translational
symmetry is lost in that direction, so we have to transform
back to z space. Thus the dipole-dipole interaction of interest
becomes Eq. (4.3) of Ref. [1] (z = z2 − z1 �= 0),

φ̂(12) = −2πs1s2
e−q|z|

q
(ĥ · ŝ1)(ĥ · ŝ2), q2 = k2

⊥ = k2
x + ky,

(7)

h = h± = {ikx,iky, ± q}, depending on z ≷ 0. (8)

III. DIELECTRIC HALF PLANE AND PLANE
OF FINITE THICKNESS

Now consider a dielectric half plane for z < 0 and a
corresponding parallel plane for a < z < b surrounded by
vacuum. At low particle number density ρ (same density
and polarizability in both planes for simplicity) the resulting
Casimir force will be the direct sum from all pairs of particles
as the denominator in expression (4) can be disregarded. The
resulting force density fs = fsurf is then given by Eq. (4.4) in
Ref. [1] except that in the present case one of the integrations
is limited to a < z < b,

fs = 1

β

1

(2π )2

∫
dkxdky

∫ b

a

∫ 0

−∞
dz1dz2(βρ)2

×〈φ̂(12)[−qφ̂∗(12)]〉. (9)

The factor q is from the derivative of the potential according
to Eq. (4). For particles with polarizability α0 Eq. (4.5) of
Ref. [1] will be as before with thermal averages β〈s2

1〉 =
β〈s2

2 〉 = 3α0 [for oscillations in the potential −s2/(2α0) in
three dimensions],

H = 〈(ĥ · ŝi)(ĥ · ŝi)〉
= 1

3 h · h∗ = 1
3 (k2

⊥ + q2) = 2
3q2 (i = 1,2). (10)

With the new limits of integration integral (4.5) of Ref. [1]
now becomes

I =
∫ b

a

∫ 0

−∞

(
e−q(z2−z1)

q

)2

dz1dz2 = e−2qa

4q4
(1 − e−2q(b−a)).

(11)

For a dilute medium 4πρα0 = ε − 1, where ε is permittivity.
Altogether, when inserting interaction (7) into expression (9)
where Eqs. (10) and (11) are further inserted, one finds by
using

∫
dkxdky = 2π

∫
q dq that Eq. (4.9) of [1] is modified

to (with 3y = 4πρα0)

fs = − 1

2πβ

∫ ∞

0
q2 dq

(
3

3y

2

)2

IH 2

= − 1

2πβ

∫ ∞

0
q2 dq

(
ε − 1

2

)2

× e−2qa(1 − e−2q(b−a)). (12)

For general permittivity there will be induced fields, and
the desired correlation function follows from solution of the
corresponding electrostatic problem. Thus the electric field
created by a dipole s1 (for ε = 1) can be written like Eqs. (5.1)
and (5.2) of [1],

E = Le−q|z|h, L = 2πs1
1

q
(h · ŝ1). (13)

So for a dipole moment located at z = z0 < 0 we now have

Ee−qz0/L =

⎧⎪⎪⎨
⎪⎪⎩

1
ε
e−qzh+ +Beqzh−, z0 < z < 0,

Ce−qzh+ +C1e
qzh−, 0 < z < a,

De−qzh+ +D1e
qzh−, a < z < b,

Fe−qzh+, b < z,

(14)

which generalizes Eq. (5.3) of [1].
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At the three interfaces z = 0,a,b the tangential components
of E and the normal component of D = εE must be continuous.
This gives

1

ε
+ B = C + C1,

(15)
1 − εB = C − C1,

etc. Here we may eliminate B to obtain

2 = (ε + 1)C + (ε − 1)C1. (16)

Likewise, for the two other interfaces we find

2C = (ε + 1)D − (ε − 1)D1e
2qa,

2C1 = −(ε − 1)De−2qa + (ε + 1)D1,

2εD = (ε + 1)F, (17)

2εD1 = (ε − 1)Fe−2qb = 2
ε − 1

ε + 1
De−2qb.

With this C and C1 can be expressed in terms of D alone, by
which Eq. (16) gives the following relation for D:

4 = (ε + 1)2

[
1 −

(
ε − 1

ε + 1

)2

(e−2qa − e−2qb + e−2q(b−a))

]
D.

(18)

As explained in connection to Eq. (5.5) of [1], the
correlation function of a dielectric system deviates from the
Green’s function of the electromagnetic problem by a factor

A =
(

ε − 1

3y

)2

, 3y = 4π

3
ρβ〈s2〉. (19)

With this the force density fs is the low-density result (12)
multiplied by AD, where the ε − 1 term of (12) is replaced
with its low-density value ε − 1 = 3y. We find

fs = − 1

2πβ

∫ ∞

0
q2 dq

�2e−2qa(1 − e−2q(b−a))

1 − �2(e−2qa − e−2qb + e−2q(b−a))
,

(20)

�2 =
(

ε − 1

ε + 1

)2

. (21)

With two half planes b → ∞ we thus have the well-known
Lifshitz formula

fs = − 1

2πβ

∫ ∞

0
q2 dq

�2e−2qa

1 − �2e−2qa
. (22)

The found expression (20) may also be written in the same
form,

fs = − 1

2πβ

∫ ∞

0
q2 dq

�′2e−2qa

1 − �′2e−2qa
, (23)

where, with w = b − a,

�′2 = �2(1 − e−2qw)

1 − �2e−2qw
. (24)

Of special interest is the case of a metal for which A0 =
(ε − 1)/(ε + 1) → 1. Then �′ = � = 1 or the right-hand side

of Eq. (18) can be factorized to obtain

4 = (ε + 1)2(1 − e−2qa)(1 − e−2q(b−a))D. (25)

With this the Casimir force density (19) with a metal plate
becomes

fs = − 1

2πβ

∫ ∞

0
q2 dq

e−2qa

1 − e−2qa
(26)

as the factor 1 − e−2q(b−a) cancels. The D1 term may also
contribute, but in the electrostatic case it does not since
h+ · h− = k2

x + k2
y − q2 = 0. Thus the result is independent

of the thickness b − a of the metal layer and is accordingly the
same as that for two metal half planes. This is then also fully
consistent with the electrostatics of continuous media. Electric
fields do not penetrate metals.

Taking into account the relation
∫ ∞

0

zx−1dz

ez − 1
= �(x)ζ (x) (x > 1), (27)

with ζ (x) being the Riemann zeta function, we can express fs

as

fs = − ζ (3)

8πβa3
. (28)

IV. APPROACH IN TERMS OF REFLECTION
COEFFICIENTS

As a reassurance, it is of interest to consider the same geo-
metric setup if one uses instead the conventional field-theoretic
formalism and the reflection coefficients at the boundaries.
We again limit ourselves to the static case. Assume that a
wave falls from vacuum (subscript zero) towards a dielectric
nonmagnetic medium with real permittivity ε. As before, we
write the constitutive relations as D = ε0εE,B = μ0H, where
ε is real and constant. The TE and TM reflection coefficients,
here called �TE and �TM, are

�TE = κ − κ0

κ + κ0
, (29)

�TM = κ − εκ0

κ + εκ0
, (30)

where

κ =
√

k2
⊥ − εω2/c2, κ0 =

√
k2
⊥ − ω2/c2. (31)

The Casimir force fs on a slab of width w = b − a situated at a
distance a from the half-space z < 0 with the same permittivity
ε can conveniently be found, for instance, by simplifying the
more general formalism of Ref. [28] pertaining to a dielectric
slab situated in a cavity (see also the related Ref. [29], which
considers multilayered systems in general). The simplification
consists in letting the distance to one of the walls go to infinity.
We can then write

fs = − 1

πβ

∞∑
m=0

′ ∫ ∞

0
dk⊥k⊥κ0

(
1

dTE
+ 1

dTM

)
, (32)

where the prime means that the mode m = 0 is to be taken
with half weight and dTE and dTM are complicated functions
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which in the present case simplify considerably. We obtain

fs = − 1

πβ

∞∑
m=0

′ ∫ ∞

0
dk⊥k⊥κ0

[
e−2κ0a

(�′
TE)−2 − e−2κ0a

+ e−2κ0a

(�′
TM)−2 − e−2κ0a

]
, (33)

where �′
q is a combined reflection coefficient,

(�′
q)−2 = �−2

q − e−2κw

1 − e−2κw
, q = (TE,TM). (34)

Recall that ε is assumed to be real and finite; otherwise, it is
arbitrary.

Consider now the static mode, ω = 0. From Eqs. (29) and
(30) it follows that for k⊥ �= 0,

�TE = 0, �TM = 1 − ε

1 + ε
. (35)

Thus the TE mode does not contribute, and we obtain

fs(ω = 0) = − 1

2πβ

∫ ∞

0
k2
⊥dk⊥

e−2k⊥a

(�′
TM)−2 − e−2k⊥a

, (36)

where

(�′
TM)−2 = �−2

T M − e−2k⊥w

1 − e−2k⊥w
. (37)

One sees that for ω = 0 this is the same as expression
(24) obtained with the statistical-mechanical method for the
electrostatic case. Note that the absence of the TE mode
for ω = 0 is fully consistent with the statistical-mechanical
derivation.

For large values of ε, which is the case of primary
importance here, there is thus a weak dependence on the width
w in expression (36) for the force. But in the limit ε → ∞,
corresponding to a metal, it is seen that

(�′
TM)−2 → 1 (38)

smoothly, and the dependence on w goes away. We end up
with

fs(ω = 0,ε → ∞) = − 1

2πβ

∫ ∞

0
k2
⊥dk⊥

e−2k⊥a

1 − e−2k⊥a

= − ζ (3)

8πβa3
. (39)

This is precisely the same as our previous expression (29),
now derived in an alternative manner. There is no trace of the
mentioned penetration depth δ in this expression. However,
if one first lets ε → ∞ or uses the Drude relation (1) with
ν = 0 (plasma model) and then lets ω → 0, the plasma model
nonzero �T E for the TE zero mode appears. This is in conflict
with the electrostatic derivation in Sec. III.

V. PLASMA MODEL FOR METALS

The consequence of the plasma model for metals will be
the presence of a TE zero mode. The Casimir force from this
mode will be like integral (22) with the reflection coefficient
given by Eqs. (29) and (31). For the Drude model the dielectric
constant is given by Eq. (1). When inserted in expression (31)

for ζ = 0, this gives the reflection coefficient �TE = 0 for the
Drude model with ν > 0. However, for the plasma model one
puts ν = 0, by which one, for ζ → 0, thus finds expression
(29) with

κ =
√

k2
⊥ + ω2

p

/
c2, κ0 = k⊥ (ω = 0). (40)

Thus one finds a nonzero reflection coefficient that varies with
transverse wave vector k⊥. For k⊥ = 0 one has �TE = 1 like
the electrostatic �TM = 1 for metals. However, for increasing
values of k⊥ (>0) the plasma model �TE will start to
decrease and become less than 1, i.e., 0 < �TE < 1. This has
the additional consequence that the metal becomes partially
transparent to the TE field at zero frequency. In our opinion
this is in conflict with known electrostatics of metals where the
static electric field should be zero inside, in accordance with
our derivations in Sec. III.

Further, it has been shown that expression (28) is also
the same as the classical result for two half planes where
the metals are replaced with ionic plasma or ionic fluids for
which classical statistical mechanics is applied [30]. With
the nonzero TE mode this mode would add to expression
(28), by which the resulting Casimir force would be different
from the classical result with ionic fluids. This would give
a mismatch with a different high-temperature classical limit,
and it reflects another disturbing feature of the plasma model.
When the limit ν → 0 is considered, the resulting force
changes discontinuously when ν reaches zero. To us such
a discontinuity seems unphysical. This was also noted in
Ref. [21].

In Ref. [17] an experiment is proposed that should be able
to distinguish between the plasma and Drude models. An
alternating layer of Au and high-resistivity Si is covered by a
thin layer of conducting Si. Then the alternating Casimir force
between this and a Au sphere should be measured. Nonzero
Matsubara frequencies will, to some extent, partially penetrate
the metal-like conducting Si top layer. However, the crucial
difference is that in addition the plasma model TE ω = 0
mode will partially penetrate it too, while it will be absent
for the Drude model. This gives two clearly different results
for the alternating Casimir force that are expected to be tested
experimentally. Note that the materials considered here are
nonmagnetic.

VI. MAGNETIC MATERIALS

In Ref. [17] an experiment with a magnetic material was
also proposed to distinguish between the plasma and Drude
models. An alternative layer of Au and magnetic Ni is covered
by a thin layer of Au. The alternating Casimir force between
this and a Ni sphere is measured. With this setup there should
be a magnetic contribution to the Casimir force. Due to the slow
motion (large damping) of magnetic moments only the lowest
ζ = 0 Matsubara frequency will contribute. Then with the
plasma model one again neglects or puts ν = 0 in the dielectric
constant, Eq. (1). With this it is found that the magnetic field
cannot penetrate the Au overlayer to reach the Ni below for
k⊥ = 0. For k⊥ > 0 a small part goes through, like the electric
field for this model. The static magnetic field is described by
the TE zero mode in the same way as the TM zero mode
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describes electrostatics. Altogether, with the plasma model
the Au overlayer effectively acts as a superconductor that
prevents magnetic fields from penetrating it. On the contrary,
with the Drude model (ν > 0) the magnetostatic field passes
unrestricted through the Au layer.

Experiments have already been performed to measure the
influence upon the Casimir force [22]. The results of these
experiments clearly agree very well with the evaluations based
upon the plasma model. The much larger magnetic force from
the Drude model is not seen. To check the influence from
the magnetic force the Ni sphere was also replaced by a
nonmagnetic Au sphere in some of the experiments (with an
unchanged alternating layer). The difference in the results was
within experimental accuracy, in agreement with the calculated
magnetic force. However, Drude model calculations were also
done with the Au sphere. But for this situation the difference
between the two models was too small to draw conclusions
from the experiment.

From the magnetic Ni experiment the firm conclusion was
drawn that the plasma model is the correct model. In view of the
problems this raises in the electrostatic situation discussed in
Sec. V, we find that this may be investigated further. By looking
more closely into the magnetic case we note some problems
also indicated in Refs. [17,22]. Clearly, Ni is ferromagnetic,
and in the ferromagnetic state magnetization is present in
domains. Ideally, they should cancel each other to give zero
net magnetization. However, one ends up with an athermal
magnetic microstructure with remnant magnetization. Also
domains are difficult to change by thermal fluctuations. Thus
by the experiment it was necessary to average over magnetic
configurations below the Ni sphere in a suitable way to avoid
periodic repetitions of the magnetic signature. This indicates
that there may be problems with thermal equilibrium as the
metal plate below the Ni sphere is moving (rapidly on the
nanometer scale). To obtain thermal equilibrium it is at least
necessary for the magnetic field to first penetrate the Au
overlayer where currents are induced to counteract the field.
The decay of these currents is determined by ν, which is
proportional to resistivity. Although Au, like other metals, is
not a superconductor at room temperature, it may act as one for
short periods. Thus in this respect ν may be neglected such that
the plasma model effectively describes the induced magnetic
Casimir interaction. However, since these considerations are
speculations so far, further investigations are needed.

VII. CONCLUSION AND FINAL REMARKS

Let us first summarize the outcomes of the above analysis.
Our geometric setup was a dielectric half plane for z < 0 and
a parallel plate in the region a < z < b, made of the same
material. On both sides of the plate, 0 < z < a and z > b, we
assumed a vacuum. We moreover assumed finite temperature T

throughout and focused attention on the zero-frequency case,
i.e., the static limit.

Our first approach (Secs. II and III) was based on quantum-
statistical physics, starting with the partition function Z. We
followed the method developed in Ref. [1]. In the metallic
limit ε → ∞ we derived in this way expressions (26) and
(28) for the force. These expressions are proportional to T ,
inversely proportional to a3, and in view of the metallic limit
independent of the plate width w = b − a. Further there is no
TE zero mode by this derivation. We emphasize that with this
statistical-mechanical procedure we did not make use of the
Fresnel reflection coefficients at all.

In our second approach in Sec. IV we made, by contrast,
explicit use of the reflection coefficients. The full surface force
is given by Eqs. (33) and (34), and the ω = 0 contribution is
given by Eqs. (36) and (37), in agreement with the results in
Sec. III. Thus in the metallic limit ε → ∞ we also recovered
the same expression (39) as before for the Casimir force per
unit area.

Note the way in which the limiting procedure in Sec. IV
was applied: we first set ω = 0 and thereafter took the limit of
high permittivity. This is precisely the characteristic property
for how to calculate the Drude expression for the force.
We can thus make the following important conclusion: the
Drude theory gives results in agreement with the statistical-
mechanical approach.

As noted, the zero-frequency TE mode does not contribute
to the force in the Drude theory. For nonmagnetic systems only
the electrostatic dipole-dipole interaction is present, and thus
no TE component appears. If we were to adopt the plasma
theory instead, the zero-frequency TE mode would contribute
equally to the corresponding TM mode, and the result (39) for
the force would have to be multiplied by a factor 2 [for ideal
metals for which �TE = 1 for all k⊥, i.e., ].

In Sec. V problems with the plasma model were further
discussed. With this model part of the electrostatic fields
can penetrate metals. This disagrees with the knowledge that
electric fields cannot enter metals. Further the plasma model
disagrees with the classical high-temperature limit for the
Casimir force between ionic plasmas. Anyway, experiments
as described may make this more clear.

In Sec. VI the results of experiments with ferromagnetic
Ni were discussed. They clearly favor the plasma model, in
conflict with the discussion in Sec. V. However, we note
that Ni is ferromagnetic, and the system is athermal with
magnetic domains. Thus thermal equilibrium is not reached
due to these domains and/or the rapid relative motion on the
nanometer scale. In this respect the Au layer effectively acts
as a superconductor such that the damping coefficient ν can be
neglected. But the latter arguments are speculations. So further
investigations are needed to clear up the matter, especially
experimental results for nonmagnetic metals.
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