


The IPS operate a narrow acoustic beam at 1.8◦ with a frequency at 420 kHz (asl,
2014), with a rapid sampling (up to 2 Hz) to obtain high resolution time series of the ice
undersurface (Fissel et al., 2004). The beamwidth of 1.8◦ gives a footprint at the surface
of 1.6 m. The beam hits the nearest point on the ice and reflects it back to the sensor.
The range of the sensor is 175 m for ice and up to 225 m for water (asl, 2014). Com-
bining the time series with the recorded hydrostatic pressure , regional-scale sea level
atmospheric pressure and the sonar tilt, gives a time series representation of the ice draft
above the sonar. The data recorded of pressure at the instrument is corrected for atmo-
spheric pressure variations by utilizing downscaled ERA-40 reanalysis data provided by
the Norwegian Meteorological Institute (Ekeberg et al., 2012). Eventual false subsurface
targets and segments of draft records that may have been affected by waves are checked
and flagged, while spikes and out-of-range data are replaced through linear interpolation
(Ekeberg et al., 2012). These measurements enable conversions of the range measure-
ments to the target draft through the relationship in equation (5.1), (Fissel et al., 2004):

d = η–βr cos θ (5.1)

Here, d is the target draft, r the range to a target, θ the measured sonar tilt angle, and
β is a time-dependent correction factor which accounts for changes in the mean sound
speed in the upper water column. This correction factor is empirically found by identify-
ing episodes of open water which, by definition, have zero draft (Ross et al., 2012). β is
determined from the equation (5.2),

β =
η

r cos θ
(5.2)

η represents the acoustic sensor depth and is established from the hydrostatic pressure
measured by the sensor, Pbtm, and the atmospheric pressure, Patm, through equation (5.3);

η =
Patm − Patm

ρg −∆D
(5.3)

∆D is the physical separation between the deployed acoustic sensor and the hydro-
static sensor in the vertical direction, ρ represent sea water density and g is the gravita-
tional constant of 9.81m/s2.

The time series can further be transformed to an equispaced distance interval, or spatial
series, by integration with ice velocity measurements by an ADCP deployed co-deployed
within 100 m of the IPS (Ross et al., 2012). ADCP stands for Acoustic Doppler Current
Profiler, and is used to measure ice motion. It is a complex, microprocessor-controlled
echo sounder that sends out an echo and then measures the Doppler shift of this echo
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when it is returned (Melling et al., 1995).

A time series is sufficient in analysis of extreme ice draft (Ekeberg et al., 2013b), and
data from an ADC is not used in this thesis.

5.1.3 Uncertainty
The process of calibration, measuring accurately at a certain point, and sampling includes
several uncertainties. In statistical properties these are related to the number of indepen-
dent observations along a draft profile (Melling et al., 1995). Because the IPS is dependent
on the motion of the ice pack to provide new targets, the speed at which the ice pack moves
can influence the results. If the speed of the ice pack between measurements exceeds the
1− 2 m field of view of the sonar, the ice profile will be under sampled. Small-scale fea-
tures may be misinterpreted as larger features and aliasing occur. A very low drift speed
may generate large quantities of unnecessary data. Small changes in IPS depth occur due
to meteorological effects (wind, pressure etc.) (Melling et al., 1995).

The sonar must be placed deep enough to avoid impact or disturbances from the over-
lying ice pack (e.g. ice ridges or icebergs). In too deep water, where long mooring lines
are necessary to position the sonar close enough to the ice surface; changing currents can
cause significant displacements of the sonar, both vertical and horizontal.

5.2 Ice Ridge Keel Identification

5.2.1 Smoothing
The more a data set is smoothed, the fewer single points are found in the data set (Ekeberg
et al., 2013a). By smoothing the ice draft data, fewer ice ridges are identified in the anal-
ysis. However, by smoothing the data, one avoids local minima within an ice ridge being
mistaken as the end of the ridge, and a single ridge is hence not divided into several ridges.
This leads to fewer ice ridges after the smoothing method is applied.

A running average filter was used in this study, with a window size of 10 seconds (5
points) (Ekeberg et al., 2013b), before the Rayleigh method was used, to avoid one ridge
being identified as several due to local minima. The window size of 10 s corresponds to a
horizontal distance with an average value of 2.1 m, which is close to the footprint of the
instrument at 1.6 m (Ekeberg et al., 2013c).

5.2.2 The Rayleigh Criterion
In most studies, ice ridges are identified by using the Rayleigh criterion (Ekeberg et al.,
2012). The Rayleigh criterion is used in optical physics as a way to determine when two
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light sources are distinguishable from each other. It was defined by Lord Rayleigh in the
19th century, who proposed this limiting condition of resolution; when the central maxi-
mum of one image falls on the first minimum of another image, the images are said to be
just resolved (Jewett and Serway, 2008). This criterion is possible to extend to identifying
ice ridges, by defining the end points of an ice ridge keel, as it has been done in several
studies; Obert and Brown (2011), Ekeberg et al. (2012), Wadhams and Horne (1980).

The Rayleigh criterion makes it possible to define a ridge as an ice feature that returns
to some proportion of the keel’s maximum depth at its beginning and its end. The ridge
end is identified even if the surrounding ice is thicker than a chosen threshold value but
not part of the ridge itself (Obert and Brown, 2011).

To define the extent of an independent ridge, the criterion determined by Wadhams and
Horne (1980) is used;

the through on either side of a ridge’s crest, which is the point of maximum keel draft,
must descend at least to the midpoint towards the local ice surface. Wadhams and Horne
(1980) defined an arbitrary threshold value of 2.5 m, which is still a common choice of
threshold value. The threshold value is the distance from the water surface to the level ice
surface, in other words; the level ice thickness subtracted the free-board (Ekeberg et al.,
2012). By defining a threshold value, rafted or thickened ice which is not defined as ice
ridges, is excluded. The value of 2.5 m originates from a time when most of the ice was
multi-year ice and hence thicker than today. A value if 1.5 m is a more accurate value
presently. But 2.5 m is still chosen for comparison and compatibility with data obtained
(Wadhams, 2012).

The data is scanned until a draft record exceeds the chosen threshold value. The
Rayleigh criterion then acknowledge this as the current start of an individual ridge, and
the data are further scanned, continuously updating the maximum draft value, until the
end of the particular ridge is reached. The end of a ridge is defined if the draft record is
either less than the threshold value, or if it is less than the adaptive draft threshold and the
slope has reversed (Ross et al., 2012). When the end of the ridge is defined, the start of
the ridge is defined by searching backwards from the current start using the same criteria
(Ross et al., 2012). After the scanning and identification of all the ridges are completed,
ice features that overlap are combined to form a single ridge, and ridges found with only
one record is removed.

Assuming that the data records move from left to right according to figure 5.3, the
Rayleigh method uses the parameters α, β and δ to determine if R1 and R2 are one inde-
pendent ridge, or two separate ridges. α represents the distance from the chosen threshold
value to the maximum observed draft value (the keel crest), β is the distance from the keel
crest to the current draft record, when moving from left to right in figure 5.3, and δ repre-
sents the maximum observed draft after identified local minimum (Ekeberg et al., 2012).

According to figure 5.3, if β < 0.5α, R1 and R2 are defined as one ridge with edges
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Figure 5.3: Definition of the values used in the Rayleigh ridge identification method, (Ekeberg et al.,
2012)

P1 and P2.

If β > 0.5α and the following condition is fulfilled,

δ > 2 · (α–β) + hthres

R1 and R2 are defined as two separate ice ridges (Ekeberg et al., 2012). hthres defines
the threshold value.

In addition to a threshold value, a minimum draft is defined to avoid including minor
ice features lying just below the chosen level ice value (Wadhams and Horne, 1980).

5.2.3 The Cutoff Method
The Cutoff method identifies an ice keel by an increase and a succeeding decrease in the
ice thickness above a specified threshold value (Pilkington and Wright, 1991). By this
definition, the ridge in figure 5.3 would be defined as one ridge with width W1 +W2, and
with a maximum depth of α+ hthres (Ekeberg et al., 2012).

Ekeberg et al. (2012) compared the two methods of ice ridge identification, and discov-
ered that the Rayleigh method identified more ridges than the Cutoff method. The Cutoff
method will only detect the ridge with the deepest draft, if the ice thickness between con-
secutive ridges crosses the chosen threshold value. By increasing the threshold value when
using the Rayleigh method, it will increase the likelihood of false identification of large
ridges (Ekeberg et al., 2012).

In this study,the Rayleigh method was used with a threshold value of 2.5 m and a min-
imum draft value of 5 m. The minimum draft value of 5 m make certain that mechanically
grown ice generally is defined as ice ridges (Ekeberg et al., 2013d). There may be large
amounts of ridged ice below this draft value; however, ice beyond 5 m of thickness does
not grow thermodynamically (Hansen et al., 2013). Ice deeper than 5 meters is then known
to be formed dynamically and not thermodynamically.
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Chapter 6
Statistics

6.1 Classic Extreme Value Theory
Extreme value theory originated due to the need for astronomers to evaluate outlying ob-
servations of distant objects in the universe, and determine whether to reject them or in-
clude them in their analysis (Kotz and Nadarajah, 2000). Extreme value analysis is used to
study and quantify the stochastic behavior of any process at unusually large – or small- lev-
els. In particular, this type of analysis requires estimation of the probability of events from
a given ordered sample that are more extreme than observed. In classical data analysis
these extremes are often labeled outliers and are ignored or smoothed out when analyzing
the average value of a data set. In order to estimate events or behavior that do not happen
often, extreme value theory is applied. Extreme value theory focuses on the statistical be-
havior of

Mn = max{X1, ..., Xn} (6.1)

where X1, . . . , Xn is a sequence of independent random variables with a common dis-
tribution function F (Coles, 2001). The Xi represents values of a process measured on a
regular time scale; hence Mn represents the maximum value of this process over n time
units.

It is possible in theory to calculate the distribution of Mn for all values of n:

Pr{Mn ≤ z} = Pr{X1 ≤ z1, ..., Xn ≤ z}
= Pr{X1 ≤ z} × ...× Pr{Xn ≤ z}
= {F (z)}n (6.2)
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But the distribution function of Mn, F , is unknown, and estimates by approximate
models are required.

6.2 Extreme Value Distributions
The Extremal types theorem states that if sequences of constants given as {an > 0} and
{bn} exists such that

Pr{Mn − bn

an
≤ z} → G(z), n→∞ (6.3)

and G is a non-degenerate distribution function (Coles, 2001), then G belongs to one
of the three extreme value distributions;

G(z) = e−e
[− z−b

a
]

, −∞ < z <∞ (6.4a)

G(z) =

{
0 z ≤ b
e−(

z−b
a )−α z > b

(6.4b)

G(z) =

{
e−[−(

z−b
a )α] z < b

1 z ≥ b
(6.4c)

for parameters a > 0, b and α > 0. These distribution families are called the Gumbel
family, the Fréchet family and the Weibull family respectively (Coles, 2001).

Mn can be stabilized by a normalized variable M∗ as follows,

M∗ =
Mn − bn

an
(6.5)

The Extremal types theorem then implies that M∗ then has a limiting distribution that
must be one of the three families; Gumbel, Fréchet or Weibull.

The three families of extreme value distributions can be combined into a single family
of models called the Generalized Extreme Value (GEV) family of distribution, as seen in
(6.6),

G(z) = e−[1+ξ(
z−µ
σ )]

− 1
ξ (6.6)
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This equation is defined for parameters –∞ < µ <∞, σ > 0,−∞ < ξ <∞, defined
on {z : 1 + ξ z−µσ > 0}. Here µ is a location parameter, σ a scale parameter and ξ a shape
parameter (Coles, 2001).

ξ > 0→ Fréchet, with α = 1
ξ

ξ < 0→Weibull, with α = − 1
ξ

ξ = 0→ Gumbel

By assuming that

Pr{Mn − bn

an
≤ z} ≈ G(z) (6.7)

for large n, it is possible to approximate the distribution of Mn:

Pr{Mn ≤ z} ≈ G{
z − bn

an
}

= G ∗ (z) (6.8)

where G∗ is a member of the GEV family.

Traditional GEV models use the concept of block maxima, which describe how data
are blocked into sequences of a specific period length, n, which the GEV distribution can
be fitted. The most common choice for a time period is the length of a year, in which
case, n represents the number of observations in a year and the block maxima are then
the annual maxima (Coles, 2001). Quantiles are points or specific elements that are taken
at regular intervals of a distribution dividing the values of the distribution into equal pro-
portions. The simplest of these are obtained by dividing data into two equal halves and
you get the quantile called median; by dividing the data into four equal parts you get quar-
tiles; by dividing into five parts you get quintiles, etc (Hagen, 2010). Quantiles allow for
probability models to be expressed on the scale of data according to Coles (2001), which
means that the relationship of GEV models to its parameters, are most easily found using
the quantile expression in equation (6.9).

zp =

{
µ− σ

ξ [1− y−ξp ] for ξ 6= 0

µ− σ log yp for ξ = 0
(6.9)

where yp = − log 1− p, G(zp) = 1 − p and p is defined as the probability that zp is
exceeded by the block maxima in any particular year (Coles, 2001). zp is also known as
the return level with 1/p being the return period; the level zp is expected to be exceeded
on average once every 1/p years (Coles, 2001).
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6.2.1 Maximum Likelihood Estimation

The maximum likelihood estimation is a general method of estimating an unknown param-
eter, θ0, within a known family of distribution F . It is based on maximizing the likelihood
of the observed data (Castillo et al., 2005). Values within θ ∈ Θ defines a model in F
that associate different probabilities to the observed data. The probability of the observed
data as a function of θ is called the likelihood function (Coles, 2001). The principle of
the maximum likelihood estimation is to come up with the model with greatest likelihood,
which will be the model with the highest probability of the observed data. f(x; θ0) is a
given probability density function with x1, . . . , xn independent realizations of a random
variable (Coles, 2001), we can define the likelihood function as

L(θ) =

n∏
i=1

f(xi; θ) (6.10)

The most likely parameter estimates are found by taking the logarithms of (6.10), and
get the log-likelihood function as shown in equation (6.11).

l(θ) = logL(θ) =

n∑
i=1

log f(xi; θ) (6.11)

6.2.2 Confidence Intervals

A confidence interval is an interval estimate that contains a high probability for every pos-
sible value of an unknown parameter x (Bertsekas and Tsitsiklis, 2002). We get a range of
values it is possible to be ”confident” of that the true parameter value lies within (Coles,
2001). The frequency of which the observed interval has the parameter included is deter-
mined by the confidence coefficient. The definition of a confidence interval is as follows
(Dougherty, 1990):

If (θ1, θ2) is an interval estimator, where

P (θ1 < θ < θ2) = 1− α

and we define θ́1 and θ́2 as estimates that results from a set of sample values, the interval
(θ́1, θ́2) is called a (1–α) · 100% confidence interval.

1–α is the confidence coefficient. θ́1 are called the lower confidence limit, θ́2 are called
the upper confidence limit.
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6.3 Chebyshev’s Inequality
Markov’s and Chebyshev’s inequalities are important theorems in statistics, as they allow
for derivations of bounds of probabilities when only the mean value and the variance of
a probability distribution are known (Ross, 2009). (Markov’s inequality uses the mean
value, while Chebyshev’s inequality also uses the variance of the distribution).

Markov’s inequality theorem (Ross, 2009):

X is defined as a random variable that only takes nonnegative values. For any value
a > 0;

E[X] =

∫ ∞
0

xf(x)dx

=

∫ a

0

xf(x)dx+

∫ ∞
a

xf(x)dx

≥
∫ ∞
a

xf(x)dx

≥
∫
af(x)dx

= a

∫ ∞
a

f(x)dx

= aP{X ≥ a}

which can be written as

P{X ≥ a} ≤ E[X]

a
(6.12)

As a corollary from Markov’s inequality we get Chebyshev’s inequality;

X is defined as a random variable with mean µ and variance σ2. For any value k > 0;

P{| X − µ |≥ k} ≤ σ2

k2 (6.13)

Proof of Chebyshev’s inequality:

(X − µ)2 is a nonnegative random variable. Because of this, we can use Markov’s
inequality and define a = k2 to obtain
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P{(X − µ)2 ≥ k2} ≤ E[(X − µ)2]

k2 (6.14)

We have that (X − µ) ≥ k2 if and only if | X − µ |≥ k. This means that equation
(6.14) is equivalent to

P{| X − µ |≥ k} ≤ E[(X − µ)2]

k2 =
σ2

k2 (6.15)

Another way of expressing Chebyshev’s inequality is by replacing k by kσ in (6.14)
above. We then get

P{| X − µ |> kσ} ≤ 1

k2 (6.16)

From this equation it is seen that the probability of a random variable to differ from its
mean by more than k standard deviations is constrained by 1/k2. Chebyshev’s inequality
states that a significant number of the values in a probability distribution are close to its
mean; less than or equal to 1/k2 values differ from its mean by more than k standard de-
viations.

P{| X − µ |< kσ} ≥ 1− 1

k2 (6.17)

6.4 Exponential Distribution
The exponential distribution, also called the negative exponential distribution, is a proba-
bility distribution used to model events that occur continuously at a constant average rate,
λ. The probability density function (PDF) of the exponential distribution is (Castillo et al.,
2005)

f(x) =

{
λe−λx if x ≥ 0

0 if x < 0
(6.18)

and a cumulative distribution function (CDF)

F (x) =

{
0 if x < 0

1− e−λx if x ≥ 0
(6.19)
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The exponential distribution is a continuous memoryless random distribution, which
means that if the random variable X is associated with e.g lifetime, the probability of X
exceeding a given time b is independent of the of time origin of a (Castillo et al., 2005).

Pr(X > a+ b | X > a) = Pr(X > b) (6.20)

6.4.1 Extreme Value Prediction
It has been found experimentally that the distribution of keel drafts along a linear track
in an ice field obey an exponential distribution (Wadhams, 1983) according to equation
(6.20);

n(h)dh = Be−bhdh, h > h0 (6.21)

Here, n(h), represents the number of keels per km of track per meter of draft incre-
ment, and the values ofB and b are derived in terms of experimentally observed mean keel
draft (hm), the mean number of keels per unit distance (nk) and the threshold value hthres
(Wadhams, 2012).

b =
1

hm–hthres
(6.22)

B = nkbe
bhthres (6.23)

By using (6.21) it is possible to estimate the total number of keels each year that passes
a given point with drafts exceeding a chosen value D,

ND =

∫ ∞
D

n(h)dh = Lnke
hthres–D
hm–hthres (6.24)

where L is the distance in km drifted per year by the ice field over the given point.

Return Level

By using equation (6.24), it is possible to find the return period expressed in years, TD for
a keel of depth D or greater;
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TD =
1

ND
(6.25)

Where ND represents the total number of ridge keels passing by a given point per year.
If the return period is specified, equations (6.24) and (6.25) above can be used to calculate
the keel depth at which the required return period occurs (Wadhams, 2012):

D = h0 + (hm − h0) lnTDLnk (6.26)

6.5 Weibull Probability Distribution
The probability density function (PDF) describes the relative likelihood of a continuous
random variable having a given value. The cumulative distribution function (CDF) is the
probability of a random variable X with a given probability distribution having a value
that is less than or equal to x;

F (x) = P{X ≤ x} (6.27)

The CDF of X can be expressed in form of the PDF of X;

F (x) = P{X ≤ x} =

∫ x

−∞
f(t)dt (6.28)

The PDF of a three-parameter Weibull distribution is given by equation (6.29), (Castillo
et al., 2005). This is the most general expression of the Weibull PDF.

f(x) =
β

δ
e−(

x−λ
δ )β (

x− λ
δ

)β−1, x > λ (6.29)

The CDF of a three-parameter Weibull variable is given by equation (6.30), (Castillo
et al., 2005).

F (x) = 1− e−(
x−λ
δ )β , x ≥ λ (6.30)

To linearize the cumulative Weibull distribution, the natural logarithm is used.

1− F (x) = e−(
x−λ
δ )β (6.31)

xlii



ln 1− F (x) = ln e−(
x−λ
δ )β = −(

x− λ
δ

)β (6.32)

ln ln 1− F (x) = β lnx− λ− β ln δ (6.33)

The straight line in the equation is then define by

y = ax+ b

where
y = ln ln 1− F (x)
a = β
x = lnx− λ

6.5.1 Extreme Value Prediction
The three-parameter Weibull distribution is often used in extreme value analysis (Ross
et al., 2012). The General Extreme Value Distribution for the three-parameter Weibull dis-
tribution is given as

L(x) =

{
0 if x < λ

1− e−(
x−λ
δ )β otherwise

(6.34)

The parameters in the equations above represent a shape parameter, β, a scale pa-
rameter, δ, and a location parameter, λ. This expression is the same as the CDF of the
three-parameter Weibull distribution, and written in terms of the exceedance probability,
E(x), you get an expression for maximum values greater than value x (Ross et al., 2012);

E(x) = 1− e−(
x µ
a )b (6.35)

Here, a represents the scale parameter, b the shape parameter and µ the location pa-
rameter. In equation (6.35) the location parameter optimizes the fit to empirical cumulative
probabilities for individual keel draft values (Ross et al., 2012). By finding values for these
parameters allows for the computation of D100, the 100-year return period for keel depth.
In practical terms, ifN number of keels is included in the development of empirical cumu-
lative probability distributions for S sites and Y years, equation (6.36) gives the 100-year
return period in terms of exceedance probability E(x).

E(D100) =

∑S
j=1 Yj

100N
(6.36)
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E(Di gives the empirical values for exceedance as a function of lesser draft values,
with Di the ith keel draft value, and i the index of this draft value (Ross et al., 2012);

E(Di) = 1− i

N + 1
(6.37)

6.6 Generalized Pareto Distribution
If one block of data contains more extreme events than another, it may better to use another
method of evaluating extreme values than block maxima (Coles, 2001). The approach is
then to use a threshold model, also known as a Peak-over-Threshold (POT) model, in
which an extreme event is defined as one that exceeds a given threshold value. The gener-
alized Pareto distribution (GPD) is a family of continuous probability distributions.

X1, X2, . . . are defined as independent and identically distributed random variables,
having marginal distribution function F . Extreme events are defined as those of the Xi
that exceeded some high threshold u. Utilizing these conditions, it follows that a descrip-
tion of the stochastic behavior of extreme events is given by the conditional probability
Coles (2001),

Pr{X > u+ y | X > u} =
1− F (u+ y)

1− F (u)
, y > 0 (6.38)

The generalized Pareto distribution theorem states as follows:

X1, X2, . . . is a sequence of independent random variables with common distribution
function F that satisfies (6.6), and let

Mn = max{X1, ..., Xn} (6.39)

for large n

Pr{Mn ≤ z} ≈ G(z) (6.40)

where

G(z) = e−[1+ξ(
{
z−µσ)]−

1
ξ } (6.41)
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for some µ, σ > 0 and ξ. Then the distribution function of (X − u), conditional on
X > u, for large enough u, is approximately

H(y) = 1− (1 +
ξy

σ̃
)

1
ξ (6.42)

defined on {y : y > 0 and (1 + ξy
σ̃ ) > 0}, where

σ̃ = σ + ξ(u− µ) (6.43)

The distribution family in (6.42) is called the Generalized Pareto Family (Coles, 2001),
with ξ the shape parameter and σ the scale parameter. F (X) is defined as the common
distribution function, H(y) is the distribution function of (X − u), and u is the threshold
value. The shape parameter ξ is the dominant parameter in determining the qualitative be-
haviour of the GPD, as it is for the GEV distribution. If ξ < 0, the distribution of excesses
has an upper limit of u = σ̃/ξ. If ξ > 0, the distribution has no upper limit (Coles, 2001).
If ξ → 0, from (6.42) we get

H(y) = 1− e−
y
σ̃ , y > 0 (6.44)

which is correspondent to an exponential distribution with parameter 1/σ̃ (Coles,
2001).

6.6.1 Threshold

The threshold value should be as low as possible according to Coles (2001), although the
value choice is not an easy one. A too low threshold value may violate the asymptotic
basis of the model; while a too high threshold value will not generate enough excesses
with witch the model can be estimated. There are two methods of selecting a reasonable
threshold value for the generalized Pareto distribution (Coles, 2001). The first method is
based on the mean value of the distribution;

E(Y ) =
σ

1− ξ
(6.45)

for ξ < 1. If ξ ≥ 1, the mean is infinite (Coles, 2001). We define u0 as the threshold
of a series of measurements, X1, . . . , Xn.
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E(X − u0 | X > u0) =
σu0

1− ξ
(6.46)

for ξ < 0. σu0 is the scale parameter corresponding to the values exceeding u0. The
GPD is valid for all thresholds u > u0. For u > u0, and using the results in equation
(6.43),

E(X − u0 | X > U0) =
σu

1− ξ
=

σu0+ξ(u−u0)

1−ξ (6.47)

For u > u0, E(X–u | X > u) is the mean value of the values that exceeds the thresh-
old value u, and the sample mean of the values exceeding u provides an empirical estimate
(Coles, 2001). According to equation (6.47), these estimates are expected to change lin-
early with u (Coles, 2001), that leads to the following procedure:

The locus of points

{(u, 1

nu

nu∑
i=1

(x(i) − u) : u < xmax} (6.48)

where x1, ..., xnu consists of nu observations that exceeds u. xmax is called the residual
life plot (Coles, 2001). above the threshold, u0, the mean residual life plot is approxi-
mately linear in u (Coles, 2001).

The second procedure of choosing an appropriate threshold value is a method where
the model is estimated at a range of thresholds. By the generalized Pareto distribution
theorem, if the GPD is a logical model for exceedance of a given threshold value u0, then
exceedance of a higher threshold, u, should also follow a GPD. The shape parameter are
identical for the two distributions. From equation (6.43):

σu = σu0 + ξ(u− u0) (6.49)

6.6.2 Return Level

It is more beneficial to use quantiles or return levels rather than individual parameter values
when interpreting extreme value models (Coles, 2001). A generalized Pareto distribution
with parameters σ and ξ, are used for modeling exceedance of a threshold value u by a
variable X , that is for x > u,

xlvi



Pr{X > x | X > u} = [1 + ξ(
x− u
σ

)]−
1
ξ (6.50)

⇒

Pr{X > x} = ζu[1 + ξ(
x− u
σ

)]−
1
ξ (6.51)

where ζu = Pr{X > x}. The level xm that is exceeded once every m observations
are on average:

ζu[1 + ξ(
xm − u
σ

)]−
1
ξ =

1

m
(6.52)

⇒

xm = u+
σ

ξ
[(mζu)ξ − 1] (6.53)

for xm > u and ξ 6= 0. For ξ = 0 we get

xm = u+ σ logmζu (6.54)

for xm > u (Coles, 2001). xm is here the m observation return level. By defining a
number of observations per year, npy, this corresponds to xm, where m = N · npy, N
being the return period in years. We get the N -year return level as

zN = u+
σ

ξ
[(N · npy · ζu)ξ − 1], for ξ 6= 0 (6.55)

zN = u+ σ logN · npy · ζu, for ξ = 0 (6.56)
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Chapter 7
Results

A minimum keel draft value of 5 m was chosen in the analysis. This means, that all ice
features, including ridges, with a draft below 5 m are not defined as ice ridges and hence
not included in the analysis. The fraction of ice observed defined as ice ridges was 0.0299,
approximately 3%. The mean value of keel draft was 7.7085 m, the minimum value 5.004
m and the maximum value 24.976 m. The median was 6.9850 m. The mean keel width was
found to be 63.0508 m, the minimum value at 6.3565 m and maximum value of 1969.3 m.
A relative correlation between measured keel width and keel area was found in figure 7.1.

Figure 7.1: A correlation plot of ice ridge keel width and ice ridge keel area observed.

The smoothed data got a lower maximum draft value then the unsmoothed data, a slight
increase in mean keel draft as well as a reduced number of ice ridges. The decrease in keel
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draft per ridge was 2–5.5%. This resulted from the running average smoothing method
used on the ice ridge data.

7.1 Chebyshev’s inequality
Chebyshev’s inequality states that at least 1–1/k2 of the data from a sample must fall
within k standard deviations from the mean. The standard deviation is a measure of the
deviation of a data set from its mean (Castillo et al., 2005).

Variance :
σ2 = E[(X − µ)2]

Standard Deviation: √
σ2

The value of standard deviation and variance of the keel draft, were found from calcu-
lations, and utilized in the Chebyshev’s inequality formula. The variance was calculated
to be

σ2 = 6.3282,

and the standard deviation
σ = 2.5156.

For different threshold values we get Table. 7.1, that shows the probability of encoun-
tering keel draft of different values, according to Chebyshev’s inequality theorem.

Threshold value u (m) Probability
10 0.06328
15 0.02812
18 0.01953
20 0.01582
22 0.01307
24 0.01083
26 0.00936
30 0.00731

Table 7.1: Threshold value vs Probability

It is obvious that the probability of encountering large keel drafts decrease with in-
creasing threshold values. There is a higher probability of observing ice ridges with
smaller keel drafts than with larger keel drafts. The extremely deep ice ridges become
increasingly rare as the keel draft increases. As u increases, the probability decreases, as
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seen in Fig. 7.2.

Figure 7.2: The probability of exceedance of specific threshold values calculated through Cheby-
shev’s inequality theorem. The probability decreases with increasing threshold values.

7.2 Generalized Pareto distribution and Exponential dis-
tribution

The sensitivity of the shape parameter from the generalized Pareto distribution can be
tested by varying the threshold value (Ekeberg et al., 2013b). The parameters in the Gen-
eralized Pareto distribution were estimated with a 95% confidence interval. The shape
parameter was found to decrease slightly with increasing threshold value, with a trend to-
wards 0. All values for the shape parameter was with 95% confidence within 0–0.28. The
shape parameter estimates with 95% confidence interval are shown in Fig. 7.3.

Figure 7.4 shows the Generalized Pareto distribution of the keel draft data. Figure 7.5
shows the comparison between the Generalized Pareto distribution and a calculated cumu-
lative distribution of the actual measurements.

With a shape parameter equal to 0, the Generalized Pareto distribution becomes the
Exponential distribution with parameter 1/σ̃. The exponential distribution was then cal-
culated using equation (6.44) and is shown in Fig. 7.6. This distribution was compared
to the Generalized Pareto distribution as well as the cumulative distribution of the data in
figure 7.7.

Equations (6.55) and (6.56) was used in calculating the 100-year return level for both
the Generalized Pareto distribution Fig. 7.8, and the exponential distribution Fig. 7.9. The
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Figure 7.3: The estimates shape parameter ξ as a function of threshold value uwith 95% confidence
intervals.

Figure 7.4: The estimated Generalized Pareto distribution of the keel draft data.

Generalized Pareto distribution gives an increase in return level with increasing threshold
value. The exponential distribution gives a slight decrease in return level as the threshold
value increases, but appears to stabilize at around 40 m. A comparison of the two 100-year
return values are shown in Fig. 7.10 with the 95% confidence intervals included. The two
deviates up to an approximate threshold value of 15 m, before the confidence intervals
overlap. From a threshold value of 15 m, the data gave a 100-year return value between
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Figure 7.5: The estimated Generalized Pareto distribution of keel draft data plotted vs the calculated
cumulative distribution of the measured keel draft.

Figure 7.6: The estimated Exponential distribution of the keel draft data.

37 and 45 m.

7.3 Weibull distribution
The ridge keel draft data was analyzed using a three-parameter Weibull distribution. The
observations are counted in number of keels within intervals of 0.1 m, from the minimum
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Figure 7.7: The estimated Generalized Pareto distribution and the estimated Exponential distribu-
tion vs the calculated cumulative distribution.

Figure 7.8: The estimated 100-year return level for varying threshold values for the Generalized
Pareto distribution.

draft value of 5 m till the highest observed draft of 24.967 m. The adjacent cumulative
probabilities were plotted, as seen in figure 7.11.

To find the extreme values from this distribution, the cumulative distribution can be
linearized by taking the double natural logarithm. This can then be expressed as a straight
line function y = ax+b. Here, y represents the double natural logarithm of the probability
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Figure 7.9: The estimated100-year return level for varying threshold values for the Exponential
distribution.

Figure 7.10: The estimated 100-year return level for varying threshold with 95% confidence inter-
val, for both the Generalized Pareto distribution and the Exponential distribution.

of exceedance per year, Phk, a is the shape parameter β, and x the natural logarithm of
x − λ, with λ being the location parameter. The location parameter was chosen to be the
threshold value 2.5 m.

Figure 7.12 shows the results after the first linearization. A trend-line is introduced
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Figure 7.11: The cumulative probability distribution of the three-parameter Weibull distribution.

Figure 7.12: The results after taking the natural logarithm of the cumulative probability distribution
of the three-parameter Weibull distribution.

with an associated correlation coefficient of R2 = 0.9231, and a straight line function y.
The natural logarithm is introduces a second time to improve the linearization. Figure 7.13
shows the results. Here the correlation coefficient is higher, meaning a higher correlation
with R2 = 0.9944. The straight line function : y = 1.4228x–2.1951.

To calculate the return level for a 100-year return period, equation (6.37) was used to
find the exceedance probability per year. The straight line function was used and solved
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Figure 7.13: The results after taking the natural logarithm of the cumulative probability distribution
of the three-parameter Weibull distribution a second time, giving a more linearized result.

for x, giving the natural logarithm of x − λ. From this the return level was calculated to
be 29.065 m for a 100-year return period.
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Chapter 8
Discussion

Ekeberg et al. (2013d) found the mean value of ice ridge keel draft in the season 2006/2007
to be 7.52 m. The present study found the mean value to be 7.7085 m, which is 0.265 m
higher than that found by Ekeberg et al. (2013d). The median for the keel draft data was
0.235 m higher in this study than in Ekeberg et al. (2013d). The slightly higher results
from this study compared to that of Ekeberg et al. (2013d) is difficult to give an exact
reason for, as the same threshold value at 2.5 m and the same minimum draft value at 5
m was used in both studies. Small differences in methodology and computer coding may
cause this slight difference.

Ekeberg et al. (2012) found by analyzing the same data from the moored IPS instru-
ment in the Fram Strait in the season 2006/2007, that between 2 and 7 ice ridges deeper
than 15 m passed by the instrument every day. Ekeberg et al. (2012) concluded that a total
of 4 ridges deeper than 30 m were observed in 2006/2007. According to the analysis per-
formed by Ekeberg et al. (2012) of the season 2006/2007 in the Fram Strait, the mean keel
draft was 7.5 m, the median draft 6.7 m and a maximum draft of 34.5 m. The maximum
draft found in this study was 24.976 m, a much lower result than Ekeberg et al. (2012).

Ekeberg et al. (2013d) found that the number of ridges and the mean keel draft de-
creased from 2006-2011. By excluding data from the season of 2006/2007 (which had a
high number of observed ridges), the total decrease in numbers was 408 ridges per year.
Ekeberg et al. (2013d) concluded that the decrease in mean and median keel draft of the
entire period from 2006-2011, was approximately 13 cm per year. According to Ekeberg
et al. (2013d), the probability of observing a deep ridge has decreased with every season
since the start of observation in 2006. Ekeberg et al. (2013d) found a clear seasonality of
the ice concentration, with a concentration of 90% in the winter months (October – April),
and a decrease from May until peak low in July – August with 10–70% ice concentration.A
similar study in decreasing (or eventual increasing) in the number of ice ridges, was not
possible in the present study, as the data used was measurements from only one season.
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8.1 Smoothing of data and ice ridge keel area
The smoothed data set resulted in a slightly higher mean keel draft value as well as a de-
crease in the maximum keel draft value. The smoothing effect of a data set was studied by
Ekeberg et al. (2013a). Ekeberg et al. (2013a) concluded that this effect, the decrease in
maximum value contrasted the increase in mean value, followed by merging of ice ridges
due to the smoothing method applied. With a running average potential measurement
errors is reduced, and the through between two ice ridges are increased (Ekeberg et al.,
2013a). As this space increases, the probability of adjacent ridges being defined as one
increases, and the width of the now defined one ridge, increases. An estimate from Eke-
berg et al. (2012) suggests that there are a 3− 4 times higher frequency of ice ridges in the
Fram Strait compared with the Beaufort Sea.

There is a correlation between area of the ice ridge keel and the ice ridge keel width,
as seen in figure 7.1. The large outliers in this graph may be anomalies and could possibly
be excluded from further analysis. The width and the area are both dependent of threshold
value; Ekeberg et al. (2013c) found that an increase in the threshold value of 0.5 m (from
2.5 to 3 m), led to an increase in mean keel width and mean keel area of 12%. This in-
crease may also be caused by the same reason as the increase of the mean keel draft value.

8.2 Chebyshev’s inequality
The probability of encountering an ice ridge with a certain depth is shown in Table. 7.1.
Ekeberg et al. (2012) found that the probability of ice ridges deeper than 20 m in the Fram
Strait varied between 0.03% and 0.2%. This is consistent with the result in Table. 7.1,
with a probability of an ice ridge deeper than 20 m of 0.15%. Pilkington and Wright
(1991) found the same probability in the Beaufort Sea to be 0.01%, which corresponds
with there being observed more ridges in the Fram Strait (Ekeberg et al., 2012). However,
the low value found by Pilkington and Wright (1991) could be explained by the low mini-
mum draft value chosen (3 m) as opposed to 5 m in the present study and in Ekeberg et al.
(2012), and the value could hence be higher with a higher choice of minimum draft value
(Ekeberg et al., 2012).

Ekeberg et al. (2013b) analyzed the extreme ice ridge keel drafts in the Fram Strait
from 2006 – 2011 and found more ice ridges in the season of 2006/2007 than in any other
season, and with this, a higher probability of encountering larger ice ridges.

8.3 Extreme values
The choosing of a draft threshold to filter eventual maximum keel draft values that does
not lie within the extreme of the maximum draft distribution, is a sensitive task, as the
ridge keel population decreases rapidly with increasing keel draft threshold (Ross et al.,
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2012). The ideal threshold value is one that is at or near the extreme of the distribution
tail, while also giving a significant population size (Ross et al., 2012).

By increasing the threshold value the number of observations is reduced, but this mea-
sure should also decrease an eventual bias that can occur. The increase in threshold also
increases the chances of getting independent observations. Ekeberg et al. (2013b) com-
pared results from different threshold values, and found that the results varied little, giving
support to the theory about independent observations.

Figure 7.5 shows a comparison between the estimated Generalized Pareto distribution
and the calculated cumulative distribution of the ice ridge keel draft data. For the General-
ized Pareto distribution to be considered a valid estimate, it is expected that it will follow
the cumulative distribution curve in a plotted graph, as is evident in figure 7.5. Figure
7.7 shows the same comparison with the cumulative distribution, with the Exponential
distribution included. All three curves follow each other relatively well, which can be
interpreted as the Generalized Pareto distribution and the Exponential distribution being
considered good estimates for the ice ridge keel draft.

The Generalized Pareto distribution is reduced to the exponential distribution when the
shape parameter is equal to 0. In addition to this, the three-parameter Weibull distribution
is reduced to the Exponential distribution when its shape parameter is equal to 1. This
means that all tree distributions are correlated to a certain degree, and the distributions
should have a similar graph shape according to the cumulative probability distribution.
All distributions were approximated with the log-likelihood method from equation (6.11)
and fitted into figure 8.1.

8.4 100-year return level
The 100-year return level calculated from the Generalized Pareto distribution and the Ex-
ponential distribution was very similar, with values ranging from 37 − 45 m. The three-
parameter Weibull distribution gave a lower result of 29 m. The shape parameter in the
three-parameter Weibull distribution was estimated to be 1.4228, a higher result than 1.0,
which would reduce the distribution to the Exponential distribution. This high result in
shape parameter is a possible reason to why the 100-year return value was so low for the
three-parameter Weibull distribution compared to the Generalized Pareto distribution and
the Exponential distribution.

Ross et al. (2012) gave a prediction on the 100-year return values in the Fram Strait,
using data from measurements obtained in the season of 2008/2009. The result here was
33± 4 m. Ekeberg et al. (2013b) found the 100-year return value in the Fram Strait using
data from 2006-2011, to lie in the range of 37− 41 m. The results from Ross et al. (2012)
are lower compared to the results from Ekeberg et al. (2013b) and compared to the results
from the present study. Ekeberg et al. (2013b) concluded with the results from Ross et al.
(2012) being too low, since they found ice ridge keels of size greater than 33 m. Assuming
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Figure 8.1: The estimated Generalized Pareto distribution, the estimated Exponential distribution
and the estimated Weibull distribution of the ice ridge keel draft data vs the calculated cumulative
distribution.

this is correct, the estimated 100-year return values from the Generalized Pareto distribu-
tion and the Exponential distribution in this study, corresponds well with previous results.

The 100-year return value in the Beaufort Sea was by Ross et al. (2012) estimated
to be 32 ± 2 m, while Wadhams (2012) found the same to be in the range of 30–35 m.
The results of 100-year return value from the Beaufort Sea are then lower than the results
from the Fram Strait, as expected, as there are more ice ridges observed in the Fram Strait.
Wadhams (2012) analyzed keel drafts in the Beaufort Sea and concluded that while the
Beaufort Sea coastal zones are dominated by first-year ice, ridges cannot be expected to
form beyond 45 m water depth. Wadhams (2012) compared the results of this study with
a similar analysis done with data collected from the same area in 1976. The mean draft of
the ice cover was reduced from 3.81 m in 1976 to 2.58 m in 2007. The 1000-year return
period estimated from both periods showed that this value had decreased from 55 m in
1976 to 39 m in 2007. Wadhams (2012) concluded that the predictions for maximum keel
depths were substantially reduced from 1976 to 2007, and hence that eventual scouring of
ridge keels occurs at significantly shallower waters.

8.5 Ice ridge observations
Young ice is thinner and weaker than old ice (Wadhams, 2000). With a higher frequency of
young ice, more deformed ice, despite of the same external forces and ice concentration,
is possible (Ekeberg et al., 2013d). An ice floe will continuously move, break up and re-
freeze, causing redistribution of the ice within, and could in combination with younger ice,
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cause an increase in the number of old ice ridges, even though no new ridges are formed
(Ekeberg et al., 2013d). This redistribution of the ridge itself could cause ULS instru-
mentation false observations of increased ridge numbers. Within old ice, there has been
enough time for leads to open; a fracture through the ice caused by wind or ocean currents,
big enough to be navigable by surface vessels (Leppäranta, 2011). These open fractures
can cause more ridges to be made. Young ice is likely to contain fewer ice ridges, less
consolidated and hence smaller ice ridges than old ice (Hansen et al., 2013). These young
ice ridges have therefore a higher tendency for disintegration than old ice ridges, which
could further lead to accelerated decrease in mean ice thickness in the Arctic (Hansen
et al., 2013).

The older the ice ridge is, the more time it has to grow. It can therefore be postulated
that multi-year ice ridges have keel drafts larger than first-year ice ridges. However, the
Upward Looking Sonar instruments do not distinguish between ice features. And some of
the assumed ice ridges may be ice bergs drifting alongside the ice ridges. Ice bergs are
not made by thermodynamically, rubbled, and consolidated ice, but are broken off, fresh-
water pieces from glaciers, that are formed from accumulation of snow. These features
are not possible to distinguish from ice ridges in data collected from ULS instruments.
However, ice bergs are often very large ice features, larger than the largest observed ice
ridge. Because of this, if an ice feature in ice ridge keel analysis has a very high draft value
compared to estimated return values, it is discarded as an ice berg.

Ekeberg et al. (2013d) postulated that the observed reduction in the number of ridges
and its draft value coincides with observed reduction in fraction of ice thicker than 5 m
(Hansen et al., 2013). This decrease in ice thicker than 5 m, Ekeberg et al. (2013d) hy-
pothesized must be related to change in the ridge population, and will be observed as fewer
ridges, smaller ridges or as a change in the ridge geometry.

Ekeberg et al. (2013d) made a list of possible causes for the changes in ridge popula-
tion:

• Drift speed

• Current and wind

• Ice cover strength

• Shape of the ice ridge keels

• Ice concentration

• Origin of ice

• Ice age

• Melting
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Ekeberg et al. (2013d) concluded with the reduced age of the ice cover being the most
likely cause for the observed reduction in mean keel draft and the number of ridges.

8.6 Ice thickness observations
The ice in the Fram Strait is a mixture of old ice and first-year ice, most of it originating
from the Laptev Sea and the East Siberian Sea (Hansen et al., 2013). The ice thickness in
the Fram Strait is very dynamic, and no unique level exists (Ekeberg et al., 2012). Accord-
ing to Maslanik et al. (2011) the amount of multi-year ice in the Arctic has decreased and
become younger. The extent of multi-year ice during March has declined by 33% from
1980 to 2011, and during September by 50%. The fraction of the total ice extent, first-year
and multi-year ice, made up of multi-year ice in the Arctic Ocean decreased from 75% to
45% in the mid 1980 to 2011 respectively Maslanik et al. (2011). According to Haas et al.
(2010), the areal extent of summer sea ice in the Arctic has decreased at a rate of 11.2%
per decade over the last 30 years. Even though it has a declining trend, it must be taken
into consideration that sea ice is subject to large regional and inter-annual variations (Haas
et al., 2010).

The thinning and decreasing of the ice cover in the Arctic are expected to continue
resulting from climate change, amplified by the ice-albedo feedback (Haas et al., 2010).
Ice thickness distribution in the Arctic Ocean typically features a long tail and two modal
peaks, where the lower modes represent level first-year ice and the upper modes level old
ice (Haas et al., 2010). This display of the most frequent occurring ice thicknesses in
the Arctic reflects thermodynamic processes (Hansen et al., 2013). Temporal changes in
the old-ice thickness modes display changes in the climatic factors that control seasonal
growth, melt and age of the ice cover (Hansen et al., 2013). The width of the modal peak
can provide an estimate of the age of the ice; old ice has experienced several seasons
of freezing and melting, and is therefore more likely to produce wider modal peaks than
younger ice (Hansen et al., 2013). The thermodynamically grown ice is encircled by dy-
namically deformed ice (Hansen et al., 2013).

According to Hansen et al. (2013) there was a decrease in ice age from 2005 – 2008
in the Fram Strait, followed by an increase in age until 2011 (when the observation pe-
riod ended). Hansen et al. (2013) found a mean ice thickness in the Fram Strait in 2006
of 3.3 m and in 2007 3.0 m. The amount of ridged ice above 5 m decreased to 5% in
2011 (Hansen et al., 2013).(Hansen et al., 2013) found no sign of recovery of mean ice
thickness and ice thicker than 5 m in observations from 2008 – 2011. The age of the ice
cover, as well as thermodynamic growth and melt of sea ice, is all affected by parameters
such as snow thickness, long- and shortwave radiation, air temperature and ocean heat flux
(Hansen). Wind force, ice thickness and availability of thin ice sheets for deformation,
and the capacity of the ice pack to transfer stress and pressure for formation are important
factors in the growth and decay of ridged ice (Amundrud et al., 2004). Changes in any of
the factors above, could affect the relative number of ridges in an ice pack, as well as the
thickness and age of the ice. Even small changes in the ocean heat flux would influence
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the ice thickness and the fraction of ridged ice (Hansen et al., 2013). Amundrud et al.
(2004) found through observation that ridged ice has a more rapid rate of melting than the
surrounding level ice. The ocean heat melt the consolidated layer and the bonds between
ice blocks in the ridge keel brake, causing the ridge to disintegrate.

The ice in the Arctic are in constant movement, meaning the observed ice thickness
distribution is a product of several processes, featuring both temporal and spatial variabil-
ity (Hansen et al., 2013). The Fram Strait includes ice originating from several locations
in the Arctic Ocean, and the thickness observed here is the sum of the time varying ther-
modynamic and dynamic processes acting on the ice, from its origin to the Fram Strait.
Hansen et al. (2013) assumed the loss of ridged ice has occurred due to solar heating
and ice-albedo feedback, as well as possible increase in the ocean heat flux. Parkinson
and Comiso (2013) found that the Arctic sea ice cover reached its lowest value at end of
summer 2012 in 112 years.
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Chapter 9
Conclusion

The present thesis studied sea ice ridge morphology and applied extreme value analysis
to estimate the 100-year return value for ice ridge keel draft and finding the probability
of extreme values of these in the Fram Strait, by using data collected from Upward Look-
ing sensors deployed in the season of 2006/2007 at 79◦ N. Three methods was employed;
the Generalized Pareto distribution, the Exponential distribution and the three-parameter
Weibull distribution.

The Generalized Pareto distribution was simplified to the Exponential distribution due
to the shape parameter value being close to 0. The result was a 100-year return value of ice
ridge keel drafts in the range of 37–45 m. The three-parameter Weibull distribution gave
a lower 100-year return level of 29 m. The results from the Generalized Pareto method
and the Exponential method was compared to previous studies, and found to be equal to or
somewhat higher than previous studies. It was also found to be higher than corresponding
estimates of ice ridge keel drafts in the Beaufort Sea. The mean ice ridge keel draft value
was found to be 7.7 m. The shallowest ice ridge keel observed had a draft of 5.0 m, while
the deepest ice ridge keel was 24.97 m deep. The mean keel width was found to be 63.05
m, with a minimum value of 6.35 m and a maximum value of 1969.3 m.

The fraction of ice observed defined as ice ridges was 0.0299, approximately 3%.
Chebyshev’s inequality was used to find the estimated probability of encountering ridges
with keel drafts larger than 20 m. The result was 0.15%, and compared to previous studies
in the Fram Strait with results spanning from 0.03% to 0.2%, this was found to be satisfy-
ing.

The limited data used in this thesis needs to be considered in evaluating the results. A
large data set with a long time set should be used in any extreme value analysis to get the
best estimates.
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Sources of Errors

The data used for calculations in this thesis, and the methods for calculations, was lost
for a period of time for the author, due to technical problems and an uncooperative com-
puter. This caused the author having to do all calculations a second time very late in the
process.

Due to technical difficulties with the data, time data for the observation values was
unavailable. This limited the analysis somewhat, but the extreme values and subsequent
return periods were found independently of the time data. However, a graphical visual-
ization of a single ice ridge keel was unfortunately not possible to complete without these
data.

Rundoff errors are a possibility in computer calculation and estimation, which is in-
exact computer floating point arithmetic. These occur in several floating point operations,
and may cause different results in analyzing the same data, but in different computer pro-
grams or on different computers.

Several computations performed in this thesis is estimations, which are not exact cal-
culations. In using estimates further in calculations, these uncertainties continue through
the calculations, and propagate through computations, giving rise to according errors.

To find and analyze every single ice ridge in the Fram Strait, the local level ice thick-
ness has to be found for all observations. More data should be used in analysis such as
those performed in this thesis. Data collected over one year gives a large enough data set
to get approximate estimates and results. However, a larger data set collected over several
years, will give better estimations and results, and a possibility for comparison between
years and analyze an eventual trend in the data.
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