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Abstract

Two immiscible fluids flowing in parallel with respect to the interface separating
them in a two-dimensional porous medium has been studied using a dynamic net-
work model. Two immiscible fluids, one wetting and the other non-wetting moving
in parallel is a complicated process that haven’t gotten much attention. It is found
that there is a competition between imbibition and drainage displacements at the
pore-scale along the front separating the two fluids due to an external force driving
both the fluids in the direction parallel to this front. Imbibition is the process where
a wetting fluid displaces a non-wetting fluid, while drainage is when a non-wetting
fluid displaces a wetting fluid.

When an external force driving the system in the direction parallel to the front
separating the two liquid is small, such that the capillary forces are much strong
that viscous forces, we find that imbibition displacements will dominate along the
front. The wetting fluid is found to displace the non-wetting such that the front
separating the non-wetting fluid from the wetting fluid moves with a velocity pro-
portional to the volumetric flow rate perpendicular to the imposed flow direction.
A wetting fluid will prefer to displace a non-wetting fluid along narrow channels due
to the fact that capillary forces provide suction in imbibition, as opposed to resis-
tance in drainage. When the front is moving, we find that clusters of non-wetting
fluids are left behind the front, concentrated in the widest part of the network.
These cluster will not be able to be move as long as the external driving force
is not large enough to overcome the the capillary forces holding back the cluster.
Wetting fluid will flow in the space around the clusters.

If the external driving force is large enough so that these clusters can be mobi-
lized, then we’ll have viscous forces start dominating, and there will be a mixture of
imbibition and drainage depending on the local geometry and boundary conditions.
If drainage starts dominating the front will stop moving and become unstable, and
non-wetting fingers will start moving in the direction of the wetting liquid. If the
driving force is strong enough, these fingers will break up into bubbles due to cross-
ing wetting fluids, and non-wetting bubbles will start migrating into the wetting
fluid.

For special case of a band of non-wetting fluid surrounded by wetting fluid on
both sides, we find that the wetting fluid will try to displace the non-wetting fluid
from both sides simultaneously. If the external driving force is not strong enough
so that the clusters broken off from either side can be mobilized, we find that both
the fronts stabilize and stop moving. The non-wetting and wetting fluid will then
flow by themselves as if they were part of its own effective network separated by
the fluid-fluid front, without any influence from the other fluid. The two fronts will
be stationary as long as the capillary forces are dominating over viscous forces.
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Sammendrag

To ikke-blandbare væsker som strømmer parallelt i forhold til hverandre i et todi-
mensjonalt porøst medium har blitt utforsket ved hjelp av en dynamisk nettverksmod-
ell. To ikke-blandbare væsker, én fuktende og en ikke-fuktende som beveger seg
parallelt med grensesjiktet som skiller de to væskene viser seg å være en komplisert
prosess. Det viser seg at det vil oppst̊a en konkurranse mellom imbibering (En-
gelsk: imbibition) og drenering (Engelsk: drainage) lokalt langs fronten som skiller
de to væskene. Imbibering er n̊ar en fuktende væske forflytter en ikke-fuktende
væske, mens drenering er n̊ar en ikke-fuktende væske forflytter en fuktende væske,

N̊ar den eksterne kraften som driver systemet i retningen parallelt med grensen
mellom de to væskene er liten, slik at kapillærkrefter er sterkere enn viskøse krefter,
s̊a viser det seg at imbibering dominerer langs fronten. Den fuktende væsken for-
flytter den ikke-fuktende væsken slik at fronten som skiller de to væskene gradvis
beveger seg mot den ikke-fuktende væsken med en hastighet som er proporsjonal
med volumstrømningen p̊a tvers av den parallele retningen. En fuktende væske
vil foretrekke å forflytte en ikke-fuktende væske langs smale kanaler siden kapil-
lærkrefter gjør det enklere for en væske å flyte under imbibering. N̊ar fronten
forflyttes s̊a vil klynger av ikke-fuktende væsker bli etterlatt bak fronten, konsen-
trert i de største kanalene. Dersom drivkraften som driver systemet ikke er stor
nok til at kapillærkreftene som holder igjen disse klyngene kan overkommes, s̊a vil
de sitte fast, mens fuktende væske flyter i rommet rundt de.

Dersom kraften som driver systemet blir sterk nok til at klyngene med ikke-
fuktende væske kan mobiliseres, s̊a vil viskøse krefter starte å dominere, og det vil
forekomme en blanding av imbibering og drenering. Hvilken av disse som dominerer
avhenger av den lokale geometrien, og p̊a grensebetingelsene i det porøse mediet.
Dersom drenering dominerer, s̊a vil fronten slutte å forflytte seg mot den ikke-
fuktende væsken og bli ustabil, og ikke-fuktende fingrer vil vokse inn i den fuk-
tende væsken. Dersom drivkraften er sterk nok, s̊a vil disse fingrene brytes opp p̊a
grunn av passerende fuktende væsker, og ikke-fuktende bobler vil migrere ut i den
fuktende væsken.

Dersom et b̊and av ikke-fuktende væske er omringet av fuktende væske p̊a begge
sidene, s̊a vil den fuktende væsken prøve å forflytte den ikke-fuktende væsken fra
begge sidene samtidig. Dersom den eksterne drivkraften ikke er kraftig nok til at
klyngene med ikke-fuktende bobler som oppst̊ar bak frontene kan forflyttes, s̊a vil
frontene stoppe opp, og den ikke-fuktende og den fuktende væsken vil flyte hver
for seg i hver sitt effektive nettverk, uten p̊avirkning av den andre væsken. Disse
frontene vil forbli stasjonære s̊a lenge kapillærkrefter dominerer over viskøse krefter.
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1. Introduction

Multiphase flow in porous media spans a wide portion of applied physics and indus-
tries, from cosmetics, to agriculture, and oil recovery. Understanding how multiple
fluids interact in a porous material is integral in areas such as improved and en-
hanced oil recovery in the petroleum industry. Perhaps just as important in modern
times is its application to underground water extraction in water-starved areas.

The flow of immiscible fluids in porous media is a phenomenon governed by
physics at multiple scales. On the macroscopic scale the flow is described by
phenomenological and theoretical continuum differential equations relating macro-
scopic quantities such as total flow rate, fluid saturation, fractional flow, permeabil-
ities and pressure. Examples of these are continuum equations such as the Bucklet-
Leverett [1] and the Darcy equation [2]. The solution to these equations represent
averages over representative volumes, and we often need to neglect or simplify the
effect at the pore-scale, phenomenon such as capillary pressures. Experiments are
usually done in the lab by taking a small sample of a porous material, from which
the relevant macroscopic quantities such as the permeability is calculated. These
are then assumed to apply for the larger scales.

Computer simulations based on the physics at the pore scale has become more
popular during the last few decades, providing an alternative to performing time
consuming, expensive laboratory experiments. Not only are they often cheaper and
much faster to perform, but they have also become able quantitatively estimate and
predict the macroscopic properties of interest in a real porous medium.

Lab experiments and computer simulations of the flow at the pore scale have
mostly focused on the displacement of one fluid by another by injecting one fluid
into a sample already filled by another liquid, and a huge effort has gone into clas-
sifying and understanding how the behavior of the displacement processes depend
on the flow properties such as viscosity ratios and wetting properties. Not much
focus has yet been given to the case where two immiscible fluids are flowing in
parallel to the interface separating the two fluids inside a porous medium. A real
life application of this could be the study of stratified reservoirs, where different
phases are deposited in layers. One could also imagine the case of a non-wetting
fluid inhabiting a large part of a reservoir, with a wetting fluid surrounding it. The
study of parallel flow would then concern itself with the flow along the sides of the
non-wetting fluid.
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1. Introduction

1.1. Outline

This thesis is outlined as follows. Chapter 2 gives an introduction to the microscopic
physics of two-phase flow at the pore-scale, and introduce the concept of parallel
flow. Chapter 3 describes the simulation model in detail. Chapter 4 discusses the
results found from implementing the simulation model. Concluding remarks are
given in Chapter 5.
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2. Flow in Porous Media

On the microscopic pore scale the multiphase flow is governed by the competition
of viscous forces in the fluids, capillary forces due to local interfaces separating
the fluids called menisci, and gravitational forces. These are described by the
fundamental equations of fluid mechanics.1 These equations can in principle only
be solved for the simplest geometries and a limited range of parameters, such as
Stokes flow2 in a cylindrical channel.

The main focus of this thesis will be on microscopic physics on the pore scale. The
relations and equations governing macroscopic flow in reservoirs will therefore not
be covered. The reader should refer to Bear [3] and Sahimi [4] for a comprehensive
review of macroscopic multiphase flow in porous media.

2.1. Microscopic Physics

2.1.1. Interfacial Tension

Assuming that the temperature is constant, then a static spherical droplet of radius
R immersed in another fluid (e.g. a gas bubble in water) will have a surface free
energy of 4πR2γ, where γ is the surface tension, representing the free energy per
surface area. If the radius of the spherical droplet is changed by dR, the corre-
sponding change in surface free energy is 8πRγ dR. This change in energy must be
balanced by the pressure between the inside of the droplet and its surroundings,
∆p · 4πR2 dR = 8πRγ dR. Solving for ∆p gives

∆p =
2γ

R
. (2.1)

Equation (2.1) can alternatively be derived from hydrodynamical considerations.
The surface free energy is due to the difference between the attraction of the
molecules on the inside of the sphere (water), those outside of the sphere (air),
and those at the surface between the two fluids.

The general form of (2.1) is known as the Young-Laplace equation

∆p = γ

(
1

R1
+

1

R2

)
, (2.2)

1E.g. The Navier-Stokes equations.
2Stokes flow, also known as creeping motion, is when viscous forces dominate over inertial forces,

which is to say that the Reynolds number is much less than unity, e.g. Re = µUL/ρ � 1,
where U and L are relevant velocity and length scales in the problem at hand. µ and ρ is the
viscosity and density of the fluid in question, respectively.
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2. Flow in Porous Media

where R1 and R2 are the principal radii of curvature of the general surface. For a
perfect sphere they reduce to the same radius of curvature. Equation (2.2) assumes
a surface in thermodynamical and hydrodynamical equilibrium. It will not hold in
general if either the surface is moving, or if the temperature is not constant.

2.1.2. Wettability

The wettability is defined as the contact angle, θ between the surface separating
two immiscible fluids in thermal equilibrium on a horizontal solid surface, as de-
picted in Figure 2.1. The wettability is a thermodynamic quantity that depends
on the interfacial tensions of the liquid-gas or liquid-liquid surfaces as well as the
interactions between the liquids and the material of the solid surface. A fluid is
wetting the solid surface if 90◦ < θ < 180◦, and non-wetting if 0◦ < θ < 90◦.
θ = 0◦ and θ = 180◦ is called completely non-wetting and wetting, respectively.

θ

µnwµw

(a)

r
R

θ

θ

(b)

Figure 2.1.: (a) Definition of contact angle by the interface separating the two fluid
phases in contact with a solid surface. (b) A meniscus separating a
non-wetting (gray) and a wetting (white) fluid inside a tube. The
radius of curvature of the surface is given as R = r/ cos θ, where θ is
the contact angle.

The pressure difference across a stationary meniscus separating two fluid phases
in a straight cylindrical tube of radius r is according to Figure 2.1b given by

pc =
2γ

r
cos θ. (2.3)

pc is called the capillary pressure. If the meniscus is moving the contact angle will
depend on the local flow rate in the tube, and whether it is receding or advancing [6].

2.2. Displacements in Porous media

Lenormand studied the large scale 2D displacement of immiscible fluids in micro-
channels where gravitational forces could be neglected both experimentally [7],
and numerically [8]. The experiments where done by injecting a fluid (the invading
fluid) into a porous matrix already filled by another fluid (the defending fluid),
displacing it in the process. He showed that in certain limits that the flow regimes
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2.2. Displacements in Porous media

could be described by statistical models such as invasion percolation, and diffusion
limited aggregation.

There are two main displacement categories, imbibition and drainage. Drainage
is the process where a non-wetting fluid (with respect to the porous medium)
displaces a wetting fluid. In drainage the fluid in the larger throats will be displaced
first because of capillary effects due to menisci separating the non-wetting and
wetting fluids gives resistance to motion. Drainage is dominated by piston-like
displacements [7].

Imbibition is the process where a wetting fluid displaces a non-wetting fluid. Non-
wetting fluids can only flow in the bulk of the pores and throats in the porous media,
while the wetting fluid can either flow in the bulk, or along the walls and crevices of
the throats (film flow). Imbibition is governed by the competition between piston-
like motion and snap-off of the non-wetting phase due to wetting films [7, 9] flowing
along the walls and crevices of the porous matrix. We therefore need to distinguish
between the cases where film flow dominates, and where it can be neglected.

The capillary number describes the ratio of viscous to capillary forces on the
pore scale. Its definition is

Ca =
µiui
γ

, (2.4)

where µi is the viscosity of the invading fluid, ui is the mean velocity, and γ is the
interfacial tension due to the menisci separating the two fluids. The viscosity ratio
between the invading and defending fluids is

M =
µi

µd
. (2.5)

These two non-dimensional number together characterize the displacement pro-
cesses.

2.2.1. Drainage

There are three main distinct flow regimes for drainage, depending on the capillary
number and viscosity ratio. The three main flow regimes are capillary fingering,
viscous fingering, and stable displacement [8].

When a more viscous fluid displaces a less viscous fluid at high capillary numbers
the displacement front is unstable and shows viscous fingering, where fingers of non-
wetting fluid displace the wetting fluid. The front growth in viscous fingering can
be statistically modelled by Diffusion-Limited Aggregation (DLA), and has a well
defined fractal dimension. When a less viscous fluid displaces a more viscous fluid
at high capillary numbers, the displacement process is called stable displacement,
and is modelled by Anti-DLA. At low capillary numbers the capillary forces will
dominate over viscous forces in both the fluids. The pressure is just large enough so
that only some throats and pores can be invaded, giving rise to capillary fingering.
This regime is modelled by invasion percolation.
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2. Flow in Porous Media

2.2.2. Imbibition

The flow regimes in imbibition are controlled by the competition between piston-
like motion and snap-off during pore scale displacements. For low capillary numbers
and small contact angles the displacement is governed by snap-off, where the wet-
ting phase flows along the walls and crevices of the porous medium. This resembles
a percolation-like regime, where snap-off happens randomly across the entire sys-
tem due to the connectedness between the wetting films along the walls. If the
contact angle or capillary number is increased, the snap-off ahead of the front will
be suppressed due to there not being enough time for the wetting fluid to flow
along the walls. This is because the piston-like behavior depend on the local cap-
illary number, while the snap-off is a diffusive process independent of the capillary
number. For large capillary numbers the displacements in imbibition are similar to
a large Ca displacements in drainage [7].

2.2.3. Parallel Flow

Drainage and imbibition are processes of displacing one fluid by another fluid.
These terms are usually used to describe the displacement process when the front
separating the two fluids grow in the direction of the applied driving force, e.g.
it the force is applied perpendicular to the front. If the front separating the two
fluids is parallel to direction of the driving force one would expect both drainage
and imbibition locally along the front.

The study of parallel flow has gotten little attention in the litterature until now.
Ramstad et al. [10] used a dynamical network simulator to study parallel flow. A
two-dimensional porous media was modelled as a square grid of disordered tubes
rotated 45 degrees. He investigated the case of a network initially filled by a band
of non-wetting fluid surrounded on both sides by a wetting fluid where both sides of
the network are connected to an open reservoir of wetting fluid. The flow was driven
by a constant pressure gradient in the direction parallel to the fronts separating
the two phases. It was found that the front separating the band of non-wetting
fluid from the wetting fluid became unstable when the pressure difference across
the system reached a critical value, for which the fronts started moving towards
the non-wetting liquid with a constant velocity and with a well-defined saturation
profile, and with no wetting fluid moving ahead of the front. Behind the front
there was a foam-like wake of non-wetting bubbles diffusing away from the front
and eventually exiting the system through the open boundaries.

The opposite case of a wetting band surrounded by a non-wetting fluid connected
to non-wetting reservoirs were also studied. In this case it was found that the fronts
eventually stabilized and did not move, due to the wetting fluid not being able to
move out of the system, and the transport of bubbles of non-wetting bubbles in
each direction cancelled.
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2.3. Flow in Tubes

2.3. Flow in Tubes

2.3.1. Single Phase Flow - The Hagen-Poisuelle Equation

The volumetric flow rate of a single phase flowing through a tube of constant cross-
section is given by the Hagen-Poiseuille equation. Its derivation can be found in
any introductory fluid mechanics book, e.g. [11]. It can be expressed as

q = −kA
µ

dp

dx
= −kA

µL
∆p (2.6)

This equation holds for a tube of arbitrary shape of constant cross-section A.

For a cylindrical tube of radius r, and no-slip at the tube wall, we will have k = r2

8 ,
and A = πr2.

The Hagen-Poiseuille equation is equivalent to Ohm’s law for electrical circuits,
with voltage and current being equivalent to pressure and flow rate, respectively.

2.3.2. Two-Phase Flow - The Washburn Equation

x1
x2 - x1 L - x2

pi pjpw1 pw2µw µwpnw1 pnw2µnw

Figure 2.2.: Illustration showing the different pressures inside a cylindrical tube
containing a single non-wetting bubble.

If a tube is filled with two immiscible fluids, one wetting with respect to the
tube wall, and one non-wetting, then the flow rate in each phase satisfies equation
(2.6) individually, and the flow rate is the same in each phase. The two phases will
be separated by a meniscus, which means there will be a higher pressure on the
inside of the meniscus due to interfacial tension along the surface. This results in
a pressure jump across the meniscus.

With respect to figure 2.2, where we have a bubble of non-wetting fluid sur-
rounded by a wetting fluid inside a straight circular tube of constant radius, we
have for each phase separately

q = − kA

µwx1
∆pw1 = − kA

µnw(x2 − x1)
∆pnw = − kA

µw(L− x2)
∆pw2, (2.7)
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2. Flow in Porous Media

where the pressure differences are defined as

∆pw1 = pw1 − pi, (2.8)

∆pnw = pnw2 − pnw1, (2.9)

∆pw2 = pj − pw2. (2.10)

In addition, we define the total pressure difference, and the capillary pressures
as

∆pc1 = pnw1 − pw1, (2.11)

∆pc2 = pw2 − pnw2, (2.12)

∆p = pj − pi. (2.13)

Explicitly writing out the total pressure difference gives

∆p = (pw1−pi)+(pnw1−pw1)+(pnw2−pnw1)+(pw2−pnw2)+(pj−pw2). (2.14)

After using equation (2.7), solving for q yields

q = − kA

µeffL
(∆p− pc1 − pc2). (2.15)

Equation (2.15) is called the Washburn equation, named after Washburn, who
studied the the model with air displacing water [5]. A positive flow rate corresponds
to a negative net pressure difference ∆p−

∑
pci, hence the minus sign. The effective,

volume weighted viscosity is

µeff = µnw
x2 − x1

L
+ µw

L− (x2 − x1)

L
. (2.16)

The average velocity through the tube will be given by

u =
q

A
= − k

µeffL
(∆p− pc1 − pc2). (2.17)

No restrictions has been made for the functional form of the capillary pressure.
If the flow rate is small, then we are close to hydrodynamic equilibrium. The
capillary pressure is then given by the Young-Laplace equation. For a straight
capillary tube, the contact angle will then be the same on each side of a bubble,
and the net capillary pressure will vanish. For larger flow rates experiments have
shown that the receding and advancing contact angle will be different, with the
receding contact angle being the largest. This is called a dynamic contact angle,
and depend on the local capillary number in the tube [6].

We assume that there are no films. This is a valid assumption when using
cylindrical shaped tube, which has no corner or crevices for films to flow through.
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2.4. Network Simulators

2.4. Network Simulators

All fluid behavior is governed by the fundamental equations of fluid mechanics and
constitutive relations. These are solvable for only a very small subset of problems
due to complex boundary conditions and non-linearities in the equations. The fluid
mechanical equations can be solved numerically by methods such as finite elements,
finite volume, or Lattice Boltzmann methods, but these are still only solvable for
relatively small systems and simple geometries, and will not in general be able
to give useful results on larger scales. An alternative approach termed network
simulators has become popular during the last decades.

Network simulators exchanges solving the equations of fluid mechanics explicitly
by replacing the complex geometry by a simplified network of connected volumes.
In each of these volumes an analytical result is used to approximate the flow through
it. An example of this would be a network of spherical volumes connected by cylin-
drical tubes representing pores and throats of a porous medium, respectively, or
having the tubes representing both the pore and throat volume. Simple analytical
solutions such as (2.6) are then applied as an approximation to the flow in each
volume. Conservation of mass and flow rate are applied to solve for the local flow
behavior, after which the state of each volume can be updated according to the
local, instantaneous flow rates.

The first network model was proposed by Wilkinson and Willemsen to study
invasion percolation [12]. Later Lenormand et al. used a more sofisticated network
model to model both drainage and imbibition [8]. Other models such as the one
developed by Aker et al. [13] allows menisci to have a position dependent capillary
pressure, as opposed to the more simple constant capillary pressures of the model
of Lenormand et al.
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3. The Simulation Model

3.1. Description of the Model

3.1.1. Geometry

(a) (b)

Figure 3.1.: a) Visualization of non-wetting (red) and wetting (gray) fluids in a
network of 8x8 links. b) Mapping of the network model to a porous
medium consisting of the space between spherical shaped beads. The
tubes, one marked in gray, corresponds to the links in the network,
while the intersection of the dashed lines corresponds to the nodes.

The simulation model used is a dynamic network model based on a model pre-
viously developed by Aker et al. [13], with later extensions by Knudsen et al. [14],
Ramstad et al. [15] and Sinha et al. [16]. The model geometry is a 2-dimensional
regular square lattice of cylindrical tubes of random radii rotated 45 degrees.
The bonds (links) of the grid contain to both the pores and throat volume of
a 2-dimensional porous medium, that is, the nodes contain no volume, but has
only a pressure associated with it. The grid is disordered, in the sense that each
tube has a random radius uniformly distributed on the interval [λ1L, λ2L], where
0 < λ1 < λ2 < 1 and L is the length of the tube. Refer to Figure 3.1 for an
illustration.
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3. The Simulation Model

3.1.2. Flow Conditions

The system contains two fluids, one non-wetting (e.g. oil), and one wetting (e.g.
water) with respect with the walls of the network. It is assumed that both fluids are
incompressible and immiscible, which leads to a well defined interface, a meniscus,
separating the two fluids. There will be a pressure jump across the meniscus due to
its curvature, with the pressure being higher inside the curved surface. The strength
of this capillary pressure is given by the surface tension γ. It is assumed that the
contact angle is larger than zero, and that there are no wetting films present. The
contribution of the contact angle to the capillary pressure is contracted into the
surface tension coefficient itself.

The network is periodic with respect to pressure in all directions, but is open
with respect to fluid flow on the sides, e.g. the sides are connected to a reservoir.
It is periodic with respect to pressure in the vertical direction.

A global pressure difference across the system drives the flow in the y-direction.
The pressure is calculated at all the nodes, and the local flow rates and velocities
are found, from which the system is evolved for a single time step and the process
is repeated.

3.1.3. Flow in a Single Tube

The flow rate through link ij connecting node i and j, containing two fluids, is
governed by the Washburn equation:

qij = −Aijkij
µeffL

(
∆pij − pc,ij

)
(3.1)

where kij = rij/8 is the permeability of a straight cylindrical tube, Aij = πr2
ij is

its cross-section, and µeff = µ2Sij + µ1

(
1− Sij

)
is the volume weighted viscosity

due to the two fluids. The pressure difference between node i and j is pij = pj−pi,
and pc is now the net capillary pressure difference due to all menisci present in the
tube.

The walls of a real porous medium will in general have pores and throats of
non-trivial shapes, and of various sizes. This means that the capillary pressure will
depend on the position of the menisci. The capillary pressure will be higher at
narrower parts of the porous materials, e.g. throats, and smaller at wider parts,
e.g. pores. This is incorporated in the model by choosing a position dependent
capillary pressure. We have choosen an hourglass shape such that there is a maxi-
mum capillary pressure in the middle and zero capillary pressure ends of the tube.
The radius of the cylindrical tube does therefore represent an effective radius as
an approximation to an irregular shaped tube. The capillary pressure due to a
meniscus is given by

pc(x) = ±2γ

r

(
1− cos

2πx

L

)
, (3.2)

where the sign depends on whether a meniscus is advancing or receding. During
drainage, the pressure difference across the link must exceed the capillary threshold

22



3.1. Description of the Model

in the middle given by pt = 4γ/R for an advancing meniscus to pass through. By
this choice we can also have bubbles move both forwards and backwards through
a tube.

3.1.4. Fluid Dynamics at the Nodes

Because both the pore and throat volume is represented in the volume of the grid
links we have to neglect any actual dynamics at the intersection between links
at the nodes themselves. We therefore need to construct rules to approximate
the distribution of fluids between links through the nodes. This is a complicated
process which we don’t have an accurate model of.

The amount of fluid flowing out of each link is accumulated into its neighboring
node during a time step. The fluid that has flowed into the node are distributed into
neighboring links according to the instantaneous flow rate through those links in
such a way that the flow rate and total saturation is preserved. Another important
question is if whether the non-wetting or the wetting fluid enters a given link first
when both fluids has flowed into the node. We insert the non-wetting fluid first
instead of the wetting fluid randomly, but so that the probability is 50% to insert
either first.

The rules for distributing the fluids into neighboring links creates an unrealistic
large amount of smaller bubbles. These small bubbles will not feel very much
resistance from the capillary pressure at all. In a real porous medium there will
be larger bubbles present whose size will be restricted by the flow conditions in
the pores and throats, the surface tension and the contact angle. We choose the
maximum number of bubbles to not exceed 3. If the total number of bubbles in a
link exceeds 3, or if the distance between the bubbles are too small, the two nearest
bubbles will be merged. Bubbles are merged in such a way that the center of mass
is conserved. This will result in unphysical jumps in the capillary pressure, which
will show up as pertubations in the total pressure. This will not pose a problem
as long as the pertubations are small. The end result is the appearance of larger
bubbles.

3.1.5. Units and Dimensional Analysis

Lengths are measured in millimeters, time in seconds, pressure in dyne per mil-
limeter squared, viscosity in 100 Poise, surface tension in dyne per millimeter, and
flow rates in millimeter cubed per second.

The capillary number, describing the ratio of viscous to capillary forces, and is
given by

Ca =
µQ

γΣ
, (3.3)

where Q is the total flow rate through a horizontal cross-section of the network of
area Σ, e.g. the sum of the flow rates through each link along this cross-section.
Q/Σ is then the average velocity of both fluids in the network. The viscosity in
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3. The Simulation Model

(3.3) is the dominant viscosity of the two fluids. The capillary number is constant
if the total flow rate is kept constant, but will not be constant if the pressure
difference is kept constant.
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3.2. Solving the Flow Field and evolving the system

3.2. Solving the Flow Field and evolving the system

3.2.1. Conservation of Volumetric Flow Rate at the Nodes - The
Kirchoff Equations

Conservation of flow rate is forced at the nodes by requiring that the flow rate
going into a node is equal to the flow rate going out of the node.

q1 q2

q3q4

p1 p2

p3p4

p0

Figure 3.2.: Flow rates and pressure at a node. The arrows depict the positive flow
direction.

With respect to figure 3.2, we have

q1 + q2 = q3 + q4. (3.4)

Inserting (3.1) and eliminating common terms (π and L) gives

r4
1

µ1

(
∆p1 − pc,1

)
+
r4
2

µ2

(
∆p2 − pc,2

)
=
r4
3

µ3

(
∆p3 − pc,3

)
+
r4
4

µ4

(
∆p4 − pc,4

)
. (3.5)

The pressure differences can be written in terms of the node pressures as ∆pij =
pj−pi−δij∆P . The term δij is equal to one for all the links that connects the nodes
at the top row to the nodes at the bottom row of the lattice. This implements the
global pressure difference driving the system in the vertical direction. Rearranging
equation (3.5), putting all the terms containing the pressures pj on the left hand
side, and the rest on the right had side, gives the matrix equation for the pressure∑

j

Ai,jpj = bi. (3.6)
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3. The Simulation Model

This is a block tridiagonal matrix equation1 for the pressure, where the matrix
elements Ai,j depend on the link radii and effective viscosity only. The right hand
side vector elements depend on both the link radii, the effective viscosity, capillary
pressures, and the global pressure difference. This matrix in equation (3.6) is
symmetric and positive definite, and can be solved efficiently by an iterative matrix
solver such as the Conjugate Gradient method.2 The Conjugate Gradient algorithm
is described in detail in [17].

3.2.2. Initial and Boundary Conditions

Two different initial conditions and boundary conditions have been applied, these
will be refered to as single interface and double interface (or band) boundary con-
ditions. The boundaries at the sides of the system will be open with respect to
fluid flow, as if they are connected to a reservoir of either non-wetting or wetting
fluid, while the boundaries on the top and bottom will be periodic. All boundaries
are periodic with respect to pressure. The open boundaries are implemented by
removing the fluid in all the links along the boundaries each time step, and replac-
ing it with the fluid of its respective reservoir, effectively transporting fluids that
has reached the boundary out of the system.

The network will be filled by both a non-wetting and a wetting fluid. There will
initially be a well defined boundary separating both the fluids, either vertical, or
a slightly distorted sinusoidal shape to reduce high capillary pressures due to the
sharp initial interface. This initial boundary will be refered to as the non-wetting
front.

The single interface boundary condition has one side connected to a non-wetting
reservoir, and the other to a wetting reservoir. The system is initialized by filling
links with non-wetting fluid sequentually, starting from the boundary connected
to the non-wetting reservoir, increasing towards the other boundary until a given
non-wetting saturation has been reached. The total saturation is defined as sum
of all the volume filled by non-wetting liquid to the volume of the whole network.

The double interface boundary condition will be a system where both sides are
connected to a reservoir of the same fluid. If the reservoirs contain non-wetting
fluids, there will be be a band of wetting fluid in the middle of the system sur-
rounded by wetting fluid. On the other hand, if the reservoirs contain wetting
fluid, there will be a band of non-wetting fluid surrounded by wetting fluid. The
system is initially filled by first filling the links in the middle of the system, and
sequentially moving towards the reservoirs on both sides until a set saturation has
been reached.

1The matrix in (3.6) is a cyclic block tridiagonal matrix, where the blocks themselves are also
cyclic. This is because of the bi-periodic pressure boundary conditions.

2The matrix is identical to what one gets by numerically differentiating the two-dimensional
Poisson equation with non-constant coefficients using a first order finite difference scheme.
That is, the matrix equation resulting from differentiating ∇ ·

(
A(x, y)∇P (x, y)

)
= b(x, y)

numerically. Any algorithm that is used to accelerate these kinds of equation can also be used
here.
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3.2. Solving the Flow Field and evolving the system

3.2.3. Solving for a Constant Total Flow Rate

The total volumetric flow rate is defined as the sum of the flow rates through all
the links

Q = −
∑
ij

kijAij

µijLij

(
∆pij − pc,ij

)
. (3.7)

The total flow rate can be written as a linear function of the global pressure
difference [13]

Q = A∆P +B, (3.8)

where the first term depends on the permeability, the effective viscosities of the links
and the pressure differences across the links. The second term has contributions
from the capillary pressures in addition to the permeability, the effective viscosities
of the links and the pressure differences across the links. We can keep the total
flow rate constant by finding both the constants A and B and from this find the
pressure difference that gives the required flow rate as follows:

First, we solve the pressure equations (3.6) twice for two arbitrary pressure dif-
ferences, ∆P

′
and ∆P

′′
, and calculate the corresponding total flow rate, Q

′
and

Q
′′
, we get

Q
′

= A∆P
′
+B, (3.9)

Q
′′

= A∆P
′′

+B. (3.10)

From this, we can calculate A and B as

A =
Q

′′ −Q′

∆P ′′ −∆P ′ , (3.11)

B = Q
′
−A∆P

′
, (3.12)

which give the global pressure difference

∆P =
Q

A
− B

A
, (3.13)

where Q is now the flow rate calculated from equation (3.3) by specifying a capillary
number, Q = CaγΣ/µ. The flow rate through a given link can be written as a
function of the global pressure difference as

q = a∆P + b. (3.14)

Applying the same procedure as for the total flow rate for each link, gives

a =
q
′′ − q′

∆P ′′ −∆P ′ , (3.15)

b = q
′
− a∆P

′
, (3.16)

which gives the flow rate through each link for the pressure difference calculated
from equation (3.13).
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Transverse Flow Rate

The positive direction of the flow is defined in the upward direction, e.g. all the
links across a horizontal cross-section will contribute to the total flow rate in the
same way, by addition. We can define the flow rate through any cross-section. If
the cross-section is horizontal, then the total flow through this plane will be the
same for any horizontal plane due to conservation of flow rate at the nodes. The
same holds for a vertical plane, the flow through any vertical plane will be the same
for any vertical cross-section of the network. By choosing a vertical cross-section,
we calculate how much fluid is flowing out of (and into) the system at each open
boundary, we will call this the transverse flow rate.

To calculate the transverse flow rate requires us to replace the sum over all the
local flow rates to a staggered sum due to the rotated grid. Half the links are
rotated 45◦ clockwise and point diagonally in the same direction as the normal
vector to the vertical plane, and half the links will be rotated counter-clockwise
with respect the y-axis, pointing in diagonally in the opposite direction. This means
that the dot-product of the flow-vector through a link and the normal vector to
the vertical plane changes sign for every other link for each row. We can calculate
the transverse flow rate Q⊥ as

Q⊥ = −

∑
r

krAr

µrLr
(∆pr − pcr)−

∑
l

klAl

µlLl
(∆pl − pcl )

 = A⊥∆P +B⊥, (3.17)

where r is the set of all links for which x+y is an even integer, and l is the set of all
links for which x+ y is an odd integer. x and y are the link’s x and y coordinates
on the lattice, starting from the lower left corner of the lattice.

It is possible to calculate the global pressure difference such that the transverse
flow rate remains constant in the same way as it was done when the total flow rate
was kept constant. The only difference is to replace Q by Q⊥, A by A⊥ and B by
B⊥.

3.2.4. Evolving the System

After having solved the pressure at the nodes, and the local flow rates has been
calculated using equation (3.1), we update the position of all the menisci in each
link according to the velocity of the fluid flowing through it, as calculated by (2.17).
A simple first order Runge-Kutta is used, moving each meniscus in link ij by an
amount ∆xij = uij∆t, where the time step ∆t is chosen in such a way that

max
ij

∆xij < 0.1L. (3.18)

A value of 0.1 is found to be sufficient [13] to ensure stability. Any fluid that
has been moved out of a link and into a neighboring node are distributed into
neighboring links as described in Section 3.1.4. If the number of bubbles in a link
after this step exceeds 3, the two nearest bubbles in the link are merged into a
single bubble as explained in Section 3.1.5.
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4. Results and Discussion

The following parameters have been used in all simulations unless stated otherwise:

• Equal viscosity: µnw = µw = 1 Poise.

• Surface tension: γ cos θ = 3 dyne
mm .

• Constant link length: L = 1 mm.

• Disordered link radius: r ∈ [0.1 mm, 0.4 mm]

These are in principle arbitrary except for the range of link radii. The only
important quantity is the capillary number, in the sense that a change in either
viscosity, length or surface tension scale would be balanced by a change in the flow
rate such that the capillary number remains constant. The driving force ∆P only
appears on the right hand side of equation (3.6), but implicitly determines the total
flow rate and capillary number through equation (3.8).

There are two relevant capillary numbers, one for the flow rate across a horizontal
cross-section (the total flow rate), and for the transverse flow rate across a vertical
cross-section. As the constant B and B⊥ in equation (3.8) changes with time (but
for a constant ∆P ), so will the capillary number, and total and transverse flow
rate.

We will focus on single interface boundaries instead of double interfaces. By un-
derstanding how this displacement process works we can get a better understanding
of how it works for a double interface.

4.1. Bubble Stability

The pressure inside of a curved surface will be higher than outside due to surface
tension. The capillary pressure will therefore reduce or increase the pressure differ-
ence across the tube required to keep the flow rate the same as without a meniscus
present (dashed line), depending on whether the meniscus is receding or advancing,
as sketched in Figure 4.1. An advancing meniscus during drainage will require a
higher pressure difference, and therefore inhibits the flow, representing a barrier
for the meniscus to pass through. A receding meniscus on the other hand, as is
the case during imbibition, will provide suction and lowers the required pressure
difference to reach a certain flow rate.

From this, it follows that a) a non-wetting fluid tend to stay close to the nodes
(unless the pressure difference is large enough to overcome the capillary barrier),

29



4. Results and Discussion
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p - pc < p < 0
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(a)

p

x

p - pc < p < 0

µnw µw
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Figure 4.1.: (a): A single advancing meniscus inside a tube and the corresponding
pressure jumps across the meniscus. The appearance of an advancing
meniscus increase the pressure difference across the link required to
keep up a specific flow rate (as opposed to the dashed line without
a meniscus). (b): A single receding meniscus inside a tube and the
corresponding pressure jump. The required pressure difference to keep
the flow rate with a meniscus the same as that without a meniscus is
decreased.

and b) a non-wetting fluid will prefer to invade the widest links (a larger radius
means a smaller capillary pressure), while the wetting fluid will invade the narrowest
links first and stay away from the nodes. This is the mechanism that tend to
stabilize imbibition processes, and destabilize drainage processes.

If the pressure difference across a link is not large enough to overcome the cap-
illary pressure during drainage, the meniscus will not be able to pass through the
link.

4.2. Single Interface

4.2.1. Constant Pressure Difference

There are four main regions of interest for the case of a single interface separating
the non-wetting and wetting fluid, as illustrated in Figure 4.2. Region 1 and 4
behaves as a single phase, with no menisci present. Region 3 will have wetting
fluid flowing through a network with an effective permeability due to the immobile
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4.2. Single Interface

Figure 4.2.: The 4 distinct regions during a simulation. Region 1 contains only non-
wetting fluids, flowing as a single phase. Region 2 contains non-wetting
front moving towards the non-wetting reservoir. Region 3 contains
immobile clusters of non-wetting fluid left behind by the moving non-
wetting front, with wetting fluid flowing inbetween the clusters. Region
4 contains only wetting fluids, flowing as a single phase.

non-wetting clusters left behind by the displaced non-wetting front. Region 2
contains the moving non-wetting front, which is displaced by the wetting liquid
flowing through region 3. The fluids flows from the bottom to the top, driven by
a global pressure difference between the lower and upper row of nodes (with the
higher pressure at the bottom row).

If the pressure differences across the links along the initial non-wetting front are
not sufficiently large to overcome the capillary thresholds during drainage, then
imbibition will dominate. The non-wetting front is displaced by wetting fingers
moving in the direction of the average flow direction and towards the non-wetting
reservoir, isolating clusters of non-wetting fluid along the way. The non-wetting
clusters tend to consist of larger links of non-wetting fluid surrounded by smaller
links containing wetting fluids.

When the global pressure difference is small, all non-wetting clusters will remain
immobile. Larger pressure differences will result in the creation of smaller cluster. If
the pressure difference is large enough such that the capillary barriers holding back
a cluster is overcome, it will start moving. At sufficiently higher global pressure
differences, all clusters will be mobilized, resulting in a current of non-wetting
bubbles moving away from the non-wetting front towards the wetting reservoir.

Figure 4.3 shows three snapshots from a simulation using a global pressure dif-
ference of ∆P/Ny = 0.5. The non-wetting liquid is displaced by the wetting fingers
along the non-wetting front, leaving behind immobile clusters of non-wetting fluid
surrounded by wetting fluid flowing from the wetting reservoir towards the non-
wetting front. A limited number of paths of q 6= 0 connecting the wetting reservoir
to the non-wetting front are present. By comparing the saturation and local flow
rates of the links at successive times we can see that the non-wetting fluid is dis-
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placed only at the end of these paths.
The total saturation and transverse flow rate as a function of time is shown in

Figure 4.4. The saturation will change at a rate proportional to the transverse
flow rate, as the non-wetting fluid can only flow out of the network through the
non-wetting reservoir. From the figure we can see that the transverse flow rate
eventually start fluctuating about a constant negative value, resulting in a con-
stant decrease in saturation. This means that the non-wetting front moves with
a constant average velocity towards the non-wetting fluid. The front will move
until it has reached the non-wetting reservoir, at which point the simulation is
terminated.

(a) 1000 s (b) 3500 s (c) 8000 s

Figure 4.3.: Flow field (top) and saturation plot (bottom) of three different snap-
shots of a single interface simulation for a system of 128x64 links, an
initial saturation of 85%, global pressure difference ∆P

Ny
= 0.5 at suc-

cessive times. A red hue (upper plot) represent a positive (upwards)
flow rate, while a blue hue a negative flow rate. The saturation plot
shows link saturation in grayscale.
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Figure 4.4.: (a) Total saturation as a function of time for the system in Figure 4.3,
and (b) transverse flow rate as a function of time.

Similarly, Figure 4.5 shows snapshots from the same network as in Figure 4.3, but
global pressure difference 8 times larger. The driving force is now large enough to
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4.2. Single Interface

mobilize some of the non-wetting clusters left behind by the displaced non-wetting
front. These clusters break up into bubbles that move from their initial position.
The system initially evolves similar to Figure 4.3, but after some time bubbles are
moved such that they disconnect the connected paths of wetting fluid displacing
the non-wetting front. If no such paths of wetting fluid connecting the wetting
reservoir to the front are available, the front will be unable to be displaced and will
stop moving. The transverse flow rate will go to zero, as there are no paths for
the wetting liquid to flow. This happens in Figure 4.5c. The total saturation and
transverse flow rate as a function of simulated time is shown in Figure 4.6. The
saturation eventually goes to a constant value, while the transverse flow rate goes
to zero as the front stops moving.

(a) 45 s (b) 175 s (c) 540 s

Figure 4.5.: Plot of the flow field (top) and saturation (bottom) at three different
times during a single interface simulation for a system of 128×64 links,
an initial saturation of 85%, and global pressure difference of ∆P

Ny
= 4

is used.
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Figure 4.6.: (a) Total saturation as a function of time for the system in Figure 4.5.
(b) Transverse flow rate as a function of time for the system in Figure
4.5

Finally, Figure 4.7 shows the result of four different simulations at even higher
pressure differences. Another network realization is included in addition to the one
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already shown in Figure 4.3 and 4.5. In addition simulations where the boundaries
have been switched is included. The plots shows a new flow regime appearing at
higher pressure differences which depends on the network geometry and boundary
conditions. The pressure difference is so large that almost all the clusters left
behind imbibition at moving non-wetting front will be mobilized, and a current of
non-wetting bubbles flows into the wetting region.

The direction of the transverse flow rate depends on the network realization
itself in addition to local behavior at the front. If the non-wetting reservoir is
at the opposite side of the network as the direction of the transverse flow rate,
as is the case in Figure 4.7b and 4.7c, the total saturation will increase. The
non-wetting front becomes unstable, and non-wetting fingers will grow towards
the wetting reservoir. These fingers will be broken up into bubbles if the global
pressure difference sufficiently large. If the net transverse flow rate is in the same
direction of the non-wetting reservoir the non-wetting front will remain stable, and
move towards the non-wetting reservoir while non-wetting bubbles broken off from
the front will diffuse out to the wetting reservoir.

Figure 4.8 shows the total saturation and transverse flow rate as a function of
time for the simulations in Figure 4.7.

(a) #1, Q⊥ < 0 (b) #2, Q⊥ > 0 (c) #1, Q⊥ < 0 (d) #2, Q⊥ > 0

Figure 4.7.: Snapshots of a single interface simulation for two systems (#1 and #2)
of 128×64 links, an initial saturation 85%, a global pressure difference
∆P
Ny

= 16, recorded after 300 seconds. (a) and (c) have the same

network as in Figure 4.3 and 4.5, while (b) and (d) have a different
network realization. The transverse flow depend only on the network
realization, and not on the boundary condition.

4.2.2. Relation to the Transverse Flow Rate

The results in the previous results can be explained as follows: The transverse flow
rate is calculated as

Q⊥ = −

∑
r

krAr

µrLr

(
∆pr − pc,r

)
−
∑
l

klAl

µlLl

(
∆pl − pc,l

) . (4.1)
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Figure 4.8.: (a) Saturation as a function of time for the system in Figure 4.7. (b)
Transverse flow rate as a function of time for the system in Figure 4.7

We can separate the effects of the capillary pressure

Q⊥ = −

∑
r

krAr

µrLr
∆pr −

∑
l

klAl

µlLl
∆pl

+

∑
r

krAr

µrLr
pc,r −

∑
l

klAl

µlLl
pc,l

 . (4.2)

We want to write the transverse flow rate as a linear function in the pressure
difference, Q⊥ = A⊥∆P +B⊥. The coefficients A⊥ and B⊥ are then calculated as
follows: For every snapshot the current bubble configuration is stored, and equation
(3.6) is solved multiple times for different values of ∆P , after which a linear fit of
Q⊥ as a function of ∆P is performed 1. A⊥ will only depend on the permeability
of the network, while B⊥ will depend on the permeability, the pressure difference
across the links, and on the capillary pressure due to menisci present in the network.

Figure 4.10 shows A⊥ as a function of time for the simulations in Figure 4.7a
(red) and 4.7b. A⊥ clearly does not change with time, and only depend on the
network realization. We can see from the plot that Figure 4.7a (blue line) has
A⊥ > 0, while Figure 4.7b (red line) has A⊥ < 0. This comes from the skewness
in the permeability for a finite system due to the disorder of the link radii. A⊥
will dominate over B⊥ for large ∆P . If A⊥ is found once for a given network, we
can calculate B⊥ = Q⊥ −A⊥∆P for any time step. If a larger system is used, the
number of terms in equation (4.2) will increase, and the value of A⊥ will go to zero
as the skewness in the permeability disappears.

If A⊥ > 0, we can predict that the transverse flow rate will be positive for large
∆P > 0 (and negative for large ∆P < 0). For small values of ∆P we will find that
B⊥ dominates the flow, e.g. imbibition dominates.

When Q⊥ > 0, and the non-wetting reservoir is on the left side of the system and
vice versa, as is the case in Figure 4.7b and 4.7c, we can expect the front to stop
moving, and drainage will dominate along the non-wetting front. If the opposite
holds imbibition will dominate, as is the case in Figure 4.7a and 4.7d.

1Only two different ∆P are needed, as the Q⊥ is a linear function in ∆P .
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4. Results and Discussion
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Figure 4.9.: Saturation profile at constant time intervals for a single interface sys-
tem corresponding to (a): Figure 4.3 (100000 time step intervals) (b):
Figure 4.5 (5000 time step intervals), and (c): Figure 4.7a

(10000 time step intervals). (a) and (b) has an initial saturation of 85%, while
(c) has an initial saturation of 50%.

4.2.3. Constant Transverse Flow Rate

The global pressure is not a good parameter to characterize the displacement of the
non-wetting front, as it does not take into account the disorder of the system. A
better characteristic number would be the transverse capillary number analogously
to the global capillary number

Ca⊥ = µQ⊥/γΣ⊥. (4.3)

where Σ⊥ is area of a vertical cross-section of the system and Q⊥ is the trans-
verse flow rate through it. We can get more insight into the displacement process
along the non-wetting front by forcing this transverse capillary number to remains
constant during a simulation by adjusting the global pressure difference.

Figure 4.11 and 4.12 show the evolution of a wetting finger displacing the non-
wetting front for transverse capillary numbers Ca⊥ = −10−5 and Ca⊥ = −5×10−5

(the sign is to ensure that the direction of the transverse flow is in the direction of
the non-wetting reservoir), with a 10000 time step interval between each snapshot.
The smallest Ca⊥ shows a single thin wetting finger displacing the non-wetting
front at only one location, and approximately in the same direction. The larger
Ca⊥ shows a more irregular displacement of the front, with the front being displaced
at several locations and directions, leaving behind smaller clusters than that for
the smaller Ca⊥. The transverse capillary number are in general a couple orders
of magnitude smaller than the global capillary number.
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4.2. Single Interface
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Figure 4.10.: A⊥ as a function of time during the simulation of a 128× 64 system
at ∆P/Ny = 16, corresponding to Figure 4.7a (red) and 4.7b (blue)

When keeping the capillary number constant the pressure is adjusted accordingly.
If there are no paths for the wetting fluid to connect to the non-wetting front the
pressure difference will increase until a new path has been created. This means
that the global capillary number will increase, and often so much that the clusters
in the region behind the non-wetting front temporarily mobilize. This method is
therefore not suitible for analyzing the behavior away from the front.

There is also no control over the sign of the global pressure difference, whose
sign might be positive or negative, or it may fluctuate depending on the local
distribution of menisci.

Figure 4.11.: Saturation evolution of a constant transverse flow rate simulation at
Ca⊥ = −10−5 in intervals of 10000 time steps. A single wetting finger
displace the front in one direction.
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4. Results and Discussion

Figure 4.12.: Saturation evolution of a constant transverse flow rate simulation at
Ca⊥ = −5× 10−5 in intervals of 10000 time steps.

4.3. Double Interface

In the single interface simulation the non-wetting fluid that was displaced along the
non-wetting front by the wetting fluid moved out of the system through the non-
wetting reservoir. For a band of non-wetting fluid surrounded by wetting fluid there
will not be any non-wetting reservoirs for the non-wetting fluid to be transported
out of the system. If the global pressure difference is not large enough so that the
non-wetting clusters that are created during imbibition along the fronts are unable
to move, the front will therefore be stable. By increasing the pressure difference
so that most clusters are mobilized, both the fronts may be displaced at the same
time. Transport of non-wetting bubbles out of the system by diffusion will be the
only way to transport non-wetting out of the system. This is the cause of the
instability observed by Ramstad et al.

The value of A⊥ will be the same irregardless of the boundary and initial condi-
tions. We can therefore not expect the two fronts to move with the same velocity.
We can on the other hand expect that one of the fronts will be dominated by im-
bibition, while the other by drainage unless A⊥ ≈ 0. If A⊥ ≈ 0 we can expect the
behavior of the two fronts to be similar. Figure 4.13 shows the saturation profile
Snw(x) for three different realizations of 512×32 links, having a positive, negative,
and close to zero A⊥, respectively. Figure 4.13a and 4.13b shows one front domi-
nated by drainage and one front dominated by imbibition, with the imbibition front
moving with a constant velocity and shape towards the non-wetting fluid. Figure
4.13c is much slower than 4.13a and 4.13b and both fronts move at the same time.
It is not clear whether they move with a constant velocity. Only the shape of the
upper part saturation profile of Figure 4.13c seems to remain constant, as the tails
of the curve tend to smoothen out due to diffusion.

We can also shed some light on the case when a band of wetting fluid is sur-
rounded by non-wetting fluid. The wetting fluid will not be in contact with a
wetting reservoir, and imbibition cannot happen along the non-wetting fronts. A
diffusive current of non-wetting bubbles will flow through the wetting region until
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4.3. Double Interface
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Figure 4.13.: (a): Saturation profile as a funtion of time for a double interface
system of size 512 × 32 links where A⊥ > 0 and ∆P/Ny = 16. The
curves are 100000 time steps apart. (b): A⊥ < 0, and (c): A⊥ ≈ 0,
200000 time steps apart

the net flow of bubbles is zero, resembling the drainage dominated cases in Figure
4.7.

For a complete comparison to the results presented by Ramstad et al. one need to
consider the more intricate details of the model. In particular the rules for merging
bubbles when the total number of bubbles in a link exceeds a maximum number
will have an effect on the displacement of the non-wetting front. The maximum
number of bubbles would also effect the diffusive region behind the front. If one
allows too many non-wetting bubbles, the diffusive current of bubbles broken off
from the non-wetting front will tend to break up into as many bubbles as possible,
however small.
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5. Conclusion and Outlook

We have been successful in providing an explanation for the displacement processes
at the interface separating a non-wetting and a wetting fluid flowing in parallel in a
two-dimensional dynamic network simulator. The displacement processes along the
non-wetting front has been identified as a competition of imbibition and drainage
processes at the pore scale. Whether drainage or imbibition dominate the displace-
ment process depend on the permeability of the network as a whole, the magnitude
of the global pressure difference, and on the distribution of the capillary pressures
in the system.

We find that when the non-wetting front is displaced by imbibition it moves with
a velocity proportional to the transverse flow rate, the flow rate in the direction
perpendicular to the driving force. If the transverse flow rate fluctuate about a
constant value we find that the front moves with a constant velocity. The front
will be displaced along the narrowest links, leaving behind immobile clusters of
non-wetting liquid concentrated in larger links with wetting fluid flowing around
them.

The displacement at the non-wetting front is characterized by the transverse
capillary number in the same way as the global capillary number characterize the
displacement front during imbibition and drainage displacements perpendicular to
the front separating the fluids. The transverse capillary number depends on the
global pressure difference driving the flow in the direction parallel to the front. The
shape of the saturation profile Snw(x) will depend on the driving force, with the
size of the clusters in the foam layer decreasing as the pressure difference increases.

The instability that appears when a band on non-wetting fluid is surrounded
by wetting fluid flowing in parallel above a critical value of the capillary number
is explained as the result of the mobilizing of the clusters of non-wetting fluid
left behind during imbibition at the fronts separating the non-wetting fluid from
the rest of the system. When there are two non-wetting front, and the driving
pressure is not large enough to mobilize said clusters, the front will stabilize, and
stop moving.

The main goal for future work would be to include the effects of wetting films
and snap-off mechanics during imbibition displacements. A dynamic network model
including these was developed by Tør̊a et al. [18]. Investigating the case where the
viscosity of the two fluids do not match should also be considered. Finding a way to
properly model the dynamics of the mixing of fluids at the nodes, the distribution
of fluids to neighboring links, and understanding the effect of different rules to
merging bubbles should also be highly prioritized.
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A. Flow Program

The source code for the program used in this thesis can be found with instructions
on Github, with a copy of the source code as it was as of the time of writing this
manuscript.
https://github.com/vassvik/parallel-flow-thesis.
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