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Abstract 

 The paper presents a simple analytical method giving estimates of wave-driven bottom 

stresses for very rough and mud seabeds in shallow water from long-term wave statistics in deep 

water. The results are exemplified using long-term in-situ wave statistics from the Northern North 

Sea, and by providing examples representing realistic field conditions. The results can be used to 

make estimates of the seabed shear stress in estuarine and coastal waters based on e.g. global wave 

statistics. 
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1. Introduction 

 Simple and effective descriptions of transport mechanisms in operational estuarine and 

coastal circulation models are often required, in which the seabed shear stress represents an 

important component. At shallow and intermediate water depths, e.g. in estuarine and coastal 

zones, the water particle movements driven by surface waves affect the flow in the water column 

from the surface to the bottom of the sea. In general, the flow in this region is driven by surface 

waves and currents. The seabed wave boundary layer is a thin flow region at the bottom dominated 

by friction arising from the bed roughness. The wave boundary layer flow determines the bottom 

stresses, affecting, for example, transport of sediments as well as assessment of stability of scour 

protections in estuarine and coastal waters. The boundary layer flow regime is most commonly 

rough turbulent. However, the flow over a mud bottom is most commonly laminar and smooth 

turbulent depending on the bottom sediments and wave activity (Whitehouse et al.1; Myrhaug et 

al.2). 

 The purpose of this study is to demonstrate how long-term wave statistics in deep water may 

be utilized to provide wave-driven bottom stresses in shallow water. Results are given for the 

bottom stresses under random surface waves at seabeds which are very rough and for laminar flow 

applied to mud seabeds, and are primarily based on the previous work by Myrhaug and Holmedal3 

(hereafter referred to as MH3) who provided the bottom stress spectrum for large roughnesses and 

for laminar flow. Examples representing field conditions are presented. 

 In the rough turbulent regime considered here, the near-bed wave orbital displacement 

amplitude (A) to the bottom roughness (z0 = ks/30 where ks is the Nikuradse sand roughness) ratio 

(A/z0) is small; i.e. A/z0 < 300 corresponding to very rough beds (see Section 4 and MH3 for more 

details). The results in this flow regime are relevant for e.g. assessment of the stability of scour 



protection in coastal and estuarine environments for relative large roughnesses compared to the 

near-bed random wave activity. 

 Laminar flow near mud (i.e. clay and silt) beds is of practical interest. It appears that e.g. 

organic (polychlorinated biphenyl (PCBs), etc.) pollutants easily stick to clay particles and organic 

materials of sediments. Results for laminar flow are relevant for assessing erosion and deposition 

of mud under random waves (see MH3 and Myrhaug et al.2 for more details on the relevance for 

mud beds). 

 Details on the background, complexity of the flow and reviews are given in the textbooks of 

e.g. Nielsen4, Fredsøe and Deigaard5, Soulsby6, Whitehouse et al.1, Winterwerp and van Kesteren7.  

 

2. Seabed shear stress beneath random waves in shallow water 

2.1 Spectrum of seabed shear stress 

 Following MH3 the bottom shear stress spectrum for laminar flow in shallow water ( 1)kh   

is obtained as (see Eq. (67) in the Appendix) 
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Here  is the seabed shear stress,  is the fluid density,   is the cyclic wave frequency, h is the 

water depth, f  is the kinematic viscosity of the fluid, k is the wave number determined from the 

dispersion relationship 
2 tanhgk kh   which in shallow water reduces to 

2 2 k gh , g is the 

acceleration due to gravity, and ( )S   is the deep water wave spectrum. 

 For rough turbulent flow near a seabed with large roughnesses in shallow water the bottom 

stress spectrum is obtained as (see Eq. (71) in the Appendix) 
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 Here 0z   is the average bottom roughness, and c is a constant with the two values 9 and 18 

reflecting that c is strongly related to the geometry of the roughness elements (see MH3 for more 

details). The first term on the right hand side of Eqs. (1) and (2) represents the square of the 

magnitude of the transfer function between the seabed shear stress /   and the free surface 

elevation  ; the second term represents the depth correction factor in shallow water, i.e. a 

correction factor which is used to transform the deep water wave spectrum ( )S   to shallow 

water (see the Appendix for more details). 

 By substituting 
2 2 /k gh , Eqs. (1) and (2) are rearranged, respectively, to 
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It appears that the seabed shear stress spectra are given in terms of the deep water wave spectrum 

and that the dependence on the water depth disappears. This is a consequence of transforming the 

waves from deep to shallow water and by using the bed shear stress formulas for laminar (mud 

beds) (Eqs. (60) and (64)) and for very rough beds (Eqs. (60) and (68)).  

 

2.2 Very rough beds  

 The zeroth spectral moment of the bottom stress spectrum for seabeds with large 

rougnesses is obtained from Eq. (4) as 
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where 4m  is the fourth spectral moment of the wave spectrum in deep water, i.e. the n’th spectral 

moment of the deep water wave spectrum is defined as 
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 The most common model wave spectra are proportional to 5   for large  , and thus 4m  does not 

exist. However, 4m  can be expressed in terms of the spectral moments 0 1 2, andm m m , and 

consequently in terms of characteristic sea state parameters, as will be described in the following. 

For deep water waves the significant wave height sH , the mean spectral wave period 1T  , the mean 

zero-crossing wave period 2T  , the mean period between maxima 4T , and the spectral bandwidth 

parameters   and   are given in terms of deep water wave the spectral moments as (see e.g. Tucker 

and Pitt8)  

 04sH m   (7) 

 0
1

1

2
m

T
m

   (8) 

 0
2

2

2
m

T
m

   (9) 

 2
4

4

2
m

T
m

   (10) 

 
2 2

2 2 4

2

0 4 2

1 1
m T

m m T
       (11) 

 
2

2 0 2 1

2

1 2

1 1
m m T

m T
       (12) 



The last expressions on the right hand side of  Eqs. (11) and (12) have been obtained by using Eqs. 

(8), (9) and (10). 

 For a narrow-band wave process / 2   (Longuet-Higgins9), which combined with Eqs 

(7), (11) and (12) gives 
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The spectral peak period pT  is frequently used as a characteristic wave period. For a given deep 

water wave spectrum there exists a relationship between pT  and 1T , and pT  and 2 T , i. e. 
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which substituted in Eq. (13) gives 
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Thus, by combining Eqs. (5) and (16) the significant value of the shear stress height is obtained 

as 
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2.3 Laminar flow  

 The zeroth spectral moment of the laminar flow bottom stress spectrum is obtained from Eq. 

(3) as 

 
0 / 3

2

f
m m 


   (19) 

The wave period 3T  related to the surface Stokes drift velocity is given as (see e.g. Webb and Fox-

Kemper10)   
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which combined with Eq. (7) gives 
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For a given deep water wave spectrum 3 3 / pT T  . Thus, by combining this with Eqs. (19) and 

(21) the significant value of the shear stress height is obtained as 
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2.4      Summary of bottom stresses for large roughness and laminar flow  

 

  The results in Sections 2.2 and 2.3 can be summarized as follows 
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Thus, the seabed shear stress in shallow water is given in terms of the sea state parameters sH   and 

pT  in deep water. 

 

3 Statistical properties of bottom shear stress  

3.1 Joint distribution of sH  and pT   

 Many models representing the joint probability density function (pdf) of 
sH  and 

pT  are found 

in the literature. Examples are Haver11 and Moan et al.12. In the present paper the statistical 

properties of the seabed shear stress in shallow water are exemplified by using the joint pdf of 
sH  

and 
pT  proposed by Moan et al.12 based upon 29 year of wave data in the Northern North Sea. This 

pdf is given as 
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where  sp H  is the marginal pdf of 
sH  given by the following combined lognormal and Weibull 

distributions (this type of distribution was first suggested by Haver11)  
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Here   
20.801 , 0.371     are the mean value and the variance, respectively, of ln sH , and 

2.713 , 1.531     are the Weibull parameters. 

  |p sp T H  is the conditional pdf  of 
pT  given 

sH , given by the lognormal distribution 
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where   and 2  are the mean value and the variance, respectively, of  ln pT , given by (Gao13) 
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3.2 Statistical properties of seabed shear stress 

Statistical properties of t (from which the statistical properties of the bottom stresses for large 

roughness and laminar flow can be derived) are calculated from the joint pdf of 
sH  and  

pT , e.g. 

yielding the joint pdf  of  t  and 
sH ; this is derived from Eq. (27) by changing variables from 

 ,s pH T  to  ,sH t , giving   
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given 
sH  as (i.e. applying the Jacobian 1/ 1 1/| / | / ( )   n n

p sT t H nt ) 

  
 

2

2

ln1
| exp

22

t

s

tt

t
p t H

t





 
  

  

 (33)  

where t  and 2

t  are the conditional mean value and the conditional variance, respectively, of 

ln t , given as 

lnt sH n     ;   
2 2( )t n      (34)  

where   and 2  are given in Eqs. (30) and (31), respectively.  

 The joint pdf of pT  and t is derived from Eq. (27) by changing variables from  ,s pH T  to 

( , )pT t  applying the Jacobian | / | n

s pH t T    according to Eq. (24). However, this will not be 

elaborated further here. 

 The conditional cumulative distribution function (cdf) of t  given 
sH  is derived from 
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where   is the standard Gaussian cdf, i.e. 
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The conditional expected value of t  given 
sH  is (Bury14) 
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The conditional standard deviation of t  given 
sH is (Bury14) 
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4 Examples of results  

 The practical application of the results are illustrated by two examples using data representing 

realistic field conditions: very rough seabeds with roughness 0 0.0094mz  (cobble; Soulsby6), and 

mud beds with median grain diameter 50 0.03mmd   (medium silt; Soulsby6). 

 First, common features of the two examples are described. Many standard spectral 

formulations can be used, but here a Phillips spectrum is taken as the deep water wave spectrum 

from which analytical expressions can be obtained (see e.g. Tucker and Pitt8; Massel15) 
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where 0.0081   is the Phillips constant and p  is the spectral peak frequency. Based on the 

definition of the spectral moments in Eq. (6) it follows for waves in deep water that 
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With 2 /p pT    this gives 
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Then it follows from Eqs. (18) and (23), respectively, that 
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Furthermore, the Phillips spectrum transformed to shallow water becomes (Massel15) 
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which gives the following shallow water significant wave height  
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  . It should be noted that the wave transformation effect included here is 

based on extending the concept of the Phillips equilibrium range from deep to shallow water, i.e. 

that the frequency dependence is in the range 
5 in deep water to 

3 in shallow water (Massel15). 

In this equilibrium range of the spectrum the wave dissipation is due to wave breaking, i.e 

whitecapping (Tucker and Pitt8). 

 

4.1 Example 1: very rough beds 



 The flow conditions are 

  Water depth, h = 3 m 

 Spectral peak period, 8.2s, pT  corresponding to 2 / 0.766rad/sp pT     

 

The calculated quantities are: 

  Deep water significant wave height, 22 / 3ms pH g     

  Shallow water significant wave height, 2 / 1.27m sh pH gh    

  pk  from the shallow water dispersion relationship corresponding to 

, / 0.141rad/m p p pk gh    

  Peak near-bed orbital displacement amplitude, / (2 ) 1.50m p sh pA H k h   

  0/ 160 300 pA z  , i.e. being in the range of the data of both Myrhaug et al.16 and Dixen 

et al.17 (see MH3 for more details). Thus both c = 9 and c = 18 are used. 
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 according to Eq. (47) 

Then it follows from Eqs. (24), (25), (37) and (51) that 
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and from Eqs. (24), (25), (38) and (51) that 
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Thus the intervals corresponding to the mean value   one standard deviation are given by 

2 2 2 2(0.0656m / s , 0.172m / s )  and 
2 2 2 2(0.131m / s ,0.345m / s )  corresponding to 9c   and  18c 

, respectively. 

 The critical shear stress for movement of the bottom material is given by Soulsby4 as 
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with 2.65s   as the sediment to fluid density ratio for quartz sand, and 50 012 .d z   Thus, 

2 2( / ) 0.1m / sc   , showing that the bottom material will be partly unstable/stable for  9c   and 

unstable for 18c  . 

 

4.2 Example 2: Mud beds 

 The given flow conditions are: 

 Water depth, h = 3 m 

 Spectral peak period, 4.8spT , corresponding to 2 / 1.308 rad/s p pT     

 Density of water, 
31027kg/m    

 Kinematic viscosity of water at temperature 
o10 C   and salinity 35 o/oo,  

6 21.36 10 m / sf
    

The calculated quantities are 

 Deep water significant wave height, 22 / 1.03m s pH g    

 Shallow water significant wave height, 2 / 0.75m sh pH gh    

 pk  from the dispersion relationship in shallow water corresponding to 

, / 0.241rad/m p p pk gh    



 Peak near-bed orbital displacement amplitude, / (2 ) 0.52m p sh pA H k h   

 The wave Reynolds number, 
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according to Eq. (48). 

Then it follows from Eqs. (24), (26) (37) and (55) that 
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and from Eqs. (24), (26), (38) and (55) that 
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Thus the interval corresponding to the mean value   one standard deviation is given by 

2 2 2 2(0.00075m / s ,0.00187m / s ) . 

 As exemplified in Whitehouse et al.1 ( i.e. example 4.2 for erosion and example 8.1 for 

deposition), the critical bed shear stress for erosion is 
20.197 N/me   and for deposition it is 

20.08N/md  . Thus it follows that 
2 2/ 0.00019m / se    and 

2 2/ 0.000078m / sd   , 

showing that the bed is exposed to erosion for this flow condition. 

 In general, mud beds exhibit cohesive properties and the details of the flow can only be 

understood by including a number of complex transport mechanisms; see e.g. Whitehouse et al.5 

and Winterwerp and van Kesteren7 for further details. The flow over muds is not necessarily 

laminar, but will depend on the wave Reynolds number Re, which can be large enough 

corresponding to turbulent flow over smooth (or mud) beds, i.e. 
5Re 3 10  . Furthermore, the 

results in Fig 2.13 in Fredsøe and Deigaard5 as well as in Ch. 4.5 in Soulsby6 can be used to 



distinguish between laminar and turbulent flow for different combinations of grain size and 

Reynolds number.  

  

5.    Discussion 

       Here the present method versus a commonly used practice in coastal engineering is briefly 

discussed. For calculating random wave-driven bottom shear stress in shallow water common 

practice would be to start from available data on joint statistics of  Hs and Tp (or other characteristic 

wave periods) at a nearby offshore (deep water) location; then to transform this applying an 

appropriate wave simulation model yielding the joint statistics of Hs and Tp at the shallow water 

site; then using this result as input for calculating the seabed shear stress. Alternatively, this paper 

provides a simple analytical method giving first estimates of random wave-driven bottom stresses 

for very rough  and mud seabeds from observed deep water sea surface wave statistics with an 

example based on in-situ data obtained from the Northern North Sea. The Phillips deep water wave 

frequency spectrum is chosen as an example and is transformed to shallow water using the narrow-

band and shallow water assumptions. It is also assumed to be a smooth transition from deep to 

shallow water excluding an evolving bathymetry with varying shallow water depths. Thus, an 

analytical estimate of the associated bottom shear stresses is obtained. The narrow-band 

assumption is justified since the waves with the frequencies close to the spectral peak frequency 

are the most energetic contributing to the random wave-driven seabed shear stresses in shallow 

water. Such simple methods are useful to be able to quickly make estimates which can be used to 

compare and verify more complete computational methods. It might also be useful e.g. under field 

conditions when there is limited time and access to computational resources. However, the 

accuracy of the method versus common approaches should be assessed, but this is only possible to 



quantify by comparing with such methods covering a wide parameter range, which is beyond the 

scope of the present work.  

 

6.  Summary  

 A simple analytical method which can be used to give estimates of the random wave-driven 

seabed shear stress for very rough beds and mud beds in shallow water based on long-term 

observations of wave conditions in deep water is provided. Results are exemplified by using  long-

term in-situ wave statistics from the Northern North Sea and by giving examples representing 

realistic field conditions. The results might serve as a useful tool for assessing e.g. stability of scour 

protections in coastal and estuarine environments where the roughness elements are large compared 

to the near-bed wave activity, as well as for assessing erosion and deposition of mud. The method 

should also represent a useful representation of the seabed shear stress often required in operational 

estuarine and coastal circulation models based on, for example, available global wave statistics. 
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APPENDIX   Brief summary of the MH3 seabed shear stress spectrum in 

shallow water   

          A horizontally uniform oscillatory seabed wave boundary layer flow is considered with the 

free stream velocity outside the boundary layer as  



( )  i tu t Ue        (58) 

where complex notation is used, U is the near-bed orbital velocity amplitude, t is the time,  is the 

cyclic wave frequency, and  is the complex unity. The seabed shear stress is 

       (59) 

where  is the phase angle between  and , and  is the maximum seabed shear stress  

given by 

       (60) 

with  as the fluid density and  as the wave friction factor. 

The relationship between  and the free surface elevation  with wave amplitude  is  

    
 (61) 

where h is the water depth, and  k is the wave number determined from the dispersion relationship 

for linear waves as given in Section 2.1. From Eqs. (58) and (61) it follows that 

       (62) 

The wave spectrum in finite water, , is obtained by multiplying the deep water wave 

spectrum, , with a depth correction factor, , which in shallow water  is 

 (Section 7.3 in Massel15) 

       (63) 
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For laminar flow the wave friction factor and the phase angle are given as 

                                                 fw = Re-0.5   ;   Re = UA/ f  ;                 
 

         (64) 

where Re is the Reynolds number associated with the wave motion, , and f  is the 

kinematic viscosity of the fluid. By using Eqs. (58), (60), (61), and (64), Eq. (59) becomes 

      (65) 

Then the Response Amplitude Operator (RAO) = ratio between the amplitude of the free surface 

elevation, , and the amplitude of the seabed shear stress, , is obtained as (i.e. 

corresponding to the magnitude of the transfer function) 

1/2( )
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f
RAO

kh

  
      (66) 

Consequently, the seabed shear stress spectrum for laminar flow is  
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          For rough turbulent flow the transfer function between the free surface elevation and the 

seabed shear stress at beds with very large roughness can be found analytically. In this roughness 

regime the wave friction factor is given as 

       (68) 

where c is a constant, using the two values 9 and 18 (see MH3 for further details).  

By combining Eqs. (58), (60), (61),  and (68), Eq. (59) becomes 
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      (69) 

and the RAO between the free surface elevation and the seabed shear stress is  
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Consequently, the seabed shear stress spectrum for rough turbulent flow over a bed with very large 

roughness is  
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       It should be noted that only the waves with wavelengths longer than approximately two times 

the water depth will give wave activity at the seabed. By using the deep water dispersion 

relationship 2  gk , this means that the waves at the seabed have frequencies below ( /g h )1/2. 
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