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Abstract

A discussion is given on the interpretation and physical importance of the Minkowski momentum

in macroscopic electrodynamics (essential for the Abraham-Minkowski problem). We focus on the

following two facets: (1) Adopting a simple dielectric model where the refractive index n is constant,

we demonstrate by means of a mapping procedure how the electromagnetic field in a medium can

be mapped into a corresponding field in vacuum. This mapping was presented many years ago [I.

Brevik and B. Lautrup, Mat. Fys. Medd. Dan. Vid. Selsk 38(1), 1 (1970)], but is apparently

not well known. A characteristic property of this procedure is that it shows how natural the

Minkowski energy-momentum tensor fits into the canonical formalism. Especially the spacelike

character of the electromagnetic total four-momentum for a radiation field (implying negative

electromagnetic energy in some inertial frames), so strikingly demonstrated in the Cherenkov effect,

is worth attention. (2) Our second objective is to give a critical analysis of some recent experiments

on electromagnetic momentum. Care must here be taken in the interpretations: it is easy to be

misled and conclude that an experiment is important for the energy-momentum problem, while

what is demonstrated experimentally is merely the action of the Abraham-Minkowski force acting

in surface layers or inhomogeneous regions. The Abraham-Minkowski force is common for the two

energy-momentum tensors and carries no information about field momentum. As a final item, we

propose an experiment that might show the existence of the Abraham force at high frequencies.

This would eventually be a welcome optical analogue to the classic low-frequency 1975 Lahoz-

Walker experiment.

PACS numbers:
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I. INTRODUCTION

It is almost amusing to note that the Abraham-Minkowski energy-momentum problem

in dielectric media - considered to be a very old-fashioned problem in the 1960’s when the

present author began working on it - has in recent years emerged to become of considerable

interest. Some recent papers on the theme are listed in Refs. [1–22]. The author published

three papers at the Royal Danish Academy of Sciences in 1970 [23–25] (the last one on QED

with Benny Lautrup). Some years later a review was published in 1979 [26], dealing with

experimental consequences of the theory. Among more recent activities of the author within

the same area we mention a couple of papers [27, 28], the first of which focusing again on

experimental possibilities, namely how to use intensity-modulated whispering gallery modes

in a microresonator to measure the Abraham force at optical frequencies.

The reason why we are revisiting this topic here, is twofold:

1. We wish to re-emphasize that there is an intimate connection between the Maxwell

field equations in vacuum and in an isotropic nondispersive; the two cases can be related

by a simple transformation procedure. In turn, this mapping leads on to the Minkowski

momentum in a straightforward way. Actually this procedure was spelled out already in 1970

[25], but has apparently not been much recognized in the literature. In essence, the method

demonstrates how natural the Minkowski theory fits into the canonical procedure in field

theory. On a deeper level, this is a consequence of the vanishing of the Minkowski four-force

for a pure radiation field in matter, implying that the total field energy and momentum make

up a four-vector [29]. The fact that the Minkowski four-momentum turns out to be spacelike

instead of timelike as is usually the case, does not disturb this fundamental property.

2. Formal arguments of the above kind, although impressive and elegant, of course cannot

determine whether the Minkowski theory is physically the correct one (strictly speaking this

is a matter of convenience rather than correctness). One ought to go to real experiments

to get information. And this brings us to the second theme of this paper, which is to make

a brief critical survey over recent experiments in optics, and judge to what extent they

elucidate the photon momentum problem.

We shall be concerned with the simple case of an isotropic nondispersive medium moving

at constant four-velocity Vµ in the laboratory system. We begin in the next section by

presenting the transformation matrix bµν , and show how this can be used to map the Maxwell
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equations in vacuum to those in a medium in the case of a pure radiation field. In Sec. III

we include extraneous charges and currents, and show how the vacuum potential Avac
µ at

spacetime position xµ can be mapped into a medium potential Bµ at another spacetime

position yµ = bµνx
ν . The gauge condition is also considered. In Sec. IV we quantize the

electromagnetic field by means of the transformation procedure. At this point it will turn out

how the canonical total four-momentum becomes naturally identifiable with the Minkowski

four-momentum.

Section V contains the mentioned discussion about some recent experiments. Care should

be taken to see whether the experiments say something about electromagnetic momentum,

or whether they merely show the action of the force fAM which act in the air-liquid boundary

(cf. Eq. (60) below). This force is common for the Abraham and Minkowski tensors.

We point out that we do not intend to give an exhaustive review of the developments

within macroscopic electrodynamics in media. Historically, the papers of Jauch and Watson

[30] play an important role. And there are several more recent papers in this area; cf., for

instance, Refs. [31–33].

II. THE TRANSFORMATION MATRIX. PURE RADIATION FIELD

For convenience we adopt the same conventions as in Ref. [25]. Thus the coordinates are

xµ = (x0, x1, x2, x3) = (t,x), the metric tensor gµν has diagonal components (1,−1,−1,−1),

and we put ~ = c = 1. We adopt a very simple material model where the medium is

isotropic and nondispersive, moving in the laboratory inertial system with constant four-

velocity Vµ = (V0,V) = γ(1,v), where γ = (1− v2)−1/2, V 2 = V µVµ = 1.

A. Configuration space

There are two field tensors, Fµν and Hµν , defined by Fi0 = Ei, Fij = −Bk (cycl),

Hi0 = Di, Hij = −Hk (cycl). This means that the Maxwell equations for the pure radiation

field can be expressed covariantly, in any inertial system, as

∂λFµν + ∂µFνλ + ∂νFλµ = 0, (1)

∂νHµν = 0, (2)
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where ∂ν = ∂/∂xν . The covariant constitutive relation can be expressed as

µHαβ = Fαβ + κ(FαVβ − FβVα), (3)

where we have defined

κ = εµ− 1 = n2 − 1, Fα = FαβV
β, (4)

(n =
√
εµ is thus the refractive index in the medium’s rest system)

We can now introduce the transformation matrix bµν ,

bµν = gµν + (n− 1)VµVν . (5)

It satisfies the convenient property

(bp)µν = gµν + (np − 1)VµVν , (6)

valid for all integers p, positive and negative. This enables us to write the constitutive

relation (3) in compact form as

µHαβ = (b2)ρα(b
2)σβFρσ. (7)

We now introduce the electromagnetic potentials via Fµν = ∂µAν − ∂νAµ, and consider the

Lorentz gauge

ΛF(x) ≡ (b2)µν∂µAν = ∂ ·A + κ∂ · V A · V = 0, (8)

with ∂ ·A = ∂µA
µ. Making use of Eq. (7) we see that the field equation (2) takes the elegant

form

(b2)ρσ∂ρ∂σAµ = [�+ κ(∂ · V )2]Aµ = 0, (9)

where � = ∂µ∂
µ. Equation (1) is automatically satisfied.

We now note that the field equation (9) can also be obtained from a variational principle,

corresponding to the Lagrangian density

L = −1

4
FµνH

µν − 1

2µ
(ΛF)2, (10)

although one should here be aware of the restriction that the variational equation is the

same as the Maxwell field equation (2) only if the subsidiary condition ΛF = 0 is imposed

explicitly.
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The expression (10) is the starting point for canonical quantization of the radiation field.

The canonically conjugate momenta are

πµ = Hµ0 − 1

µ
(b2)µ0ΛF. (11)

The canonical commutation rules become now formally the conventional ones. We give here

only the nontrivial one,

[πµ(x), Aν(x
′)]x0=x′

0
= −igµν δ(x− x′), (12)

the other ones vanishing.

Consider next the relativistic invariance of the quantization procedure. For a physical

system that is closed, the invariance is usually checked by verifying that the operators Pµ for

total four-momentum and Mµν for total angular momentum are constants of motion, and

moreover identifiable with the Hermitian operator Pµ generating infinitesimal translations

and the corresponding operator Mµν generating infinitesimal rotations in four-space. These

operators satisfy

i[Pµ, Aν(x)] = ∂µAν(x), (13)

i[Mµν , A
σ(x)] = xµ∂νA

σ(x)− xν∂µA
σ(x) + IσρµνAρ(x), (14)

where Iρσµν = gσµg
ρ
ν − gρµg

σ
ν .

It is now possible to verify that Eq. (13) is valid also if Pµ becomes replaced by the field

operator Pµ. To this end we may start from the canonical energy-momentum tensor

Scan
µν = −gµνL+

∂L

∂∂νAα

∂µAα, (15)

from which Pµ follows by integration over the volume,

Pµ =

∫

Scan
µ0 dV. (16)

In view of the field equations, Pµ is a constant, and so we find by using Eqs. (15) and (16)

that Eq. (13) is valid if Pµ is replaced by Pµ.

The case of angular momentum becomes more complicated to analyze, there occur formal

ambiguities related to the fact that we are dealing with a non-closed physical system: the

Lagrangian (10) describes the radiation field and its interaction with the medium but not

the medium itself. It implies here that the angular momentum Mµν is not a constant of
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motion. A more detailed discussion on this case can be found in Ref. [25]. We restrict

ourselves here to stating that in the classical field theory where one obtains correspondence

with Maxwell theory simply by setting ΛF = 0, also the field angular momentum Mµν can

be substituted for the Hermitian operator Mµν in Eq. (14), assumed that Mµν is calculated

with use of Minkowski’s energy-momentum tensor (superscript M),

SM
µν = −FµαH

α
ν +

1

4
gµνFαβH

αβ. (17)

B. Momentum space

It is of interest to consider the field equation in momentum space. We may start from

the integral

Aµ(x) = (2π)−3/2

∫

dkδ(k2 + κ(k · V )2)e−ikxAµ(k), (18)

where k2 = kµkµ and dk = dk0dk. The field equation (9) in configuration space then leads

to

k2 + κ(k · V )2 = 0. (19)

For the angular frequency k0 there are two solutions, ka and kb, where

ka,b =
κV0 k ·V ±

√

(1 + κV 2
0 )k

2 − κ(k ·V)2

1 + κV 2
0

. (20)

It should here be noticed that there exist some inertial systems in which ka (upper sign)

becomes negative. This is when κV2 > 1, i.e. n2v2 > 1, and corresponds to the Cherenkov

effect. Evidently this is a consequence of the fact that the Minkowski four-momentum PM
µ

of a radiation field is spacelike. It can immediately by visualized by considering a Cherenkov

emitter in the inertial system where it is at rest prior to the emission: the emitter sending

out a photon within the Cherenkov cone gets a kick and receives thus an increase of kinetic

energy. The energy of the photon itself accordingly has to be negative due to the energy

balance.

It is also instructive to use Eq. (18) to write down the equation for the surface k0 = const

in k−space. With the coordinate axes oriented such that V1 = |V|, V2 = V3 = 0, we get

[k1 + κk0V0|V|(1− κV2)−1]2

n2k2
0(1− κV2)−2

+
k2
2

n2k2
0(1− κV2)−1

+
k2
3

n2k2
0(1− κV2)−1

= 0. (21)
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If κV2 < 1, this is the equation of an ellipsoid in k−space. If κV2 > 1, it is the equation of

a two-sheet hyperboloid such that one sheet corresponds to the solution k0 = ka(k) and the

other sheet corresponds to k0 = kb(k).

Let us make a remark about the commutation rules: if we write the delta function in

Eq. (18) as a sum of to delta functions containing (k0 − ka) and (k0 − kb), and thereafter

integrate over k0, we obtain the following expansion for the potential,

Aµ(x) = (2π)−3/2

∫

dk

[

µ

(1 + κV 2
0 )(ka − kb)

]1/2

(b−1)νµ(e
−ik·xaν(k) + eik·xa†ν(k)), (22)

from which we obtain the usual commutation rules for the operators aµ,

[aµ(k), a
†
ν(k

′] = −gµνδ(k− k′), (23)

the other commutators vanishing.

From Eqs. (22) and (23) we obtain the commutation rules,

[Aµ(x), Aν(x
′)] = −iµ

n
(b−2)µνD

M(x− x′), (24)

where DM is the invariant singular function according to Minkowski,

DM(x) = − in

(2π)3

∫

dke−ik·x δ(k2 + κ(k · V )2)ε(k · V ). (25)

Here ε(x) is the step function, ε(x) = 1 if x > 0 and ε(x) = −1 if x < 0.

Finally, the total canonical four-momentum defined by Eqs. (15) and (16) can be ex-

pressed in Fourier space, after inserting the expression (10) for L. Some calculation yields

Pµ = −1

2

∫

dkkµ{aν(k), aν†(k)}, (26)

the curly bracket meaning the anticommutator.

III. VACUUM-MEDIUM MAPPING OF THE ELECTROMAGNETIC FIELD

We now admit the presence of extraneous charges and currents in the moving medium,

so that the Maxwell equations (2) become replaced by

∂νHµν = −jµ, (27)

where jµ = (ρ, j). We will show how one can start from the known expressions in vacuum

electrodynamics and herefrom derive the corresponding equation in medium electrodynamics

by applying the transformation procedure above.
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A. Classical theory

We establish the vacuum-medium mapping in two steps. First, introduce new

B−potentials,

Bµ(x) = bµνA
ν(x), (28)

as well as a new differential operator,

Dµ = bµν∂
ν . (29)

We can then associate the B−fields with field strengths, called Gµν ,

Gµν(x) = bρµb
σ
νFρσ(x) = DµBν(x)−DνBµ(x). (30)

This implies that we can express the field equations (27) in the form

DνGµν = −D2Bµ +DµDνB
ν = −Jµ, (31)

where Jµ = µ(b−1)νµjν is the current four-vector density of the B−field. It satisfies the

continuity equation

DµJµ = 0. (32)

It is apparent that the analogy with vacuum electrodynamics is very close. Our second step

in the mapping is to define the vacuum potentials as

Avac
µ (x) = ρBµ(y) = ρbµνA

ν(x), (33)

where

yµ = bµνx
ν , (34)

ρ = (n/µ)1/2. (35)

Equation (34) implies that Dy
µ can be replaced by ∂x

µ, and so the vacuum equations for

Avac
µ (x) take the form

−�Avac
µ (x) + ∂µ∂

νAvac
ν (x) = −jvacµ (x), (36)

where the current density in vacuum is

jvacµ (x) = ρJµ(y) = ρµ(b−1)νµjν(y), (37)
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satisfying the continuity equation

∂µjvacµ (x) = 0. (38)

Finally, we make some brief remarks on polarization vectors. Let lµ be the four-momentum

of a photon in vacuum. We write the one-photon potential as

Avac
µ (x) = e−il·xeµ(l) + eil·xe∗µ(l), (39)

where the polarization four-vector eµ satisfies the normalization condition e∗µe
µ = −1. The

one-photon potential in the medium is then

Aµ(x) =
1

ρ
(e−ik·xfµ + eik·xf ∗

µ), (40)

with kµ the corresponding four-momentum. From Eqs. (33) and (34) it follows that

kµ = (b−1)νµ lν , (41)

and the corresponding relation for the polarization four-vectors is

fµ = (b−1)νµ eν . (42)

We orient the coordinate axes such that e(1) is collinear with l in the rest frame of the

medium,

e(2) × e(3) = l/|l| = k/|k|. (43)

This implies that the covariant polarization sum in the vacuum case,

3
∑

λ=2

e(λ)µ e(λ)∗ν = −gµν −
lµlν

(l · V )2
+

lµVν + lνVµ

l · V , (44)

can for the medium be expressed in terms of fµ and kµ as

3
∑

λ=2

f (λ)
µ f (λ)∗

ν = −(b−2)µν −
kµkν

(k · V )2
+

kµVν + kνVµ

k · V . (45)

IV. QUANTIZATION VIA THE MAPPING METHOD

We proceed to the quantum theory, starting from the theory in vacuum and making use

of the mapping technique. The theory can readily be formulated in covariant gauges, along

the lines presented earlier by one of us in the vacuum case (κ = 0) [34], but for simplicity

we will restrict ourselves to the simple case of the Fermi gauge here.
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We start from the Lagrangian density

Lvac(x) = −1

4
F vac
µν F µν vac − Λvac∂µAvac

µ +
1

2
(Λvac)2, (46)

The field equations obtained from Eq. (46) are

−�Avac
µ + ∂µ∂

νAvac
ν = ∂µΛ

vac. (47)

By varying with respect to Λvac we obtain the gauge condition,

∂µAvac
µ = Λvac. (48)

In case of the Fermi gauge the commutations become simple,

[Avac
µ (x), Avac

ν (x′)] = −igµνD(x− x′), (49)

where D(x) is the singular function

D(x) = − i

(2π)3

∫

dlε(l)δ(l2)e−il·x = −ε(x)

2π
δ(x2). (50)

We can now construct the fields Bµ(y) and Aµ(y) on the basis of Avac
µ (x), using Eqs. (33) -

(35). For the B−field the field equations and the gauge condition are

−D2Bµ(y) +DµD
νBν(y) = DµΛ(y), (51)

DµBµ(y) = Λ(y), (52)

where Λ(y) = ρ−1Λvac(x). For the B−field the commutation rules become

[Bµ(y), Bν(y
′)] = − i

ρ2
gµνD(b−1(y − y′)), (53)

where (b−1y)µ = xµ, and for the A− field we obtain

[Aµ(y), Aν(y
′)] = − i

ρ2
(b−2)µνD(b−1(y − y′)). (54)

The singular function in the last expression can be rewritten in a more conventional form as

D(b−1y) = − in

(2π)3

∫

dkε(k · V )δ(k2 + κ(k · V )2)e−ik·y. (55)

It is thus apparent that D(b−1y) is equal to DM(y) defined in Eq. (8), and the commutation

relations (54) and (24) are the same.
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Consider now the four-momentum P µ for the free radiation field. In the vacuum case we

have

i[P vac
µ , Avac

ν (x)] = ∂µA
vac
ν (x), (56)

cf. the operator equation (13). Thus, the quantity

Pµ = (b−1)νµP
vac
ν (57)

satisfies

i[Pµ, Aν(y)] = ∂y
µAν(y), (58)

and is to be interpreted as the Minkowski four-momentum of the radiation field.

V. ANALYSIS OF SOME RECENT EXPERIMENTAL RESULTS, AND A PRO-

POSAL

In the previous section our purpose was to emphasize how well the Minkowski tensor

adapts itself to the canonical formalism in classical and quantum mechanical field theory.

The usefulness of this tensor for explaining real situations can however not be decided

definitely upon from these formal arguments. We need additional information, especially

from the experimental side. In this section we use dimensional units. Our comments in the

following will be brief.

Let us first state the following: all the experiments that we are aware of in optics, are

explainable in terms of the Minkowski tensor in a straightforward way. It is here worth

noticing that this tensor is after all not corresponding to the physical force density f which

one derives from quite simple arguments - cf., for instance, Refs. [26, 35, 36],

f = fAM + fA, (59)

where

fAM = −1

2
ε0E

2∇ε (60)

is common for the Abraham and Minkowski tensors and may therefore be called the

Abraham-Minkowski force, acting at dielectric boundaries especially, and

fA =
n2 − 1

c2
∂

∂t
(E×H) (61)
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is known as the Abraham term. We have here assumed a nonmagnetic medium, assumed

the constitutive relation in the form D = ε0εE, and omitted the electrostriction effect.

The reason why the effect of the Abraham term does not show up in optical experiments

under stationary conditions, is of course that it fluctuates out when averaging over a period.

The force component left over, the Abraham-Minkowski term, is on the other hand easily

detectable with modern technology.

The common way to detect the Minkowski tensor experimentally has been somewhat

indirect, namely to observe the total momentum flux in an electromagnetic wave. Here,

the accurate radiation pressure experiments of Jones et al. [37, 38] play an important role

(the summary of Jones’ scientific works given in his book [39] is interesting and highly

recommended). In these experiments the radiation pressure on a mirror situated in a liquid

was measured, and was found to increase proportionally to the refractive index n in the

liquid, in agreement with the prediction of the Minkowski tensor. To go into some detail at

this point, assume that a stationary wave propagates in the x direction and is reflected at

the mirror having reflection coefficient R. Then the surface stress σx on the wall is the same

as the momentum flux,

σx =
n

c
(1 +R)S(i)

x , (62)

where S
(i)
x is Poynting’s vector. If we by assume instead vacuum surroundings, (index zero),

we obtain analogously σ0 = (1/c)(1 +R)(S
(i)
x )0, taking the value of the reflection coefficient

to be the same. Then assuming the same incident Poynting’s vector in the two cases,

S
(i)
x = (S

(i)
x )0, we find the simple proportionality σx/σ0 = n that is actually observed. This

experiment was discussed more extensively in Refs. [26] and [40].

A second classic experiment within the same category is the photon drag experiment

of Gibson et al. [41]. In a semiconductor, a longitudinal electric field E can be produced

due to the transfer of momentum from the radiation field to the electrons in the valence or

conduction bands. This field results from charges being driven down the dielectric materia.

Under open-circuit conditions in a finite rod the current must be zero, and what is measured

is the voltage between the two ends. Then E can be determined. We abstain from going

into further detail here (a more extensive treatment is given in Ref. [42]), but limit ourselves

to stating that the natural interetation of the experiment is to identify the total momentum

with Minkowski’s momentum.

Third, we mention the experiment of Campbell et al. [43] on the photon recoil momentum
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in a Bose-Einstein condensate (BEC). A main point here is that a BEC has a high density

compared with that of laser cooled atomic cloud, thus facilitating the measurement of the

refractive index-dependent recoil. In the experiment, the recoil momentum of atoms caused

by photon absorption was found to be ~k = ~nω/c, in accordance with the Minkowski

theory. Compare with the theoretical expression (26) above, for the Minkowski momentum.

A. Remarks on a few recent experiments

We leave now the classic experiments listed above, and survey briefly some recent exper-

iments on radiation pressure.

(1) The experiment of Astrath et el. [13]. This is a very beautiful experiment, showing the

deformation of a free water surface when illuminated by a laser beam falling normally on

it from above. Both a stationary laser beam, and a pulsed one, were investigated. Under

stationary conditions (optically pumped semiconductor laser, power 7 W at 532 nm) a

maximum deformation of about 30 nm was observed at the center. In order to describe

the deformation of the surface hydrodynamically, also the electrostriction part of the force

(omitted in Eq. (59) above) had to be included.

Does this experiment demonstrate the existence of the Minkowski momentum? In our

opinion the answer is no. All that is needed to describe the outcome of the experiment, is the

Abraham-Minkowski force fAM defined in Eq. (60), common for the Abraham and Minkowski

tensors, eventually augmented by the electrostriction term if one wishes to calculate the

interior pressure distribution. There is no direct reference to the photon momentum here.

Actually, this experiment falls within the same category as the classic experiment of

Ashkin and Dziedzic, also that operating in water [44], (analyzed in detail in Ref. [26]),

as well as the similar experiments considered for instance in Refs. [18, 45–48] where the

dielectric medium operating in the vicinity of the critical point. In that way the surface

tension could be reduced to about one millionth of that of an air-water surface. In all these

cases, the force responsible for the elevation of the free surface was the term fAM only.

(2) The experiment of Zhang et al. [16] is another interesting recent work analyzing the

deflection of a free liquid surface when illuminated by a laser beam (cf. also the Comment in

Ref. [49]). As liquids, the experiment made use of mineral oil, and water, observing whether
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the boundary formed a convex defocusing surface, or a concave focusing surface. The beam

was a Gaussian 1 mm wide laser, operating at 532 nm, at an angle of incidence of 3o. The

experiment showed that a focusing effect took place. The experiment was supplied with

detailed calculations, based upon Gaussian beam theory. From this, the authors concluded

that the experiment showed the correctness of Abraham’s pressure.

In spite of the accurate experimental work involved here, we have however to conclude

again that this experiment has very little to do with optical momentum. All that is needed

to explain the outcome of the experiment, is the Abraham-Minkowski force fAM, giving

the gradient surface force at the air-liquid boundary. The surface pressure governing the

deflection of the surface follows by integration across the boundary layer. (If one wants to

describe the local pressure distribution in the liquid, one has to include the electrostriction

force, which ensures that the liquid becomes deflected as a coherent whole.) This experiment

is thus basically of the same kind as those we considered under item (1) above.

(3) As a third example we shall consider the experiment of She et al. [50]. This experiment

is different from those above: a low-intensity laser beam (power 6.4 mW) was sent sent

through a hanging 1.5 mm long silica glass fiber, and was found to produce a sideways

deflection of the lower end, of magnitude of about 10 µm. Also, pulsed laser beams were

investigated. The conclusion of the authors was they had solved the Abraham-Minkowski

problem by demonstrating that the fiber was carrying the Abraham momentum.

Here we have to object again: this experiment has most likely very little to do with opti-

cal momentum, although the situation is not quite clear. The optical force on the medium,

giving rise to the deflection, is fAM, acting everywhere there are geometric inhomogeneities

where the permittivity is position dependent. The most actual interpretation of the ex-

periment in our view is that (i) there are mechanical imbalances in the fiber due to the

fabrication process leading to lack of azimuthal asymmetry, or (ii) that the lower end of

the fiber is not cut precisely orthogonally, thus giving rise to a sideways component in the

surface force at this end. In the latter case the angle of inclination need not be large to

produce the mentioned transverse deflection of 10 µm. In both cases, it is fAM that comes

into play.

However, in this case some care has to be taken regarding the role of the Abraham force

fA. Assume that the light sent through the pulse is a short pulse. When the pulse enters
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the fiber from above, a downward impulse is transferred to it at its upper end. As the

fiber is suspended, this does not influence the dynamics of the fiber. When the pulse exits

the fiber, an upward impulse is on the other hand transferred, assuming perfect azimuthal

symmetry. But it is difficult to imagine how this should give rise to a sideways motion.

We conclude that the explanation of the effect is not entirely clear; it may depend on the

detailed mechanical structure of the fiber.

We mention that critical comments on the interpretation of this experiment have been

given also before, in Refs. [51] and [52]

B. A proposal to measure the Abraham force by use of whispering gallery modes

Finally, we will discuss a possibility for measuring the Abraham force in optics. To our

knowledge such an experiment has so far never been done. The idea has its background

in the 1975 experiments of Walker et al. [53, 54], operating at low frequencies, allowing

detection of the oscillations themselves. Thus with a dielectric cylindrical shell suspended in

the gravitational field, containing time varying crossed electric and magnetic strong fields,

the authors were able to detect the Abraham force (61) directly.

In optics, where the oscillations themselves are unobservable, we can nevertheless envisage

some kind of analogy to the experiment of Walker et al. by exploiting the characteristic

properties of whispering gallery modes in microspheres. Such spheres are known to possess

large circulating powers, in excess of 100 W, close to the rim. If the sphere is suspended

in the gravitational field and fed with a beam modulated at a frequency ω0, the same as

the oscillation frequency of the sphere, the systems becomes to a vertical torque due to the

Abraham optical force.

This idea was actually discussed in some detail in Ref. [27], and we do not consider it

further here. We mention, though, that choosing a power of 100 W, and a large modulation

frequency of ω0 =1000 rad/s, we obtain

Nz ∼ 10−19 N m (63)

as a typical value for the Abraham torque. This value is small, but might be enhanced by

optimal choices for the optical and mechanical parameters.
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VI. SUMMARY

We have assumed a simple dielectric medium, with a real and nondispersive refractive

index n =
√
εµ. We started by demonstrating the great adaptability of Minkowski’s energy-

momentum tensor to the canonical formalism, both classically and quantum mechanically.

This is physically related to the fact that the Minkowski tensor is divergence-free for a pure

radiation field, thus leading to a four-vector property of the total energy and momentum.

The fact that this four-vector becomes spacelike, so clearly demonstrated in the Cherenkov

effect, implies no difficulty in this regard. The use of our mapping technique by means of

the transformation matrix (5), made the transition between electrodynamics in vacuum and

in a medium quite transparent; these two formulations are closely linked together.

From a physical viewpoint it is however not the Minkowski tensor, but instead the Abra-

ham tensor, which appears to give the basic force [36]. The reason why the Abraham force

usually does not show up in optical experiments, is that it fluctuates out. The critical anal-

ysis of various experiments in optics given in Sec. V, was to clear up to what extent they

give information about electromagnetic momentum. Actually, in some cases experiments

claiming to ’solve’ the Abraham-Minkowski problem, in reality only demonstrate the action

of the force fAM, which acts in the air-surface boundary and is common for the Abraham

and Minkowski tensors. Perhaps it would be possible, after all, to design an experiment

in optics in which the Abraham force turns up. This was the topic of our last sub-section,

discussing an optical variant of the 1975 experiments of Walker et al. [53, 54].
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