
Noname manuscript No.
(will be inserted by the editor)

Diagnosis of icing and actuator faults in UAVs using LPV
unknown input observers

Damiano Rotondo · Andrea Cristofaro · Tor
Arne Johansen · Fatiha Nejjari · Vicenç Puig

Received: date / Accepted: date

Abstract This paper proposes a discrete-time linear parameter varying (LPV) un-
known input observer (UIO) for the diagnosis of actuator faults and ice accretion in
unmanned aerial vehicles (UAVs). The proposed approach, which is suited to an im-
plementation on-board, exploits a complete 6-degrees of freedom (DOF) UAV model,
which includes the coupled longitudinal/lateral dynamics and the impact of icing. The
LPV formulation has the advantage of allowing the icing diagnosis scheme to be con-
sistent with a wide range of operating conditions. The developed theory is supported
by simulations illustrating the diagnosis of actuator faults and icing in a small UAV.
The obtained results validate the effectiveness of the proposed approach.
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1 Introduction

Due to the increasing demand of reliability and safety, fault tolerant control tech-
niques have been investigated widely in the last decades, with the aim of maintaining
stability and acceptable performances in the event of faults [1]. As a consequence, the
problem of detecting and identifying any kind of potential abnormalities and faults
has been a hot topic of research, which has led to the development of several fault
diagnosis techniques [2]. Fault diagnosis includes three tasks, namely fault detection
(determining whether there is a fault in the system, as well as the time at which the
fault occurs), fault isolation (determining the location of the faulty component), and
fault estimation (providing information about the type, shape, and size of the fault).
During the last decades, several approaches have been proposed as possible solutions,
e.g. the geometric [3] and the observer-based [4, 5] ones.

Among the most significant faults that affect aviation safety, there is icing, i.e. the
accretion of ice on aircraft wings, control surfaces and other critical locations [6]. Ice
accretion decreases the lift and the static longitudinal stability, while at the same time
increasing the drag and the mass of the vehicle. Consequently, it can have a profound
impact on the aircraft’s performance, inducing a safety risk that can potentially lead to
the crash [7]. The type and severity of icing are determined by several factors, such as
velocity of the airplane, exposure time, atmospheric air temperature, and liquid water
content [8].

For manned aircraft, the mitigation of in-flight icing can be done by manually ac-
tivating an ice protection system, which is usually either chemical, thermal or pneu-
matic. However, these systems are usually heavy, expensive, and structurally intricate,
hence they cannot be applied to small unmanned aerial vehicles (UAVs). For this lat-
ter class of vehicles, alternative solutions have been proposed recently, such as heat
conducting tapes [9] and electrically conductive carbon nanomaterial based coating
for temperature control of UAV airfoil surfaces [10,11]. However, due to power con-
sumption, fault/icing detection schemes with fast and accurate responses are needed
to guarantee the efficiency of these systems [12].

Several approaches have been studied recently for the icing detection in aircrafts
and UAVs, including observer-based [13] and statistical [14] methods. An approach
that has shown to be promising in the last years involves the use of unknown input
observers (UIOs), a special class of observers which has found several applications
for UAVs, e.g. fault detection and isolation [15]. UIOs are observers that allow esti-
mating the state of a given system, independently of some unknown inputs [16]. First
introduced in [17] and [18], this technique has been further developed using different
techniques, such as the geometric [19] and the algebraic [20] approaches. UIOs are
a very useful tool for achieving a successful fault detection and isolation [21], be-
cause they can be made insensitive to certain input space directions if some structural
algebraic conditions on the system are fulfilled [22].

The application of UIOs to the problem of icing detection started with [23], where
it was addressed considering the linearized longitudinal model of the vehicle. Further
improvements have been obtained using multiple models [24] and linear parameter
varying (LPV) methods [25, 26]. LPV techniques have attracted a lot of attention in
the last decades, as testified by the increasing number of publications dealing with this
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topic [27,28], some of which are related with controller design for aircrafts/UAVs [5].
The LPV paradigm has provided an elegant way to apply linear-like techniques to
nonlinear systems, with theoretical guarantees of stability and performance [29]. Un-
like linearization techniques, LPV methods do not involve any approximation, since
they rely on exact transformation of the original nonlinear system into a quasi-linear
one, by embedding all the original nonlinearities within some varying parameters
that schedule the state space matrices [30]. As a consequence, an LPV UIO-based
icing detection scheme has the advantage of being consistent with a wide range of
operating conditions.

The main and novel contribution of this paper is the generalization of the fault and
icing diagnosis method introduced in [25], where it was developed for the longitudi-
nal dynamics, to the complete 6-DOF UAV model, which includes the coupled lon-
gitudinal/lateral dynamics. Another contribution of this work is the adaptation of the
continuous-time formulation of the UIO proposed in [25] to deal with discrete-time
models, which makes the methodology more suitable for a practical implementation
in the UAV on-board computer. The developed theory is supported by simulations
illustrating diagnosis of actuator faults and icing in a small UAV, with results that are
thoroughly discussed.

The paper is structured as follows. Section 2 presents the UAV 6-DOF model,
and shows how a quasi-LPV model can be obtained using a nonlinear embedding in
the parameters approach. Following the established terminology, a quasi-LPV model
has the same structure of a pure LPV model, but the varying parameters depend on
endogenous signals, such as state and input variables [31]. Also, the modeling of
undesired effects, such as wind disturbance, actuator faults, and icing, are presented.
Section 3 is dedicated to the design of a discrete-time LPV UIO for performing fault
and icing diagnosis in UAVs. In addition, a metric that can be used for analysing
the robustness of the LPV UIO is proposed, along with a Monte Carlo strategy for
obtaining an estimate with some desired bound on the standard deviation. Simulation
results are presented in Section 4 to demonstrate the effectiveness of the proposed
approach, and Section 5 outlines the main conclusions.

Notation

The notation is listed in Table 1 using alphabetical order, where the romanized names
of Greek letters have been used. For example, α is listed as if it were spelled alpha.

2 Model and setup

2.1 Nonlinear model

The UAV nonlinear model consists of an equation for the altitude h, three equations
for the airspeed components (u,v,w), three equations for the Euler angles (φ,θ,ψ),
and three equations for the angular rates (p,q,r) [32]:

ḣ = usinθ− vsinφcosθ−wcosφcosθ (1)
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Table 1 Notation

Symbol Description
A,Ad continuous-time and discrete-time state matrix

ap,aq,ar angular acceleration along the body frame x-axis, y-axis, z-axis
ax,ay,az linear acceleration along the body frame x-axis, y-axis, z-axis

α angle of attack
B,Bd continuous-time and discrete-time input matrix
Bun unknown input matrix
b wing span
β side slip angle
C output matrix

Ci,C∗i stability/control derivatives under nominal and under icing conditions
c mean aerodynamic chord of the wing

χre f desired course angle
d,dd continuous-time and discrete-time gravitational effect vector

δa,δe,δr,δt control signal corresponding to aileron, elevator, rudder, throttle deflections
ei canonical basis vector

ε,εth
i observation error vector and decision algorithm threshold

η icing severity factor
F one of the unknown input observer matrices
F additive unknown input term due to actuator faults

G,Gd continuous-time and discrete-time icing input matrix
g gravitational acceleration (9.81m/s2)
Γi products of the inertia matrix

h,hre f real and desired altitude
In identity matrix of order n
Ki icing coefficients
k sample (discrete-time)

km efficiency of the motor
λF

i eigenvalue of the matrix F
m mass of the airframe

Om×n m×n matrix with all its elements equal to zero
ω additive disturbance vector
p roll rate along the body frame x-axis
φ roll angle
ϕ effect of faults vector

ϕa,ϕe,ϕr,ϕt effect of faults in aileron, elevator, rudder, throttle
ψ heading angle
q pitch rate along the body frame y-axis
R one of the unknown input observer matrices
r yaw rate along the body frame z-axis
ρ density of air
S surface area of the wing

Sprop area of the propeller
Σ,Σ1,Σ2 some of the unknown input observer matrices

T one of the unknown input observer matrices
Ts sampling period
t time variable (continuous-time)
θ pitch angle
ϑ varying parameter vector
u relative airspeed projected onto the body frame x-axis

υ,υun control and unknown input vector
Va,V

re f
a real and desired total airspeed (velocity of the airframe w.r.t. air mass)

v relative airspeed projected onto the body frame y-axis
vi sensor measurement noise
vw gust component of the wind in the North-East-Down frame
W rotation matrix from North-East-Down frame to body frame
Wd discrete-time rotation matrix of the UAV
W additive wind disturbance term
w relative airspeed projected onto the body frame z-axis
x state vector

ξi,ξ
th
i low-pass filtered residual and low-pass filtered decision algorithm threshold

x̂ observed state vector
z unknown input observer state vector



Diagnosis of icing and actuator faults in UAVs using LPV unknown input observers 5

u̇ = rv−qw−gsinθ+ax (2)

v̇ = pw− ru+gcosθsinφ+ay (3)

ẇ = qu− pv+gcosθcosφ+az (4)

φ̇ = p+qsinφ tanθ+ r cosφ tanθ (5)

θ̇ = qcosφ− r sinφ (6)

ψ̇ = qsinφsecθ+ r cosφsecθ (7)

ṗ = Γ1 pq−Γ2qr+ap (8)

q̇ = Γ5 pr−Γ6(p2− r2)+aq (9)

ṙ = Γ7 pq−Γ1qr+ar (10)

where the linear/angular accelerations ax, ay, az, ap, aq, ar are given by:

ax =
ρV 2

a S
2m

(
CX (α)+CXq(α)

cq
2Va

+CXδe
(α)δe

)
+

ρSpropCprop

2m

(
k2

mδ
2
t −V 2

a
)

(11)

ay =
ρV 2

a S
2m

(
CY0 +CYβ

β+CYp

bp
2Va

+CYr

br
2Va

+CYδa
δa +CYδr

δr

)
(12)

az =
ρV 2

a S
2m

(
CZ(α)+CZq(α)

cq
2Va

+CZδe
(α)δe

)
(13)

ap =
1
2

ρV 2
a Sb

(
Cp0 +Cpβ

β+Cpp

bp
2Va

+Cpr

br
2Va

+Cpδa
δa +Cpδr

δr

)
(14)

aq =
ρV 2

a Sc
2Jy

(
Cm0 +Cmα

α+Cmq

cq
2Va

+Cmδe
δe

)
(15)

ar =
1
2

ρV 2
a Sb

(
Cr0 +Crβ

β+Crp

bp
2Va

+Crr

br
2Va

+Crδa
δa +Crδr

δr

)
(16)

The nondimensional coefficients Ci are usually referred to as stability and control
derivatives. Some of them are nonlinear functions of:

α = arctan(u/w) (17)

according to:

CX (α) = (CL0 +CLα
α)sinα− (CD0 +CDα

α)cosα (18)

CXq(α) =CLq sinα−CDq cosα (19)

CXδe
(α) =CLδe

sinα−CDδe
cosα (20)

CZ(α) =− [(CD0 +CDα
α)sinα+(CL0 +CLα

α)cosα] (21)

CZq(α) =−
(
CDq sinα+CLq cosα

)
(22)

CZδe
(α) =−

(
CDδe

sinα+CLδe
cosα

)
(23)
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2.2 Quasi-LPV model

The nonlinear model (1)-(10) can be brought to a quasi-LPV form using the nonlinear
embedding in the parameters approach [33, 34]:

ẋ(t) = A(x(t))x(t)+B(x(t))υ(t)+d (x(t)) (24)

where x = (h,u,v,w,φ,θ,ψ, p,q,r)T , υ = (δ2
t ,δe,δa,δr)

T , and the matrix functions
A(x(t)), B(x(t)), d (x(t)) are given by:

A(x(t)) =



0 a12(·) a13(·) a14(·) 0 0 0 0 0 0
0 a22(·) a23(·) a24(·) 0 0 0 0 a29(·) a210(·)
0 a32(·) a33(·) a34(·) 0 0 0 a38(·) 0 a310(·)
0 a42(·) a43(·) a44(·) 0 0 0 a48(·) a49(·) 0
0 0 0 0 0 0 0 1 a59(·) a510(·)
0 0 0 0 0 0 0 0 a69(·) a610(·)
0 0 0 0 0 0 0 0 a79(·) a710(·)
0 a82(·) a83(·) a84(·) 0 0 0 a88(·) a89(·) a810(·)
0 a92(·) a93(·) a94(·) 0 0 0 a98(·) a99(·) a910(·)
0 a102(·) a103(·) a104(·) 0 0 0 a108(·) a109(·) a1010(·)


(25)

B(x(t)) =



0 0 0 0
b21 b22(·) 0 0
0 0 b33(·) b34(·)
0 b42(·) 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 b83(·) b84(·)
0 b92(·) 0 0
0 0 b103(·) b104(·)


(26)

d (x(t)) =


0

−gsinθ

gcosθsinφ

gcosθcosφ

O6×1

 (27)

The expression of the coefficients appearing in the matrices are detailed in the
Appendix.

2.3 Wind disturbance

The system dynamics is affected by the wind velocity, which can be expressed by the
additional input: (

W
O6×1

)
, W =−W (x(t)) v̇w(t) (28)
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where vw = (vN ,vE ,vD)
T is the gust component of the wind speed expressed in the

North-East-Down (NED) coordinate frame and W is the rotation matrix from NED
to body:

W (x(t)) =

 1 0 0
0 cosφ sinφ

0 −sinφ cosφ

 cosθ 0 −sinθ

0 1 0
sinθ 0 cosθ

 cosψ sinψ 0
−sinψ cosψ 0

0 0 1


In order to model the wind gusts in a realistic way, the widely accepted Dryden

wind turbulence model, also known as Dryden gusts, is used [35]. The Dryden model
uses spatially varying stochastic processes to represent the components of the gusts,
specifying their power spectral density.

2.4 Measured outputs

The UAV is assumed to be equipped with a sensor suite which includes a pitot static
tube aligned with the longitudinal body axis, a GPS, an altimeter, gyroscopes and
accelerometers. In addition, it is assumed that an accurate wind speed estimator is
available [36], such that the interpolation of the estimated wind speed with the aver-
age UAV speed, that can be computed through the GPS data, provides also a measure-
ment of the velocities v, w. Hence, the output matrix of the system verifies C = I10.

2.5 Actuator faults

Actuator faults may affect the system and can be represented as an additive unknown
input term F (t) given by:

F (t) = B(x(t))


ϕt(t)
ϕe(t)
ϕa(t)
ϕr(t)

= B(x(t))ϕ(t) (29)

where ϕt , ϕe, ϕa, ϕr represent the effects of faults in propellers/engines, elevator,
aileron and rudder, respectively.

2.6 Icing effect model

The accretion of ice on the UAV surfaces modifies the stability and control derivatives
according to the following linear model [37]:

C∗i = (1+ηKi) (30)

where η denotes the icing severity factor and the coefficients Ki depend on the UAV
design, the atmospheric conditions and the icing location. The clean condition corre-
sponds to η = 0, while the worst icing condition occurs for η = 0.2.
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As a consequence, the overall effect of icing can be regarded as an additive input
described by:

G(x(t))η(t) (31)

with:

G(x(t)) =
(

0 g2(·) g3(·) g4(·) 0 0 0 g8(·) g9(·) g10(·)
)T (32)

The expressions of the coefficients gi are detailed in the Appendix.
Remark 1: As a matter of fact, icing may also affect the airspeed measure-R4

ments, since the pitot tube may be clogged by the ice [38, 39]. A blocked pitot
tube will cause the airspeed indicator to register an increase in airspeed when
the UAV climbs, even though actual airspeed is constant. This is caused by the
pressure in the pitot system remaining constant when the atmospheric pressure
is decreasing. In reverse, the airspeed indicator will show a decrease in airspeed
when the UAV descends. However, many pitot tubes are equipped with a heating
element, which is required in all UAVs certified for instrument flight, such that
a straightforward accommodation of icing effects on sensors can be obtained.

3 Actuator faults and icing diagnosis

This section describes the LPV UIO-based strategy for performing fault and icing
diagnosis in UAVs. The overall conceptual scheme of the proposed approach is given
in Fig. 1. The LPV UIO uses the state measurements coming from the UAV’s sensors
and the control input, along with the UAV’s model, to compute an estimate x̂, which
is later compared to the measurements. The observation error ε is fed to the decision
algorithm, which decides about the occurrence of faults/icing.

υ

υun !

x

"

x̂

+

−

UAV

LPV
UIO

Decision Algorithm

Fig. 1 LPV UIO-based fault and icing diagnoser for UAVs.
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3.1 Discrete-time LPV unknown input observer

Taking into account the wind, the actuator faults and the icing, the quasi-LPV model
(24) is slightly modified, as follows:

ẋ(t) = A(x(t))x(t)+B(x(t))υ(t)+d (x(t)) (33)

−

 O1×3
W (x(t))

O6×3

 v̇w(t)+B(x(t))ϕ(t)+G(x(t))η(t)

which can be rewritten in a more general form for further reasoning:

ẋ(t) = A(ϑ(t))x(t)+B(ϑ(t))υ(t)+Bun (ϑ(t))υun(t)+d (ϑ(t))+ω(t) (34)

where ϑ is some varying parameter vector, containing exogenous variables, endoge-
nous variables (e.g. states and/or inputs), or a combination of them, υun(t) and ω(t)
are unknown vectors containing the fault effects ϕ(t) and the wind/icing effects
given by terms v̇w(t), η(t), respectively, and Bun(ϑ(t)) is the matrix that describes
how υun(t) affects the system’s state. The continuous-time LPV system (34) can be
brought to the discrete-time form:

x(k+1) = A(ϑ(k))x(k)+B(ϑ(k))υ(k)+Bun (ϑ(k))υun(k)+d (ϑ(k))+ω(k) (35)

using discretization methods, such as Euler, Runge-Kutta or other approaches [40].
In the following, the continuous-time LPV unknown input observer introduced in

[25] is adapted in order to cope with the discrete-time formulation (35). As remarked
by [21], the main advantage of such observers is that, if some structural conditions
are met, the parameters can be designed such that the resulting observation error is
independent of some inputs of the system, even if these are not measured directly.

More specifically, let R(ϑ(k)) and F (ϑ(k)) be some given matrix functions, cal-
culate the following matrix functions:

T (ϑ(k)) = I−R(ϑ(k)) (36)

Σ1 (ϑ(k)) = R(ϑ(k))A(ϑ(k))−F (ϑ(k)) (37)

Σ2 (ϑ(k−1),ϑ(k)) = F (ϑ(k))T (ϑ(k−1)) (38)

Σ(ϑ(k)) = Σ1 (ϑ(k))+Σ2 (ϑ(k−1),ϑ(k)) (39)

and let the unknown input observer for the system (34) be given by:

z(k+1) = F (ϑ(k))z(k)+R(ϑ(k))B(ϑ(k))υ(k)
+Σ(ϑ(k−1),ϑ(k))x(k)+d (ϑ(k))−T (ϑ(k))d (ϑ(k)) (40)

x̂(k) = z(k)+T (ϑ(k−1))x(k) (41)

Then, the observation error ε(k) = x(k)− x̂(k) is given by:

ε(k+1) = [A(ϑ(k))−T (ϑ(k))A(ϑ(k))−Σ(ϑ(k−1),ϑ(k))]x(k) (42)
−F (ϑ(k))z(k)+ [I−R(ϑ(k))−T (ϑ(k))]B(ϑ(k))υ(k)

+ [I−T (ϑ(k))] [Bun (ϑ(k))υun(k)+ω(k)]
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which, taking into account (36), can be rewritten as:

ε(k+1) = [R(ϑ(k))A(ϑ(k))−Σ(ϑ(k−1),ϑ(k))]x(k)
−F (ϑ(k))z(k)+R(ϑ(k))Bun (ϑ(k))υun(k)+R(ϑ(k))ω(k) (43)

Then, combining (37)-(38) with (39), it can be shown that (43) is equivalent to:

ε(k+1) = [F (ϑ(k))−F (ϑ(k))T (ϑ(k−1))]x(k)
−F (ϑ(k))z(k)+R(ϑ(k))Bun (ϑ(k))υun(k)+R(ϑ(k))ω(k) (44)

It is easy to see that the following comes from (44), after taking into account (41):

ε(k+1) = F (ϑ(k))ε(k)+R(ϑ(k))Bun (ϑ(k))υun(k)+R(ϑ(k))ω(k)
(45)

Notice that F (ϑ(k)) can be chosen as a constant matrix F through an appropriate
choice of the matrix function Σ1 (ϑ(k)), which allows assigning some desired eigen-
values of F and assure convergence of the observation error ε when υun = 0 and
ω = 0. On the other hand, the matrix function R(ϑ(k)) can be chosen to constrain
the range of R(ϑ(k))Bun (ϑ(k)), in such a way that different output directions of the
residuals are assigned for the unknown inputs acting on the system, with the aim of
identifying the cause for some detected system malfunctions.

3.2 Application to the UAV fault/icing diagnosis

Due to the superposition of effects and the lack of degrees of freedom in the unknown
input observer design, it is not possible to decouple completely the wind disturbance
and icing effects from the actuator faults. However, it is still possible to design the
unknown input observer matrices such that a successful fault/icing diagnosis can be
achieved.

Let us consider the discrete-time model of the UAV obtained from (33) using the
Euler approach with sampling period Ts:

x(k+1) = Ad (x(k))x(k)+Bd (x(k))υ(k)+dd (x(k))

−

 O1×3
Wd (x(k))

O6×3

 v̇w(k)+Bd (x(k))ϕ(k)+Gd (x(k))η(k)
(46)

with Ad (x(k)) = I +TsA(x(k)), Bd (x(k)) = TsB(x(k)), Wd (x(k)) = TsW (x(k)),
Gd (x(k)) = TsG(x(k)) and dd (x(k)) = Tsd (x(k)), and let us denote by e1, . . . ,e10 the
canonical basis vectors of R 10. Then, the following condition holds:

G(x(k))η(k) ∈ span
[

e3 e4 Bd (x(k))
]
∀k ≥ 0 (47)

which allows defining our target as designing the unknown input observer matrices
with the following properties:

R(x(k))
[

e3 e4 Bd (x(k)) e1 e5 e6 e7
]
= I10 (48)
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Fei = λ
F
i ei ∀i = 1, . . . ,10 (49)

where λF
i , i = 1, . . . ,10 are the desired eigenvalues of the matrix F (λF

i inside the unit
circle, in order to assure the stability of the observer).

It is easy to check that the matrix satisfying (48)-(49) has the following structure:

R(x(k)) =



0 0 1 0 0 0 0 r18(·) 0 r110(·)
0 0 0 1 0 0 0 0 r29(·) 0
0 −1/b21Ts 0 0 0 0 0 0 r39(·) 0
0 0 0 0 0 0 0 0 1/b92Ts 0
0 0 0 0 0 0 0 r58(·) 0 r510(·)
0 0 0 0 0 0 0 r68(·) 0 r610(·)
1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0


(50)

where the elements r18(·), r110(·), r29(·), r39(·), r58(·), r510(·), r68(·), r610(·) are func-
tions of the elements of the matrix Bd (x(k)).

Under the assumption that at a given instant either a single fault or icing could
act on the system (no simultaneous multiple faults and icing), (48)-(49) lead to the
following algorithm for deciding about the occurrence of faults/icing.

Decision Algorithm.

if

{
|ε1(k)| ≤ εth

1 , |ε2(k)| ≤ εth
2 , |ε3(k)| ≤ εth

3
|ε4(k)| ≤ εth

4 , |ε5(k)| ≤ εth
5 , |ε6(k)| ≤ εth

6

then “no faults/no icing”

if

{
|ε1(k)| ≤ εth

1 , |ε2(k)| ≤ εth
2 , |ε3(k)|> εth

3
|ε4(k)| ≤ εth

4 , |ε5(k)| ≤ εth
5 , |ε6(k)| ≤ εth

6

then “fault in thrust”

if

{
|ε1(k)| ≤ εth

1 , |ε2(k)| ≤ εth
2 , |ε3(k)| ≤ εth

3
|ε4(k)|> εth

4 , |ε5(k)| ≤ εth
5 , |ε6(k)| ≤ εth

6

then “fault in elevator”

if

{
|ε1(k)| ≤ εth

1 , |ε2(k)| ≤ εth
2 , |ε3(k)| ≤ εth

3
|ε4(k)| ≤ εth

4 , |ε5(k)|> εth
5 , |ε6(k)| ≤ εth

6

then “fault in ailerons”

if

{
|ε1(k)| ≤ εth

1 , |ε2(k)| ≤ εth
2 , |ε3(k)| ≤ εth

3
|ε4(k)| ≤ εth

4 , |ε5(k)| ≤ εth
5 , |ε6(k)|> εth

6

then “fault in rudder”

else “icing”

The thresholds εth
i , i = 1, . . . ,6 should be calculated in such a way that the resid-

uals never exceed them due to the wind turbulence. It is worth noticing that:

R(x(k))

 O1×3
Wd (x(k))

O6×3

=

(
WR (x(k))

O7×3

)
for some WR (x(k)), which means that (at least in theory) the wind turbulence should
affect only the residuals ε1(k), ε2(k), ε3(k). However, due to undesired effects such as
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discretization errors, presence of sensor noise and parametric uncertainties, in prac-
tice the wind turbulence would affect the other residuals as well (although at a much
smaller extent than the first three residuals).

3.3 Robustness analysis

Hereafter, a metric based on the idea of stochastic robustness [41, 42] is proposed
in order to analyse the robustness of the LPV UIO-based faults and icing diagnoser.
This metric is given by the probability that the LPV UIO will exhibit an unaccept-
able behaviour. More specifically, let us denote the LPV UIO as O, while the set of
possible scenarios is denoted by S(µ), where µ ∈M denotes possible variations due
to model uncertainty, noise, etc. within a bounded set M, which can be described by
a probability density function pr(µ). Then, the performance metric can be defined as
the integral of an indicator function over the space of expected variations:

Ψ(O) =
∫
M

I [S(µ),O] pr(µ)dµ (51)

where I is a binary function which describes if the behaviour of the fault/icing diag-
noser for a given realization of µ is acceptable (I = 1) or not (I = 0).

Unfortunately, (51) cannot be integrated analytically. A practical alternative is to
use Monte Carlo methods [43] with pr(µ) shaping random values of µ that will be
denoted by µi. When M random µi, i = 1, . . . ,M are generated, then an estimate of Ψ

is given by:

Ψ̂(O) =
1
M

M

∑
i=1

I [S(µi),O] (52)

where Ψ̂ approaches Ψ in the limit as M→∞. However, it is impossible to set M =∞,
thus it is interesting to choose M in such a way that Ψ̂ has standard deviation less than
a desired value σ

Ψ̂
. Since I is binary, Ψ̂ has a binomial distribution, such that M can

be chosen as [41]:

M ≥
⌈

1
4

σ
−2
Ψ̂

⌉
(53)

4 Results

In this section, the proposed actuator faults and icing diagnosis through discrete-time
LPV unknown input observer is validated through the application to the case study of
a typical small UAV, which is supposed to encounter icing conditions. The parameters
appearing in the nonlinear model detailed in Section 2.1 are provided in Table 2 [32].

The UAV is controlled by an autopilot, working at a sampling period of Ts =

0.05s, which is responsible for tracking some desired total airspeed V re f
a , altitude

hre f and course angle χre f . In particular, the desired trajectory depicted in Fig. 2 is
considered for the subsequent simulations.

Four different scenarios have been analysed, namely:
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Table 2 System parameters values

Param. Value Param. Value Param. Value
m 13.5kg CL0 0.28 CY0 0
Jx 0.8244kgm2 CD0 0.03 Cl0 0
Jy 1.135kgm2 Cm0 −0.02338 Cn0 0
Jz 1.759kgm2 CLα

3.45 CYβ
−0.98

Jxz 0.1204kgm2 CDα
0.30 Clβ −0.12

S 0.55m2 Cmα
−0.38 Cnβ

0.25
b 2.8956m CLq 0 CYp 0
c 0.18994m CDq 0 Clp −0.26

Sprop 0.2027m2 Cmq −3.6 Cnp 0.022
ρ 1.2682kg/m3 CLδe

−0.36 CYr 0
km 80 CDδe

0 Clr 0.14
Cprop 1.0 Cmδe

−0.5 Cnr −0.35
M 50 CYδr

−0.17 CYδa
0

Clδr
0.105 Clδa

0.08
Cnδr

−0.032 Cnδa
0.06
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Fig. 2 Desired trajectories V re f
a , hre f and χre f .

1) Fault in thrust
2) Fault in elevator
3) Fault in ailerons
4) Icing
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Table 3 Coefficients Ki for an all iced configuration

Coeff. Value Coeff. Value Coeff. Value
KL0 0 KLα

−0.5000 KLq −0.0675
KLδe

−0.4770 KD0 2.5610 KDα
0

KDq 0 KDδe
0 Km0 0

Kmα
−0.4960 Kmq −0.1755 Kmδe

−0.5000
KYβ

−1 KYp 0 KYr 0
KYδr

−0.4 Klβ −0.5 Klp −0.5
Klr 0 Klδa

−0.5 Klδr
−0.4

Knβ
−1 Knp 0 Knr −0.3056

Knδr
−0.4167 Knδa

0

Fault scenario 1 (FS1)

The effective thrust input is subject to a loss of efficiency with respect to its nom-
inal values δ∗t :

δt(t) = 0.7δ
∗
t (t)

The fault is considered to be abrupt, starting from time t = 135s.

Fault scenario 2 (FS2)

The effective elevator deflection δe is subject to a loss of efficiency with respect to its
nominal value δ∗e :

δe(t) = 0.9δ
∗
e(t)

The fault is considered to be abrupt, starting from time t = 135s.

Fault scenario 3 (FS3)

The effective aileron deflection δa is subject to a loss of efficiency with respect to
its nominal value δ∗a:

δa(t) = 0.6δ
∗
a(t)

The fault is considered to be abrupt, starting from time t = 135s.

Fault scenario 4 (FS4)

The UAV is subject to icing, i.e. the stability and control derivatives are modified
according to (30), taking into account the coefficients Ki listed in Table 3. The icing
starts at time t = 135s, and slowly increases from η = 0 to η = 0.2, such that η = 0.2
starting from time t = 235s.

Remark 2: The coefficients Ki used in this work have been computed mimicking
the proportional variation of the stability and control derivatives for a Twin Otter
aircraft subject to all iced conditions [37], and they could differ in the case of a real
Aerosonde UAV. However, since the proposed LPV unknown input observer does
not depend on the values of these coefficients, which are included in the simulator
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only to provide realistic icing effects, it can be expected that similar results would be
obtained with different values of the coefficients Ki.

4.1 Results without sensor noise/uncertainties

Hereafter, the results related to the application of the UIO-based fault/icing diagnosis
strategy described in Section 3 are presented. The proposed UIO, with a choice of
F = 0.9I10, is tested against the nonlinear continuous-time UAV simulator, which is
affected by the wind turbulence acting as an exogenous undesired unknown effect.
Also, in order to show the advantages of using an LPV framework when dealing with
highly nonlinear systems, the results obtained with the proposed LPV UIO (plotted
as blue solid lines) are compared with the ones obtained using a linear time invariant
(LTI) UIO (plotted as green dotted lines). The LTI UIO has been tuned on the LTI
model of the UAV working at the operating point given by Va = 18m/s, h = 50m,
χ = 0rad, which corresponds to the desired operating point at the beginning of the
simulations, i.e. from t = 0s to t = 50s (see Fig. 2).

It has been noticed that the frequency content of the residuals εi(t) changes under
faults/icing occurrence. In fact, in absence of faults/icing, the residuals are excited
only by the wind acceleration, which is mostly a high frequency disturbance. On the
other hand, the actuator faults and icing effects increase the low frequency content
of the variables εi(t). Thus, low-pass filtering the residuals indicates more clearly the
presence of faults/icing. More specifically, the low-pass filtered residuals are obtained
as follows:

ξ̇i(t) =−aiξi(t)+aiεi(t) i = 1, . . . ,10 (54)

where ai is a design parameter that should be chosen to guarantee that only the part of
the frequency spectrum of εi(t) affected by faults/icing is presented (hereafter, a value
ai = 0.995 is used). Then, the decision algorithm proposed in the previous section is
slightly modified by replacing all instances of εi with ξi and all instances of εth

i with
ξth

i , i = 1, . . . ,10.
Using a simulation scenario without faults/icing acting on the UAV, the values

for the thresholds ξth
i , i = 1, . . . ,6 for the LPV UIO have been calculated as follows:

ξth
1 = ξth

2 = 0.06, ξth
3 = 0.02, ξth

4 = 0.002 and ξth
5 = ξth

6 = 0.001 (red solid horizontal
lines in the plots).

Figure 3 shows the evolution of the residuals ξi in fault scenario 1. The LPV
UIO behaves as expected, since all the residuals are within the calculated thresholds,
except for ξ3, which exceeds its threshold starting from time t = 135.65s. According
to the Decision Algorithm presented in the previous section, this allows determining
correctly that a fault is acting on the thrust. On the other hand, note that the LTI
UIO’s residuals are sensitive to operating point changes and exogenous disturbances,
such as the wind gusts, and hence they cannot be used effectively for performing the
diagnosis of faults and icing.

Figure 4 shows the residuals ξi obtained in fault scenario 2. The presence of a
fault in the elevator is clearly identified due to the response of the residual ξ4, which
exceeds the threshold ξth

4 (red line) starting from time t = 135.2s.
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Fig. 3 Residuals ξi(t), i = 1, . . . ,6, in fault scenario 1 (without sensor noise/uncertainties).

On the other hand, the response of the residual ξ5 allows isolating a fault in the
aileron at time t = 135.65s, as shown by Fig. 5, which presents the residuals’ re-
sponses in fault scenario 3. It is worth noticing that the effect of ϕa on ξ5 is weaker
than the one of ϕe on ξ4. This is due to the operation conditions of the UAV, which
works with a δa close to zero value, such that a loss of effectiveness of this actua-
tor has less severe effects on the system (see Fig. 6, where both δa and δe for the
nominal scenario are shown). In case of doubt about the actual presence of a fault
in the aileron, the control system could force the UAV to perform manoeuvres re-
quiring different values of δa, thus improving the effectiveness of the fault diagnosis
algorithm.

Finally, Fig. 7 presents the residuals ξi obtained in fault scenario 4 (icing). In
this case, all the residuals exceed the respective thresholds, which according to the
Decision Algorithm presented in the previous section allows inferring correctly the
presence of ice on the UAV.

4.2 Results with sensor noise/uncertainties

To conclude the analysis of the proposed method, let us assess its robustness against
undesired effects, such as sensor noise and uncertainties. To this end, the approach
described in Section 3.3 has been applied to choose appropriate thresholds ξth

i for
the residuals. The Monte Carlo simulations used for calculating Ψ̂, as in (52), con-
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Fig. 4 Residuals ξi(t), i = 1, . . . ,6, in fault scenario 2 (without sensor noise/uncertainties).

sider that all the stability/control derivatives are affected by normally distributed un-
certainty with standard deviation equal to 3% of their nominal values, and that the
noise affecting the sensor measurements is normally distributed around zero mean
value, with the following standard deviations: σ1 = 0.25m, σ2 = σ3 = σ4 = 0.25m/s,
σ5 = σ6 = σ7 = 0.002rad, σ8 = σ9 = σ10 = 0.0005rad/s. For each residual ξi,
i = 1, . . . ,6, the metric (52) has been calculated for different thresholds by using an
indicator function I that takes into account whether the behaviour of the considered
residual is compatible with a given fault scenario or not. For example, in the case of
the residual ξ3, I = 1 in case the residual does not exceed its thresholds in scenarios
with no faults/icing, fault in elevator, fault in aileron and fault in rudder, or in case
the residual does exceed its thresholds in scenarios with faults in thrust or icing (see
Decision Algorithm in Section 3.2), while I = 0 otherwise. Notice that by perform-
ing Monte Carlo simulations for different values of fault magnitudes, it is possible
to select appropriately the thresholds, taking into account the existence of a trade-off
between avoiding false alarms and making the LPV UIO-based scheme sensitive to
faults/icing.

For each considered scenario, M = 100 Monte Carlo simulations have been per-
formed which, given (53), corresponds to ensuring a standard deviation σ

Ψ̂
= 0.05.

For each residual, a table has been obtained, providing the estimated metric for dif-
ferent scenarios and thresholds (see Tables 4-9), which is useful for choosing appro-
priate threshold values. For example, if a 95% success rate in avoiding false alarms is
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Table 4 Estimated metrics Ψ̂ for residual ξ1.

ξth
1 = 0.10 ξth

1 = 0.15 ξth
1 = 0.20 ξth

1 = 0.25
No faults 0.77 0.90 0.97 0.99

δt(t) = 0.6δ∗t (t) 0.70 0.91 1 1
δt(t) = 0.7δ∗t (t) 0.76 0.95 0.99 1
δt(t) = 0.8δ∗t (t) 0.84 0.95 0.99 1
δt(t) = 0.9δ∗t (t) 0.74 0.92 0.97 0.99

δe(t) = 0.75δ∗e(t) 0.68 0.95 0.99 1
δe(t) = 0.8δ∗e(t) 0.69 0.88 0.97 1.0000

δe(t) = 0.85δ∗e(t) 0.65 0.88 0.95 0.99
δe(t) = 0.9δ∗e(t) 0.76 0.89 0.97 0.99
δa(t) = 0.5δ∗a(t) 0.77 0.92 0.99 1
δa(t) = 0.6δ∗a(t) 0.74 0.93 0.99 1
δa(t) = 0.7δ∗a(t) 0.72 0.93 0.98 1
δa(t) = 0.8δ∗a(t) 0.74 0.88 0.97 1
Icing, η = 0.2 0.25 0.09 0.03 0

Table 5 Estimated metrics Ψ̂ for residual ξ2.

ξth
2 = 0.20 ξth

2 = 0.25 ξth
2 = 0.30 ξth

2 = 0.35
No faults 0.80 0.92 0.98 0.99

δt(t) = 0.6δ∗t (t) 0.89 0.95 0.97 1
δt(t) = 0.7δ∗t (t) 0.85 0.96 0.98 1
δt(t) = 0.8δ∗t (t) 0.81 0.92 0.97 0.98
δt(t) = 0.9δ∗t (t) 0.88 0.96 0.99 1

δe(t) = 0.75δ∗e(t) 0.67 0.91 0.99 1
δe(t) = 0.8δ∗e(t) 0.73 0.90 0.99 1

δe(t) = 0.85δ∗e(t) 0.85 0.98 1 1
δe(t) = 0.9δ∗e(t) 0.74 0.86 0.93 1
δa(t) = 0.5δ∗a(t) 0.70 0.88 0.97 0.99
δa(t) = 0.6δ∗a(t) 0.81 0.92 0.98 0.99
δa(t) = 0.7δ∗a(t) 0.82 0.94 1 1
δa(t) = 0.8δ∗a(t) 0.92 0.99 1 1
Icing, η = 0.2 1 0.98 0.91 0.81

Table 6 Estimated metrics Ψ̂ for residual ξ3.

ξth
3 = 0.20 ξth

3 = 0.25 ξth
3 = 0.30 ξth

3 = 0.35
No faults 1 1 1 1

δt(t) = 0.6δ∗t (t) 1 1 1 1
δt(t) = 0.7δ∗t (t) 1 1 1 1
δt(t) = 0.8δ∗t (t) 1 1 1 0.74
δt(t) = 0.9δ∗t (t) 0 0 0 0

δe(t) = 0.75δ∗e(t) 0.61 1 1 1
δe(t) = 0.8δ∗e(t) 0.74 1 1 1

δe(t) = 0.85δ∗e(t) 0.93 1 1 1
δe(t) = 0.9δ∗e(t) 0.92 1 1 1
δa(t) = 0.5δ∗a(t) 0.98 1 1 1
δa(t) = 0.6δ∗a(t) 0.98 1 1 1
δa(t) = 0.7δ∗a(t) 1 1 1 1
δa(t) = 0.8δ∗a(t) 1 1 1 1
Icing, η = 0.2 0.80 0.77 0.01 0
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Table 7 Estimated metrics Ψ̂ for residual ξ4.

ξth
4 = 0.25 ξth

4 = 0.30 ξth
4 = 0.35 ξth

4 = 0.40
No faults 0.92 0.95 0.98 0.99

δt(t) = 0.6δ∗t (t) 0.95 0.98 1 1
δt(t) = 0.7δ∗t (t) 0.93 0.99 1 1
δt(t) = 0.8δ∗t (t) 0.90 0.93 0.97 1
δt(t) = 0.9δ∗t (t) 0.96 1 1 1

δe(t) = 0.75δ∗e(t) 1 1 1 1
δe(t) = 0.8δ∗e(t) 1 1 1 1

δe(t) = 0.85δ∗e(t) 1 0.96 0.92 0.87
δe(t) = 0.9δ∗e(t) 0.89 0.78 0.63 0.54
δa(t) = 0.5δ∗a(t) 0.94 1 1 1
δa(t) = 0.6δ∗a(t) 0.94 0.98 0.99 1
δa(t) = 0.7δ∗a(t) 0.91 0.98 0.99 1
δa(t) = 0.8δ∗a(t) 0.95 0.98 1 1
Icing, η = 0.2 0.36 0.13 0.05 0.02

Table 8 Estimated metrics Ψ̂ for residual ξ5.

ξth
5 = 0.06 ξth

5 = 0.07 ξth
5 = 0.08 ξth

5 = 0.09
No faults 0.68 0.92 0.99 1

δt(t) = 0.6δ∗t (t) 0.74 0.94 1 1
δt(t) = 0.7δ∗t (t) 0.67 0.90 0.99 1
δt(t) = 0.8δ∗t (t) 0.65 0.94 0.98 1
δt(t) = 0.9δ∗t (t) 0.68 0.92 0.98 1

δe(t) = 0.75δ∗e(t) 0.79 0.94 0.99 1
δe(t) = 0.8δ∗e(t) 0.67 0.88 0.98 1

δe(t) = 0.85δ∗e(t) 0.61 0.83 0.95 0.98
δe(t) = 0.9δ∗e(t) 0.74 0.96 0.97 1
δa(t) = 0.5δ∗a(t) 0.74 0.43 0.23 0.11
δa(t) = 0.6δ∗a(t) 0.42 0.16 0.03 0.01
δa(t) = 0.7δ∗a(t) 0.42 0.07 0.01 0
δa(t) = 0.8δ∗a(t) 0.32 0.07 0.01 0
Icing, η = 0.2 0.24 0.05 0.01 0

Table 9 Estimated metrics Ψ̂ for residual ξ6.

ξth
6 = 0.07 ξth

6 = 0.08 ξth
6 = 0.09 ξth

6 = 0.10
No faults 0.58 0.88 0.98 1

δt(t) = 0.6δ∗t (t) 0.68 0.90 0.99 1
δt(t) = 0.7δ∗t (t) 0.57 0.85 0.97 1
δt(t) = 0.8δ∗t (t) 0.60 0.90 0.98 0.99
δt(t) = 0.9δ∗t (t) 0.60 0.88 0.95 0.99

δe(t) = 0.75δ∗e(t) 0.75 0.91 0.98 0.99
δe(t) = 0.8δ∗e(t) 0.61 0.81 0.97 0.99

δe(t) = 0.85δ∗e(t) 0.51 0.79 0.92 0.97
δe(t) = 0.9δ∗e(t) 0.68 0.95 0.97 0.98
δa(t) = 0.5δ∗a(t) 0.55 0.86 0.97 1
δa(t) = 0.6δ∗a(t) 0.57 0.85 0.95 0.98
δa(t) = 0.7δ∗a(t) 0.59 0.93 0.99 1
δa(t) = 0.8δ∗a(t) 0.64 0.91 0.98 1
Icing, η = 0.2 0.29 0.08 0.02 0
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Fig. 5 Residuals ξi(t), i = 1, . . . ,6, in fault scenario 3 (without sensor noise/uncertainties).

desired, appropriate values for the thresholds are as follows: ξth
1 = 0.20, ξth

2 = 0.35,
ξth

3 = 0.25, ξth
4 = 0.35, ξth

5 = 0.08, ξth
6 = 0.10.

5 Conclusion

This paper has proposed a discrete-time LPV UIO fault/icing diagnosis scheme for
unmanned aerial vehicles (UAVs). It has been shown that the nonlinear 6-DOF model
of a UAV can be brought to a quasi-LPV form using the nonlinear embedding in
the parameters approach. Wind disturbance, actuator faults and icing are added into
the model as additive disturbances. Then, the LPV UIO matrices are designed such
that different output directions of the residuals are assigned for the unknown inputs
acting on the system. In this way, an algorithm for deciding about the occurrence
of faults/icing can be proposed, under the assumption that at a given instant either a
single fault or icing could act on the system. In addition, a metric that can be used
for analysing the robustness of the proposed method has been suggested, along with
a Monte Carlo strategy for estimating this metric with some desired bound on the
standard deviation.

The proposed actuator faults and icing diagnosis method has been validated using
the case study of a typical small UAV. Four different scenarios have been analysed,
i.e. i) fault in thrust; ii) fault in elevator; iii) fault in ailerons; and iv) icing. The results
obtained without sensor noise and uncertainties show that the proposed approach is
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Fig. 6 Inputs δa and δe in nominal scenario (without sensor noise/uncertainties).

able to diagnose correctly all the considered faults when the theoretical assumptions
under which the UIO has been developed hold. However, when sensor noise and
uncertainties are included into the simulations, the trade-off between avoiding false
alarms and making the LPV UIO-based scheme sensitive to faults/icing must be taken
into account, in order to choose appropriate values for the residual thresholds. In this
case, the robustness metric and the extensive Monte Carlo simulations have proven
to be useful tools for performing this choice.

It seems evident that before achieving a successful application of the proposed
strategy on a real UAV operating under harsh weather conditions, it will be necessary
to enhance the sensitivity of the UIO to faults and icing while decreasing the sensi-
tivity to noise and uncertainties. Also, active trajectory planning will be investigated,
in particular with the aim of allowing a successful aileron fault diagnosis.

Appendix

a12(·) = sinθ

a13(·) =−sinφcosθ

a14(·) =−cosφcosθ

a22(·) =
ρuS
2m

[
(CL0 +CLα

α)sinα− (CD0 +CDα
α)cosα−

SpropCprop

S

]
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Fig. 7 Residuals ξi(t), i = 1, . . . ,6, in fault scenario 4 (without sensor noise/uncertainties).

a23(·) =
ρvS
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(CL0 +CLα
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a24(·) =
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a29(·) =−w+
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a43(·) =−
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a59(·) = sinφ tanθ
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1
2

ρSbv
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β

)
a103(·) =

1
2
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(
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β

)
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+
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4
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a109(·) =
Γ7q

2
− Γ1q

2

a1010(·) =−
Γ1q

2
+
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4
Crr
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ρSpropCprop
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m
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ρV 2

a S
2m

(
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sinα−CDδe
cosα

)
b33(·) =

ρV 2
a S

2m
CYδa

b34(·) =
ρV 2

a S
2m

CYδr

b42(·) =−
ρV 2

a S
2m

(
CLδe
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sinα

)
b83(·) =

1
2

ρV 2
a SbCpδa

b84(·) =
1
2

ρV 2
a SbCpδr

b92(·) =
ρV 2

a Sc
2Jy

Cmδe

b103(·) =
1
2

ρV 2
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b104(·) =
1
2

ρV 2
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a S
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(
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)
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ρV 2
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2m

(
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)
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(
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CLδe
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)
g8(·) =

1
2
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(
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g9(·) =
ρV 2

a Sc
2Jy

(
Kmα

Cmα
α+KmqCmq
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2Va

+Kmδe
Cmδe

δe

)
g10(·) =

1
2
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a Sb

(
Γ4KlβClβ β+Γ8Knβ
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)
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