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SUMMARY

A multiple model approach for icing diagnosis and identification in small unmanned aerial vehicles
(UAVs) is proposed. The accretion of ice layers on wings and control surfaces modifies the shape of
the aircraft and, consequently, alters performance and controllability of the vehicle. Pitot tubes might
be blocked due to icing, providing errors in the airspeed measurements. In this paper we propose a
nested multiple model adaptive estimation framework to detect and estimate icing using standard
sensors only, i.e. a pitot tube and IMU. The architecture of the estimation scheme is based on two
different time scales, i.e. one for accretion of ice on aircraft surfaces and one for accretion of ice on
sensors, and consists in two nested adaptive observers, namely outer and inner loop respectively. The
case-study of a typical small UAV supports and validates the proposed theoretical results. Copyright
c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The efficiency and reliability of operations in isolated areas have significantly increased thanks
to the development of advanced control systems and the use of automated vehicles. On the
other hand, such systems are expected to face very critical and harsh conditions.
For instance, the employment Unmanned aerial vehicles (UAVs) as support to operations
in remote environments, such as marine operations in the Arctic region, is becoming more
and more crucial. Due to critical atmospheric conditions and cold temperatures, the vehicles
are naturally prone to the occurrence of icing though. Detection and accommodation of ice
adhesion on wings, control surfaces and sensors is a challenging and primary issue for UAVs,
since the ice accretion modifies the shape of the aircraft and alters the measurements, this
causing adverse changes on aerodynamic forces and reducing the maneouvring capabilities.
The phenomenon of icing, that can be regarded as a structural fault, is a well recognized
problem in aviation research since the early 1900s [1]. The formation of ice layers on the
airfoils decrease the lift and, simultaneously, increase the drag and the mass of the vehicle,
this requiring additional engine power and implying a premature stall angle [2].

∗Corresponding author

Copyright c© 0000 John Wiley & Sons, Ltd.

Prepared using acsauth.cls [Version: 2010/03/27 v2.00]



2

Inflight icing is typically caused by the impact of supercooled water droplets (SWD). When
a water droplet is cooled, it does not freeze until it reaches very low temperatures; however,
if the droplet impact on the aircraft surface it may freeze immediately and then accretes ice
[3]. The rate and the severity of icing are determined by several factors, such as shape and
roughness of the impacting surface, vehicle speed, surface temperature, air temperature and
relative humidity [4].
The consequences of icing are even more severe for small unmanned aircrafts due to their simple
architecture and limited payload, this making them mostly unsuitable for the typical anti-icing
and de-icing devices that are used in large airplanes. Small UAVs are also more prone to icing
than most other aircrafts since they often operate at low altitude where high humidity and
SWD are encountered more frequently. Larger aircraft tend to operate at high altitude (except
for take off and landing) where there are less risks of icing. Some advanced de-icing systems
for UAVs have been recently proposed based on carbon nanotube technology [5] [6]. The wing
surface can be painted with layers of coating material made of carbon nanotubes, which can
be heated up very quickly using an onboard electric energy source. However, since this is very
power consuming, in order to guarantee the efficiency of the system it is very important to rely
on fault/icing detection schemes with fast and accurate responses. Several approaches have
been proposed for icing detection in aircrafts and unmanned aerial vehicles. Actuator fault
detection methods have been investigated in [7] [8] [9] [10], while a KF-innovation approach
is proposed in [11]. The problem of sensor icing diagnosis is addressed in [12] [13], where
residuals based on statistical and comparison methods have been adopted. Detection and
isolation schemes using Unknown Input Observers have been proposed for lateral dynamics
[14] and, recently, for longitudinal dynamics [15]. In this paper we adopt a multiple-model
(MM) approach [16] [17] [18] [19] [20]. Defining a bank of possible models, corresponding to
distinct admissible values of the icing severity factor, the proposed algorithm guarantees the
identification of the closest model to the true system as well as the estimation of the icing
severity factor, provided that a distinguishability condition among the models is fulfilled or,
more generally, persistency of excitation (PE) is enforced. The main advantages of the MM
framework are cost-efficiency, robustness, parallel structure and fast transient response. The
work of icing detection and identification using MM has been initiated with [21, 22] for the
longitudinal dynamics. This paper extends previous results in two different directions: the
complete 6-DOF aircraft model is considered, and an enhanced MM estimation technique
is proposed based on nested algorithms. Specifically, the main contributions of the paper
are the rigorous demonstration of adaptive multiple-model convergence in the case of time-
varying parameters and the design of two nested blocks of multiple models with the aim of
estimating the icing coefficients for the aircraft surface and for the airspeed sensor, these being
characterized by different time scales. The paper is structured as follows. The UAV model and
the basic setup are given in Section II, while the icing model is described in Section III. The
multiple-model framework is introduced in Section IV and the main results are presented in
Section V. Finally, Section VI is dedicated to the validation of the proposed results by means
of numerical simulations.

Notation: Scalar quantities are denoted with roman symbols (lowercase, capital and greek);
bold lowercase symbols denote vectors and bold capital symbols denote matrices.

2. UAV MODEL

The object of study in this article is a fixed wing UAV, and to describe its kinematics and
dynamics we adopt the standard aircraft nonlinear model with quasi-linear aerodynamical
forces [23], consisting of three equations for airspeed components (ũ, ṽ, w̃) representing velocity
relative to the wind along the main body axes, three equations for Euler angles (φ̃, θ̃, ψ̃) defining
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the attitude of the vehicle and three equations for angular rates (p̃, q̃, r̃):

˙̃u = r̃ṽ − q̃w̃ − g sin θ̃ + ax

˙̃v = p̃w̃ − r̃ũ+ g cos θ̃ sin φ̃+ ay

˙̃w = q̃ũ− p̃ṽ + g cos θ̃ cos φ̃+ az

˙̃
φ = p̃+ q̃ sin φ̃ tan θ̃ + r̃ cos φ̃ tan θ̃

˙̃
θ = q̃ cos φ̃− r̃ sin φ̃

˙̃
ψ = q̃ sin φ̃ sec θ̃ + r̃ cos φ̃ sec θ̃

˙̃p = Γ1p̃q̃ − Γ2q̃r̃ + Γ3P + Γ4R

˙̃q = Γ5p̃r̃ − Γ6(p̃2 − r̃2) +Q/Jy

˙̃r = Γ7p̃q̃ − Γ1q̃r̃ + Γ4P + Γ8R

(1)

where g is the gravity acceleration and Jy,Γi are inertia coefficients. Except when specifically
indicated, throughout the paper we will refer to quantities expressed in the body-fixed
coordinate frame.

Figure 1. UAV model with body-fixed coordinate frame

The translational accelerations ax, ay, az and the angular accelerations P,Q,R incorporate
the effects of aerodynamical forces such as lift, drag and thrust, and are given by [23, 24]

ax =
ρṼ 2

a S

2m

(
CX(α̃) + CXq (α̃)

cq̃

2Ṽa
+ CXδe (α̃)δ̃e

)
+
ρK

2m
(c2t δ̃

2
t − Ṽ 2

a )

ay =
ρṼ 2

a S

2m

(
CY0 + CYββ + CYp

bp̃

2Ṽa
+ CYr

br̃

2Ṽa
+ CYδa δ̃a + CYδr δ̃r

)
az =

ρṼ 2
a S

2m

(
CZ(α̃) + CZq (α̃)

cq̃

2Ṽa
+ CZδe (α̃)δ̃e

) (2)
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P =
ρṼ 2

a Sb

2

(
Cp0 + Cpβ β̃ + Cpp

bp̃

2Ṽa
+ Cpr

br̃

2Ṽa
+ Cpδa δ̃a + Cpδr δ̃r

)
Q =

ρṼ 2
a Sc

2

(
Cm0

+ Cmα α̃+ Cmq
cq̃

2Ṽa
+ Cmδe δ̃e

)
R =

ρṼ 2
a Sb

2

(
Cr0 + Crβ β̃ + Crp

bp̃

2Ṽa
+ Crr

br̃

2Ṽa
+ Crδa δ̃a + Crδr δ̃r

) (3)

where Ṽa denotes the total airspeed

Ṽa =
√
ũ2 + ṽ2 + w̃2,

m is vehicle mass, ρ is the air density, S is the wing surface area, b, c are the airfoil span and
chord, respectively. The quantities α̃ and β̃ are the angle-of-attack (AOA) and the side-slip
angle (SSA), which verify

α̃ = arctan
w̃

ũ
, β̃ = arcsin

ṽ

Ṽa
.

AOA and SSA are very important parameters in the aircraft stability analysis and control
synthesis [25]; in particular AOA is the angle between the incoming airflow and the airfoil
main chord, while SSA is the angle between the incoming airflow and the longitudinal body
axis.
The coefficients C] are referred to as stability and control derivatives; it can be noticed that
coefficients for horizontal and vertical speed depend on the angle-of-attack α̃ according to

CX(α̃) = −(CD0
+ CDα α̃) cos α̃+ (CL0

+ CLα α̃) sin α̃
CXq (α̃) = −CDq cos α̃+ CLq sin α̃
CXδe (α̃) = −CDδe cos α̃+ CLδe sin α̃

CZ(α̃) = −(CD0 + CDα α̃) sin α̃− (CL0 + CLα α̃) cos α̃
CZq (α̃) = −CDq sin α̃− CLq cos α̃
CZδe (α̃) = −CDδe sin α̃− CLδe cos α̃

Finally, the model inputs are the thrust control variable δ̃t (the constant K and ct are,
respectively, an aerodynamical coefficient for the propeller and an efficiency parameter), and
the deflection angles associated to elevator, ailerons and rudder: δ̃e, δ̃a and δ̃r. In a typical
aircraft, the elevator is the surface used to control the pitch while the combined use of
ailerons and rudder influence roll and yaw angles. It might be useful to define also a compact
representation of the aircraft model, and thus we collect all the previous equations in the
nonlinear system

˙̃x = F (x̃, δ̃), (4)

with state x̃ = [ũ ṽ w̃ φ̃ θ̃ ψ̃ p̃ q̃ r̃]T and control input δ̃ = [δ̃t δ̃e δ̃a δ̃r].

2.1. Linearization

For estimation purposes, it is worth deriving a suitable linearized model of the aircraft. In
particular, the icing accretion framework proposed in Section 3 is mainly based on a coupled
longitudinal/lateral linearized vehicle model. To this end, consider a trim condition

x∗ := [u∗ v∗ w∗ φ∗ θ∗ ψ∗ p∗ q∗ r∗]T

δ∗ = [δ∗t δ
∗
e δ
∗
a δ
∗
r ]T
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and linearize the above system as follows. Set

u := ũ− u∗, v := ṽ − v∗, w := w̃ − w∗
φ := φ̃− φ∗, θ := θ̃ − θ∗, ψ := ψ̃ − ψ∗
p := p̃− p∗, q := q̃ − q∗, r := r̃ − r∗
δe := δ̃e − δ∗e , δt := δ̃t − δ∗t
α := α̃− α∗, β := β̃ − β∗

Incorporating these last expressions, we obtain a 6-DOF linear system describing the linearized
coupled longitudinal/lateral dynamics of the aircraft:

ẋ = Ax + Bδ (5)

with x = [u v w φ θ ψ p q r]T , δ = [δt δe δa δr]
T and

A =



Xu Xv Xw 0 Xθ 0 0 Xq Xr

Yu Yv Yw Yφ Yθ 0 Yp 0 Yr
Zu Zv Zw Zφ Zθ 0 Zp Zq 0
0 0 0 Φφ Φθ 0 Φp Φq Φr
0 0 0 Θφ 0 0 0 Θq Θr

0 0 0 Ψφ Ψθ 0 0 Ψq Ψr

Lu Lv Lw 0 0 0 Lp Lq Lr
Mu Mv Mw 0 0 0 Mp Mq Mr

Nu Nv Nw 0 0 0 Np Nq Nr



B =



Xδt Xδe 0 0
0 0 Yδa Yδr
0 Zδe 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 Lδa Lδr
0 Mδe 0 0
0 0 Nδa Nδr


The expressions of the coefficients appearing in the matrices are reported in Appendix. We
point out that the advantage of using the full 6-DOF model is the availability of a unified
approach that can handle maneuvers involving the coupled dynamics and can also be readily
adapted to decoupled longitudinal and lateral dynamics.

2.2. Input disturbances

The system dynamics is affected by the wind velocity, that can be expressed by the additional
input [

W
06×1

]
, W = −R ˙̃ν

where ν̃ = [ν̃N ν̃E ν̃D]T is the wind speed expressed in the North-East-Down coordinate frame
and R is the rotation matrix

R =

 1 0 0
0 cosφ sinφ
0 − sinφ cosφ

 ·
 cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ


·

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1
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The wind velocity ν̃ can be expressed as the sum of a steady component (known or accurately
estimated) ν∗ with ν̇∗ = 0 and a gust component ν; the linearization yields the linear input
disturbance

Wν̇ =

[
−R∗

06×3

]
ν̇ (6)

where R∗ stands for the matrix R computed for φ = φ∗, θ = θ∗ and ψ = ψ∗.

2.3. Measured outputs

The standard sensor suite for unmanned vehicles includes IMU, compass, GPS and a pitot
tube for the airspeed measurement. The measurement of Euler angles φ̃, θ̃ and angular rates
p, q, r are provided by the inertial sensors, i.e. gyroscopes and accelerometers, while the pitot
tube gives the horizontal airspeed ũ. For the purpose of this paper, we can limit to consider
only horizontal airspeed ũ, roll angle φ and pitch angle θ. The following main system outputs
are therefore available:

ỹ1 = ũ+ µu
ỹ2 = φ̃+ µφ
ỹ3 = θ̃ + µθ

(7)

where µ denotes a noise term. Linearization about the trim condition x∗ yields:

y = Cx + µ̂

with

C =

 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0

 , µ̂ =

 µu
µφ
µθ

 (8)

The noise term µ̂ is assumed to be bounded by a known parameter %µ, i.e.

‖µ̂‖ ≤ %µ.

According to the standard sensors suite mounted on the aircraft, additional outputs are
available, such as altitude, ground position and linear accelerations. For the scopes of this
paper, it is sufficient to consider the outputs given in (7), although the additional outputs
could be used for sensor fault diagnosis. Propeller angular speed and control surfaces position
are supposed to be available, as well as a measurement of the total mass of the vehicle (take-
off weight minus used fuel). Finally, the aircraft is supposed to be equipped with an air data
sensor providing air temperature and humidity, which can be used to predict when icing is
more likely to occur based on atmospheric conditions.

3. ICING EFFECT MODEL

The accretion of clear ice on the aircraft surfaces modifies stability and control derivatives
according to the following linear model [26]

Cice] = (1 + ηK])C], ] = X,Xq, Xδe , . . . , rδa , rδr . (9)

where η is the icing severity factor and the coefficient K] depends on aircraft specifications
[27]; the clean condition corresponds to η = 0, while the all iced condition occurs for η = ηmax

[2]. It is worth noticing that the coefficients K] turn out to be negative, so that model (9)
corresponds to downscaling of control and stability derivatives.
As a consequence, the effect of icing can be modeled as a perturbation term ηFice(x̃, δ̃), where
η is a scalar quantity and the vector field Fice(·, ·) includes the variations of acceleration
coefficients (2) and moments (3) according to (9). Referring to the linearized model (5),
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the overall effect of icing can be regarded as the additive input η(AEx + BEδ + F̄) with
F̄ = Fice(x∗, δ∗) and

AE =



EXu EXv EXw 0 0 0 0 EXq 0
EYu EYv EYw 0 0 0 EYp 0 EYr
EZu EZv EZw 0 0 0 0 EZq 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
ELu ELv ELw 0 0 0 ELp 0 ELr
EMu

EMv
EMw

0 0 0 0 EMq
0

ENu ENv ENw 0 0 0 ENp 0 ENr



BE =



0 EXδe 0 0
0 0 EYδa EYδr
0 EZδe 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 ELδa ELδr
0 EMδe

0 0
0 0 ENδa ENδr


where the coefficients E] are obtained from K] and C] by performing linear combinations.
The matrices AE ,BE model the changes on state and input matrices due to icing, while the
constant vector F̄ represent a shift of the equilibrium condition. The icing severity factor
evolves according to the law

η = f(ω)χ

where ω is the fraction of water freezing at a point on a surface to the water impinging on the
surface,

ω =
mass of water freezing

mass of water impinging
,

and χ is the accumulation parameter defined as the mass flux [28]

χ̇ =
℘λVa
%c

(1− ιairfoil), (10)

℘ being the collection efficiency, λ the liquid water content, Va is the airspeed, % the ice
density, c is the airfoil chord and ιairfoil ∈ [0, 1] is the airfoil icing protection coefficient.
Both the fraction ω and the ice density ρ depend on the air temperature and the relative
humidity. In particular, when the temperature is below −10◦C the factor ω satisfies ω ≈ 1,
this corresponding to rime ice formation; on the other hand, if the temperature is between
−10◦C and 0◦C, glaze ice typically appears with ω < 1. It has been observed experimentally
that the icing severity factor achieves its maximum ηmax when the freezing fraction ω is close
to the value ωg = 0.2, while it decreases to a steady value as ω approaches 1 [26]. We consider
therefore a piecewise linear behavior of the function f(ω):

f(ω) :=



fmax

ωg
ω ω ∈ [0, ωg]

−
(

fmax

ωg(1− ωg)
+
fsteady

1− ωg

)
ω

+
fmax

ωg(1− ωg)
+

(2− ωg)fsteady

1− ωg

ω ∈ [ωg, 1]
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with fmax > fsteady > 0.
It is worth noting that icing may likely alter also the airspeed measurements, as the pitot tube
may be clogged by the ice: this usually results in the over-estimation of the airspeed caused
by the increased pressure. Adopting a normalization parameter σu, depending on the sensor
specifications, and denoting by ξ the sensor icing severity factor, the effect can be modeled as

y1 = (1 + σuξ)u+ ξσuu
∗,

that yields
y = (C + ξCS)x + ξū + µ̂

where

CS :=

 σu 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

 , ū :=

 σuu
∗

0
0

 .
Similarly to the previous case, the sensor icing severity factor can be expressed as

ξ = f(ω) · κ

with

κ̇ =
℘λVa
%d

(1− ιsensor), (11)

where d is the diameter of the pitot tube and ιsensor is the sensor icing protection coefficient.
It should be noticed that c >> d: as a matter of fact, sensor icing is typically quicker and
possibly more severe; on the other hand, some UAV are equipped with a heated pitot tube,
this resulting in ιsensor = 1, and sensor fault accommodation is relatively straightforward.
Summarizing, one has the following perturbed plant:

ẋ = (A + ηAE)x + (B + ηBE)δ + ηF̄ + Wν̇
y = (C + ξCS)x + ξū + µ̂

4. A MULTIPLE-MODEL ADAPTIVE ESTIMATOR

In this section we provide the general architecture of a multiple model adaptive estimator for
systems with time-varying unknown parameters that will be specified to the case of the aircraft
system with icing in the next section.
Consider a generic LTI discrete-time plant of the form

xt+1 = Aϑxt + Bϑut + Wϑdt
yt = Cϑxt + µt

(12)

where xt ∈ Rn denotes the state of the system, ut ∈ Rm is the control input, yt ∈ Rp is the
output and dt ∈ Rr,µt ∈ Rp are, respectively, bounded input and output noise terms. The
system matrices Aϑ,Bϑ,Cϑ,Wϑ contain unknown constant parameters denoted by the vector
ϑ.
Consider a finite set of candidate parameter values T := {ϑ1, ϑ2, ..., ϑimax}; a multiple-model
adaptive estimator (MMAE) can be designed according to

x̂t =

imax∑
i=1

pitx̂t|ϑi (13)

ŷt =

imax∑
i=1

pitŷt|ϑi (14)

ϑ̂t = ϑi� , i� := arg max
i∈{1,...,imax}

pit (15)
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where x̂t, ŷt and ϑ̂t are the estimates of the state, the output and the parameter vector at
time t and pit are dynamic weights to be defined. Each estimated state x̂t|ϑi corresponds to

the ith Krener minimax observer [29]

x̂t+1|ϑi = Aϑi x̂t|ϑi + Bϑiut + Dϑi(yt −Cϑi x̂t|ϑi)
ŷt|ϑi = Cϑi x̂t|ϑi
Dϑi = AϑiΣϑiC

T
ϑi

[CϑiΣϑiC
T
ϑi

+ Ω]−1,
(16)

with Σϑi assigned by the discrete algebraic Riccati equation

−Σϑi + AT
ϑi

ΣϑiAϑi + WϑiΞWT
ϑi

−AT
ϑi

ΣϑiC
T
ϑi

[CϑiΣϑiC
T
ϑi

+ Ω]−1CϑiΣϑiAϑi = 0,
(17)

where Ξ and Ω are symmetric positive definite matrices, and the pairs (Aϑi ,Wϑi) and
(Aϑi ,Cϑi) are controllable and observable, respectively. Solving algebraic Riccati equations
is a non trivial problem that goes far beyond the scope of the present paper; the interested
reader might refer to [30] for an interesting and extensive survey on available methods. The
dynamic weights pit are generated by the recursion

pit+1 =
γie
−sit∑imax

j=1 pjtγje
−sjt

pit, (18)

where γi is a positive constant coefficient and sit is continuous function called error measuring
function, mapping measurable plant signals to nonnegative values. These quantities can be
defined as follows:

γi =
1√
||Sϑi ||

, sit =
1

2
||yt − ŷt|ϑi ||2S−1

ϑi

with ||x||Q = (xTQx)1/2 and where the positive definite matrix Sϑi is given by

Sϑi = CϑiΣϑiC
T
ϑi + Ω.

The dynamic weights are defined in order to be positive and to constitute a partition of unity
for any t ≥ 0.

Definition 4.1
An admissible weight initial condition (AWIC) is any vector π ∈ (0, 1)imax such that

π = (π1, ..., πimax),

imax∑
i=1

πi = 1

The set of all possible AWIC is denoted with P.

Proposition 4.1
Suppose the initial condition is π0 = (p1

0, ..., p
imax
0 ) ∈ P. Then each pit is contained in the

interval [0, 1] ∀t ≥ 0. Furthermore

N∑
i=1

pit = 1 ∀t ≥ 0.

Moreover, if a distinguishability condition is met, the dynamic weights satisfy a helpful
convergence property [19, 31, 32].

Lemma 4.1
Let i? ∈ {1, 2, ..., imax} be an index of a parameter vector in T and set I := {1, 2, ...., imax} \ i?.
Suppose that there exist positive constants n1, t1, ε and ε1 such that for all t ≥ t1 and n ≥ n1
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the following conditions hold:

1

n

t+n−1∑
τ=t

(si
?

τ + ε) <
1

n

t+n−1∑
τ=t

min
j∈I

sjτ , (19)

log max
j∈I

γj − log γi? < ε1, with ε1 < ε. (20)

Then the dynamic weights pit satisfy

lim
t→∞

pi
?

t = 1, lim
t→∞

pjt = 0 ∀j ∈ I.

The proofs of Proposition 4.1 and Lemma 4.1 can be found in [19] and the next statement
can be inferred as a direct consequence.

Theorem 4.1
Let the unknown parameter ϑ be such that ϑ ∈ [ϑi, ϑi+1] for some i = 1, ..., imax, and assume in
addition that the distinguishability conditions (19)-(20) are fulfilled. Then the overall estimated
state x̂t converges to the state x̂t|i� of the model closest to the true system xt in the following
sense:

pi
�

t → 1, pjt → 0 ∀j 6= i� (21)

where the index i� is characterized by the conditions

either i� = i or i� = i+ 1

In particular, for any ϑ and any weight initial condition π0 ∈ P, there exists T (ϑ,π0) > 0 such

that the pointwise set inclusion ϑ̂t ∈ {ϑi, ϑi+1} holds true for any t ≥ T (ϑ,π0).

Proof
The statement follows straightforwardly from Lemma 4.1, since the list of claimed values T
does not lead to indistinguishability scenarios. In particular, thanks to (19), the terminal index
i� satisfies

i� = arg min
i∈{1,2,...,imax}

lim
n→∞

1

n

t+n−1∑
τ=t

siτ .

Now, denoting by Ψ(ω) the power spectral density of the input signals [ut dt µt]
T , and using

the Parseval’s theorem [33], it can be seen that the above condition is equivalent to

i� = arg min{Y1, ...,Yimax}

Yk = tr

[∫ π

−π
(Hk(ejω)Ψ(ω)Hk(ejω)HS−1

ϑk
)dω

]
where Hk(z) is the discrete transfer matrix of the kth model (see [19] for further details). Since
any Yi is by construction a positive and convex function of the unknown parameter and has a
minimum in ϑ = ϑk, the estimated parameter ϑ̂t is forced to converge to one of the boundary
points {ϑi, ϑi+1} in a finite time T (ϑ,π0).

Remark 4.1
Given any bounded interval E ⊂ R with ϑ ∈ E, there exists a decomposition

E = E0 ∪
imax⋃
i=1

Ei, Ei = (ei, ei)

such that
ϑ ∈ Ei ⇒ ϑ̂t → ϑi.

The set E0 contains all values of ϑ ∈ E that may lead to indistinguishability.
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Definition 4.2
Given the threshold δ ∈ (0, 1) and the closed subset K = ∪imaxi=1 Ki, where Ki ⊂ Ei are compact
intervals, we define the parameter Tmax(K, δ) as a measure of the convergence rate:

Tmax(K, δ) = max
ϑ∈K

max
π0∈Pδ

T (ϑ,π0), (22)

with
Pδ := {π ∈ P : πi ≥ δ ∀i = 1, ..., imax}.

The parameter Tmax(K, δ) defined in (22) represents an upper bound for the convergence
rate of the algorithm. To compute such bound one takes into account the worst case of
converging time T (ϑ,π0) in terms of AWIC π0 and value of the parameter ϑ to be estimated.
It is worth noting that the accuracy of the estimation depends on the number of multiple models
being considered: as a general and naive rule, a larger number of distinct models provides a
more accurate estimation. For this reason, compatibly with the computational limitations, it
might be convenient to define the models by selecting a fine grid of values within the prescribed
bounds for the unknown parameter. On the other hand, the presence of noisy measurements
might compromise the distinguishability of models if the grid of values becomes too fine, and
hence there is a tradeoff between noise levels and the required number of models. The best
multiple-model design strategy must be then shaped by carefully balancing these two opposite
requirements [34].
As a matter of fact, many applications involve time-varying unknown quantities, and therefore
a method able to adapt to possible model switchings is valuable. To this end, let us focus now
on the case of a time-varying parameter

ϑ = ϑ(t). (23)

Although the MMAE algorithm is designed according to a discrete-time setting, we treat ϑ(t)
as a continuous-time parameter in order to emphasize the robustness of the approach with
respect to uncertainties on the time-profile of ϑ(t) itself; moreover such generalized setup is
well suited to handle discretized models of continuous-time systems. In order to incorporate
(23) into the discrete-time dynamics (12), it is then sufficient to take samples of the parameter,
e.g. ϑt, according to the time pattern associated to the plant (12).
As a first step toward the estimation task, the update procedure (18) has to be modified in
order to prevent the occurrence of the saturated scenario

pht = 1, pjt = 0 ∀j 6= h ∀t > t1.

Let us consider ε > 0 sufficiently small, i.e. such that ε < 1/imax. For ∆ > 0, let us define the
truncation operators

sat∆(ζ) = min(∆,max(ζ,−∆))

dead∆(ζ) = ζ − sat∆(ζ)

Define the weights pti according to the following procedure:
qit+1 = γie

−sit∑imax
j=1 pjtγje

−sjt
pit,

rit+1 =
∑

j 6=i dead1−ε(q
j
t+1)

pit+1 = sat1−ε(qit+1) +
rit+1

imax−1

(24)

The resulting dynamic weights verify pit ∈ [ε/(imax − 1), 1− ε] ∀i = 1, ..., imax ∀t ≥ 0 and

imax∑
i=1

pit = 1 ∀t ≥ 0.
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Assumption 4.1
Given the admissible set E, assume that the indistinguishability set E0 ⊂ E (as introduced in
Remark 4.1) is negligible, i.e.

|E0| = 0.

Assumption 4.2
The unknown time-varying parameter ϑ(t) is a non-decreasing (non-increasing) Lipschitz
function with constant L > 0. Moreover it satisfies the following conditions.

a) The parameter ϑ(t) is not stationary on the indistinguishability set E0, i.e.

|{t ∈ [0,∞) : ϑ(t) ∈ E0}| = 0; (25)

lim
t→∞

ϑ(t) /∈ E0. (26)

b) A family of compact intervals Ki ⊂ Ei with ϑi ∈ Ki can be found such that

L < dK
2Tmax(K, ε1)

, (27)

where dK = mini=1,...,imax |Ki| and ε1 = ε/(imax − 1).

The Lipschitz condition (27) is imposed in order to guarantee that the rate of change of the
unknown parameter is not larger than the rate of convergence of the estimation algorithm,
so that the estimator is able to promptly adapt to the evolution of ϑ(t). In particular, under
the mentioned Lipschitz assumption and using the modified weights (24), the following result
can be stated, being one of the major theoretical contributions of the paper and extending
the multiple-model adaptation features of Theorem 4.1 to the case of time-varying unknown
parameters.

Theorem 4.2
If Assumptions 4.1 and 4.2 hold true, then there exist a sequence of time intervals and a
sequence of indices, namely Ik = [τk, τk] and ik ∈ {2, ..., imax}, k ∈ N, and a family of compact
subintervals Ji ⊂ Ki ⊂ Ei such that ∀t ∈ Ik one has

|Ik| ≥ Tmax(K, ε1),

ϑ(t) ∈ Jik ,
ϑ̂t = ϑik ,

pikt → 1− ε, pht → ε/(imax − 1) ∀h 6= ik.

Proof
The proof is given in Appendix.

The statement of the theorem may be interpreted as the existence of a family of time
subintervals Ji such that, on each of them, the estimated parameter ϑ̂t converges to one
specific θi, this being guaranteed by the convergence of the weight pit to the upper limit 1− ε.

Remark 4.2
It is worth to emphasize that, for the convergence of the adaptive multiple-model estimation
algorithm, the fulfillment of a suitable excitation condition is required. In the proposed setting,
such requisite is provided by the distinguishability condition (19)-(20), which can be interpreted
as a weak PE-like condition.
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5. ICING DETECTION AND IDENTIFICATION WITH NESTED MULTIPLE MODELS

The multiple model adaptive estimator derived above will be now adapted to the aircraft
system and extended to fit in a nested architecture with the aim of simultaneously estimating
both the surface icing severity factor η and the sensor icing severity factor ξ. To this end, the
following chain of transformations defines the proposed scheme:

Nonlinear model =⇒ Linearized model =⇒ Discretized linear model

Consider then the discretized linear model derived from (5)-(6) and (8) by setting a sampling
period τς > 0 and assuming inputs and disturbances to be approximated by constant signals
on each sampled interval:

xn+1 = Āτςxn + B̄τςδn + W̄τςν
†
n,

yn = Cxn + µn
(28)

This discrete-time model has been obtained by an exact discretization algorithm with the
aim of preserving the model matching, and the system matrices are then expressed by the
relationships

Āτς = eAτς , B̄τς =

∫ τς

0

eA(τς−ζ)Bdζ, W̄τς =

∫ τς

0

eA(τς−ζ)Wdζ

with

xn = x(nτς), δn = δ(nτς), yn = y(nτς).

The symbol ν†n indicates the average of the wind acceleration ν̇ computed for t = nτς . In
addition consider a second sampling period σς < τς such that

σς =
τς
n[
, n[ ≤

[ c
d

]
, n[ ∈ N (29)

where [·] stands for the integer part of a real number and c, d are the parameters appearing
in (10) and (11), i.e. the airfoil chord and the pitot tube diameter respectively. The aim is
defining two separate time scales, a faster one for estimating icing on sensors and a slower one
for estimating airfoil icing: the parameters c, d do characterize the two different scales indeed.
This leads to the additional discretized system

zm+1 = Āσςzm + B̄σςυm + W̄σς$m,
rm = Czm + µm

(30)

where, as for the previous case, the plant matrices are

Āσς = eAσς , B̄σς =

∫ σς

0

eA(σς−ζ)Bdζ, W̄σς =

∫ τς

0

eA(σς−ζ)Wdζ,

with

zm = x(mσς), υm = δ(mσς), rn = y(mσς).

Again, $†m is the average of the wind acceleration ν̇ computed over a time sample and
evaluated for t = mσς . By construction the identity nτς = n[nσς holds true and hence, if
disturbances and inputs are nearly constant on the large period [(n− 1)τς , nτς ], one has

xn ≈ zn[n, yn ≈ rn[n.
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Assuming the icing severity factors to be slowly-varying, the icing conditions on the system
can be expressed by the following matrices with ? ∈ {τς , σς} :

Āice(?, η) = e(A+ηAE)?, (31)

B̄ice(?, η) =

∫ ?

0

e(A+ηAE)(?−ζ)(B + ηBE)dζ, (32)

W̄ice(?, η) =

∫ τς

0

e(A+ηAE)(?−ζ)Wdζ, (33)

F̄ice(?, η) =

∫ τς

0

e(A+ηAE)(?−ζ)F̄dζ, (34)

C̄ice(ξ) = C + ξCS (35)

Clearly, such matrices have been computed by evaluating the exact discretization of the iced
plant (A + ηAE ,B + ηBE) and therefore the nominal scenario naturally corresponds to (31)-
(35) with η = 0, e.g. one has

Āice(?, 0) =

{
Āτς ? = τς

Āσς ? = σς

The aim of introducing the parametrized matrices (31)-(35) is to allow the generation of the
multiple models. In this regard, recalling that icing severity factors have been experimentally
shown to be bounded [26], it is possible to select two sets of claimed parameter values
N = {η1, η2..., ηimax} and X = {ξ1, ξ2, ..., ξjmax} with ηi < ηi+1, ξj < ξj+1 and η1 = ξ1 = 0.
Due to (31)-(35), one can define a bank of possible system models:

Si,j,? = {A?,ηi ,B?,ηi ,W?,ηi ,F?,ηi ,Cξj},
i = 1, ..., imax j = 1, ..., jmax, ? ∈ {τς , σς}

(36)

with
A?,ηi = Āice(?, ηi), B?,ηi = B̄ice(?, ηi),
W?,ηi = W̄ice(?, ηi), F?,ηi = F̄ice(?, ηi),Cξj = C̄ice(ξj).

(37)

We point out that S1,1,? correspond to the nominal systems (28) and (30), while Simax,jmax,?
represents models of the plant with total icing conditions. In this way, generalizing the scheme

(16)-(17), we can adopt a nested MMAE formulation by considering the families of minimax
observers

x̂n+1|ηi = Aτς ,ηi x̂n|ηi + Bτς ,ηiδn + Fτς ,ηi
+Dτς ,ηi(yn − ŷn|ηi)

ŷn|ηi = Cξj� x̂n|ηi + ξj� ū

Dτς ,ηi = AT
τς ,ηiΣηiC

T
ξj�

[Cξj�ΣηiC
T
ξj�

+ Ω]−1,

(38)

and
ẑm+1|ξj = Aσς ,ηi� ẑm|ξj + Bσς ,ηi�υm + Fσς ,ηi�

+Dσς ,ξj (rm − r̂m|ξj )

r̂m|ξj = Cξj ẑm|ξj + ξjū

Dσς ,ξj = AT
σς ,ηi�

ΥξjC
T
ξj

[CξjΥξjC
T
ξj

+ Ω]−1,

(39)

where the matrices Σηi , Υξj are the positive stabilizing solutions of the discrete algebraic
Riccati equations

−Σηi + AT
τς ,ηiΣηiAτς ,ηi + Wτς ,ηiΞWT

τς ,ηi

−AT
τς ,ηiΣηiC

T
ξj�

[Cξj�ΣηiC
T
ξj�

+ Ω]−1Cξj�ΣηiAτς ,ηi = 0,
(40)
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and
−Υξj + AT

σς ,ηi�
ΥξjAσς ,ηi� + Wσς ,ηi�ΞWT

σς ,ηi�

−AT
σς ,ηi�

ΥξjC
T
ξj

[CξjΥξjC
T
ξj

+ Ω]−1CξjΥξjAσς ,ηi� = 0,
(41)

with positive definite symmetric matrices Ω,Ξ to be computed based on the bounds on
the output noise µ and on the wind gust acceleration ν̇, respectively. The last bound can
be obtained based on the atmospheric conditions data and known turbulence models, e.g.
Dryden model [35]. Mimicking the definitions (13)-(15), the overall estimated states x̂n, ẑm,

estimated outputs ŷn, r̂m and estimated icing factors η̂n, ξ̂m are obtained from the MMAE as
the combinations:

x̂n =

imax∑
i=1

piτς ,nx̂n|ηi ẑm =

jmax∑
j=1

pjσς ,mẑm|ξj

ŷn =

imax∑
i=1

piτς ,nŷn|ηi r̂m =

jmax∑
i=1

pjσς ,mr̂m|ξj

(42)

η̂n = ηi� , i� := arg max
i∈{1,...,imax}

piτς ,n

ξ̂m = ξj� , j� := arg max
j∈{1,...,jmax}

pjσς ,m
(43)

where the dynamic weights piτς ,n and pjσς ,m are defined and updated according to (18) with

Sηi,j� = Cξj�ΣηiC
T
ξj�

+ Ω, Sξj = CξjΥξjC
T
ξj + Ω.

The basic idea of the nested multiple model approach is to exploit the two different time scales
of the unknown parameters η, ξ. The mechanism, which is illustrated in the block diagram in
Figure 2, can be synthesized as follows: for each iteration of the system (38) (outer loop), n[
iterations of (39) (inner loop) are performed. We notice that, since by assumption (29) the
sampling rate of the outer loop is an integer multiple of the sampling rate of the inner loop,
no issue arises in the initialization nor in the synchronization of the loops.

System ⌃(⌘, ⇠)

Model ⌘1

Model ⌘2

Model ⇠1

Model ⇠2

Estimation ⌘̂ Estimation ⇠̂
Dynamic
Weighting

Dynamic
Weighting

x̂n|⌘1

ŷn|⌘1

x̂n|⌘2

ŷn|⌘2

ŷn|⌘imax

x̂n|⌘imax

xn

yn

{p1
⌧,n, ..., pimax

⌧,n }

r̂m|⇠1

r̂m|⇠2

r̂m|⇠jmax

x̂n

Model ⌘imax Model ⇠jmax

Outer loop Inner loop

Figure 2. Block diagram of nested multiple models

Remark 5.1
We notice that, by construction, the procedure (37) yields distinct matrices for any different
choice of parameters η, ξ, and therefore indistinguishability may only occur if the system output
turns out to be equally distanced from two given models. However, for any fixed bank of MM,
the largest set of icing values leading to such symmetry condition is a null-measure set.
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Remark 5.2
The introduction of additional criterions to exclude the most unlikely events, allows us to
reduce the number of models and the computational complexity. As a matter of fact, based
on the temperature and humidity measurements provided by the meteorological sensor suite, a
switching policy can be implemented such that the multiple-model estimation is activated if and
only if certain (possibly conservative) external conditions are met, i.e. if and only if potential
icing circumstances are encountered.

The proposed nested MMAE algorithm can be stated based on (38) and (39).

Algorithm 5.1. i� = j� = 1 % Initialization;
% N] = number of iterations;
For n = 1 : N]

For ` = 1 : n[
Run (39)
Compute ẑm, r̂m for m = (n− 1)n[ + `

End
Update j�

Run (38) and compute x̂n, ŷn
Update i�

End

In order to guarantee the efficiency of the previous algorithm we must require that the
convergence rate of both the outer and the inner loop is sufficiently fast. In this regard the
following assumptions are made, these being crucial for the establishment of the successive
statement that constitutes an extension of Theorem 4.2 to the nested multiple models case
with a pair of unknown parameters to be estimated. In particular, suitable bounds on the
Lipschitz constants (27) that ensure the desired convergence performances can be expressed
in terms of upper bounds for the growth rates (10) and (11) of the icing severity factors.

Assumption 5.1
The ice density %, the liquid water content λ and the collection efficiency ℘ are bounded, i.e.
% ∈ [%min, %max], λ ∈ [λmin, λmax] and ℘ ∈ [℘min, ℘max].

Assumption 5.2
There exists a prescribed region Ô = Ô1 × Ô2 × Ô3 ∈ R9 such that the linear systems (28)
and (30) are sufficiently accurate linearized models of the aircraft dynamics (1) if x ∈ Ô.
Accordingly we set the maximum achievable value for the total airspeed on such domain of
operational conditions

Vmax := max
[u v w]T∈Ô1

√
(u∗ + u)2 + (v∗ + v)2 + (w∗ + w)2.

The region Ô represents the neighborhood of the trim point for which the dynamics of
the aircraft is essentially linear, i.e. where higher order terms can be neglected. The next
statement is the main result of this section on icing detection and identification for UAVs,
and it is intended to exploit the convergence property of the proposed nested multiple-model
architecture. For given compact sets Kτ ,Kσ let us define the uniform maximal time windows

T
(τ)
max(Kτ , ε1) := max

ξ∈{ξ1,...ξjmax}
{Tmax(Kτ , ε1) for (38)}

T
(σ)
max(Kσ, ε1) := max

η∈{η1,...ηimax}
{Tmax(Kσ, ε1) for (39)}

These quantities provide an upper estimate of the worst-case time of convergence for the outer
and the inner loop, respectively.

Theorem 5.1
Assume that the nested algorithm 5.1 is implemented: the multiple model estimator (39)
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is updated every σς time units, while the multiple model estimator (38) is updated every
τς = n[σς time units. Suppose that parameters δτ , δσ > 0 can be found such that, given
the closed subsets Kτ = ∪imaxi=2 [ηi−1 + δτ , ηi − δτ ] and Kσ = ∪jmaxj=2 [ξj−1 + δσ, ξj − δσ] and the

maximal admissible sets Ē(η) = [0, ηmax] and Ē(ξ) = [0, ξmax], one has

fmax
℘maxλmaxVmax

%minc
<

δτ

(T
(σ)
max(Ē(ξ), ε1) + T

(τ)
max(Kτ , ε1))

(44)

fmax
℘maxλmaxVmax

%mind
<

δσ

(T
(σ)
max(Kσ, ε1) + T

(τ)
max(Ē(η), ε1))

(45)

where the identities dKτ = 2δτ , dKσ = 2δσ have been used. Then, given the aircraft icing model

ẋ(t) = (A + η(t)AE)x(t) + (B + η(t)BE)δ(t) + η(t)F̄
+Wν̇(t),

y(t) = (C + ξ(t)CS)x(t) + ξ(t)ū + µ(t),

η̇(t) = f(ω)
℘(t)λ(t)ũ(t)

%(t)c
,

ξ̇(t) = f(ω)
℘(t)λ(t)ũ(t)

%(t)d
,

there exist two sequences of discrete intervals and two sequences of indices, namely
Nk = [nk, nk] ∩N, Mk = [mk,mk] ∩N, ik ∈ {2, ..., imax} and jk ∈ {2, ..., jmax}, k ∈ N, such
that the following conditions are verified.

For any n ∈ Nk

1) The icing severity factor η remains close to the value ηik :

η(nτς) ∈ [ηik + δτ , ηik+1 − δτ ]

2) The estimated icing severity factor η̂ is constantly equal to the best value:

η̂n = ηik

3) The adaptive estimator provides the best approximation of the true system:

||y(nτς)− ŷn|ηik ||S−1
ηik

,j�
= min
i=1,...,imax

||y(nτς)− ŷn|ηi ||S−1
ηi,j
�

For any m ∈ Nk

1) The icing severity factor ξ remains close to the value ξjk :

ξ(mσς) ∈ [ξjk + δσ, ξjk+1 − δσ]

2) The estimated icing severity factor η̂ is constantly equal to the best value:

ξ̂m = ξjk

3) The adaptive estimator provides the best approximation of the true system:

||y(mσς)− r̂m|ξjk ||S−1
ξjk

= min
j=1,...,jmax

||y(mσς)− r̂m|ξj ||S−1
ξj
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Proof
The statement follows straightforwardly from Theorem 4.2 observing that, by construction, η
and ξ have a limited rate and hence are Lipschitz functions with constants

Lη ≤ fmax
℘maxλmaxVmax

%minc
, Lξ ≤ fmax

℘maxλmaxVmax
%mind

.

In particular, the following bounds are enforced

|η(t1)− η(t2)| ≤ Lη|t1 − t2|, |ξ(t1)− ξ(t2)| ≤ Lξ|t1 − t2| ∀t1, t2 ≥ 0.

We notice that, since both time windows T
(σ)
max(Kσ, ε1) and T τmax(Kτ , ε1) appear in

inequalities (44)-(45), these conditions are more restrictive than (27). However, this additional
conservatism is imposed to guarantee the ability of the algorithm of handling possible transients
that may arise due to the nested behavior and the presence of more than one parameter to be
estimated. In fact, the conditions (44)-(45) demand that the maximum rate of the icing severity
factors is bounded by the diameter of the sets Kτ ,Kσ divided by the overall maximum time of
convergence: these technical requirements are needed to ensure the applicability of Theorem
4.2. In particular, since the maximal time window for each loop is defined uniformly with
respect to the other loop, in order to demonstrate the convergence of the nested multiple
model estimator it is sufficient to repeat the steps of the proof of Theorem 4.2 separately for
the inner and the outer estimator based on the stronger Lipschitz bounds (44)-(45).

Remark 5.3
Regarding the computational burden of the proposed algorithm, one can note that the number
of iterations is linear in the number of models. In particular, denoting by O0 the complexity
of an individual estimator update, the complexity of one cycle of the outer loop turns out to
be

(n[jmax + imax)O0.

As a matter of fact, it is well known that Kalman-Bucy filters feature a reasonable cost-
efficiency. Moreover, since the estimator matrices only depend on the claimed values, they can
be computed offline prior to initialize the algorithm.

6. CASE STUDY: AEROSONDE UAV

In this section, the proposed nested multiple model adaptive estimation is validated through
the application to the case study of a typical small unmanned aircraft, the Aerosonde UAV
(AAI Corporation, Textron Inc.), which is supposed to encounter icing conditions.

Figure 3. Aerosonde UAV
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Following the developments of Section II, a coupled longitudinal/lateral linearized model
of the aircraft can be derived from the original nonlinear model. Such linearized model is
only used to compute the bank of estimators, whose injected output is obtained from the
measurement equation of the original nonlinear aircraft system. In this regard, trim values for
the state and control variables have been fixed as follows:

u∗ = 21.6 m/s, v∗ = 0.5 m/s w∗ = 2.1 m/s
φ∗ = −0.8 deg, θ∗ = 1.5 deg, ψ∗ = 0 deg
p∗ = 0 rad/s, q∗ = 0 rad/s, r∗ = 0 rad/s

δ∗th = 0.48, δ∗e = 0.15, δ∗a = −0.08, δr = −0.16.

The physical parameters of the UAV are given in Table 1 [23]

m 13.5 Kg S 0.55 m2

Jx 0.8244 Kg/m2 c 0.1899 m
Jy 1.135 Kg/m2 b 2.8956 m
Jz 1.759 Kg/m2 d 3 mm
Jxz 0.1204 Kg/m2

Table 1. - Aerosonde UAV parameters

Assuming the air density ρ = 1.2682 Kg/m3, control and stability derivatives for the
Aerosonde UAV are reported in [23]. The linearized system matrices A, B, W are computed
accordingly and are given at the bottom of the page. The wind force has been simulated
using the standard Dryden model [35]. Typical noise levels for standard sensors on UAVs are
|µφ|, |µρ| ≤ 0.01rad for roll and pitch, and |µu| ≤ 1m/s for airspeed. On the other hand, the
simulated noise and the high-frequency disturbance effects have been filtered in order to allow
an easy readability of results for the incremental states u = ũ− u∗, φ = φ̃− φ∗ and θ = θ̃ − θ∗
corresponding to the deviation of state variables from trim values.
Sensor inaccuracies may be handled by tuning the covariance matrices in the multiple-models
design, namely Ξ and Ω; consequently, the estimator response is expected to guarantee a less
tight observation error.
The icing impact coefficients E in the matrices AE and BE can be computed noticing that, in
total icing conditions, the typical change in lift and drag coefficients has been experimentally
observed to obey the following rule [26]:

• 10% reduction of coefficients CZα , CZδe , Cmα , Cmδe , Cpβ , Cpp , Cpδa

A =



−0.4491 −0.0096 0.3042 0 −9.7967 0 0 −2.1672 0.5000
−0.0175 −0.5490 0.0018 9.7957 0.0036 0 2.1672 0 −21.6000
−0.4458 −0.1480 −1.9990 0.1371 0.0036 0 −0.5000 21.6000 0

0 0 0 0 0 0 1.0000 0 0.0260
0 0 0 0 0 0 0 1.0000 0.0140
0 0 0 0 0 0 0 −0.0100 1.0000

−0.9909 −2.6640 −0.0994 0 0 0 −8.2544 0 4.4447
−0.2983 −0.0080 −0.5141 0 0 0 0 −4.4333 0
0.1946 4.5642 0.0238 0 0 0.6984 0 −11.1117



B =



789.7010 −0.4378 0 0
0 0 0 −2.0707
0 4.3632 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 18.0821 21.3524
0 −72.4407 0 0
0 0 10.5491 −2.4525


W =



0.9997 0 −0.0260
−0.0004 0.9999 −0.0140
0.0260 0.0140 0.9996

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
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• 8% reduction of coefficients CYδr , Cpδr , Crr , Crδr
• 20% reduction of coefficients CYβ , Crβ

The nested multiple models estimation has been tested by simulating a simultaneous ice
accretion on aircraft sensors and airspeed sensor according to the following evolution laws
for the icing severity factors η, ξ:

η(t) =

 0 t ≤ 160
linear t ∈ (160, 680)
0.28 t ≥ 680

ξ(t) =

 0 t ≤ 200
linear t ∈ (200, 240)
0.12 t ≥ 240

The sampling periods have been fixed as τc = 0.2s and σc = 0.01s, and four different models
have been considered both for the outer and the inner loop, these corresponding to the following
sets of claimed values:

η1 = 0, η2 = 0.1, η3 = 0.2, η4 = 0.3
ξ1 = 0, ξ2 = 0.1, ξ3 = 0.2, ξ4 = 0.3.

In this work the algebraic Riccati equations for generating the multiple-model system matrices
have been solved using the Matlab command DARE. The control specifications are given by
a closed-loop stabilizing controller, responsible to maintain the trim conditions, together with
a feed-forward component defined according to an assigned constant set-point for airspeed
and pitch. This choice of inputs shows that no particular maneuver is necessary to detect and
identify icing, i.e. distinguishability is guaranteed by basic excitation. Let us stress that, in the
considered practical example, Assumption IV.1 and Assumption IV.2 are satisfied: this shows
indeed that, if on the one hand such technical conditions are needed to rigorously prove the
theorems, on the other hand they are practically meaningful.
Figures 4(a)-(c) show the convergence of the outer estimation loop for all the three systems
outputs: in particular measured airspeed, and roll and pitch angles evolve deviating from
the first model and approach the forth one as the icing severity factor increases. Figure 4(d)
illustrate the behavior of the estimated icing factor η̂ vs the true icing factor η: it can be noticed
that the estimator is affected by a very short transient while switching from model 1 to model
2: such transient is due to the occurrence of surface and sensor icing in rapid succession. In
particular, as it is easily noticeable from Fig. 4(a), these have opposite effects on the airspeed,
which first approaches the second model, then increases due to sensor icing occurrence, and
finally starts to decrease again with a constant slope.
The convergence of the airspeed estimation in the inner loop is shown in Fig. 5(a). The other
two outputs, namely roll and pitch, are not significantly affected by the sensor icing and they
will not be reported. It can be noticed that, as expected, icing on the sensor produces a
measured airspeed that is larger than the true airspeed. The evolution of the icing severity
factor ξ and its estimation ξ̂ are depicted in Fig. 5(b).
The behavior of dynamic weights is depicted in Fig. 6(a) for the outer loop and in Fig. 6(b)
for the inner loop. The transient of outer loop dynamic weights p1

τς and p2
τς between 200s and

400s is compatible with the aforementioned transient of estimated icing severity factor η̂.

7. CONCLUSIONS

In this paper the problem of icing diagnosis and identification for small unmanned aerial
vehicles has been tackled using a nested multiple-model framework. Referring to the coupled
longitudinal/lateral model of the aircraft, which is assumed to be equipped with an airspeed
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sensor and inertial sensors, a bank of possible system models is defined, each one corresponding
to a different claimed value of the icing severity factor. Separate effects due to icing on the
aerodynamic surfaces and on the airspeed sensors have been considered, and two different
estimation loops, namely outer and inner, have been designed. Such nested architecture is
based on the definition of two distinct time scales for the evolution of aircraft surface icing and
sensor icing, and its main advantage is reducing the computational burden and bypassing the
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Figure 6. Nested MM Adaptive Estimation: dynamic weights

classical issue of low scalability of multiple models. The structure of the estimators is based
on the classical Krener min-max observers, and overall state and icing factor estimates are
obtained as weighted combinations of the states of the models and the claimed icing values,
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respectively. The proposed multiple-model estimator is shown to be able to cope with changes
of the unknown parameters with a very fast transient response. Numerical simulations support
and validate theoretical results: the nested MMAE-based icing detection and identification
scheme has been applied to the case study of the Aerosonde UAV subject to icing.
In this paper, the icing has been assumed to act uniformly on the aircraft surface, this
corresponding to the so-called “total iced” conditions. The investigation of a generalized model
including icing on distinct areas, for instance on the wings and on the tail, is one of the main
future challenges in this research topic.
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APPENDIX A

The proof of Theorem 4.2 is presented here.

The aim is to apply recursively the scheme given in Theorem 4.1. In this regard, we
point out that Assumption 4.1 and Assumption 4.2 do guarantee automatically that the
indistinguishability requirements of Theorem 4.1 are satisfied. Indeed, due to (25), the
parameter ϑ(t) may lie in the indistinguishability set E0 only for isolated time steps: without
loss of generality one can therefore assume that ϑ(0) /∈ E0. Three cases are admissible:

A) there exists i1 such that ϑ(t) ∈ Ei1 \Ki1 ∀t ≥ 0;
B) there exist i1 and t∗∗ > 0 such that ϑ(t) ∈ Ei1 ∀t ∈ [0, t∗∗) and ϑ(t) ∈ Ei1+1 \Ki1+1 ∀t >

t∗∗;
C) there exist i1 and t∗ ≥ 0 such that ϑ(t) ∈ Ei1 \Ki1 ∀t ∈ [0, t∗) and ϑ(t∗) ∈ Ki1 .

Let us consider Case A) first. The inclusion ϑ(t) ∈ Ei1 \Ki1 ∀t ≥ ti1 , together with the non-
decreasing behavior of the function ϑ(t) and condition (26), implies that there exists ϑ\ ∈ Ei1
with

lim
t→∞

ϑ(t) = ϑ\.

Let Ki1,\ ∈ Ei1 be an arbitrary compact set with ϑ(0), ϑ\ ∈ Ki1,\. By construction ϑ(0) < ϑ\ <
ϑi1 and hence one has

max
π0∈Pε1

T (ϑ\,π0) ≤ max
π0∈Pε1

T (ϑ(0),π0) ≤ Tmax(Ki1,\, ε1),

this corresponding to
ϑ(t) ∈ Ki1,\, ϑ̂t = ϑi1 ∀t ∈ I1

with I1 = [Tmax(Ki1,\, ε1),∞). The first case has been addressed. It is straightforward to verify
that, if ϑ(t) verifies the conditions of Case B), then ϑ∗∗(t) := ϑ(t+ t∗∗) is included in the
previous case with i1 replaced by i1 + 1. In particular we can deduce

ϑ(t) ∈ Ki1+1,\, ϑ̂t = ϑi1+1 ∀t ∈ I1
with I1 = [t∗∗ + Tmax(Ki1+1,\, ε1),∞).
Let us focus now on Case C) and without loss of generality assume t∗ = 0. Set

τ1 = Tmax(K, ε1).

By definition ϑ̂t converges to ϑi1 for, at most, t ≥ Tmax(Ki1+1,\, ε1); moreover, as long as
ϑ(t) ∈ Ei1 the dynamic weights verify for t ≥ τ1

pi1t ≈ 1− ε, pht ≈ ε/(imax − 1) ∀h 6= ik.

Using (27), one gets

ϑ(τ1)− ϑ(0) ≤ Lτ1 <
dK
2

and therefore ϑ(τ1) is still included in the compact Ki1 . Define the subinterval Ji1 =
[ϑ(τ1),∞) ∩Ki1 and set τ1 := inf{t > τ1 : ϑ(t) ∈ Ei1 \Ki1}. By construction for any t ∈ I1 =
[τ1, τ1] one has ϑ(t) ∈ Ji1 , and it has been shown that, on the same interval, the estimation

ϑ̂t = ϑi1

holds true. Finally, if the boundary time τ1 is finite, it can be verified that

|I1| = τ1 − τ1 ≥
ϑ(τ1)− ϑ(τ1)

L >
dK
2L > Tmax(K, ε1).

The above procedure, i.e. the decision between cases A), B) and C), can be applied again for
t > τ1 and iterated for k = 2, ..., imax.
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APPENDIX B

The expressions of coefficients of state and input matrix for the linearized model are reported
here. First we recall that, given the principal inertia coefficients Jx, Jy, Jz and Jxz one has [23]

Γ1 =
Jxz(Jx − Jy + Jz)

JxJz − J2
xz

Γ2 =
Jz(Jz − Jy) + J2

xz

JxJz − J2
xz

Γ3 =
Jz

JxJz − J2
xz

Γ4 =
Jxz

JxJz − J2
xz

Γ5 =
Jz − Jx
Jy

Γ6 =
Jxz
Jy

Γ7 =
Jx(Jx − Jy) + J2

xz

JxJz − J2
xz

Γ8 =
Jx

JxJz − J2
xz

where Γi are the inertia coefficients appearing in the expression of angular rates dynamics.
Denoting by V ∗a the total airspeed at the trim point, i.e. Setting

V ∗a :=
√

(u∗)2 + (v∗)2 + (w∗)2

and recalling that angle of attack and sideslip angle have the following expressions

α+ α∗ = α+ arctan
w∗

u∗
= arctan

w + w∗

u+ u∗

β + β∗ = β + arcsin
v∗

V ∗a
= arcsin

v + v∗√
(u+ u∗)2 + (v + v∗)2 + (w + w∗)2

the linearization yields

α =
u∗w − w∗u

(u∗)2 + (w∗)2
,

β =
−u∗v∗u+ ((u∗)2 + (w∗)2)v − v∗w∗w

(V ∗a )2
√

((u∗)2 + (w∗)2)
.

Moreover, setting H∗a := u∗u+ v∗v + w∗w and

C∗X := CX(α∗), C∗Xq := CXq (α
∗), C∗Xδe := CXδe (α∗)

ĈX := (CD0
+ CDαα

∗ + CLα) sinα∗ + (CL0
+ CLαα

∗ − CDα) cosα∗

ĈXq := CDq sinα∗ + CLq cosα∗

ĈXδe := CDδe sinα∗ + CLδe cosα∗

C∗Z := CZ(α∗), C∗Zq := CZq (α
∗), C∗Zδe := CZδe (α∗)

ĈZ := −(CD0
+ CDαα

∗ + CLα) cosα∗ + (CL0
+ CLαα

∗ − CDα) sinα∗

ĈZq := −CDq cosα∗ + CLq sinα∗

ĈZδe := −CDδe cosα∗ + CLδe sinα∗

the formulae of coefficients appearing in the plant matrices A, B of the linear model (5) can
be computed, and are reported in Tables 2-4.
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Xu
ρu∗S

m

(
C
∗
X + C

∗
Xq

cq∗

2V ∗a
+ C
∗
Xδe

δ
∗
e

)
−
ρ(V ∗a )2S

2m

((
ĈX + ĈXq

cq∗

2V ∗a
+ ĈXδe

δ
∗
e

)
w∗

(u∗)2 + (w∗)2
+

cq∗u∗

2(V ∗a )3
C
∗
Xq

)
−
ρKu∗

m

Xv r
∗

+
ρv∗S

m

(
C
∗
X + C

∗
Xq

cq∗

2V ∗a
+ C
∗
Xδe

δ
∗
e
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ρScq∗v∗
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C
∗
Xq
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m
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ρw∗S
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∗
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δ
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e
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ρ(V ∗a )2S
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δ
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)
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2(V ∗a )3
C
∗
Xq

)
−
ρKw∗

m

Xθ −g cos θ
∗
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ρV ∗a Sc

4m
C
∗
Xq

Xr v∗
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(
CY0 + CYβ

β
∗

+ CYp
bp∗

2V ∗a
+ CYr
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2V ∗a
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δ
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δ
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+ ĈZδe

δ
∗
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)
u∗
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∗
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)
Zφ −g cos(θ

∗
) sin(φ

∗
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Zθ −g sin(θ
∗
) sin(φ

∗
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ρV ∗a Sc

4m
C
∗
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Table 2. - State matrix coefficients: velocities

Φφ q
∗

cos(φ
∗
) tan(θ

∗
) − r

∗
sin(φ

∗
) tan(θ

∗
) Xδt

ρKχ2δ∗t
m

Φθ
q∗ sinφ∗

cos2 θ∗
+
r∗ cosφ∗

cos2 θ∗
Xδe C∗Xδe

ρ(V ∗a )2S

2m

Φp 1 Yδa CYδa

ρ(V ∗a )2S

2m

Φq sinφ
∗

tan θ
∗

Yδr CYδr

ρ(V ∗a )2S

2m

Φr cosφ
∗

tan θ
∗

Zδe C∗Zδe

ρ(V ∗a )2S

2m

Θφ −q∗ sinφ
∗ − r

∗
cosφ

∗
Lδa (Γ3Cpδa

+ Γ4Crδa
)
ρ(V ∗a )2Sb

2

Θq cosφ
∗

Lδr (Γ3Cpδr
+ Γ4Crδr

)
ρ(V ∗a )2Sb

2

Θr − sinφ
∗

Mδe Cmδe

ρ(V ∗a )2Sc

2Jy

Ψφ q
∗

cos(φ
∗
) sec(θ

∗
) − r

∗
sin(φ

∗
) sec(θ

∗
) Nδa (Γ4Cpδa

+ Γ8Crδa
)
ρ(V ∗a )2Sb

2

Ψθ
q∗ sin(φ∗) sin(θ∗)

cos2 θ∗
+
r∗ cos(φ∗) sin(θ∗)

cos2 θ∗
Nδr (Γ4Cpδr

+ Γ8Crδr
)
ρ(V ∗a )2Sb

2

Ψq sin(φ
∗
) sec(θ

∗
)

Ψr cos(φ
∗
) sec(θ

∗
)

Table 3. - Euler angles coefficients and input matrix coefficients
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Pu ρu
∗
Sb

(
Cp0 + Cpβ β

∗
+ Cpp

bp∗

2V ∗a
+ Cpr

br∗

2V ∗a
+ Cpδa

δ
∗
a + Cpδr

δ
∗
r

)
−
ρ(V ∗a )2Sb

2

(
Cppu

∗p∗ + Cpru
∗r∗

2(V ∗a )3
+

u∗v∗SCpβ

2m(V ∗a )2
√

(u∗)2 + (w∗)2

)

Pv ρv
∗
Sb

(
Cp0 + Cpβ β

∗
+ Cpp

bp∗

2V ∗a
+ Cpr

br∗

2V ∗a
+ Cpδa

δ
∗
a + Cpδr

δ
∗
r

)
−
ρ(V ∗a )2Sb

2

(
Cppv

∗p∗ + Cpr v
∗r∗

2(V ∗a )3
−

((u∗)2 + (w∗)2)SCpβ

2m(V ∗a )2

)

Pw ρw
∗
Sb

(
Cp0 + Cpβ β

∗
+ Cpp

bp∗

2V ∗a
+ Cpr

br∗

2V ∗a
+ Cpδa

δ
∗
a + Cpδr

δ
∗
r

)
−
ρ(V ∗a )2Sb

2

(
Cppw

∗p∗ + Cprw
∗r∗

2(V ∗a )3
+

v∗w∗SCpβ

2m(V ∗a )2
√

(u∗)2 + (w∗)2

)
Lu Γ3Pu + Γ4Ru
Lv Γ3Pv + Γ4Rv
Lw Γ3Pw + Γ4Rw

Lp Γ1q
∗

+ (Γ3Cpp + Γ4Crp )
ρV ∗a Sb

2

4
Lq Γ1p

∗ − Γ2r
∗

Lr −Γ2q
∗ + (Γ3Cpr + Γ4Crr )

ρV ∗a Sb
2

4

Mu
ρu∗Sc

Jy

(
Cm0

+ Cmαα
∗

+ Cmq
cq∗

2V ∗a
+ Cmδe

δ
∗
e

)
−
ρ(V ∗a )2Sc

2Jy

(
Cmα

w∗

(u∗)2 + (w∗)2
+ Cmq

cq∗u∗

2(V ∗a )3

)

Mv
ρv∗Sc

Jy

(
Cm0

+ Cmαα
∗

+ Cmq
cq∗

2V ∗a
+ Cmδe

δ
∗
e

)
− Cmq

ρSc2q∗v∗

4JyV ∗a

Mw
ρw∗Sc

Jy

(
Cm0

+ Cmαα
∗

+ Cmq
cq∗

2V ∗a
+ Cmδe

δ
∗
e

)
−
ρ(V ∗a )2Sc

2Jy

(
Cmα

−u∗

(u∗)2 + (w∗)2
+ Cmq

cq∗w∗

2(V ∗a )3

)
Mp Γ5r

∗ − 2Γ6p
∗

Mq Cmq
ρV ∗a Sc

2

4Jy

Mr Γ5p
∗ + 2Γ6r

∗

Ru ρu
∗
Sb

(
Cr0 + Crβ β

∗
+ Crp

bp∗

2V ∗a
+ Crr

br∗

2V ∗a
+ Crδa

δ
∗
a + Crδr

δ
∗
r

)
−
ρ(V ∗a )2Sb

2

(
Crpu

∗p∗ + Crru
∗r∗

2(V ∗a )3
+

u∗v∗SCrβ

2m(V ∗a )3
√

(u∗)2 + (w∗)2

)

Rv ρv
∗
Sb

(
Cr0 + Cpβ β

∗
+ Crp

bp∗

2V ∗a
+ Crr

br∗

2V ∗a
+ Crδa

δ
∗
a + Crδr

δ
∗
r

)
−
ρ(V ∗a )2Sb

2

(
Crpv

∗p∗ + Crr v
∗r∗

2(V ∗a )3
−

((u∗)2 + (w∗)2)SCrβ

2m(V ∗a )2

)

Rw ρw
∗
Sb

(
Cr0 + Crβ β

∗
+ Crp

bp∗

2V ∗a
+ Crr

br∗

2V ∗a
+ Crδa

δ
∗
a + Crδr

δ
∗
r

)
−
ρ(V ∗a )2Sb

2

(
Crpw

∗p∗ + Crrw
∗r∗

2(V ∗a )3
+

v∗w∗SCrβ

2m(V ∗a )3
√

(u∗)2 + (w∗)2

)
Ru Γ4Pu + Γ8Ru
Rv Γ4Pv + Γ8Rv
Rw Γ4Pw + Γ8Rw

Np Γ7q
∗

+ (Γ4Cpp + Γ8Crp )
ρV ∗a Sb

2

4
Nq Γ7p

∗ − Γ1r
∗

Nr −Γ1q
∗ + (Γ4Cpr + Γ8Crr )

ρV ∗a Sb
2

4

Table 4. - State matrix coefficients: angular rates
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