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SUMMARY

In this paper, a model reference fault tolerant control (FTC) strategy based on a reconfiguration of the

reference model, with the addition of a virtual actuator block, is presented for uncertain systems affected by

disturbances and sensor noise. In particular, this paper: (i) extends the reference model approach to the use

of interval state observers, by considering an error feedback controller which uses the estimated bounds for

the error between the real state and the reference state; (ii) extends the virtual actuator approach to the use

of interval observers, which means that the virtual actuator is added to the control loop in order to preserve

the nonnegativity of the interval estimation errors and the boundedness of the involved signals, in spite of

the fault occurrence. In both cases, the conditions to assure the desired operation of the control loop are

provided in terms of linear matrix inequalities (LMIs). An illustrative example is used to show the main

characteristics of the proposed approach.
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1. INTRODUCTION

Fault tolerant control (FTC) systems aim at conserving the stability and maintaining the overall

performances close to the desired ones despite the presence of faults [1]. The design of these R4-5

systems, and their integration with fault detection and isolation (FDI) techniques, is a hot

topic of research in the recent literature [2, 3]. Following a well-established terminology, FTC

approaches are classified into passive and active [4]. The passive approaches use robust control

theory to guarantee some fault tolerant capabilities [5]. They are simple to design and implement, R4-5

but are more conservative in terms of performances and allowable faults with respect to active

approaches. On the other hand, these latter compensate the faults either by selecting a precalculated

control law or synthesizing online a new control strategy [6]. In this case, the adaptation of the R4-5

control law is done using some information about the fault so as to satisfy the control objectives

with minimum performance degradation after the fault occurrence.

In recent years, the fault-hiding paradigm has been proposed as an active FTC strategy to

obtain fault tolerance [7]. In this paradigm, the faulty plant is reconfigured, instead of the

controller/observer, by inserting a reconfiguration block when a fault occurs. The reconfiguration

block aims at hiding the fault from the controller point of view, such that it sees (approximately) the

same plant as before the fault. In the case of actuator faults, the reconfiguration block is named

virtual actuator. This active FTC strategy has been extended successfully to many classes of

systems, e.g. linear parameter varying (LPV) [8], hybrid [9], Takagi-Sugeno [10] and piecewise

affine [11]. Recently, the case of unstable linear systems subject to actuator saturations and fault

isolation delays has been considered as well [12].

An important line of research in control systems literature concerns the design of robust

controllers, which are able to deal with bounded uncertainties [13]. This problem is currently R2-4

investigated due to the need of ensuring high accuracy and performances in several

applications, e.g. satellite attitude tracking manoeuvres [14], and several solutions have been

proposed. For example, [15] have synthesized a control law that uses the estimation provided
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by sliding-mode observers in order to follow a desired trajectory. On the other hand, [16] have

developed a disturbance observer-based integral sliding-mode control approach for systems

with mismatched disturbances or uncertainties, where the estimated disturbance is used to

counteract the disturbance.

This problem has been considered also in the design of FTC systems, giving rise to robust

fault diagnosis and robust FTC strategies. For example, [17] have presented a robust adaptive fault

tolerant compensation control via sliding-mode output feedback for uncertain systems with actuator

faults and exogenous disturbances, where mismatched disturbance attenuation is performed via H∞

norm minimization. [18] have proposed an integrated fault estimation and FTC design for Lipschitz

nonlinear systems subject to uncertainty, disturbance and actuator/sensor faults. The velocity- R2-4

free uncertain attenuation control for a class of nonlinear systems with external disturbance

and multiple actuator faults has been addressed by [19] using an adaptive sliding mode

observer. Finally, approaches based on fuzzy adaptive compensation control and adaptive R3-5

neural networks have been proposed for dealing with actuator faults in nonlinear systems

with unmodelled dynamics, see e.g. [20, 21].

It is well known that, in an uncertainty setting, interval observers are an appealing approach [22]

because, under some assumptions, they can provide the set of admissible values for the state at each

instant of time. Using the knowledge about the boundedness of the uncertainty, an interval observer

computes the lower and upper bounds for the state, which are compatible with the uncertainty

[23]. A successful framework for interval observer design is based on the monotone system theory,

proposed at first by [24], and further investigated by [25, 26, 27, 28]. R4-5

An interesting twist on the interval observer approach is its application to control [29]. This

means that the control law is designed feeding back the computed lower and upper bounds in

order to stabilize the interval observer, ensuring convergence to a vicinity of zero for the bounding

variables [30]. The approach presented in [30] has undoubtedly a strong appeal, but also a R1-4

R3-1few limitations. First of all, the proposed control law ensures convergence to a vicinity of

zero for the bounding variables and, as such, the extension to trajectory tracking problems
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is not straightforward. Moreover, the possibility of faults affecting the system is not taken

into account, which makes the approach in [30] fragile. The main original contribution of this

paper is the extension of the idea developed in [30] to the case of fault tolerant tracking, that

allows overcoming the above-mentioned limitations, and which is done taking into account the

theoretical results presented in [31]. In order to achieve this:

• the reference model approach [32] is extended to the use of interval observers, by

considering an error feedback controller which uses the estimated bounds for the error

between the real state and the reference one;

• the virtual actuator approach [31] is extended to the use of interval observers, which

means that the virtual actuator is added to the control loop in order to preserve the

nonnegativity of the interval estimation errors and the boundedness of the involved

signals, in spite of the fault occurrence.

Both results are advancements in the state-of-the-art of interval observer-based control. It is R1-1

worth highlighting the fact that the model reference FTC approach described in [31] does not

take into account the fact that the controlled system could be affected by undesired effects,

such as structural uncertainty, exogenous unknown disturbances, measurement noise and

fault estimation errors. In fact, [31] discusses only briefly the effects of fault estimation errors

by suggesting the application of perturbation rejection techniques, such as H2/H∞ norm

optimization, in order to enhance the robustness of the FTC system. On the other hand, the

approach proposed in this paper considers all the above mentioned effects and, by exploiting

the interval formulation, guarantees some theoretical properties (interval estimation and

signal boundedness).

This paper is structured as follows. Section 2 presents the interval observer-based model reference

control. Section 3 describes the fault tolerant control using virtual actuators. Section 4 demonstrates

the application of the proposed technique to an illustrative example. Finally, the main conclusions

are summarised in Section 5.

Notation: Euclidean norm for a vector x ∈ Rn and 2-norm for a matrix A ∈ Rm×n will be R2-5

(2017)



5

denoted as ‖x‖ and ‖A‖, respectively. We will denote as L n
∞ the set of all signals ω : R+→ Rn

such that ω̄ = supt∈R+ ‖ω(t)‖<+∞. The symbols In and 1n denote the identity matrix of order

n and the n-dimensional vector with all elements equal to 1, respectively. For two vectors

x1,x2 ∈ Rn or matrices A1,A2 ∈ Rn×m, the relationships x1 ≤ x2 and A1 ≤ A2 are understood

elementwise. If the matrix P ∈ Rn×n is symmetric, then P ∈ Sn×n. The relation P ≺ 0 (P � 0)

means that P ∈ Sn×n is negative (positive) definite. A matrix A ∈ Rn×n is called Metzler, i.e.

A ∈ Mn×n, if all its elements outside the main diagonal are nonnegative. Given a matrix

A ∈Rm×n, then A+ = max{0,A}, A− = A+−A (similarly for vectors) and the matrix of absolute

values of all elements is denoted by |A|.

2. INTERVAL OBSERVER-BASED MODEL REFERENCE CONTROL

Let us consider an uncertain system in state-space form, described by the following equations:

ẋ(t) = [A0 +∆A(ρ(t))]x(t)+Bu(t)+d(t) (1)

y(t) =Cx(t)+ v(t) (2)

where x ∈ Rnx is the state vector, u ∈ Rnu is the input vector and y ∈ Rny is the output vector.

The matrices A0 ∈ Rnx×nx , B ∈ Rnx×nu and C ∈ Rny×nx are known, whereas the matrix function

∆A depends on the value taken by a varying parameter ρ ∈ Π ⊂ Rnρ which is not available for

measurements, where Π is a known bounded set.

Assumption 1. The matrix function ∆A(ρ(t)) is bounded by−∆A≤∆A(ρ(t))≤∆A for all ρ ∈Π

with some known ∆A ∈ Rnx×nx , ∆A ≥ 0. The initial condition x(0) is bounded by x0 ≤ x(0) ≤ x0

for some known x0,x0 ∈ Rnx . The unknown disturbance d(t) is bounded by d(t)≤ d(t)≤ d(t), with

d,d ∈L nx
∞ . Finally, the sensor noise is bounded by |v(t)| ≤V , with known constant V > 0.

Remark 1: The system (1)-(2) has four sources of uncertainty, which are assumed to belong R3-2

to known bounded sets through Assumption 1: the unknown value of ∆A(ρ(t)), which belongs

to the interval [−∆A,∆A]; the initial condition x(0), which belongs to the interval [x0,x0]; the
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unknown disturbance d(t), which belongs to the interval [d(t),d(t)]; and the sensor noise v(t),

which belongs to the interval [−V,V ].

In this paper, the system (1)-(2) is controlled using a model reference controller [32], composed

of feedforward and feedback actions. The following reference model is considered for providing the

feedforward action:

ẋre f (t) = A0xre f (t)+Buc
re f (t) (3)

yre f (t) =Cxre f (t) (4)

where xre f ∈ Rnx is the reference state vector, uc
re f ∈ Rnu is the nominal reference input vector and

yre f ∈ Rny is the output vector of the reference model.

The reference model gives the trajectories to be followed by the real system. Thus, considering

the error, defined as e(t) , xre f (t)− x(t), the following error system is obtained:

ė(t) = [A0 +∆A(ρ(t))]e(t)+B∆uc(t)−∆A(ρ(t))xre f (t)−d(t) (5)

εc(t) =Ce(t)− v(t) (6)

with ∆uc(t) = uc
re f (t)−u(t) and εc(t) = yre f (t)− y(t).

Following the ideas developed in [30], the error feedback control law is chosen as:

∆uc(t) = Ke(t)+Ke(t) (7)

where K,K ∈Rnu×nx are two feedback gains to be designed in order to stabilize (5)-(6), and e,e∈Rnx

are estimated bounds for the error variable e(t), such that:

e(t)≤ e(t)≤ e(t) (8)

In particular, e(t) and e(t) are provided by the following interval error observer:

ė(t) = [A0−LC]e(t)+B∆uc(t)+Lεc(t)−|L|1nyV −d(t)−∆A
∣∣xre f (t)

∣∣−φ(t) (9)

ė(t) = [A0−LC]e(t)+B∆uc(t)+Lεc(t)+ |L|1nyV −d(t)+∆A
∣∣xre f (t)

∣∣+φ(t) (10)

where L ∈ Rnx×ny is the observer gain matrix, to be designed in order to ensure nonnegativity of the

estimation error dynamics [33], and: R2-5

φ(t) = ∆A
(
e+(t)+ e−(t)

)
(11)
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Theorem 1

Let Assumption 1 be satisfied, e(0) = xre f (0)− x0, e(0) = xre f (0)− x0, and the observer gain L be

chosen such that A0− LC ∈Mnx×nx . Then, the relation (8) is satisfied for (5)-(6) and (9)-(10). In

addition, define A as the set of matrices Ad for which: 2∆A(e++ e−)

LCex

= Ad

 ed

ea

 (12)

with e = ea − 0.5ed , e = ea + 0.5ed and values of ex such that −0.5ed ≤ ex ≤ 0.5ed . Then, if

xre f ∈ L nx
∞ and there exist P,Q ∈ S2nx×2nx , P,Q � 0, Kd ,Ka ∈ Rnu×nx and a constant ν > 0 such

that the following matrix inequality is verified:

GT P+PG+νP+Q≺ 0 (13)

G =

 A0−LC 0

BdKd A0 +BKa

+Ad (14)

∀Ad ∈A , then e,e ∈L nx
∞ if K = 0.5 [Ka−2Kd ] and K = 0.5 [2Kd +Ka].

Proof: Let us consider the dynamics of the interval estimation errors η(t) = e(t)− e(t) and

η(t) = e(t)− e(t):

η̇(t) = [A0−LC]η(t)+
4

∑
i=1

wi(t) (15)

η̇(t) = [A0−LC]η(t)+
4

∑
i=1

wi(t) (16)

where:

w1(t) = ∆A
(
e+(t)+ e−(t)

)
+∆A(ρ(t))e(t) w1(t) = ∆A

(
e+(t)+ e−(t)

)
−∆A(ρ(t))e(t)

w2(t) = ∆A
∣∣xre f (t)

∣∣−∆A(ρ(t))xre f (t) w2(t) = ∆A
∣∣xre f (t)

∣∣+∆A(ρ(t))xre f (t)

w3(t) = |L|1nyV +Lv(t) w3(t) = |L|1nyV −Lv(t)

w4(t) = d(t)−d(t) w4(t) = d(t)−d(t)

According to [33], if the gain L is designed such that A0−LC ∈Mnx×nx , then nonnegativity of R2-5

the signals η(t) and η(t), i.e. (8), holds as long as wi(t) ≥ 0 and wi(t) ≥ 0 for i = 1, . . . ,4, which R2-6
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can be easily demonstrated to be true by considering that Assumption 1 holds (see [34] for a

comparison).

Following [30], let us introduce the new variables ed(t) = e(t)− e(t) (the estimated interval

length) and ea(t) = 0.5(e(t)+ e(t)) (the interval average), as well as Kd = 0.5
[
K−K

]
and Ka =

K +K. Then, taking into account (6), we obtain:

ėd(t) = [A0−LC]ed(t)+φd(t)+δd(t) (17)

ėa(t) = [A0−LC+BKa]ea(t)+BKded(t)+LCe(t)+δa(t) (18)

where:

φd(t) = 2∆A
(
e+(t)+ e−(t)

)
(19)

is globally Lipschitz with respect to ξ (t) =
[
ed(t)T ,ea(t)T

]T , and: R2-6

δd(t) =2 |L|1nyV +d(t)−d(t)+2∆A
∣∣xre f (t)

∣∣ (20)

δa(t) =−0.5
(
d(t)+d(t)

)
−Lv(t) (21)

are bounded due to Assumption 1 and the fact that xre f ∈L nx
∞ .

On the other hand, it is straightforward to show that e(t) can be rewritten as ea(t)+ ex(t) with R2-6

an unknown ex(t), but bounded by −0.5ed(t)≤ ex(t)≤ 0.5ed(t), and (18) becomes:

ėa(t) = [A0 +BKa]ea(t)+BKded(t)+LCex(t)+δa(t) (22)

Then, taking into account that the existence of the set of matrices A for which (12) holds is

ensured by the fact that φd(t) is Lipschitz [35], the following is true:

ξ̇ (t) = G(t)ξ (t)+δ (t) (23)

where δ (t) =
[
δd(t)T ,δa(t)T

]T , and G(t) is defined as:

G(t) =

 A0−LC 0

BKd A0 +BKa

+Ad(t) (24)

with Ad(t) unknown, but belonging to the known set A .
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By considering a Lyapunov function V (t) = ξ (t)T Pξ (t), and taking into account that (13) R2-6

holds ∀Ad ∈A , then the following is obtained:

V̇ (t)≤ ν
−1

δ (t)T Pδ (t)−ξ (t)T Qξ (t) (25)

that, by input to state stability reasoning [36] means that ed ,ea ∈L nx
∞ and, therefore, e,e ∈L nx

∞ . �

The matrix inequality (13) can be rewritten easily in a way that allows finding the controller gains

Kd and Ka (hence, K and K). In fact, by pre- and post-multiplying (13) by P−1, and using the change

of variable Qp = P−1QP−1, (13) is equivalent to:

P−1GT +GP−1 +νP−1 +Qp ≺ 0 (26)

For a fixed value of ν , (26) can be brought to an LMI form through an additional change of

variable. To this end, let us rewrite G as follows:

G =

 A0−LC 0

0 A0

+Ad +

 0

B

K (27)

with:

K =

[
Kd Ka

]
(28)

Then, by considering a convex set containing A , with vertices A1
d , . . . ,A

N
d (see [35] for details R1-3

about the computation of Ai
d , i = 1, . . . ,N), (26) becomes a set of LMIs (one for each of these

vertices) through the change of variable W =KP−1, such that a solution can be found using available

toolboxes and solvers, e.g. YALMIP [37] and SeDuMi [38], and the controller gains can be easily

obtained as K =WP.

Remark 2: As proposed in [39], the requirement that A0−LC ∈Mnx×nx can be relaxed by means

of a change of coordinates with a nonsingular transformation matrix that can be found using the

results developed in [40] and [41].

3. FAULT TOLERANT CONTROL USING INTERVAL VIRTUAL ACTUATORS

In this paper, actuator losses are considered such that the nominal state equation of the system (1) is

changed by the fault appearance, as follows:

R1-2

R4-1
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ẋ(t) = [A0 +∆A(ρ(t))]x(t)+B f (γ(t))u(t)+d(t)+ f (t) (29)

where f ∈ Rnx denotes the additive fault vector, which may represent effects such as process

faults or unexpected biases in the actuators’ actions. The multiplicative actuator faults are

embedded in the matrix B f (γ(t)), as follows:

B f (γ(t)) = Bdiag(γ1(t), . . . ,γnu(t)) (30)

where 0≤ γi(t)≤ 1 represents the effectiveness of the i-th actuator, such that the extreme values

γi = 0 and γi = 1 represent a total failure of the i-th actuator and the healthy i-th actuator,

respectively.

It is assumed that estimations of f (t) and γ(t) are available, denoted in the following as f̂ (t) R2-2

and γ̂(t), respectively, such that:

f (t) = f̂ (t)+∆ f (t) (31)

B f (γ(t)) = B f (γ̂(t))+B f (∆γ(t)) (32)

where ∆ f (t) and ∆γ(t) denote the fault estimation errors for f (t) and γ(t), respectively.

Assumption 2. ∆ f (t) and B f (∆γ(t)) are bounded by −∆ f (t) ≤ ∆ f (t) ≤ ∆ f (t) and −∆B f ≤

B f (∆γ(t))≤ ∆B f with some known ∆ f ∈L nx
∞ , ∆B f ∈ Rnx×nu , ∆ f (t)≥ 0, ∆B f ≥ 0.

Remark 3: The virtual actuator-based FTC strategy proposed in this paper does not depend

on the specific fault estimation technique which is used for obtaining f̂ (t) and γ̂(t). Notice

that bounded-error approaches for achieving a set-membership fault estimation in uncertain

systems with unknown inputs, disturbances and noise have been proposed in the recent

literature, see e.g. [42], which could be a valid choice for obtaining ∆ f (t) and ∆γ(t).

Due to the fault appearance, if the reference model (3)-(4) is used without applying any fault

tolerance mechanism, the error system dynamics would be described by:

ė(t) = [A0 +∆A(ρ(t))]e(t)+B∆uc(t)−∆A(ρ(t))xre f (t)−d(t)+
[
B−B f (γ(t))

]
u(t)− f (t) (33)

which means that additional terms w5(t) = −w5(t) =
[
B−B f (γ(t))

]
u(t)+ f (t) would appear

in the interval estimation error dynamics for η(t) and η(t). Since one of these terms
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must necessarily be negative (unless f (t) =
[
B f (γ(t))−B

]
u(t)), the proof of the first part

of Theorem 1 is invalidated, which means that (8) could not hold anymore. This fact can

potentially destabilize the whole control system, since if (8) does not hold, e(t) cannot be

rewritten as ea(t)+ ex(t) with an unknown but bounded ex(t). Hence, some FTC strategy is

needed in order to guarantee the correct operation of the control system.

In this work, following the ideas developed in [31], the used FTC strategy is based on a

reconfiguration of the reference model state equation (3), and the addition of a virtual actuator

block. As explained more in detail by [1], the main idea of the virtual actuator is that instead R4-2

of adapting the controller to the faulty plant, a reconfiguration block is used to adapt the faulty

plant to the nominal controller. This solution tries to apply a minimal change to the control

loop, by letting the nominal controller and observer to be unchanged blocks in the control loop.

In this way, it is possible to add the fault tolerance property to an already existing control loop.

The reconfiguration block is called virtual actuator because it acts like the faulty actuators by

replacing their effect using the control input of the other actuators appropriately. A conceptual

scheme with the main components and involved signals of the proposed FTC strategy is shown in

Fig. 1. It is worth remarking that the proposed FTC strategy does not depend on the specific method

employed to perform the fault estimation.

At first, the reference model state equation (3) is slightly modified to take into account the

actuator faults, as follows:

ẋre f (t) = A0xre f (t)+B f (γ̂(t))ure f (t)+ f̂ (t) (34)

where ure f ∈ Rnu is the reconfigured reference input vector. Hence, the error system becomes:

ė(t) = [A0 +∆A(ρ(t))]e(t)+B f (γ̂(t))∆u(t)−B f (∆γ(t))u(t)−∆A(ρ(t))xre f (t)−d(t)−∆ f (t)

(35)

where ∆u(t) = ure f (t)−u(t).

The reconfiguration of the reference model is useful to bring the error system equation into a

form that is suitable for defining the virtual actuator, but still not enough on its own to achieve
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Figure 1. Virtual actuator-based reconfiguration scheme.

fault tolerance, since terms w5(t) = B f (γ̂(t))∆u(t) − B∆uc(t) − B f (∆γ(t))u(t) − ∆ f (t) and

w5(t) = B∆uc(t)+B f (∆γ(t))u(t)+∆ f (t)−B f (γ̂(t))∆u(t) would still appear in the dynamics

of η(t) and η(t).

Hence, the concept of virtual actuator described in [1] is applied to the error model (35), by

adapting it to an interval formulation. The main objective is to add a reconfiguration block that

allows keeping the nominal control law and the nominal interval observer without need for retuning

the gains K, K and L.

The virtual actuator can be either a static or a dynamic block, depending on the satisfaction R2-1

of the following rank condition:

rank(B f (γ(t))) = rank(B) (36)
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In fact, like other FTC strategies, the virtual actuator technique requires redundancy in

order to achieve fault tolerance, which is related to the rank condition (36). When (36) holds,

it means that there exists some kind of hardware redundancy with respect to the fault. For

example, the fault might have only changed the actuator gain without completely break it;

alternatively, there exists a set of healthy actuators that can deliver to the system the same

effect as the faulty actuators. In such cases, the reconfiguration structure is static and can be

expressed as:

∆u(t) = N (γ̂(t))∆uc(t) (37)

where ∆uc(t) is the nominal controller output given by (7), and the matrix N (γ̂(t)) is given by:

N (γ̂(t)) = B f (γ̂(t))
† B (38)

where † denotes the pseudo-inverse.

On the other hand, when (36) does not hold, the only way to achieve fault tolerance

is by exploiting the so-called analytical redundancy, i.e. the knowledge about the system’s

dynamical behavior, which is done through a dynamic reconfiguration structure. These cases

should be described through the matrix†:

B∗ = B f (γ̂(t))N (γ̂(t)) (39)

with a reconfiguration structure expressed by:

∆u(t) = N (γ̂(t))(∆uc(t)−Mvxv(t)) (40)

where Mv is the virtual actuator gain and xv ∈ Rnx is the virtual actuator state, which is calculated

as:

xv(t) = (A0 +B∗Mv)xv(t)+(B−B∗)∆uc(t) (41)

†Notice that the matrix B∗ does not depend on γ̂(t) because the matrix N (γ̂(t)) eliminates the effects of partial

faults.
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Then, the interval error observer (9)-(10) is also modified by feeding back εv(t) and φv(t) into (9)

and (10), respectively, instead of εc(t) and φ(t), where:

εv(t) = εc(t)+Cxv(t) (42)

φv(t) = ∆A
(
ev

+(t)+ ev
−(t)

)
+∆ f (t)+∆B f |u(t)| (43)

with ev(t) = e(t)− xv(t) and ev(t) = e(t)− xv(t).

Remark 4: Notice that the static reconfiguration block obtained when the rank condition (36)

holds is akin to the idea of virtual control used in control allocation-based FTC. For further details

about this technique, the reader is referred to [43, 44, 45] and the references therein.

Remark 5: Since the fault γ(t) is unknown, it is not possible to check (36). Hence, the choice

between the static and the dynamic reconfiguration structure should be done depending on whether

it holds ∀ f ∈ [ f̂ (t)−∆ f (t), f̂ (t)+∆ f (t)]. In practice, this can be done by checking (36) using a

value of γ(t) obtained from γ(t) = 1nu by replacing with 0s the elements corresponding to actuators

for which a complete loss is compatible with the above interval.

Assumption 3. When the dynamic reconfiguration structure (40)-(41) becomes active, i.e. at time

t = tv, (8) still holds.

It is worth noting that the satisfaction of Assumptions 1-2 until time tv is a sufficient condition

for Assumption 3 to hold. The above assumption is needed in order to guarantee the theoretical R4-3

properties stated by the following theorem.

Theorem 2

Let Assumptions 1-3 be satisfied, and consider the augmented system that includes the error system

(35) and output equation (6), the virtual actuator (40)-(41), the error feedback control law (7) and

the interval error observer (9)-(10) fed by (42)-(43) instead of εc(t) and φ(t). Then, if xv(tv) = 0,

the following relation is satisfied:

ev(t)≤ e(t)≤ ev(t) (44)
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In addition, define Av as the set of matrices for which:
2∆A

(
ev

++ ev
−)

LCex

0

= Av
d


ed

ea

xv

 (45)

with e = ea − 0.5ed , e = ea + 0.5ed and values of ex such that −0.5ed ≤ ex ≤ 0.5ed . Then, if

xre f ∈L nx
∞ and there exist Pv,Qv ∈ S3nx×3nx , Pv,Qv � 0 and a constant νv > 0 such that the following

matrix inequality is verified:

GT
v Pv +PvGv +νvPv +Qv ≺ 0 (46)

where:

Gv =


A0−LC 0 0

BKd A0 +BKa 0

(B−B∗)Kd (B−B∗)Ka A0 +B∗Mv

+Av
d (47)

∀Av
d ∈Av, then ev,ev,xv ∈L nx

∞ if K = 0.5 [Ka−2Kd ] and K = 0.5 [2Kd +Ka].

Proof: Let us consider the dynamics of the interval estimation errors ηv(t) = e(t)− ev(t) and

ηv(t) = ev(t)− e(t):

η̇v(t) = [A0−LC]ηv(t)+ ∑
i∈{1,5,6}

wv
i (t)+

4

∑
i=2

wi(t) (48)

η̇v(t) = [A0−LC]ηv(t)+ ∑
i∈{1,5,6}

wv
i (t)+

4

∑
i=2

wi(t) (49)

where:

wv
1(t) = ∆A

(
ev

+(t)+ ev
−(t)

)
+∆A(ρ(t))e(t) wv

1(t) = ∆A
(
ev

+(t)+ ev
−(t)

)
−∆A(ρ(t))e(t)

wv
5(t) = ∆B f |u(t)|−B f (∆γ(t))u(t) wv

5(t) = ∆B f |u(t)|+B f (∆γ(t))u(t)

wv
6(t) = ∆ f (t)−∆ f (t) wv

6(t) = ∆ f (t)+∆ f (t)

and wi(t),wi(t), i = 2,3,4, are defined as in Section 2. The fact that (44) holds for t ≥ tv follows the

same reasoning as in the proof of Theorem 1, taking into account that, since Assumptions 2-3 hold,

and due to the choice xv(tv) = 0, then wv
i (tv)≥ 0 and wv

i (tv)≥ 0, i = 1,5,6.
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Let us show that the variables ev, ev and xv stay bounded. For this purpose, let us consider the

variables ed(t) = e(t)− e(t) and ea(t) = 0.5(e(t)+ e(t)) which, from (42) and (43) and replacing

εc(t) and φ(t) with (42) and (43), respectively, follow:

ėd(t) =(A0−LC)ed(t)+φ
v
d (t)+δd(t) (50)

ėa(t) =(A0−LC+BKa)ea(t)+BKded(t)+LCxv(t)+LCe(t)+δa(t) (51)

where:

φ
v
d (t) = 2∆A

(
ev

+(t)+ ev
−(t)

)
(52)

and δd(t), δa(t) are defined as in (20)-(21).

The inputs δd(t) and δa(t) are bounded due to Assumption 1 and the fact that xre f ∈L nx
∞ , R2-6

while φ v
d (t) is globally Lipschitz. On the other hand, from (44), it follows that e(t) can be

rewritten as ea(t)− xv(t)+ ex(t) with an unknown ex(t), but bounded by −0.5ed(t) ≤ ex(t) ≤

0.5ed(t), and (51) becomes:

ėa(t) = (A0 +BKa)ea(t)+BKded(t)+LCex(t)+δa(t) (53)

Finally, taking into account that ∆uc(t) = Kded(t)+Kaea(t), (41) becomes:

xv(t) = (A0 +B∗Mv)xv(t)+(B−B∗)Kded(t)+(B−B∗)Kaea(t) (54)

Denote ξv(t) =
[
ed(t)T ,ea(t)T ,xv(t)T

]T and δv(t) =
[
δd(t)T ,δa(t)T ,0

]T . Then, taking into

account that the existence of the set of matrices Av for which (45) holds is ensured by the fact

that φ v
d (t) is Lipschitz [35], the following is true:

ξ̇v(t) = Gv(t)ξv(t)+δv(t) (55)

where Gv(t) is defined as:

Gv(t) =


A0−LC 0 0

BKd A0 +BKa 0

(B−B∗)Kd (B−B∗)Ka A0 +B∗Mv

+Av
d(t) (56)
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with Av
d(t) unknown, but belonging to the known set Av. Then, by considering a Lyapunov function

Vv(t) = ξv(t)T Pvξv(t) and through input to state stability reasoning [46], it follows that if (46) holds,

then ed ,ea,xv ∈L nx
∞ and, therefore, e,e,xv ∈L nx

∞ (see proof of Theorem 1 for comparison). �

By keeping the nominal controller gains K, K designed using Theorem 1, the matrix inequality

(46) can be rewritten easily in a way that allows finding the virtual actuator gain Mv. In fact, by

pre- and post-multiplying (46) by P−1
v , and using the change of variable Qvp = P−1

v QvP−1
v , (46) is

equivalent to:

P−1
v GT

v +GvP−1
v +νvP−1

v +Qvp ≺ 0 (57)

For a fixed value of νv, (57) can be brought to an LMI form through an additional change of

variable. To this end, let us rewrite Gv as follows:

Gv =


A0−LC 0 0

BKd A0 +BKa 0

(B−B∗)Kd (B−B∗)Ka A0

+Av
d +


0

0

B∗

M (58)

with:

M =

[
0 0 Mv

]
(59)

Then, by considering a convex set containing Av, with vertices Av,1
d , . . . ,Av,Nv

d (see [35] for details R1-3

about the computation of Av,i
d , i = 1, . . . ,Nv), (57) becomes a set of LMIs (one for each of these

vertices) through the change of variable Wv = MP−1
v , with P−1

v chosen as a block-diagonal matrix

variable and Wv defined with the first 2nx columns equal to zero. Then, the controller gains can be

obtained as M =WPv.

Remark 6: In general, it is desirable that the modes introduced by the virtual actuator R3-3

are faster than the dominant modes of the nominal closed-loop system, in order to avoid

performance degradation. It is possible to enforce this behaviour by using pole clustering

LMI-based techniques, see e.g. [47, 48].
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4. EXAMPLE

Let us consider an uncertain system as in (1)-(2) with:

A0 =

 10 2

−0.1 −10

 B =

 2 1

1 2

 C =

[
1 0

]

∆A =

 1 0

0 1

 d =−d =

 0.01

0.01

 V = 0.01

Following the first part of Theorem 1, it is necessary to choose the observer gain L such that

A0−LC ∈M2×2. It is easy to check that the choice:

L =

 14

−0.1


satisfies this requirement. In order to apply the second part of Theorem 1, and enforce boundedness

of the signals e,e, it is necessary to calculate a convex representation for the set A of matrices Ad

for which (12) holds. In order to do so, let us notice that: R1-3

 2∆A(e++ e−)

LCex

=



2
(
e1

++ e1
−)

2
(
e2

++ e2
−)

14ex,1

−0.1ex,1


where e1 and e1 (e2 and e2) denote the first (second) element of e and e, respectively, while ex,1

denotes the first element of ex. By taking into account that:

2
(
e1

++ e1
−)=


2e1 = ed,1 +2ea,1 i f e1 ≥ 0,e1 ≥ 0

2
(
e1− e1

)
= 2ed,1 i f e1 ≥ 0,e1 < 0

−2e1 = ed,1−2ea,1 i f e1 < 0,e1 < 0

where ed,1 and ea,1 are the first elements of ed and ea, respectively, the following is true:

2
(
e1

++ e1
−)= a11ed,1 +a13ea,1

with (a11,a13) ∈ {(1,2),(2,0),(1,−2)}. By applying the same reasoning to 2
(
e2

++ e2
−), and

a similar reasoning to LCex, it is obtained that the set A is made up by matrices with the
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following structure:

Ai
d =



a11 0 a13 0

0 a22 0 a24

a31 0 0 0

a41 0 0 0


with i = 1, . . . ,N = 18, obtained by considering all the possible combinations of elements belonging

to the following sets: (a11,a13) ∈ {(1,2) ,(2,0) ,(1,−2)}, (a22,a24) ∈ {(1,2) ,(2,0) ,(1,−2)} and

(a31,a41) ∈ {(−7,−0.05) ,(7,0.05)}.

By applying Theorem 1, the following nominal controller gains are calculated:

Kd =

 −0.0014 0.0002

0.0008 0.0004

 Ka =

 −31.0306 −2.6853

18.5748 0.0076


On the other hand, using (39), the matrices B∗ can be calculated for the cases of total loss of the

first and the second actuator (B∗1 and B∗2, respectively):

B∗1 =

 0.8 1

1.6 2

 B∗2 =

 2 1.6

1 0.8


In order to apply Theorem 2, the set of matrices Av of matrices Av

d for which (45) holds must be

calculated. In this case, Av is made up by 18 matrices with the following structure:

Av
d =



a11 0 a13 0 a15 0

0 a22 0 a24 0 a26

a31 0 0 0 0 0

a41 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


obtained by considering all the combinations of elements belonging to the following sets:

(a11,a13,a15) ∈ {(1,2,−2) ,(2,0,0) ,(1,−2,2)}, (a22,a24,a26) ∈ {(1,2,−2) ,(2,0,0) ,(1,−2,2)}

and (a31,a41) ∈ {(−7,−0.05) ,(7,0.05)}.
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Figure 2. Fault γ(t), its estimation γ̂(t) and estimated bounds γ̂(t)±∆γ(t).

By applying Theorem 2, the virtual actuator gains M1 and M2 corresponding to the faults

described by B f 1 and B f 2, respectively, are calculated as:

M1 =

 −555.0474 0.8196

0 0

 M2 =

 −19.9568 2.2688

0 0


In order to assess the behaviour of the proposed approach, let us consider a simulation lasting

10s, where the system starts from the initial state x(0) = [50,50]T and is required to track a

constant reference state chosen as xre f (t) = [5,−5]T . Notice that the initial error is given by

e(0) = xre f (0)− x(0) = [−45,−55]T . Let us choose the initial estimated bounds for the error as

e(0) = [−100,100]T and e(0) = [100,100]T . It is assumed that the system is working under nominal

conditions up to t = 5s. Then, after t = 5s, it is affected by an incipient fault that degrades linearly R1-2

R2-2

R4-1

the effectiveness of the first actuator, which is completely lost starting from time t = 6s. The

results shown hereafter have been obtained using values of ∆A(ρ(t)), d(t), v(t) which have

been changed randomly within their bounds every 0.01s. On the other hand, Fig. 2 shows the

fault estimation f̂ (t), together with the bounds given by f̂ (t)−∆ f (t) and f̂ (t)+∆ f (t), used for

the simulations.

Figs. 3-4 show the simulation results obtained without applying the proposed FTC strategy. Under

nominal conditions, the interval controller stabilizes the system, such that the state tracks the desired

reference signal (see Fig. 3) and, at the same time, the tracking error e(t) is contained within the
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Figure 3. State x(t) and reference state xre f (t) (without FTC).
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Figure 4. Error e(t) and estimated bounds e(t), e(t) (without FTC).

estimated bounds e(t) and e(t) (see Fig. 4). However, due to the fault in the first actuator, the

state diverges after the fault occurrence, since the closed-loop system becomes unstable if no fault

tolerance mechanism is implemented. Notice also that, as expected from the theory and discussed in

Section 3, due to the fault occurrence e(t) exits the interval between the estimated lower and upper

bound.

Figs. 5-6 show the simulation results obtained applying the proposed FTC strategy. Notably, at

time tv = 5.87s, f̂1(t)−∆ f 1(t) < 0, such that the dynamic virtual actuator is activated. Since at

time tv Assumption 3 holds, the theory ensures that the closed-loop system augmented with the
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Figure 5. State x(t) and reference state xre f (t) (with FTC).

dynamic virtual actuator will operate correctly. It is worth mentioning that, when the first actuator

is lost, the state [5,−5]T is not anymore a valid equilibrium point for the system. Hence, after tv,

xre f ,1(t) = 5 is considered, while xre f ,2(t) is set to the only value that is compatible with the xre f ,1

and the condition ẋre f = 0. Fig. 5 shows that, thanks to the reconfiguration brought by the virtual

actuator, the closed-loop system maintains the tracking stability despite the fault occurrence. Also,

Fig. 6 shows that, contrarily to the results without FTC, the tracking error e(t) is always contained

within the estimated bounds ev(t) and ev(t) (before tv, xv(t) = 0, so ev(t) = e(t) and ev(t) = e(t)).

Fig. 7 shows the control inputs and in particular the fact that after the activation of the dynamic

virtual actuator, the control effort corresponding to the first actuator is completely redistributed on

the second actuator (the healthy one).

Finally, in order to complete the assessment of the characteristics of the proposed method, R3-4

let us compare the model reference control using interval observers with a more traditional

model reference control that uses a classical observer, i.e. that does not take into account

the possible uncertainty. To this end, the design of the interval controller gains K and K is

done with ∆A = diag(1.5,4.5) and the simulations are obtained with ∆A(ρ(t)) = 0 (denoted

as nominal) and ∆A(ρ(t)) = diag(1.5,−4.5) (denoted as uncertain). The results are shown in
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Figure 6. Error e(t) and estimated bounds ev(t), ev(t) (with FTC).
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Figure 7. Control inputs u1(t) and u2(t) (with FTC activated at t = 5.05s).

Fig. 8. It can be seen that in absence of uncertainty, both the interval (blue line) and the non-

interval approach (red line) guarantee boundedness of the tracking error. On the other hand,

when uncertainty affects the system, while the interval approach still assures boundedness of
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Figure 8. Comparison between the model reference control using interval observers and the model reference

control using a classical observer.

the tracking error by design (yellow line), the non-interval approach can potentially lead to

undesired phenomena, e.g. instability (purple line).

5. CONCLUSIONS

In this paper, an FTC strategy based on model reference control and virtual actuators has been

proposed for uncertain systems. In particular, both the reference model approach and the virtual

actuator technique have been extended to an interval formulation in order to ensure cooperativity

of the estimation error dynamics and boundedness of the interval signals both in nominal and

faulty situation. The conditions that assure the correct operation of the control loop have been

provided in terms of Metzler property of the matrix A− LC and of linear matrix inequalities

derived using appropriate Lyapunov functions and input-to-state stability reasoning. The potential
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and performance of the proposed approach have been demonstrated using an illustrative example,

showing promising results.
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