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Abstract9

A micromechanics based constitutive model is developed that focuses on the effect10

of distributed crazing in the overall inelastic deformation behavior of rubber-toughened11

ABS (acrylonitrile-butadiene-styrene) materials. While ABS is known to exhibit craz-12

ing and shear yielding as inelastic deformation mechanisms, the present work is meant13

to complement earlier studies where solely shear yielding was considered. In order to14

analyse the role of either mechanism separately, we here look at the other extreme and15

assume that the formation and growth of multiple crazes in the glassy matrix between16

dispersed rubber particles is the major source of overall inelastic strain. This notion is17

cast into a homogenized material model that explicitly accounts for the specific (cohesive18

zone-like) kinematics of craze opening as well as for microstructural parameters such as19

the volume fraction and size of the rubber particles. Numerical simulations on single-20

edge-notch-tension (SENT) specimens are performed in order to investigate effects of the21

microstructure on the overall fracture behavior. Experimental results for a commercial22

ABS material are reported which are partially used to calibrate and to verify the consti-23

tutive model, but which also illustrate its limitations.24
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1 Introduction5

The ductility and toughness of various polymeric materials – thermoplastics as well as ther-6

mosets – can be substantially improved by mixing-in fine dispersed rubber particles; e.g. [6].7

A key effect of the rubber particles is that they enable and initiate inelastic, hence energy8

absorbing, microscale deformation mechanisms distributed over large regions of the material.9

The micromechanisms involved in rubber-toughening are shear yielding as well as crazing in the10

matrix phase, often preceded by cavitation of the rubber particles. The interrelation between11

these mechanisms and their efficiency (or predominance) in toughening strongly depends on the12

material at hand. This dependence not only includes the matrix material, the rubber particle13

size and volume fraction, but also the overall loading conditions (loading rate, temperature and14

stress triaxiality); e.g. [2],[3],[5],[10],[18],[22],[37]. Moreover, the “type” (e.g. internal structure)15

of the rubber particles which may vary with the manufacturing process is known to be of some16

influence, e.g. [6],[16].17

Of particular interest in the present work is the role of crazing, i.e. the formation of localized18

zones in which the bulk polymer is drawn into thin fibrils; e.g. [23]. Crazing in homogeneous19

polymers clearly is a precursor of brittle failure under tensile loading. In rubber-toughened20

polymers, however, crazes are trapped in the ligament between the dispersed rubber particles21

and collectively may give rise to macroscopically large inelastic strains prior to failure, e.g. [21].22

The perhaps most prominent example in this regard is high-impact-polystyrene (HIPS) where23

overall inelastic deformation is exclusively due to distributed crazing. In rubber-toughened24

thermoplastics with a less brittle matrix such as acrylonitrile-butadiene-styrene (ABS), some25

“competition” between shear yielding and crazing is observed. In fact, within the large family26

of ABS materials, experiments have revealed a wealth of different phenomena – from shear27

yielding induced by cavitating soft rubber particles all the way to distributed crazing around28

hard ’salami’ particles, and almost every combination in between (depending on constitution,29
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particle size, manufacturing process and loading conditions). Moreover, microstructural studies1

in [37],[39] confirm that both shear yielding and distributed crazing may occur in the same ABS2

specimen depending on the distance to the fracture surface. The present work focuses on the3

role of spatially distributed crazing as shown in Fig. 1.4

Figure 1: Microstructure of ABS showing extensive crazing between cavitated rubber particles

[39]

While a large number of experimental studies have addressed the complex interplay between5

microstructure, micromechanisms and resulting overall performance (e.g. fracture toughness),6

appropriate macroscopic material models for rubber-toughened polymers – and in particular7

those based on the underlying physical mechanisms – are rare, even to date. Before an all-8

embracing micromechanical description is feasible, theoretical models first have to deliver a9

deeper understanding of the individual mechanisms (thereby necessarily making simplifying10

assumptions). The majority of modeling approaches so far has focused on matrix shear yielding11

in conjunction with void growth from cavitated rubber particles, e.g. [9],[25],[35],[41],[47],[48].12

Numerical simulations carried out in [30], however, suggested that such a modeling approach13

is unable to reproduce the characteristic shape of the plastic zone at a notch in ABS tensile14

specimens as it tends to overestimate localization of plastic deformation. It was concluded15

that the effect of distributed crazing cannot be neglected in the overall inelastic deformation16

behavior of ABS.17

Owing to their localized crack-like appearance, individual crazes in neat glassy polymers18

have successfully been modeled as cohesive surfaces, e.g. in [13],[14] and [43]. Utilizing such19

a description, the competition between crazing and matrix shear yielding in the vicinity of20
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a single void, representing a cavitated rubber particle in ABS, was investigated in [33]. The1

formation of multiple crazes from a rubbery particle in HIPS was modeled numerically using2

special continuum elements in [34] and [36]. To avoid the necessity of having to trace individual3

crazes, one may adopt a continuum description of distributed crazing, as proposed for neat4

glassy polymers (i.e. without particles) in [15]. This model incorporates the kinematics of craze5

widening by taking the average spacing between crazes as a characteristic length scale.6

The objective of the present work is to complement earlier modeling approaches, e.g. [30],[41],7

which considered inelastic deformation due to shear yielding alone by considering here the op-8

posite extreme, i.e. the effect of distributed crazing only. This means that we will ignore shear9

yielding and make the simplifying key assumptions that, firstly, crazes span the ligament be-10

tween all the uniformly dispersed rubber particles and, secondly, that (viscoplastic) opening of11

the crazes is the only source of inelastic deformation. The kinematics of craze opening in the12

direction of maximum principal tensile stress considered in [15] will be extended to account13

also for overall shearing as it occurs for instance in the wake of an advancing crack tip. The14

constitutive model set up in Sect. 2.1 is endowed with scaling relations with respect to mi-15

crostructural parameters via simple micromechanical considerations in Sect. 2.2. The model is16

calibrated in Sect. 3 from tensile tests which we performed on a commercial ABS material. In17

Sect. 4 results of numerical simulations of crack propagation in a notched tensile specimen are18

presented and analyzed with regard to the influence of the rubber content on the overall frac-19

ture toughness. Comparison of model predictions and experimental data will reveal strengths20

and shortcomings of the present distributed crazing model and provides additional insight into21

the collective effects of shear yielding and crazing in the overall behavior of ABS.22

Throughout the paper, the symbolic bold face notation of vectors a and tensors A is used as23

well as the index notation ai , Aij with respect to cartesian base vectors ei (i = 1, 2, 3). Single24

and double contraction of indices is represented by the symbols “ · ” and “ : ”, respectively,25

and the standard summation convention is employed, e.g., a · b = aibi , A ·a = Aijajei ,26

A :B = AijBij. The dyadic product ⊗ of two vectors has components (a⊗ b)ij = aibj.27
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2 Constitutive modeling1

This section is concerned with the formulation of a constitutive model for the overall deforma-2

tion and failure behavior of rubber-toughened materials such as ABS with focus on the effect of3

distributed crazing. Overall inelastic deformation in this theory results from the specific kine-4

matics of cohesive crack-like opening of crazes, while the volume fraction and size of rubber5

particles are explicitly accounted for via micromechanical considerations.6

2.1 Homogenized model for distributed crazing7

Various experimental studies, e.g. [2],[3],[5],[6],[22],[37], indicate that the inelastic deformation8

of rubber-toughened polymers such as ABS under tensile loading to a large extent proceeds9

by the formation of multiple crazes in the ligament between the rubber particles. The crazes10

initiate from the rubber particles (stress concentrators) and, under continued loading, they11

collectively grow into mesoscopic band-like damage zones distributed throughout the material,12

e.g. [2],[22],[28],[31]. Crazes are primarily oriented normal to the direction of maximum principal13

stress at the instant of their formation. This suggests the picture schematically drawn in Fig. 214

which forms the basis for the model set up in the following.15
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Figure 2: Schematic of successive deformation states of an RVE of the rubber-toughened poly-

mer undergoing distributed craze initiation at time t∗ and subsequent craze opening.

A macroscopic material point is taken to correspond to a representative volume element16

(RVE) of the rubber-toughened polymer (Fig. 2a). As will be motivated in Sect. 2.2 the17

spherical rubber particles in the present model are assumed to cavitate in the early stage of18

loading, i.e. prior to the occurrence of crazing; after cavitation they are considered to behave19

mechanically equivalent to voids. Crazing initiates at time t = t∗ when the maximum principal20
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tensile stress attains a critical value (Fig. 2b); this value will be specified in terms of an effective1

stress acting on the inter-particle ligament in Sect. 2.2. The craze orientation, defined by the2

unit normal vector n, is determined by the direction of maximum principal stress at initiation.3

Under continued loading the crazes develop into several localized damage zones which extend4

over the ligament between the rubber particles (Fig. 2c; see also micrographs in [2] or [28]).5

The crazed material inside these damage zones consists of numerous thin fibrils spanning the6

craze-bulk interfaces. Inelastic deformation proceeds by separation of the craze-bulk interfaces7

(i.e. craze opening) and the damage zones can be considered as cohesive surfaces distributed8

throughout the RVE. In the current configuration and on the macroscopic level, the kinematics9

of inelastic deformation is represented by the overall separation vector δ, the craze normal10

vector n and the average spacing b between the damage zones (Fig. 2d).11

In view of the numerical implementation, it is convenient to formulate the constitutive equa-12

tions in rate form in the current configuration. Therefore, the macroscopic rate-of-deformation13

tensor D is additively split into an elastic and inelastic part14

D = D
e +D

c . (1)

The inelastic part of the rate-of-deformation tensor represents the effect of distributed crazing15

in a homogenized sense and, similar to [15], is written as16

D
c =

1

b

(

δ̇ ⊗ n

)sym
=

1

b

(

δ̇nn⊗ n+ δ̇τ (τ ⊗ n)sym
)

(2)

where the separation rate vector δ̇ = δ̇nn+ δ̇ττ incorporates components normal and tangential17

to the crazes with the tangential unit vector τ specified below. While at the onset of crazing18

(with the craze orientation n equal to the direction of maximum principal stress) only a normal19

separation δn takes place, the representation (2) also accounts for a possible overall inelastic20

shearing of the RVE (tangential craze opening δτ ) associated with non-proportional changes of21

the stress state in the course of deformation. The unit tangent vector τ in the corresponding22

component of Dc in Eq. (2) is defined by the direction of the current resolved shear stress with23

respect the craze orientation according to24

τ =
σ · n− σnn

στ

where σn = n · σ · n , στ = |σ · n− σnn| (3)

and σ being the Cauchy stress tensor. The average spacing b of the craze zones in (2) is25

further specified by means of a unit cell model in Sect. 2.2, and a more thorough presentation26
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of the kinematic micro-to-macro transition in the framework of finite inelastic deformations is1

provided in the Appendix.2

The normal and tangential components δ̇n and δ̇τ of the craze opening rate in Eq. (2) result3

from the microscopic process of drawing of the bulk polymer material into numerous thin4

fibrils. For a detailed review of the micromechanics of the viscoplastic crazing process based on5

fundamental experimental investigations the reader is referred to [23]. Following previous work6

on the continuum mechanical modeling of crazing where individual crazes have been described7

either as cohesive surfaces, e.g. [13],[33],[43], or using closely related concepts, e.g. [34],[36], the8

separate Eyring-type relations9

δ̇n = δ̇n0 exp
(
A

T
[σ̃n − σc

n(δn) ]
)

, δ̇τ = δ̇τ0 exp
(
A

T
[σ̃τ − σc

τ (δn) ]
)

(4)

are adopted here for the normal and tangential craze opening rates, respectively, where δ̇n0 , δ̇τ010

and A are material parameters and T is the temperature. In the numerical analyses presented11

later on in the present work, isothermal conditions are assumed. Yet, the incorporation of12

adiabatic heating with a changing temperature would easily be feasible through the explicit13

temperature dependence in (4), e.g. following [14].14

The quantities σ̃n and σ̃τ in Eq. (4) are the ‘driving stresses’ for craze opening in the15

normal and tangential direction (further discussed in Sect. 2.2) while σc
n(δn) and σc

τ (δn) denote16

the corresponding resistances (‘craze yield strengths’) which are both taken to vary with the17

craze normal opening δn. The complete loss of stress carrying capacity due to craze failure is18

for simplicity assumed here to take place when the total craze opening reaches a critical value19

δcrit, i.e. at20

δ ≡
√

δ2n + δ2τ = δcrit . (5)

Alternatively, one might consider a cohesive zone formulation with the traction vector being21

co-axial to the (total) separation vector as suggested by Van den Bosch et al. [45]. However,22

while this appears appropriate if the craze matter behaves isotropically or consists of (one-23

dimensional) ‘strings’, the choice of two separate relations (4) for the normal and tangential24

tractions in the present work is motivated by the more complex microstructure of the craze25

matter containing so-called ‘cross-tie’ fibrils, e.g. [43].26

The function σc
n(δn) for the resistance against craze widening, i.e. the shape of the traction-27

separation law in the underlying cohesive surface description of crazing, is a key ingredient of28
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the present model. A non-monotonic variation featuring softening and rehardening as sketched1

in Fig. 3 is assumed here, similar to that used in [33]. Such a response appears appropriate

σc
n

σc
min

0 1
0 δn

σfail
c

/δcrit

cσ0

σc
τ

Figure 3: Variation of craze opening resistances with craze width.

2

for several reasons. Firstly, numerical investigations of the fibril drawing process, either in the3

framework of continuum mechanics using finite elements, e.g. [1],[20], or by molecular dynamics4

simulations [32], suggest that the craze stress strongly decreases in the early stage of fibril5

formation while it increases again when mature fibrils of highly stretched molecules are drawn,6

up to their ultimate rupture. Secondly, combined experimental/analytical studies, e.g. [11],7

where the stress variation along a craze was calculated from the measured craze opening profile8

indicate stress peaks at the craze tip (i.e. at fibril formation) as well as at the end region of a9

craze, i.e. prior to fibril rupture. As these are qualitative arguments, the quantitative variation10

σc
n(δn) is admittedly not firmly established. In the present work the expression11

σc
n(δn) = σc

min + (σc
0 − σc

min) exp

(

−hn
δn
δcrit

)

+ (σc
fail − σc

min)

(

δn
δcrit

)q

(6)

is assumed and the adjustable parameters σc
0, σ

c
min, σ

c
fail, hn and q are determined by fitting the12

overall response of the constitutive model to that of a real ABS material (see Sect. 3.1). The13

particular choice of an exponential decay and power-law hardening in (6) is motivated merely14

by its suitability in this fitting process. Following [43], the stress-carrying capacity of the craze15

matter in the tangential direction is assumed to decrease monotonically with the craze opening.16

This is phenomenologically described here by the function (see also Fig. 3)17

σc
τ (δn) = σc

min exp

(

−hτ
δn
δcrit

)

(7)

where hτ is a material parameter.18
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2.2 Microstructural considerations and scaling relations1

As already mentioned in the Introduction, the predominance of shear yielding or crazing in ABS2

is strongly influenced by the rubber particle type and size (e.g. with smaller ones understood to3

favor shear yielding, e.g. [10]). Since the emphasis of this study in on the role of crazing alone,4

we here focus attention on a material with soft rubber particles which cavitate at low stress and5

afterwards behave mechanically equivalent to voids. This assumption precludes effects like the6

size dependence of particle cavitation and any load-bearing capacity of the cavitated particles,7

yet it complies with assumptions made in several earlier studies looking solely at matrix shear8

yielding to which the present distributed crazing model is to be contrasted. This notion is also9

supported by detailed numerical studies in [41] where rubber particles with a wide range of10

cross-link densities have been shown to not contribute significantly to the overall stress after11

their cavitation.12

Key microstructural parameters in the present model hence are the size (radius) r and the13

volume fraction f of the rubber particles which determine the average initial spacing b0 between14

crazes as discussed below. In addition the ultimate craze opening δcrit at craze breakdown plays15

a pivotal role and introduces a characteristic length which has to be related to the craze spacing.16

We establish the connection between these quantities by means of simple micromechanical17

considerations based on the unit cell model sketched in Fig. 4.18

nσ  ,στ
0

0

σij

σij

00

craze
n

~ ~ b /2

b /2

bb

δn r

Figure 4: Unit cell of microstructure with single craze in equator region of rubber particle.

Assuming that all the rubber particles have crazes associated with them, we consider a19

cubic unit cell of size b0 containing a single rubber particle which is treated as a void after20

9



its cavitation. A craze zone with unit normal n and current width δn has formed from the1

particle’s equator region (only normal opening of craze sketched here for simplicity). This2

setting addresses the situation in materials with homogeneous rubber particles where often3

only a single craze emanates from a particle. While this is observed in some ABS materials4

and rubber-toughened PMMA, the large heterogeneous ’salami’ particles typically found in5

HIPS and also some grades of ABS give rise to several crazes initiating from each particle,6

e.g. [2],[3],[6].7

The unit cell size, i.e. the initial spacing b0 between crazes, is determined by the rubber8

particle radius r and the volume fraction of rubber particles f = 4
3
πr3/b30 . From the latter9

relation,10

b0(r, f) = r (4π/3f)1/3 ≈ 1.6 rf−1/3 . (8)

Owing to the assumption of a single craze per particle, the current spacing between the centre11

plane of neighboring crazes introduced in Eq. (2) is given as (see Fig. 4)12

b = b0 + δn . (9)

Thus, both the rubber particle volume fraction and size are accounted for in the overall inelastic13

strain rate (2). Furthermore, from the overall resolved normal and shear stress with respect to14

the craze orientation n and the area fraction (b20 − πr2)/b20 of the inter-particle ligament, the15

effective (i.e. average) normal and shear stresses σ̃n and σ̃τ acting on the craze area are given16

as17

σ̃n =
n · σ · n

1− π (r/b0)
2 =

σn

1− π (3f/4π)2/3
≈

σn

1− 1.2f 2/3
, σ̃τ ≈

στ

1− 1.2f 2/3
. (10)

The effective stresses σ̃n and σ̃τ enter Eqs. (4) as the driving stresses for viscoplastic craze18

opening. Moreover, Eq. (10)1 also serves as the criterion for craze initiation with σ̃n = σc
019

from Eq. (6) and σn then being the overall maximum principal tensile stress. This criterion20

may be augmented with a dependence of σc
0 on the hydrostatic stress, but in view of the lack of21

consensus in the literature on this effect we assume here that craze initiation is governed only22

by principal stress.23

Other unit cell types (e.g. body centered cubic) may be considered alternatively; yet, this24

does not affect the scaling with the rubber content in Eqs. (8) and (10), only the numerical25

pre-factors of order unity then slightly change. Craze widening, i.e. the conversion from bulk26
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into fibrillated polymer material, results in a significant overall volume increase. When this1

takes place in the equator region of a void (cavitated rubber particle) as sketched in Fig. 4,2

the void itself grows. It can be shown from simple geometrical considerations that the change3

of the porosity (current ratio of void volume by cell volume) is small in the course of craze4

widening; this effect is therefore neglected and f is taken constant.5

The constitutive model presented above accounts for the microstructure in terms of the6

physically motivated parameters f, r and δcrit. As further discussed in Sect. 3.2.1, the overall7

material behavior depends only on the two dimensionless parameters f and r/δcrit.8

2.3 Overall elastic behavior including damage9

The overall elastic stiffness of rubber-toughened polymers undergoing distributed crazing is10

affected by the volume fraction of rubber particles, their cavitation, and the amount of crazing.11

These effects are considered here in a two-step homogenization leading to the 4th order effective12

elasticity tensor E∗, to be discussed below, governing the macroscopic hypo-elastic relation13

∇
σ= E

∗ : (D −D
c) (11)

where
∇
σ denotes the Jaumann rate of the Cauchy stress tensor.14

Neglecting for a moment the presence of craze zones, the microstructure of the material15

consists of an isotropic linear elastic matrix, with bulk and shear moduliK and µ, and dispersed16

rubber particles, with bulk and shear moduli Kr and µr, respectively. According to the Mori-17

Tanaka model, see e.g. [17], the overall isotropic effective moduli can be approximated as18

K∗(f) =
K + [α(1− f) + f ](Kr −K)

1 + α(1− f)(Kr/K − 1)
, µ∗(f) =

µ+ [β(1− f) + f ](µr − µ)

1 + β(1− f)(µr/µ− 1)
(12)

where f denotes the volume fraction of particles and α = 3K/(3K + 4µ) , β = 6(K +19

2µ)/5(3K + 4µ). In particular, as the shear modulus of rubber is much smaller than the other20

elastic constants (Poisson’s ratio νr ≈ 0.5) we set µr = 0. The bulk modulus of rubber is not21

much different from that of a glassy polymer, so we simply take Kr = K prior to cavitation22

of the particles and set Kr = 0 afterwards. This switch in the effective elastic constants23

due to rubber particle cavitation is for simplicity assumed to take place at a critical value of24

hydrostatic (mean) stress σcav
m . Typical values for the latter are reported to be of the order of25
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10MPa; e.g. [25],[31],[41]. More advanced cavitation criteria, e.g. accounting for a particle size1

dependent cavitation resistance, are discussed e.g. in [19].2

In addition, the effective porous medium is considered to experience an evolving damage3

by distributed crazing. Despite the orientation of crazes, the resulting overall elastic behavior4

is for simplicity taken to be isotropic since data for the amount of anisotropy due to crazing5

are currently not available. The effective elastic stiffness E∗ is – besides its dependence on f6

through Eq. (12) – assumed to decrease monotonically with increasing craze width δn according7

to8

E
∗ (f, δn/δcrit) = E

∗(f)

(

1 + η
δn
δcrit

)−1

. (13)

Physically, the parameter η ≫ 1 reflects the stiffness ratio of bulk polymer and craze matter,9

and the relation (13) corresponds to an approximation in which the bulk material and the craze10

are considered to be in series with respect to the principal loading direction (Fig. 4). However,11

the parameter η is adjusted to fit experimental data from unloading tests after different amounts12

of inelastic strain as further discussed in Sect. 3.1.13

The material model has been implemented as a user subroutine in the commercial finite14

element code LS-Dyna [27]. Thereby, an efficient semi-implicit time integration of the consti-15

tutive equations is employed where only the scalar quantities δn and δτ are updated implicitly16

whereas the tensorial direction of plastic flow is updated in an explicit manner, as suggested17

e.g. in [4].18

3 Model calibration and evaluation19

3.1 Material parameter identification from tensile tests20

The material model developed in Sect. 2 addresses the situation of a microstructure with a21

fine dispersion of rubber particles which cavitate at low stress and give rise to the formation22

of craze zones (typically not more than one per particle) in the surrounding glassy matrix23

(Fig. 2b,c). This is found in some ABS materials (see Fig. 1) and rubber-toughened PMMA,24

e.g. [2],[3],[6],[10],[22],[37]. It is important to note that ABS represents a large family of ma-25

terials with a multitude of different commercial grades which differ in composition, e.g. the26

amount (typically between 5 and 40 vol.%), size, and morphology (processing-dependent in-27

12



ternal structure) of the rubber particles. In order to analyze in how far the developed model1

is capable to capture the deformation behavior of some real ABS material, tensile tests have2

been performed on a commercial, off-the-shelf ABS grade without any information about its3

microstructural constitution.4

The material was provided in extruded sheets of 3mm thickness from which flat testing5

specimens were machined with the geometry sketched in Fig. 5a. The experiments were car-6

ried out on a servo-hydraulic testing machine (Instron) at room temperature and at different7

constant values of the nominal (engineering) strain rate, i.e. at constant velocity. Uniaxial ten-8

sile tests were performed at strain rates of 10−4, 10−3, 10−2, 10−1 sec−1, each with at least three9

replicates. The specimens were attached to the machine by mechanical clamps. In the course10

of deformation the in-plane strain field in the center region of the flat specimens (Fig. 5a) was11

analyzed using 2D digital image correlation (DIC, Limess Co. [26]) with a camera resolution12

of 2 MPixel and a maximum frame rate of 20 sec−1. As visible from Fig. 5b at two levels of

R20

8012

12

22

20

measurement

region of
strain 

0.10
0.26
0.41
0.55
0.67
0.79
0.89
1.00

eng. strain
a) b)

Figure 5: a) Sketch of tensile specimen used (values in mm, thickness 3mm), b) contours of

strain in tensile direction at two different deformation stages obtained from DIC.

13

deformation, the strain in the specimen center region remained fairly homogeneous throughout14

the tests, i.e. necking did not take place. Since only the strains in the specimen plane were15

measured, the determination of the current specimen cross section was based on the assump-16

tion that the strain in thickness direction equals the in-plane transverse strain. Hence, the true17

(Cauchy) stress σ is computed from the force F , the engineering transverse strain εtr and the18

13



initial (undeformed) cross section A0 according to1

σ =
F

A0(1 + εtr)2
. (14)

True stress vs. engineering strain curves obtained in this manner are shown in Fig. 6a for a2

few identical tests along with the response of the adjusted material model. The experimental3

data show a rather small amount of scatter, even in the strain at failure. The tested material4

displays an almost linear elastic behavior with Young’s modulus E∗ ≈ 1500MPa and Poisson’s5

ratio ν∗ ≈ 0.42 up to a distinct yield point at about 2% strain and a stress of σ ≈ 32MPa.6

This yield point is followed by a stress drop until σ ≈ 27MPa and subsequent rehardening7

until abrupt failure, typically occurring when σ has passed 40MPa and at an engineering strain8

between 1.15 and 1.25. The measured initial Young’s modulus E∗ and Poisson’s ratio ν∗ in9

conjunction with corresponding literature data for the SAN matrix properties, e.g. [41], were10

used here to determine the rubber content from the analytical relations (12); a rough estimate11

of f≈0.2 was thus obtained. Afterwards the yield strength relation σc
n(δn/δcrit) according to (6)12

was fitted so that the overall response of the model with f =0.2 agrees with the experimental13

stress-strain curve (Fig. 6a). The engineering strain in the tensile direction is related to the14

craze width δn through ε = σ/E∗ + δn/b0 in view of the small elastic strains σ/E∗ ≪ 1.15

According to Eqs. (2),(8) and (9) the critical craze width at failure δcrit is related to the spacing16

between crazes which scales with the rubber particle radius. From fitting the model response17

to the experimentally observed failure strain, we obtain a value of r/δcrit = 0.6. This means18

that craze failure takes place at a craze width of about 80% of the rubber particle diameter,19

which is consistent with other experimental observations, e.g. [2],[28]. The effect of variations20

in the microstructural parameters f and r/δcrit on the model response will be further discussed21

in Sect. 3.2.1.22

The strain rate dependence of the tested ABS material in comparison with the model23

response is shown in Fig. 6b (for clarity and in view of the small amount of scatter only one24

experimental curve per strain rate is shown). The experiments show that the yield strength25

increases by approximately 5MPa per decade of strain rate. After adjusting the material26

parameters A and δ̇n0/δcrit in (4)1 a reasonable agreement is obtained over four decades of27

strain rate. In view of the lack of corresponding experimental data, the rate parameter δ̇τ0 of28

tangential craze opening in (4) is set equal to that in normal direction, i.e. δ̇τ0 = δ̇n0.29
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Figure 6: a) Uniaxial true stress vs. engineering strain response of commercial ABS and cal-

ibrated model (at ε̇ = 10−2sec−1), b) strain rate dependence under uniaxial tension in the

range ε̇ = 10−4...10−1sec−1.

Uniaxial cyclic tensile tests (dashed line in Fig. 7a) show hysteresis and a decreasing1

unloading-reloading slope with increasing inelastic deformation. This indicates that damage2

evolution takes place. The slope of the secant through the unloading-reloading hystereses at3

different values of inelastic deformation represents the reduction of the elastic stiffness. A de-4

creasing overall stiffness in the material model was fitted to the experimental data by adjusting5

the parameter η in Eq. (13). The model response under repeated unloading and reloading is6

depicted by the solid curve in Fig. 7a. Not captured by the model is the hysteresis in the7

experimental data which is likely to be caused by viscoelastic effects. These effects are not8

accounted for in the present viscoplastic approximation of the craze behaviour. The full set of9

the material parameters thus determined are summarized in Tab. 1.10

The widening of distributed crazes on the micro-scale results in a significant amount of11

dilation in the macroscopic inelastic strain. This can already be conjectured from the small12

amount of specimen contraction seen in Fig. 5b. As mentioned before, the experimental de-13

termination of the volumetric strain from the 2D strain field in the specimen plane is based14

on the assumption that the strain in the thickness direction is equal to the in-plane transverse15

strain. The evolution of volumetric strain with axial strain obtained from experiments at three16

different strain rates is shown in Fig. 7b along with the model response which is optically17

indistinguishable for the three strain rates. The model captures the general trend well, but18

15
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Figure 7: Comparison of experimental results with model response under uniaxial tension

showing: a) effect of unloading after different levels of straining (at ε̇ = 10−2sec−1), and b)

evolution of volumetric vs. axial strain at different strain rates.

it overestimates the volume strain under macroscopic uniaxial loading. Consistent with the1

assumption that inelasticity is exclusively due to crazing, the model yields a volume strain2

which is approximately equal to the axial strain. The deviation of the model response from3

the present experimental data for ABS suggests that in this material some amount of matrix4

shear yielding takes place, as observed also e.g. in [47]. By contrast, micromechanical and5

homogenized models of rubber-toughened polymers accounting only for matrix shear yielding,6

e.g. [9],[41], when subjected to macroscopic uniaxial tension, predict overall volume strains of7

only a few percent of the axial strain and hence deviate much more from the experimental data8

in Fig. 7b. This emphasizes the role of distributed crazing in ABS even at low stress triaxialities.9

10

E ν A δ̇n0/δcrit δ̇τ0/δcrit σc
0 σc

min σc
fail hn hτ q r/δcrit η f

[MPa] [-] [K/MPa] [sec−1] [sec−1] [MPa] [MPa] [MPa] [-] [-] [-] [-] [-] [-]

2550 0.38 150 10−4 10−4 40 30 55 33 1 2 0.6 15 0.2

Table 1: Material parameters determined by adjusting the model to experimental data
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3.2 Influence of microstructural parameters1

3.2.1 Effect of rubber content and rubber particle size2

Various experimental studies have indicated that the volume fraction f as well as the size r of the3

rubber particles have a strong influence on the overall deformation behavior of ABS materials,4

e.g. [5],[18],[21],[40],[42],[46]. The ultimate craze width δcrit at craze failure (cf. Eq. (5)) is5

in the present work assumed to be constant and provides a length scale to which the rubber6

particle size can be related. The effect of the two dimensionless microstructural parameters7

f and r/δcrit is explicitly accounted for in the presented material model via the flow rule (2)8

and the micromechanical scaling relations (8)-(10). Figure 8 shows the variation of the model9

response with these parameters under uniaxial tension in comparison to the experimental data10

to which the model has been calibrated (f = 0.2, r/δcrit = 0.6). The decrease in stress level11

and the increase in ductility (failure strain) with increasing rubber content f shown in Fig. 8a12

result from the scaling relations (8) and (10) utilized in the model (see also the discussion in13

Sect. 3.2.2) and qualitatively correspond well to what is reported from experimental studies,14

e.g. [21],[44]. Yet, quantitatively the effect of f on the failure strain of ABS appears to be15

underestimated by the model in comparison with experimental findings in [21] where the failure16

strain progressively increased with increasing rubber content. This discrepancy might be due17

to the effects of matrix shear yielding as well as craze bridging by highly stretched rubber18

particles, which both are not accounted for in the present model.19

As shown in Fig. 8b, the model predicts larger failure strains for smaller values of the20

rubber particle size r (at fixed δcrit). This can be explained from the proportionality between21

the particle size r and the craze spacing b0 (at fixed volume fraction f) according to Eq. (8)22

from which a larger contribution of craze widening to the overall RVE strain results for smaller23

rubber particles. Experimental studies, e.g. [18],[40],[46], have revealed a rather complex and24

manifold influence of the rubber particle size on the overall mechanical behavior of ABS, and25

results in [46] indeed display an increasing failure strain for smaller particles in a range of strain26

rates comparable to that in Fig. 8. However, the model prediction according to Fig. 8b has27

to be taken with caution since rubber particle size effects reported from experimental studies28

are likely to be attributed to a switch in the microscopic deformation mechanisms, i.e. the29

suppression of crazing in favor of matrix shear yielding for smaller particles, e.g. [10], which is30

not considered in the present model.31
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Figure 8: a) Effect of rubber content f (porosity) and b) effect of ratio r/δcrit on model response

under uniaxial tension at strain rate ε̇ = 0.01sec−1.

3.2.2 The issue of an optimal rubber content1

The main reason for modifying polymer materials with a rubbery phase is to enhance their2

ductility and fracture toughness. Hence, the quest for an optimal rubber content is of key3

practical importance. This issue will be briefly discussed here in the framework of the suggested4

material model for distributed crazing under uniaxial loading; it will be further analyzed in5

Sect. 4.2 through finite element simulations of the more realistic situation of 3D fracture tests.6

From the unit cell considerations in Sect. 2.2 the logarithmic macroscopic inelastic strain7

at failure, i.e. at δn = δcrit, is given by8

εfail(f) = ln

(

b0 + δcrit
b0

)

≈ ln

(

1 +
δcrit
r

f 1/3

)

. (15)

The overall stress normal to the craze zones, on the other hand, scales with the rubber content9

f according to (10) as10

σn(f) ≈ σc
(

1− f 2/3
)

(16)

where σc denotes the craze yield strength. If the latter is taken constant for the present11

considerations, the product wfail = σn εfail represents the specific (i.e. per volume) work until12

failure of the material and can be taken as a measure of toughness. Figure 9 shows wfail13

computed from the analytic expressions (15),(16) and normalized by the (constant) craze yield14

strength σc as a function of the rubber content (solid curve). Also shown (symbols • in Fig. 9)15
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with constant craze stress and the exact model response according to Fig. 8a.

is the exact constitutive model response wex
fail =

εfail∫

0

σn dε under uniaxial tension at a strain rate1

of ε̇ = 0.01sec−1 and normalized by σc
fail (see Tab. 1). From both evaluations it can be seen2

that the specific work until failure displays a non-monotonic dependence on the rubber content3

with a maximum at some intermediate value of f ≈ 0.1...0.15.4

This finding might be taken as a theoretical indication for the existence of an optimum rub-5

ber content with respect to the toughness of rubber-toughened polymers undergoing predomi-6

nantly distributed crazing. However, the discussion so far considers homogeneous deformations7

whereas experimental studies indicating an optimal toughness depending on the rubber con-8

tent comprise fracture tests, e.g. [5],[42]. Corresponding results from numerical simulations of9

fracture experiments are presented in Sect. 4.2.10

4 Fracture behavior of SENT specimen11

In order to assess in how far the developed constitutive model is capable of describing the12

fracture behavior of ABS materials, a single-edge-notch-tension (SENT) specimen, see Fig. 10,13

is considered in the following. Though not appropriate for the determination of “true” fracture14

properties (e.g. crack resistance curves) such a specimen type is occasionally utilized in polymer15

testing, e.g. [37],[40]. Some measure of the material’s fracture toughness, referred to as the16

19



specific work of fracture, is then obtained in terms of the total work exerted on the specimen1

until complete fracture divided by the fracture surface area. Thus, no distinction is made2

between the actual work of separation and the work dissipated in the plastic zone surrounding3

the fracture surface. The advantage of this type of test, however, lies in the fact that it4

is very easy to perform. Moreover, it allows to analyze the characteristic plastic zone that5

develops ahead of the notch prior to fracture (Sect. 4.1.1) both experimentally, using DIC, and6

numerically, using the homogenized material model. The use of the latter is justified since the7

length scale associated with the strain gradient resulting from the blunt notch is sufficiently large8

compared to the microstructural length scale (rubber particle size or spacing). Findings from9

the present work then may be directly compared with detailed results presented by Steenbrink10

et al. [37] who used the same specimen type.11

While the primary aim of this work is the development and analysis of the constitutive12

model (Sect. 2) as well as its application in numerical simulations, we have also performed13

fracture experiments on the commercial ABS material used before for the model calibration.14

The experimental data then serve to analyse the performance of the model as discussed in15

Sect. 4.1. The SENT specimen geometry is depicted in Fig. 10a, and the 3D finite element16

mesh used in the numerical simulations is shown in Fig. 10b. Since the specimen of 80mm

2

20

4

40

va) b)

Figure 10: a) Sketch of SENT specimen (values in mm, thickness 3mm), b) parts of finite

element mesh.
17

length was clamped at the ends in the testing device the specimen length free to deform in18

the computational model was reduced to 70mm. The velocity of specimen extension (relative19

20



clamp motion) was v = 1mm/sec in the experiments as well as in the simulations. Also, all1

tests and simulations were performed at room temperature. In a similar way as during the2

uniaxial tension tests, see Sect. 3.1, the tests were monitored by a digital camera, facilitating a3

post-test determination of the in-plane strain fields by DIC.4

4.1 Experimental vs. computational results5

4.1.1 Plastic zone formation at notch6

The enhanced fracture toughness of rubber-toughened polymers corresponds to the formation of7

a large plastic zone (sometimes referred to as “stress-whitened” owing to its optical appearance)8

that develops at a crack tip or notch under tensile loading. A characteristic feature of the plastic9

zone in rubber-toughened thermoplastics such as ABS, e.g. [29],[31], but observed also in rubber-10

toughened epoxies, e.g. [12], is its elongated shape which is understood to result from the specific11

inelastic micro-mechanisms (rubber particle cavitation, void growth in conjunction with matrix12

shear yielding, crazing). It fundamentally differs from the bulky plastic zones typically observed13

in metals or homogeneous ductile glassy polymers under plane strain conditions, e.g. [24], which14

can well be reproduced in numerical simulations using established material models. Attempts to15

reproduce the elongated plastic zone in rubber-toughened polymers by computational models,16

however, so far have not been very successful. In particular, in a previous study [30] where17

void growth in a matrix undergoing plastically incompressible shear yielding was considered18

the dominant (sole) damage mechanism in ABS, the resulting softening in the homogenized19

material response led to an unrealistic narrow plastic zone. In contrast, Tijssens et al. [43]20

employed multiple spatially distributed cohesive zones to describe distributed crazing in a neat21

glassy polymer and obtained an inelastic deformation zone at a circular hole in a plate which22

was in reasonable agreement with experimental observations. In order to complement the above23

mentioned studies, we here apply the model presented in Sect. 2 and 3, which focuses on the24

effect of distributed crazing and deliberately ignores shear yielding, to the situation of a notched25

tensile (SENT) specimen.26

Experimental and numerical results for the inelastic deformation zone in front of the notch27

are shown in Fig. 11 for two successive loading stages, i.e. overall specimen elongations of28

1.4mm (I) and 2.4mm (II), respectively. The contour plots depict the strain at the specimen29

surface in the tensile (vertical) direction – which is almost equal to the maximum principal30

21



strain – obtained from digital image correlation and the finite element simulation, respectively.1

Obviously, the characteristic elongated shape of the plastic zone is well captured by the simu-
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Figure 11: Experimentally and numerically determined distribution of strain in vertical direc-

tion in SENT specimen at loading stages (I) and (II) indicated in Fig. 12a. Dashed contours

indicate region inside which rubber particle cavitation at an assumed critical hydrostatic stress

σcav
m = 10MPa has occurred in the simulation.

2

lations. Owing to the model ingredients, the spreading of inelastic deformation in a narrow3

zone ahead of the notch is favored by the overall dilation in the material model (due to craze4

widening) in conjunction with the initial softening (Figs. 6 and 7b). The lateral extension of5

this zone over the entire width of the notch, on the other hand, is attributed to the subsequent6

rehardening. The hardening remains present in the response of the distributed crazing model7

also under notch tip loading conditions with a higher stress-triaxiality than in Fig. 6a. In8

contrast, a porous plasticity model accounting solely for matrix shear yielding, even when9

endowed with progressive matrix hardening, in such a situation inevitably displays overall10

softening [38] which results in a far too localized plastic zone in finite element simulations [30].11

Also shown by the dashed lines in Fig. 11 is the region inside which rubber particle cavitation12

at an assumed critical hydrostatic stress of σcav
m = 10MPa has occurred in the simulation. The13

bulky shape of the cavitation zone which engulfs the elongated plastic zone in Fig. 11 in the early14

stage of loading (I) corresponds quite well to what is reported from experiments, e.g. [29],[39],15

22



and also analytical considerations based on contours of hydrostatic stress, e.g. [7].1

4.1.2 Crack propagation2

Crack advance is realized in the simulations by removing finite elements from the model when3

the critical craze opening is reached, i.e. at δ = δcrit according to (5). Figure 12a shows4

the overall response of the SENT specimen in terms of force vs. displacement curves from5

three experimental tests and the numerical simulation. The stages indicated by (I) and (II)
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Figure 12: a) Force vs. displacements curves for SENT specimen from experiments and simu-

lation, b) fractured specimen indicating some amount of necking.

6

at a relative displacement of the specimen ends of about 1.4mm and 2.4mm, respectively,7

correspond to the snapshots of the plastic zone in Fig. 11. Stage (I) refers to the beginning of the8

plateau region in the force-displacement curve in Fig. 12a, and it is seen from Fig. 11 that at this9

stage the plastic zone has not yet extended over the entire ligament length. Stage (II) indicates10

the situation right before specimen failure. Though the simulation reasonably captures the11

general trend of the experimental force-displacement curves, and in particular the deformation12

at fracture, several deviations are to be noticed. In comparison with the experimental data,13

the simulated force-displacement curve displays a somewhat stiffer response during the initial14

rise and a more abrupt change towards the load plateau. Maximum load values are higher in15

the experiments which also appear to display a more stable crack propagation during the final16

load drop (yet, measurements in this regime may be not very reliable). These deviations are17
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likely to be attributed to the lack of any inelastic deformation mechanism other than crazing1

in the present material model in which the effect of matrix shear yielding has deliberately been2

ignored. In fact, the close-up view of a fractured test specimen in Fig. 12b shows a larger3

degree of plastic deformation at the specimen surface, i.e. at lower stress triaxiality, along with4

some amount of necking, both being indicative of matrix shear yielding. In the numerical5

simulations where crazing is considered to be the only inelastic deformation mechanism and6

stress triaxiality is of minor importance, such a inhomogeneous deformation over the specimen7

thickness was not observed.8

4.2 Effect of rubber content on fracture toughness9

In Fig. 13a force vs. displacement curves from simulated SENT tests are shown for different10

values of the rubber content f . With increasing f the overall force decreases while the dis-11

placement until failure increases. The corresponding specific work of fracture (i.e. area under12

force-displacement curve divided by ligament area of 16mm×3mm) is shown in Fig. 13b as13

a function of the rubber content. The simulations predict a maximum work of fracture for a
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Figure 13: Effect of rubber content on simulated SENT fracture tests: a) force vs. displacement

curves, b) dependence of specific work of fracture on rubber content.

14

rubber content of f ≈ 0.2, which is rather similar to what was observed in case of uniaxial15

tension (Fig. 9) as well as from experiments in [5] and [42]. The absolute values of the specific16

24



work of fracture in Fig. 13b, in turn, are close to the experimental results in [37] obtained using1

the same type of test specimen as considered in our simulations. In their series of fracture2

experiments (with more detailed results in [39]), however, the fracture energy showed a slight3

monotonic increase with increasing rubber content instead of an intermediate maximum.4

5 Discussion and conclusions5

Toughening in ABS materials is mediated by two dissipative micromechanisms, i.e. shear yield-6

ing and crazing. In order to analyse the sole effect of spatially distributed crazing a homogenized7

material model was developed in the framework of large inelastic strains that deliberately ig-8

nores shear yielding and assumes crazing to be the only source of inelasticity. In this way the9

model complements earlier studies, e.g. [9],[30],[35],[41],[47], where the opposite extreme was10

considered, namely the effect of shear yielding alone. In contrast to porous plasticity models11

accounting only for matrix shear yielding, e.g. [30], the present distributed crazing model proves12

to be more successful in reproducing the characteristic elongated shape of the plastic zone in13

front of a (mode I loaded) notch. This is due to the ability of the distibuted crazing model14

to accommodate overall dilation without reducing the load-carrying capacity of the ligament15

between voids as it inevitably happens by void growth in a plastically incompressible (shear16

yielding) matrix.17

Experimental tests have been conducted on a commercial ABS material of unknown compo-18

sition (e.g. rubber content) under uniaxial as well as notched tensile conditions. The constitutive19

model has been calibrated to capture the stress-strain response of the real ABS material under20

uniaxial monotonic and cyclic tensile loading at different strain rates. It turned out that, by21

accounting solely for crazing, the material model overestimates volumetric strain under uniaxial22

tension; this indicates that in the real ABS some amount of matrix shear yielding takes place.23

However, models that consider only matrix shear yielding, significantly underestimate the evo-24

lution of volume strain at low stress triaxialities. The comparison of these complementing25

modeling approaches hence provides important information for the future development of more26

realistic models comprising both mechanisms. While the present model has been calibrated to27

experimental data in uniaxial tension, it is also applied in simulations with more complex stress28

states and reasonably captures the fracture behavior of the tested ABS material in case of the29
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considered SENT specimen. Again, deviations from experimental data can, at least partly, be1

ascribed to the absence of shear yielding which has been ignored in our model.2

Variations of microstructural parameters yield a model response that is qualitatively consis-3

tent with experimental findings in the literature. In particular, the model predicts a maximum4

of the fracture toughness at some intermediate value of the rubber content of about 20%, similar5

to experimental observations in [5],[42]. The model also predicts some influence of the rubber6

particle size with smaller particles leading to a larger strain at failure. The correspondence of7

this effect with experimental findings, however, has to be taken with caution since the influence8

of rubber particle size on the inelastic deformation behavior of rubber-toughened polymers,9

and in particular ABS, appears to be far more complex than captured by the present model,10

see e.g. [18],[19]. For instance, the question whether crazing or matrix shear yielding is the11

dominant deformation mechanism in ABS is strongly connected to the rubber particle size,12

with very small particles being less efficient for initiating crazes. Moreover, the particle size13

may affect several other factors of influence on the overall material behavior such as the particle14

cavitation resistance or particle clustering, e.g. [40]. In fact, the microstructure considered in15

our model is strongly idealized as we assumed all rubber particles to have the same size and16

to all cavitate simultaneously, whereas in real ABS often a more complex (e.g. bimodal) size17

distribution prevails, e.g. [19], and only a certain percentage of the particles undergo cavitation18

and act as craze initiators, e.g. [2],[22],[28]. Also, rubber particles in real materials may be not19

as well dispersed as assumed in the model. Interesting insight into the effects of rubber particle20

size and volume fraction in rubber toughening may be gained from analytical considerations21

using linear elastic fracture mechanics, e.g. [7],[8]; yet, these concepts are not easily extended22

to the situation of large inelastic strains addressed by the present computational model as well23

as those mentioned in the Introduction.24

Since the model presented here pertains to materials with homogeneous soft rubber particles25

which do not carry much load after cavitation (as motivated in Sect. 2.2), the overall hardening26

response (see, e.g., Fig. 6) is entirely ascribed to the behavior of the crazed matrix material in27

the inter-particle ligament via Eq. (6). It should, however, be noted that in materials like HIPS28

(and those ABS grades with a similar microstructure) the rubbery phase in the heterogeneous29

’salami’-type particles also undergoes fibrillation and has been conjectured to contribute to the30

overall stress at large stretches, e.g. [19],[34].31
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The shortcomings of the model revealed by the present study suggest amendments in several1

regards. Firstly, a more realistic description of ABS materials should account for both of2

the mentioned microscopic deformation mechanisms, i.e. crazing and matrix shear yielding.3

The transition between them then might be controlled primarily by the stress triaxiality and4

the strain rate, with lower values of both parameters promoting shear yielding. Strain rate,5

in turn, appears to be a parameter that affects the crazing process itself via the competing6

mechanisms of disentanglement and chain scission [23] with some influence e.g. on the craze7

width at failure, hence δcrit in our model. Also, temperature effects – completely excluded in8

the present work – should be accounted for since they are naturally connected with strain rate9

in polymer deformation, and experimental studies on rubber-toughening are often performed10

under impact conditions where adiabatic heating may take place. Finally, the overall anisotropy11

that develops in the course of deformation due to the orientation of the craze zones has been12

neglected so far. Recent experimental studies on pre-stretched ABS (to be reported elsewhere)13

in fact indicate a significant amount of anisotropic damage that probably should be considered14

in a more refined model for the deformation history dependent behavior of rubber-toughened15

polymers.16
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Appendix23

The transition from the microscopic inelastic deformation mechanisms of crack-like cohesive24

surface opening sketched in Fig. 2 towards the kinematics of macroscopic elastic-inelastic de-25

formation according to Eqs. (1) and (2) is elaborated here in more detail. Therefore, a repre-26

sentative volume element (RVE; see Fig. 2) of the microstructure in the undeformed reference27

configuration is taken as a domain of volume V0 and exterior boundary ∂V0 which contains28

27



surfaces of discontinuity with respect to the displacement and hence the current position x of1

material points X (position vector in ref. config.), collectively denoted as Γ0. The local defor-
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Figure 14: Schematic of continuum with crack-like discontinuity surfaces considered in micro-

to-macro transition (17).

2

mation gradient tensor Fcont =
∂x

∂X
is assumed to be continuous throughout the matrix phase3

V0\Γ0 of the RVE, while solely on Γ0 a discontinuity in terms of a local separation vector (jump)4

[[x]] := x|Γ+
0
− x|Γ−

0
prevails. With the positive and negative sides (’crack-flanks’) Γ+

0 and Γ−
05

of the discontinuity surface (Fig. 14) the total boundary of the matrix phase is ∂V0 ∪ Γ+
0 ∪ Γ−

0 ,6

and N denotes the unit normal vector of any external or internal boundary in the reference7

configuration. Taking the volume average of Fcont over the matrix phase and applying the di-8

vergence theorem to the latter leads to the definition of the macroscopic deformation gradient9

of the RVE as10

F̄ :=
1

V0

∫

∂V0

x⊗N dA0 =
1

V0

∫

V0\Γ0

Fcont dV0 +
1

V0

∫

Γ0

[[x]]⊗N dA0 . (17)

It consists of the volume average of the continuous local deformation gradient plus a contribution11

due to material separation on the discontinuity surfaces Γ0.12

Motivated by experimental observations on rubber-toughened polymers, e.g. in [2],[28], we13

now assume that the unit normal vector on the discontinuity surfaces (i.e. crazes) is constant14

throughout the RVE. This allows to define the average separation vector δ on the RVE through15

δ :=
1

|Γ0|

∫

Γ0

[[x]] dA0 (18)

where |Γ0| denotes the total area of the discontinuity surfaces inside V0. If we furthermore16

introduce the average spacing between discontinuity surfaces in the reference configuration of17

28



the RVE as b0 :=
V0

|Γ0|
the representation of the macroscopic deformation gradient simplifies to1

F̄ =
1

V0

∫

V0\Γ0

Fcont dV0 +
1

b0
δ ⊗N . (19)

In accordance with the discussion of the model for distributed crazing in Sect. 2.1 we assume2

that separation on the discontinuity surfaces (crazes) is the only source of inelasticity in the3

RVE and elastic deformations are locally described by Fcont. As a consequence, we define the4

elastic part of the macroscopic deformation gradient as5

F̄
e
:=

1

V0

∫

V0\Γ0

Fcont dV0 . (20)

Adopting the common multiplicative split F̄ = F̄
e
· F̄

c
of the (macroscopic) deformation6

gradient into this elastic part and an inelastic part F̄
c
due to crazing, the latter is obtained7

from (19) and (20) as8

F̄
c
= I +

1

b0
∆⊗N (21)

where ∆ := F̄
e−1

· δ denotes the pull-back of the (macroscopic) separation vector δ to the in-9

elastic intermediate configuration and I is the second-order unit tensor. The Sherman-Morrison10

formula then yields11

F̄
c−1

= I −
∆⊗N

b0 +∆n

where ∆n = ∆ ·N (22)

so that with the material time derivative of (21)12

˙̄
F

c
=

1

b0
∆̇⊗N (23)

we get the inelastic part of the macroscopic velocity gradient the intermediate configuration as13

˙̄
F

c
· F̄

c−1
=

∆̇⊗N

b0 +∆n

. (24)

The macroscopic velocity gradient in the current configuration and its elastic and inelastic14

parts follow from15

L̄ = ˙̄
F ·F̄

−1
=
(

˙̄
F

e
· F̄

c
+ F̄

e
· ˙̄
F

c
)

·F̄
c−1

·F̄
e−1

= ˙̄
F

e
· F̄

e−1

︸ ︷︷ ︸

L̄
e

+
F̄

e
· ∆̇⊗N · F̄

e−1

b0 +∆n
︸ ︷︷ ︸

L̄
c

. (25)
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Assuming now that the elastic strains are small (see e.g. [4] and note the similarity with the1

kinematics of single crystal plasticity except for the normal opening ∆n) we may write2

F̄
e
· ∆̇ ≈ δ̇ and N · F̄

e−1
≈ n and ∆n = ∆ ·N ≈ δ · n = δn (26)

with the separation rate vector δ̇ and the unit vector n in the current configuration so that3

L̄ = L̄
e
+ L̄

c
where L̄

c
≈

δ̇ ⊗ n

b0 + δn
. (27)

Taking the symmetric part of (27) and omitting the overbar (introduced in this Appendix4

merely to indicate macroscopic quantities) we recover (1) in conjunction with (2) and (9).5
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ing: a) effect of unloading after different levels of straining (at ε̇ = 10−2sec−1), and b) evolution15
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Figure 9: Specific work until failure vs. rubber content f according to the estimate (15),(16)19
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Figure 10: a) Sketch of SENT specimen (values in mm, thickness 3mm), b) parts of finite21

element mesh.22

Figure 11: Experimentally and numerically determined distribution of strain in vertical direc-23

tion in SENT specimen at loading stages (I) and (II) indicated in Fig. 12a. Dashed contours in-24
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m = 10MPa25
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Figure 12: a) Force vs. displacements curves for SENT specimen from experiments and simu-1

lation, b) fractured specimen indicating some amount of necking.2

Figure 13: Effect of rubber content on simulated SENT fracture tests: a) force vs. displace-3

ment curves, b) dependence of specific work of fracture on rubber content.4

Figure 14: Schematic of continuum with crack-like discontinuity surfaces considered in micro-5

to-macro transition (17).6
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