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Sammendrag

Denne oppgaven tar for seg statistisk modellering og analyse av lange genuttrykkstid-
srekker ved bruk av lineære blandede (linear mixed effects) modeller. Denne type re-
gresjonsmodell er mye brukt innen fagfelt som biologi, økologi og medisin.

Analysene er gjort p̊a et datasett fra en mikromatrisestudie. Studien er gjennomført ved
Institutt for kreftforskning og molekylær medisin (IKM) ved NTNU i 2009. Forskerne
målte genuttrykk til to cellelinjer ved 12 ulike tidspunkt. Den ene cellelinjen ble stimulert
med hormonet gastrin, mens den andre fungerer som en ustimulert kontroll. Forsøket
ble gjort p̊a to biologiske replikater. Datasettet best̊ar alts̊a av to parvise tidsrekker av
genuttrykk, med to biologiske replikater for hver av tidsrekkene.

Den lineære blandede modellen kan tilpasses hvert av genene i datasettet. Vi har i denne
oppgaven undersøkt om arealet under den tilpassede kurven for tidsrekkene kan brukes
som et m̊al p̊a styrken av aktivert genuttrykk over tid. Dersom arealet kan brukes som
et mål p̊a denne effekten over tid, kan det brukes som en metode for å rangere gener i
en genuttrykksstudie p̊a. Ved bruk av hypotesetester kan signifikansen av reguleringen i
genuttrykkene vurderes. Vi har i denne oppgaven foresl̊att å bruke en hypotesetest basert
p̊a arealet, fremfor de faste effektene (fixed effects) i modellen, for å gjøre signifikansvur-
deringer.

Vi har brukt b̊ade en parametrisk og en ikke-parametrisk tilnærming i denne oppgaven.
Nye testobservatorer knyttet til hypotesetestene v̊are er foresl̊att. Vi beskriver en permu-
teringstest for å generere data under nullhypotesen om at arealet er lik null. Gjennom
et lite simuleringseksperiment sjekker vi permuteringsalgoritmen v̊ar. Vi gjør multippel
testing av hypoteser p̊a flere gener i datasettet v̊art. Resultatene fra multippel testing ved
bruk av b̊ade parametrisk og ikke-parametrisk metode blir s̊a sammenlignet og evaluert.
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Abstract

The main objective of this thesis is to model and analyse long gene expression time series
from a microarray study using the linear mixed effects model. This regression model is
widely used in the fields of biology, ecology and medicine. The linear mixed effects model
combines both fixed and random effects on a linear scale.

We will use data from a microarray study conducted by Astrid Lægreid & Torunn Bruland
and collaborators at Department of Cancer Research and Molecular Medicine (IKM) at
Norwegian University of Science and Technology (NTNU) in 2009. The data set consists
of paired time series, one gastrin stimulated treatment and one unstimulated control, for
8956 genes. The response value is a logarithmic measure of gene expression, and is mea-
sured for two biological replicates.

The linear mixed effects model can be fitted for each of the genes in the data set. We have
examined if the area under the estimated time series curve may be used as a measure of
strength of the gene expression activation over time, and if this area can be used to rank
the genes with respect to effect size over time. Significant activation can be assessed with
the aid of hypothesis tests. With the area as a measure of strength of the gene expression
activation over time, we have suggested a hypothesis test for assessing gene significance.

Analyses will be performed based on parametric assumptions and on permutation. Test
statistics related to the analyses are suggested. Our permutation strategy is validated
through a small scale simulation study. Multiple testing of hypotheses are conducted.
The parametric and permutation approach will be compared and evaluated using statis-
tical inference.
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Chapter 1

Introduction

Gene expression data from long time series can be analysed with the aid of linear mixed
effects models, with a polynomial effect in time. The linear mixed effects model is a pop-
ular regression model for biological and medical analysis, due to the presence of repeated
measures. The method combines, on a linear scale, both fixed and random effects.

In a microarray study in the order of tens of thousands of genes are studied. The bi-
ologists are looking for a way to rank the genes with respect to effect size of activation
over time The aim of this thesis is to find such a ranking method and assess significance,
based on parametric assumptions and on permutation, and to compare and evaluate the
strategies using statistical inference.

1.1 Biological problem and the data set

Gene expression can be thought of as the result of activity of a genotype in an organism,
and is measured by the mRNA production of a gene in a cell. Analysis of gene expression
data is the analysis of this activity. In this thesis we will look at how the gastric hormone
gastrin may affect the mRNA production of several genes.

Gastrin is a peptide hormone which is responsible for stimulating the secretion of gastric
acid (HCl) and thus maintaining the appropriate acidic pH level in the stomach, Fjeldbo
(2012). It is also important in the regulation of function and growth in the gastric mu-
chosa. Prolonged elevated plasma gastrin levels (hypergastrinemia) have been associated
with cancer in the gastrointestinal system.

The data used as basis for this thesis comes from a study conducted by Astrid Lægreid
& Torunn Bruland and collaborators at IKM (NTNU) in 2009, Page (2012). The data is
preprocessed by Arnar Flatberg (The Norwegian Microarray Consortium).

The data set consists of time series measurements of gene expression for 8956 genes. It
is a collection of 12 observations for each gene, taken over a time frame of 14 hours, with
two biological replicates for pairs of gastrin stimulated treatment (Gm) and unstimulated
control (Un). In this thesis we will only study the difference time series, which we will
refer to as GmUn. By the biologists, the two biological replicates are named BR2 and BR3.
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1.2 Organisation of the report

In Chapter 2, the linear mixed effects model is defined. The model can be fitted for each
gene. We will look at the area under the estimated time series curve as a measure of
strength of the gene expression activation over time. This is presented in Chapter 3, with
results for selected genes. Analyses will be performed based on parametric assumptions.
As an alternative approach to the parametric assumptions, the method of permutation is
presented in Chapter 4. A short simulation experiment is done for a better understanding
of our permutation algorithm. An introduction to the multiple testing problem is found
in Chapter 5. Chapter 6 contains analysis of a random sample of approximate 1000 genes.
Results from a permutation test on these 1000 genes are presented, as well as the multiple
testing problem for all genes. Discussion and conclusion are found in Chapter 7.

1.3 Statistical software

All statistical analysis in this thesis have been done using the statistical software R, R
Core Team (2012). The programming code is found in Appendix A.

2



Chapter 2

Method

This chapter will present the Linear Mixed Effects (LME) model. This type of model can
be used to describe the relationship between a response variable and explanatory variables
or factors for longitudinal, clustered, and repeated measures data, which are often found
in the fields of biology, ecology and medicine.

Data where the response variable is measured more than once for each subject, is of
type repeated measures. The gene expression time series is an example of this. For each
gene, the response value (gene expression) is measured for two or more biological repli-
cas. The data is thus correlated within each biological replica, but the observations from
different biological replicas are independent. On a linear scale, the LME model combines
both fixed and random effects, and can be considered as an extension of the ordinary
linear models, which require all data to be independent and identically distributed. For
the LME model in a gene expression study, the fixed effects are associated with the gene,
while the random effects are associated with each biological replica.

This presentation is based on Chapter 5 in Zuur et al. (2009) and Chapter 2 in Østg̊ard
(2011).

2.1 The Linear Mixed Effects Model

For each biological replica we consider the following model

Yi = Xiβ + Ziui + εi, (2.1)

where i = 1, ..., b represents the b different biological replicas.

The vector of continuous responses, in our data this is gene expressions, from the ith
biological replica is defined as

Yi =


Y1i

Y2i
...

Yni

 ,
where n is the total number of observations for each biological replica i.
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The fixed effects design matrix Xi is an n × (k + 1) matrix representing covariates. We
will use as covariates a polynomial in time including the kth order. In the design matrix,
the first column is equal to 1 for all observations as to include an intercept in the model.
The design matrix is defined as

Xi =


1 x

(1)
1i x

(2)
1i · · · x

(k)
1i

1 x
(1)
2i x

(2)
2i · · · x

(k)
2i

...
...

...
...

1 x
(1)
ni x

(2)
ni · · · x

(k)
ni

 ,

where for example x
(1)
1i = t1i and x

(2)
1i = t21i for repeated measure number one.

The parameter vector β is the fixed effects vector, consisting of (k + 1) regression coeffi-
cients, one for each covariate, and one for the intercept. This is common to all replicas.
The vector is defined as

β =


β0

β1
...
βk

 .
The random effects design matrix Zi is an n× (q + 1) matrix defined as

Zi =


1 z

(1)
1i z

(2)
1i · · · z

(q)
1i

1 z
(1)
2i z

(2)
2i · · · z

(q)
2i

...
...

...
...

1 z
(1)
ni z

(2)
ni · · · z

(q)
ni

 .
The random effects vector ui is defined as

ui =


u0i

u1i
...
uqi

 ,
where the random effects ui are independent between replicas and assumed to follow a
multivariate normal distribution N(q+1)(0,D), and D is a positive definite covariance ma-
trix.

The simplest model for our problem has only a random intercept for each biological
replica, hence the random effects design matrix Zi, the random effects vector ui and the
covariance matrix D will be reduced to

Zi =

1
...
1

 , ui =
[
u0i

]
and D = σ2

B.
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For a slightly more complicated model with intercept and slope in time, the Zi, ui and D
will be reduced to

Zi =

1 t1i
...
1 tni

 , ui =

[
u0i

u1i

]
and D =

[
σ11 σ12

σ21 σ22

]
.

The vector of errors εi is defined as

εi =


ε1i

ε2i
...
εni

 ,
where each element of εi is the error associated with each response for the ith biological
replica. The errors are independent between replicas and assumed to follow a multivariate
normal distribution Nn(0,Σi), where Σi might have a general structure. However, the
most common structure is Σi = σ2In×n, where In×n is the identity matrix, so that errors
also within replicas are assumed independent. We will only use this model further. The
two random vectors ui and εi are assumed independent of each other.

2.2 The Marginal Model

The linear mixed effects model (2.1) include two random terms, and to ease the interpre-
tation we look at the marginal model

Yi = Xiβ + ε∗i , (2.2)

where ε∗i = Ziui + εi. The marginal model (2.2) can be used to study the variance struc-
ture of the response Yi.

Since the sum of two independent normally distributed random variables is also normally
distributed, we get that ε∗i is normally distributed with expected value

E(ε∗i ) = E(Ziui) + E(εi)

= ZiE(ui) + E(εi)

= Zi0 + 0

= 0,

and covariance matrix

Cov(ε∗i ) = Cov(Ziui) + Cov(εi)

= ZiCov(ui)Z
T
i + Cov(εi)

= ZiDZT
i + σ2I.
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We define the marginal variance-covariance matrix as

Vi = ZiDZT
i + σ2I, (2.3)

and

ε∗i ∼ Nn(0,Vi),

and thus the marginal distribution of Yi is defined as a multivariate normal distribution

Yi ∼ Nn(Xiβ,Vi).

The covariance structure between observations Y1i and Y2i from the same biological replica
will be explained by the element V[1,2] in the marginal variance-covariance matrix (2.3).
The correlation between the two observations is

Corr(Yi1, Yi2) =
V[1,2]√

V[1,1]

√
V[2,2]

.

Recall that the covariance between two observations from different biological replica is
equal to zero by definition, since the biological replicas are independent.

2.3 Compound Symmetry

For models where the random part is just a random intercept, we have D = σ2
B, and we

then get the following expression for the marginal variance-covariance matrix

Vi = ZiDZT
i + σ2I =

1
...
1

 [σ2
B]
[
1 · · · 1

]
+ σ2I

=


σ2 + σ2

B σ2
B · · · σ2

B

σ2
B

. . .
...

...
. . . σ2

B

σ2
B · · · σ2

B σ2 + σ2
B

 .

This structure, where the elements on the diagonal are the same and the elements on the
off-diagonal are the same, is called compound symmetry.

Theorem 2 in Dobbin & Simon (2005) states that if one has a matrix on the form

Inα
2 + Jn,nβ, the inverse of this matrix, if it exists, is In

1

α2
− Jn,n

β

α2(α2 + nβ)
. Here

In is the n× n identity matrix, and Jn,n is an n× n matrix of ones.

For our model with only a random intercept for each biological replicate, where α2 = σ2

and β = σ2
B, we can write

Vi = Inσ
2 + Jn,nσ

2
B.
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The expression for the inverse of the marginal variance-covariance matrix is thus

V−1
i = In

1

σ2
− Jn,n

σ2
B

σ2(σ2 + nσ2
B)

=
1

σ2(σ2 + nσ2
B)


σ2 + (n− 1)σ2

B −σ2
B · · · −σ2

B

−σ2
B

. . .
...

...
. . . −σ2

B

−σ2
B · · · −σ2

B σ2 + (n− 1)σ2
B

 . (2.4)

We will use this result when looking at the expression for the predicted random effects.

The intraclass correlation coefficient, defined as the correlation between two observations
from the same biological replicate, can be calculated from Vi and is given as

ρ =
σ2
B

σ2 + σ2
B

, (2.5)

and can be used to describe an effective sample size when the observations are correlated
within each biological replicate. Because the standard error depends on the sample size,
and we want a small standard error, a large sample size might help achieve this. When
observations in each biological replicate are highly correlated, we cannot treat them as
independent observations. In problems like this we can calculate the design effect, defined
as

design effect = 1 + (n− 1)ρ,

where n is the number of observations in each biological replicate and ρ is the intra-
class correlation coefficient. If ρ = 0, then the design effect is 1, and the effective sample
size is n. If design effect > 1, then the effective sample size is lower than the total number
of observations, Neff < n. The adjusted sample size, or effective sample size is given by

Neffective =
bn

design effect
, (2.6)

where n is the number of observations within each biological replicate and b is the total
number of biological replicates, as before.

To describe the correlation between the repeated observations, we may use the effec-
tive sample size as an alternative to using the intraclass correlation ρ directly.
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2.4 The Full Model

The linear mixed effects model for each biological replicate i = 1, ..., b is defined in (2.1).
A full model is a model where all the different biological replicates are put together into
one model, given as

Y1

Y2
...

Yb


︸ ︷︷ ︸(
nb×1

)
=


X1

X2
...

Xb


︸ ︷︷ ︸(
nb×(k+1)

)
[
β
]︸︷︷︸(

(k+1)×1
)+


Z1 0 · · · 0

0 Z2
...

...
. . . 0

0 · · · 0 Zb


︸ ︷︷ ︸(

nb×b(q+1)
)


u1

u2
...

ub


︸ ︷︷ ︸(
b(q+1)×1

)
+


ε1

ε2
...
εn


︸ ︷︷ ︸(
nb×1

)
.

The full model can also be written as

Y = Xβ + Zu + ε.

2.5 Maximum and Restricted Maximum Likelihood

Estimation

The method of Maximum Likelihood (ML) estimation is used to estimate the parameters
β, and the variances D = σ2

B and σ2. ML estimation involves constructing the likelihood
function for the observed data. Since the random effects ui are not observed, we will use
the marginal distribution of Yi instead of the distribution given in (2.1) to estimate the
parameters, as suggested in Galecki & Burzykowski (2013).

Finding a good estimator for the fixed effects β is not straightforward. First we will
find the likelihood function assuming that Vi, and hence σ2

B and σ2, is known. This will
result in the Best Linear Unbiased Estimator (BLUE) for β. Because Vi is in fact not
known, we use the expression for the BLUE to find a new likelihood function, where the
unknown parameters are σ2

B and σ2. By the use of this new likelihood function, we get an
expression for V̂i. With this expression we can find the Empirical Best Linear Unbiased
Estimator (EBLUE) for β, which is our main goal with ML estimation.

The marginal distribution of Yi is multivariate normal distributed, Yi ∼ Nn(Xiβ,Vi).
From Johnson & Wichern (2007), we have the following expression for the probability
density function of the multivariate normal distribution

f(Yi|β, σ2
B, σ

2) = (2π)−
n
2 |Vi|−

1
2 exp

{
−1

2
(Yi −Xiβ)TVi(Yi −Xiβ)

}
.

The likelihood function contribution for the ith biological replicate, given the observed
data Yi = yi, is

Li(β, σ
2
B, σ

2) = (2π)−
n
2 |Vi|−

1
2 exp

{
−1

2
(yi −Xiβ)TVi(yi −Xiβ)

}
.

8



The joint likelihood function is then the product of these b likelihood functions, given as

L(β, σ2
B, σ

2) =
b∏
i=1

Li(β, σ
2
B, σ

2)

=
b∏

1=1

(2π)−
n
2 |Vi|−

1
2 exp

{
−1

2
(yi −Xiβ)TV−1

i (yi −Xiβ)

}
.

The log-likelihood function is thus

l(β, σ2
B, σ

2) = −1

2
nln(2π)− 1

2

b∑
i=1

ln(|Vi|)−
1

2

b∑
i=1

(yi −Xiβ)TV−1
i (yi −Xiβ). (2.7)

By assuming that Vi, and hence σ2
B and σ2, is known, we can find the Best Linear Unbi-

ased Estimator (BLUE) for β. An estimator of β, β̂, is the best linear unbiased estimator
if it can be written as bTY . This means that E[bTY ] = β (unbiased), and that it has the
smallest variance among the unbiased linear estimators.

Treating Vi as known, the log-likelihood function becomes a function of β only, and
the maximization of this function is equal to minimization of the last term in (2.7),

q(β) =
1

2

b∑
i=1

(yi −Xiβ)TV−1
i (yi −Xiβ).

To minimize q(β), we use the method of generalized least squares, which states that we
differentiate with respect to β, set this equal to zero and solve for β. By doing this we
will find the BLUE for β.

∂q(β)

∂β
=

∂

∂β

(
1

2

b∑
i=1

(yi −Xiβ)TV−1
i (yi −Xiβ)

)
= 0

⇒ ∂

∂β

1

2

b∑
i=1

(
yTi V−1

i yi − yTi V−1
i Xiβ − βTXT

i V−1
i yi + βTXT

i V−1
i Xiβ

)
= 0

⇒
b∑
i=1

(
0− 1

2
yTi V−1

i Xi −
1

2
XT
i V−1

i yi +
1

2
(XT

i V−1
i Xi + XT

i V−1
i Xi)β

)
= 0

⇒
b∑
i=1

(
−XT

i V−1
i yi + XT

i V−1
i Xiβ

)
= 0

⇒ β̂ =

(
b∑
i=1

XT
i V−1

i Xi

)−1 b∑
i=1

XT
i V−1

i yi (2.8)

To obtain the ML estimation for the covariance parameters σ2
B and σ2, we construct a

log-likelihood function, lML(σ2
B, σ

2), by replacing the fixed effects β by the BLUE for β,
(2.9).

lML(σ2
B, σ

2) = −1

2
nln(2π)− 1

2

b∑
i=1

ln(|Vi|)−
1

2

b∑
i=1

(
rTi V−1

i ri
)
, (2.9)
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where

ri = yi −Xiβ̂ = yi −Xi

(( b∑
i=1

XT
i V−1

i Xi

)−1
b∑
i=1

XT
i V−1

i yi

)
. (2.10)

There are no closed form solutions to the ML estimates of the covariance parameters.
Statistical software programs can solve the equations numerically by the use of methods
like Newton-Raphson.

With the estimated covariance parameters σ2
B and σ̂2 found numerically by R, we can

now calculate the EBLUE for β, β̂. By inserting these estimated values into Vi, we get
the following expression for the estimated marginal variance-covariance matrix

V̂i = ZiD̂ZT
i + σ̂2I.

By replacing Vi by V̂i in the log-likelihood function (2.7), we find that the maximization
of the log-likelihood function is equivalent to minimization of the last term, as before. We
obtain the EBLUE for β by using the method of weighted least squares,

β̂ =

(
b∑
i=1

XT
i V̂−1

i Xi

)−1 b∑
i=1

XT
i V̂−1

i yi (2.11)

By the method of ML estimation, the parameter estimates for σ2
B and σ2 will be bi-

ased. This can be solved by a REstricted Maximum Likelihood (REML) estimation,
which produces unbiased estimates for σ2

B and σ2. The estimated parameters β̂ with the

REML-method will not be identical to the β̂ using the ML-method.

The REML estimation is preferred over ML estimation as it produces unbiased esti-
mates of the variance-covariance parameters σ2

B and σ2. REML estimation takes into
account the loss of degrees of freedom resulting from estimating the linear effects in β.
The log-likelihood function for the REML-method is given by

lREML(σ2
B, σ

2) = − 1

2
(n− p)ln(2π)− 1

2

b∑
i=1

ln(|Vi|)

− 1

2

b∑
i=1

(
rTi V−1

i ri
)
− 1

2

b∑
i=1

ln(|XT
i V−1

i Xi|), (2.12)

where ri is given by Equation (2.10), and p is the number of estimated parameters.

Comparing this expression with the log-likelihood function for the ML-method, we see
that the REML subtracts n − p instead of n in the first term, and it subtracts an extra
term at the end.

By the use of the REML log-likelihood, we obtain unbiased estimates of the covariance
parameters σ2

B and σ2. With the estimated variance-covariance matrix V̂i, we can com-
pute the REML estimates of the fixed effects parameters by using the expression (2.11)
for the EBLUE for β from the ML estimation. The fixed effects estimates will differ by
the use of the two methods, and we see that the reason for this is the difference in how
the two methods estimate the variance-covariance matrix Vi.
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2.6 Asymptotic distribution of fixed effects parame-

ters

We want to examine the properties of the asymptotic distribution of the estimated fixed
effects parameters. The expression for the EBLUE for β in (2.11) implies that E(β̂) = β,
since the estimator is unbiased. Here we assume that Vi is known (implicit) by using the
estimated value, V̂i.

We look at β̂ as a linear combination of yi’s,

β̂ = Ciyi = CT
i Xiβ + CT

i ε
∗,

where C is a (k + 1)× n-matrix of constant elements. With E(yi) = Xiβ + ε∗i , the mean
of β̂ is

E(β̂) = E

(
(

b∑
i=1

XT
i V−1

i Xi)
−1

b∑
i=1

XT
i V−1

i yi

)

= (
b∑
i=1

XT
i V−1

i Xi)
−1

b∑
i=1

XT
i V−1

i E(yi)

= (
b∑
i=1

XT
i V−1

i Xi)
−1

b∑
i=1

XT
i V−1

i (Xiβ + 0)

= (
b∑
i=1

XT
i V−1

i Xi)
−1(

b∑
i=1

XT
i V−1

i Xi)β

= β,

as expected.

To express the asymptotic distribution of β̂, we need to find an expression for the covari-
ance of β̂. As β̂ = Ciyi, we know that Ci = (

∑b
i=1 XT

i V−1
i Xi)

−1
∑b

i=1 XT
i V−1

i , hence

CT
i =

∑b
i=1(V−1

i )TXi[(
∑b

i=1 XT
i V−1

i Xi)
−1]T . Remembering that the covariance for yi is

equal to Vi, and some basic rules for matrix algebra, we find the following expression for
the covariance of β̂:

Cov(β̂) = Cov(Ciyi)

= CiCov(yi)C
T
i

= (
b∑
i=1

XT
i V−1

i Xi)
−1

b∑
i=1

XT
i V−1

i Vi(V
−1
i )TXi[(

b∑
i=1

XT
i V−1

i Xi)
−1]T

= (
b∑
i=1

XT
i V−1

i Xi)
−1

b∑
i=1

XT
i V−1

i Xi[(
b∑
i=1

XT
i V−1

i Xi)
−1]T

= (
b∑
i=1

XT
i V−1

i Xi)
−1. (2.13)
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With the results above, the asymptotic distribution of β̂ can be written as

β̂ ∼ Nk+1

(
β, (

b∑
i=1

XT
i V−1

i Xi)
−1

)
. (2.14)

The expression for the covariance of β̂ can be written as Σβ. We will use this no-
tation throughout this thesis. The asymptotic distribution using this notation is then
β̂ ∼ Nk+1 (β,Σβ).

2.7 The Top-Down Strategy

The Top-Down strategy for fitting a linear mixed effects model from Zuur et al. (2009)
will be used in this study. By the law of parsimony and the Top-Down strategy, the goal
is to find the simplest model that fits the data best.

The Top-Down strategy can be described in four steps, where the first step is to start
with a beyond optimal model. This is a model that includes all the possible fixed effects.
The next step is then to find an optimal structure of the random effects. This is done by
performing REML-based likelihood ratio tests for the associated covariance parameters D
and σ2. When the optimal structure of the random effects is found, the strategy states we
find the optimal structure of the fixed effects. This can be done using ML-based ANOVA
to compare models with different number of fixed effects parameters. If the p-value of the
test is significant on an α = 0.05 significance level, that is, if p < 0.05, the larger model
in the test is indicated to have the better fit for the data.

The Akaike Information Criteria, AIC, can be used to choose the best fitted model for
the data, and is defined by

AIC = 2p− 2l(β̂, σ̂2
B, σ̂

2),

where p is the total number of parameters estimated in the model, both fixed and random,
and l(β̂, σ̂2

B, σ̂
2) is either the ML- or REML log-likelihood function. When comparing the

AIC value for different models, the model with the lowest AIC value is assumed to be
the best fit for the data, relative to the other fitted models.

The last step of the strategy is model verification or diagnostics. This step is described
in detail in Chapter 2.8.

2.8 Diagnostics

When a linear mixed effects model is fitted, we must check and verify that the underlying
assumptions for the random effects and the error terms are valid for the data. We will now
list different plots for diagnostic purposes in the LME framework, suggested by Nobre &
da Motta Singer (2007). As we will see in Chapter 3, some of the plots described are not
relevant for our data set.
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To check for normality in the errors, a normal probability (QQ) plot of the conditional
standardised residuals is used. The quantiles should fall on an approximate straight line
for the assumption of normality to be valid. To check for homoscedasticity (constant vari-
ance) of errors, a plot of the conditional standardised residuals versus the fitted values
is used. A plot of the marginal standardised residuals versus the fitted values can serve
as a check for linearity in the fixed effects. To check if the random effects are normally
distributed, a weighted QQ plot of standardised linear combinations of the random effects
can be used.

The raw marginal residuals, rm,i, are defined as

rm,i = Yi −Xiβ̂,

and the raw conditional residuals, rc,i, are defined by

rc,i = Yi −Xiβ̂ − Ziûi = rm,i − Ziûi.

Ideally, we would use the standardized residuals, defined as the raw residuals divided by
their true standard deviations, (West et al. 2007, p. 42). However, the true standard
deviation is rarely known, but the estimated standard deviations can be found using R.
The Pearson residuals are standardized residuals using the estimated standard deviation,
and is considered appropriate to use when the variability of the estimated fixed effects β̂
can be ignored. The Pearson residuals are defined as

rm,i,Pearson =
rm,i√

V̂ar(Yi)

,

and
rc,i,Pearson =

rc,i√
V̂ar(Yi|ui)

,

where m and c are abbreviations for marginal and conditional residuals, respectively, and
i represents the biological replicates, as before.

2.9 Predicting the values of the random effects

After fitting a linear mixed effects model, we want to look at the predicted value of the
random effects, ûi. As written in West et al. (2007), the values ui are random variables
that are assumed to follow a multivariate normal distribution, and therefore we predict
the values of the random effects rather than estimate them.

According to West et al. (2007), the random effects are predicted conditional on the
given observed response value. The expression for ûi is defined as

ûi = E(ui|Yi = yi) = D̂ẐT V̂−1
i (yi −Xiβ̂). (2.15)

For the simple model with only a random intercept for each biological replicate, the
covariance matrix D is equal to σ2

B, and the random effects matrix Zi is a vector of n
ones. The marginal variance-covariance matrix Vi has compound symmetry, and the
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expression for its inverse is given in (2.5). The expression for the Best Linear Unbiased
Predictor (BLUP) for the random effects for our model, for the ith biological replicate,
can then be written as

ûi = D̂ẐT V̂−1
i (yi −Xiβ)

=

[
σ2
B

σ2 + nσ2
B

· · · σ2
B

σ2 + nσ2
B

]
(1×n)

(yi −Xiβ)

=
σ2
B

σ2
B +

σ2

n

(ȳ − X̄β), (2.16)

where ȳ =
1

n

∑n
j=1 yj and X̄ =

1

n

∑n
j=1 Xj. This expression for the BLUP is equal to the

one defined in McCulloch & Neuhaus (2011).

In this thesis we will use the statistical software R to predict these values.

2.10 Hypothesis test

From Casella & Berger (2002) we get the following information about hypothesis test.

A hypothesis is a statement about a population parameter. The goal with a hypoth-
esis test is to decide which of the two complementary hypotheses is true. These two
complementary hypotheses are called the null hypothesis, denoted H0, and the alterna-
tive hypothesis, denoted H1.

When testing hypotheses, two types of error can occur, namely type I error and type
II error. A type I error is an incorrect rejection of a true null hypothesis, and is also
called false positives. The probability of type I error is,

P (type I error) = α.

A type II error is the failure to reject a false null hypothesis, and is also called false
negatives. The probability of type II error is,,

P (type II error) = β.

A summary of the two types of errors in a single hypothesis test is found in Table 2.1.

Table 2.1: Summary table for single hypothesis testing

Accept H0 Reject H0

True H0 Correct decision Type I error
Non-true H0 Type II error Correct decision
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2.11 P -values

We will look at p-values when evaluating the result of a hypothesis test, since a p-value
gives more information than just ”accept H0” or ”reject H0”. The following definition of
a p-value is found in Casella & Berger (2002).

Let X = (X1, ...Xn) be independent and identically distributed random variables. A p-
value p(X) is a test statistic satisfying 0 ≤ p(x) ≤ 1 for every sample point x. Small
values of p(X) give evidence that H1 is true. A p-value is valid if, for every θ ∈ Θ0 and
every 0 ≤ α ≤ 1,

Pθ(p(X) ≤ α) ≤ α,

where α is the significance level.

A p-value gives information about the probability, assuming that the null hypothesis
is true, of observing a test statistic at least as extreme as the one observed. The null
hypothesis will be rejected when the p-value is small; more exact when the p-value is less
than or equal to the significance level α.

If Pθ(p(X) ≤ α) = α, the p-value is called an exact p-value. The probability distri-
bution of an exact p-value is the uniform distribution.

2.12 Conditional tests for fixed effects parameters

The conditional tests for fixed effects parameters are conditional on the covariance pa-
rameters σ2

B and σ2. According to Pinheiro & Bates (2000, p. 91), the conditional tests
are recommended instead of likelihood ratio tests for assessing the significance of terms
in the fixed effects.

The conditional t-test

The conditional t-tests for fixed effects parameters are used in situations where we want
to test hypotheses on the form

H0 : β = 0 vs. H1 : β 6= 0.

The t-statistic associated with the test is defined as

t =
β̂√
Σβ

.

This t statistic follow an approximate t-distribution, with degrees of freedom equal to the
denominator degrees of freedom, see Chapter 2.13.

When using the lme function in R, the conditional t-tests are implemented in the summary

method. The marginal significance of each fixed effect coefficient when all other fixed
effects are present in the model, is tested. Thus the method is also conditional on all
other fixed effects coefficients in the model. This is called a type III strategy.
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The conditional F -test

The conditional F -tests for fixed effects parameters are used to test p hypotheses on the
form

H0 : Cβ = 0 vs. H1 : Cβ 6= 0,

that is, linear combinations of the fixed effects where C is a known matrix. The F -statistic
associated with the test is defined as

F =
β̂
T
CT (CΣβCT )−1Cβ̂

rank(C)
. (2.17)

This statistic follows an approximate F -distribution, where the numerator degrees of free-
dom is equal to the rank of C and the denominator degrees of freedom is defined below.

2.13 Denominator degrees of freedom

The conditional t- and F -tests use denominator degrees of freedom. As we have a balanced
data structure, the expression for the denominator degrees of freedom is thus

denDF = N − (b+ k),

where N is the total number of observations for all b biological replicates and k is the
number of estimated fixed effects, disregarding the intercept. The formula is found in
Pinheiro & Bates (2000) and is simplified for our model.

When using the lme function, R uses a method called containment to calculate the de-
nominator degrees of freedom. In the newer function lmer, the degrees of freedom is not
calculated. There is an ongoing discussion regarding the denominator degrees of freedom
and how to calculate this. Some popular statistical tools such as SPSS and SAS use the
Satterthwaite and Kenward-Roger method, respectively, while Stata does not calculate
the denominator degrees of freedom. We have balanced data, and therefore choose to
follow the guidelines in Pinheiro & Bates (2000) by using the lme function.
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Chapter 3

Area as a measure of consistent
activity

In Chapter 2 we have seen that the linear mixed effects model can be used to model long
gene expression time series. We will now study the area under the fitted curves, from this
point on simply called the area. This measure is not to be confused with Area Under the
Curve (AUC), which is often used for a Receiver Operating Characteristic (ROC) curve.

The area under the gene expression curve relative to the gene expression at the start-
ing point in time can be seen as a measure of consistent activity over time. The area is,
mathematically speaking, a fairly easy thing to calculate. The computational costs are
low, so it is possible to calculate for large amounts of data. This combination makes the
area, seen from a biologist’ view, an attractive method for ranking genes with respect to
effect over time.

Another motivation for looking at the area is the following, in Chapter 6 we will see
that fitting the LME model to the gene expression time series of all genes will claim that
about 60% of the genes are significant. This is unlikely. One possible explanation for this
can be that the wrong hypothesis has been tested. Hypothesis tests about the area might
be a better way to asses consistent activation of genes. Such hypothesis tests will be pre-
sented in this chapter and Chapter 5. Another explanation might be that the data does
not meet the criteria for the linear mixed effects model. Other models could be fitted,
but this will not be done in this thesis. Instead, permutation tests will be introduced in
Chapter 4 and applied to the long time series gene expression data set in Chapter 6.

In this chapter, we will present how to calculate the area and how to test hypotheses
about the area. Finally, the linear mixed effects model is fitted and hypothesis tests con-
cerning the area is performed, on a selection of genes.

17



3.1 Description of the data

The original data consists of, for each of the 8956 genes, two paired time series, one Gas-
trin (G) stimulated treatment and one UNstimulated (UN) control. The two paired time
series have two biological replicates each, so i = 1, 2. The response Yi is a logarithmic
measure of gene expression. We have created a difference time series for each gene, of
the difference between the gene expression for the stimulated and the unstimulated time
series, for each biological replicate. It is these difference time series we will study further
in this thesis.

For each time series and biological replicate there are n = 12 observations in time, given
in minutes, where the first observation is t∗0 = 0 minutes, and the last observation is
t∗11 = 840 minutes (14 hours). We will use scaled time points for our analysis. We have
chosen to use polynomials in time, where the scaled times are defines as

t =
t∗ −

(
min(t∗) + 1

2
(max(t∗)−min(t∗))

)
1
2

(
max(t∗)−min(t∗)

)
=

t∗

420
− 1

so that the range of the times are between -1 and 1. The scaling is done to stabilize the
use of polynomials. A table with the original time points and the scaled time points is
shown in Table 3.1.

Table 3.1: Table of the scaled times (t) and the corresponding original times (t∗).

t Scaled t∗ Original
time time

t0 -1.0000000 t∗0 0
t1 -0.9642857 t∗1 15
t2 -0.9285714 t∗2 30
t3 -0.8571429 t∗3 60
t4 -0.7857143 t∗4 90
t5 -0.7142857 t∗5 120
t6 -0.4285714 t∗6 240
t7 -0.1428571 t∗7 360
t8 0.1428571 t∗8 480
t9 0.4285714 t∗9 600
t10 0.7142857 t∗10 720
t11 1.0000000 t∗11 840
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3.2 Fitting Linear Mixed Effects models

We have fitted a linear mixed effects model for the difference G-Un time series for all
genes. This has been done by following the Top-Down Strategy described in Chapter 2.
The R code for fitting LME models is found in Appendix A. It should be noted that when
working with a data set containing about 9000 genes, part of the Top-Down Strategy is
not possible to perform. For instance, looking at several different residual plots for each
gene, would be too time consuming of a task. Instead we have decided to trust the choice
of model based on the criteria of the lowest AIC value. However, in Sections 3.6-3.8 we
present residual plots for selected genes.

Step 1

The LME model is given in equation (2.1). We have chosen to focus on models with poly-
nomials including fourth order, for two reasons. First, the biologists are not interested
in modelling erratic activity over time, which would have been the case with a higher
order polynomial. If data cannot be fitted using, at most, a fourth order polynomial, the
data consists most likely of noise or other effects not related to the true effect of gastrin
treatment over time. Second, we do not wish to estimate too many parameters compared
to the number of observations.

The beyond optimal fixed effects vector is then given by

β =


β0

β1

β2

β3

β4

 , (3.1)

and the fixed effects design matrix for the ith biological replicate is given as

Xi =


1 t1i t21i t31i t41i
1 t2i t22i t32i t42i
...

...
...

...
1 t12i t212i t312i t412i

 . (3.2)

As the beyond optimal random effect model we have chosen the random intercept model,
giving a compound symmetry variance-covariance matrix Vi. The random effects design
matrix Zi is then reduced to a vector of ni ones, where ni = 12 observations for each
biological replicate, the random effects vector ui = u0i ∼ N(0,D = σ2

B) with σ2
B scalar,

and the vector of errors εi ∼ N(0, σ2Ii).

Step 2

With the beyond optimal model, we want to find the optimal structure of the random
component. As explained in Chapter 2.1, we decided on the simplest model with only a
random intercept and will not consider more complex random structure in this presenta-
tion.
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Step 3

We now want to find the optimal structure of the fixed effects, and start with four poten-
tial models we want to compare and find the best fitted for our data:

Model 1 : yi = β0 + β1t+ ui + εi

Model 2 : yi = β0 + β1t+ β2t
2 + ui + εi

Model 3 : yi = β0 + β1t+ β2t
2 + β3t

3 + ui + εi

Model 4 : yi = β0 + β1t+ β2t
2 + β3t

3 + β4t
4 + ui + εi.

We use the AIC value to choose between the four potential models. The AIC value does
not say anything about whether a model is a good fit in an absolute sense, but by compar-
ing this value for different models, we can say something about the relative fit compared
to other models. Thus we choose the models with the lowest AIC values as our final model.

Step 4

The final models are refitted using the REML-method to get unbiased estimators for σ2
B

and σ2, which we will use at a later stage. Due to the size of the data set, it is impossible
to investigate different types of residual plots for each gene. Model verification and diag-
nostics is therefore left out at this stage. With the results from the fitted LME models,
we will in Chapters 3.6-3.8 look closer at some of the genes, and at this point we will do
some model verification.

3.3 Area

We want to look at the area under the gene expression curves relative to the response
value at the initial time point t0 = −1. An expression for the theoretical area can be
written as

A =

∫ 1

−1

(
f(t)− y0

)
dt,

where f(t) is the true gene expression in time and y0 is the true gene expression value
at t = −1. The four different models we have fitted for the time series of the different
genes will give different initial gene expression values y0. The different models and the
corresponding initial response values are found in Table 3.2.

The area for model 4, A4, can then be expressed as

A4 =

∫ 1

−1

(
β0 + β1t+ β2t

2 + β3t
3 + β4t

4 − β0 + β1 − β2 + β3 − β4

)
dt

=

[
1

2
β1t

2 +
1

3
β2t

3 +
1

4
β3t

4 +
1

5
β4t

5 + β1t− β2t+ β3t− β4t

]1

−1

= 2β1 −
4

3
β2 + 2β3 −

8

5
β4.

20



Table 3.2: Table of the true models, f(t), and the corresponding true initial response
value, y0.

Model f(t) y0

1 β0 + β1t β0 − β1

2 β0 + β1t+ β2t
2 β0 − β1 + β2

3 β0 + β1t+ β2t
2 + β3t

3 β0 − β1 + β2 − β3

4 β0 + β1t+ β2t
2 + β3t

3 + β4t
4 β0 − β1 + β2 − β3 + β4

The true area for the other models can be found in a similar manner. The expressions for
the four different areas are given below.

A1 = 2β1

A2 = 2β1 −
4

3
β2

A3 = 2β1 −
4

3
β2 + 2β3

A4 = 2β1 −
4

3
β2 + 2β3 −

8

5
β4.

We have fitted the curve f(t) with linear mixed effects models and call this f̂(t). The
response value at t0 is equal to −1. When fitting the LME models, we use a fitted curve
combining the two biological replicates into one curve, instead of individually fitted curves
for each biological replicate. An estimate for y0 might then be this fitted curve at t = −1,
that is ŷ0 = Xβ̂ at t = −1. We define the estimated area under the fitted gene expression
curve as

Â =

∫ 1

−1

(
f̂(t)− ŷ0

)
dt,

with f̂(t) = Xβ̂, and ŷ0 = Xβ̂ at t = −1. The expressions for the estimated areas, Â, are
then similar to those for the true area, except we now use the estimated values for the
fixed effects parameters, resulting in the following expressions for the estimated areas

Â1 = 2β̂1

Â2 = 2β̂1 −
4

3
β̂2

Â3 = 2β̂1 −
4

3
β̂2 + 2β̂3

Â4 = 2β̂1 −
4

3
β̂2 + 2β̂3 −

8

5
β̂4.
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3.4 Asymptotic distribution of the estimated area

The area under the theoretical fitted curve, A, can be written as a function of the fixed
effects parameters

A = g(β).

This function g(β) can be seen as a linear combination of the fixed effects parameters

g(β) = cTβ,

where c is a vector of constants unique for each of the possible linear models, and β is
the vector of the fixed effects parameters.

We may estimate the area under the fitted curves by

g(β̂) = cT β̂,

where β̂ is the estimator for the fixed effects parameters. This estimator has the asymp-
totic distribution Nk+1(β,Σβ), where Σβ is the covariance of β̂ and is equal to (

∑2
i=1 XT

i V−1
i Xi)

−1.

When assuming the variance-covariance matrix Vi known, β̂ has a multivariate normal
distribution, and the distribution of the estimated area Â will then also be multivariate
normal, with mean equal to cTβ and variance

Var(g(β̂)) = Var(cT β̂)

= cTCov(β̂)c

= cTΣβc.

3.5 Hypothesis tests

In order to test whether the area is significantly different from zero or not, we perform
hypothesis tests. We know that in the situation where all the fixed effects parameters are
zero, β = 0, the area must also be equal to zero. The reverse is not necessarily true, an
area equal to zero is a possibility even if the fixed effects parameters are not zero. This
is because the total area can be zero, but the absolute value of the area might not be
zero, thus the fixed effects parameters are not equal to zero. The situation where the
fixed effects parameters are equal to zero is thus a subset of the situation where the area
is equal to zero. This can be summarized in Figure 3.1. We will therefore perform two
hypothesis tests, one for the fixed effects parameters, and one for the area.
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Figure 3.1: The data under H1
0 (dark grey), where the fixed effects parameters are equal

to zero, is a subset of H2
0 (light grey), where the area is equal to zero.

We now consider the model with k = 4, as this is our most complex model. For the first
test,

H1
0 : β1 = · · · = β4 = 0 vs. H1

1 : At least one β different from 0

we will calculate a test statistic with approximate F -distribution. Let

C =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


for k = 4. The test statistic is defined as

T ∗
1 =

β̂
T
CT (CΣ̂βCT )−1Cβ̂

ν2

∼ fν1,ν2 ,

where ν1 is the nominator degrees of freedom, equal to k, and ν2 is the denominator
degrees of freedom, as presented in 2.12.

The second test
H2

0 : A = 0 vs. H2
1 : A 6= 0

is the equivalent of testing

H2
0 : g(β) = 0 vs. H2

1 : g(β) 6= 0.

The true asymptotic distribution of g(β) is multivariate normal

g(β) ∼ N(cTβ, cTΣβc),

while the asymptotic distribution under the null hypothesis H2
0 is

g(β) ∼ N(0, cTΣβc).

The corresponding test statistic is defined as

T ∗
2 =

Â√
cT Σ̂βc

∼ tν2 ,
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where ν2 is the denominator degrees of freedom. Notice that ν2 is equal for both hypoth-
esis tests, since Σβ is used in the expression for both test statistics.

3.6 Analysis of gene with largest estimated area

The gene with the largest estimated area in our data set, calculated after fitting the LME
model to the gene expression time series and analysing the results, is named ”LOC286960”.
In this chapter we will present the results and analysis of this time series, using the Top-
Down strategy and other methods presented in Chapter 2 and 3. A plot of the raw data
is found in Figure 3.2.

Figure 3.2: Plot of the raw data for gene ”LOC286960”, which has the largest estimated
area in our data set. The blue dots are gene expression measurements from biological
replicate BR2, and the red dots are from BR3.

The four possible models were fitted, and the following model is, by the criteria of the
lowest AIC value, the best fitted

yi = β0 + β1t+ β2t
2 + β3t

3 + β4t
4 + ui + εi,

for the two biological replicates i = 1, 2. The estimated values of the fixed and random
effects parameters are found in Table 3.3.

A normal probability plot, or QQ-plot, of the residuals, conditioned on biological replicate,
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Table 3.3: Estimated values of the fixed and random effects parameters for gene
”LOC286960”.

Parameter Estimated value
β0 2.8189860
β1 -0.6180437
β2 -1.1550846
β3 1.5145633
β4 -0.7736399
u1 1.048461 · 10−11

u2 −1.048461 · 10−11

is found in Figure 3.3. From the plot, we see that the residuals seem to be approximately
normally distributed for both biological replicates. This is confirmed by an Anderson-
Darling test on the residuals. With p-value = 0.63, the null hypothesis of the errors being
normally distributed is not rejected on an α = 0.05 significance level.

Figure 3.3: A normal probability (QQ) plot of the residuals, conditioned on biological
replicate, for gene ”LOC286960”.
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To check if the assumption of constant variance in the errors holds, we plot the conditional
residuals against the fitted values in Figure 3.4. When plotting the marginal residuals
versus the fitted values, we get an identical plot. This is due to the low values of the
random effects, which is discussed in Chapter 3.9. The points seems to be randomly
scattered, although some of the points deviates from the zero line. We conclude that
the variance of the errors is nearly constant, and that the fixed effects are approximate
normally distributed.

Figure 3.4: Plot of the residuals versus the fitted values, conditioned on biological repli-
cate, for gene ”LOC286960”.

To summarise the diagnostics, we believe that the fitted LME model is a good fit for
our data. A plot of the raw data and the predictions for gene ”LOC286960” is found in
Figure 3.5. From calculations using the estimated values of the fixed effects parameters,
the area under the fitted gene expression curve for gene ”LOC286960” is Â = 4.57. This
is the largest estimated area for our data set. From Figure 3.5, we can see that clearly
neither the fixed effects parameters nor the area is equal to zero. The results from the
two hypothesis tests confirm this. The null hypothesis H1

0 : β1 = β2 = β3 = β4 = 0,
provides a p − value = 1.36 · 10−11. The null hypothesis is thus rejected on an α = 0.05
significance level. The null hypothesis H2

0 : A = 0 provides a p-value = 1.93 · 10−12, and
is also rejected on the same significance level.
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Figure 3.5: Plot of the raw data, seen as dots, and the fitted model, seen as a black line,
for gene ”LOC286960”. The blue dots represents biological replicate BR2, and the red
represents BR3.

3.7 Analysis of gene with poorest normal approxima-

tion of residuals

We will present results for and analysis of the gene in our data set which has the poorest
normal approximation of the residuals after fitting LME models. This result is based on
p-values obtained from Anderson-Darling tests on all fitted genes in our data set. This
gene is called ”Mob4”, and a plot of the raw data is found in Figure 3.6. From the plot
we see that there is less consistency between the two biological replicates BR2 and BR3,
compared to the data for the gene studied in Chapter 3.6. The scale of the y-axis tells us
that the effect of treatment versus control for this gene is somewhat limited. We expect
the area to be close to zero, and the gene is thus probably not interesting with respect to
consistent activity over time for the biologists.

The Top-Down strategy resulted in model 3 as the final, best fitted model among the
four possible models,

yi = β0 + β1t+ β2t
2 + β3t

3 + ui + εi,

where the estimated values for the fixed and random effects parameters are found in Table
3.4.
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Figure 3.6: Plot of the raw data for gene ”Mob4”, which has the poorest normal approxi-
mation of the residuals in our data set. The blue dots are gene expression measurements
from biological replicate BR2, and the red dots are from BR3.

Table 3.4: Estimated values of the fixed and random effects parameters for gene ”Mob4”.

Parameter Estimated value
β0 0.05551842
β1 -0.55945147
β2 -0.13160157
β3 0.43286250
u1 −1.152803 · 10−11

u2 1.152803 · 10−11

Figure 3.7 shows a normal probability plot of the residuals for the fitted model for gene
”Mob4”. The errors seems not to be normally distributed, as several quantiles depart from
the straight line representing the desired normal approximation. This is the case for both
biological replicates. An Anderson-Darling test of the residuals provides a p − value =
3.182793 · 10−5, rejecting the null hypothesis of the errors being normally distributed, as
expected from the plot.
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Figure 3.7: A normal probability (QQ) plot of the residuals, conditioned on biological
replicate, for gene ”Mob4”.

Figure 3.8: Plot of the residuals versus the fitted values, conditioned on biological repli-
cate, for gene ”Mob4”.
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Figure 3.8 shows a plot of the residuals versus the fitted values for ”Mob4”. The residuals
lies far from zero. The assumption of constant variance in the errors is incorrect and/or
the normality assumptions for the fixed effects does not hold. Diagnostics using this type
of plot for our fitted data, where marginal and conditional residuals provide the same
plot, is problematic. In accordance with linear models, a plot of the residuals versus the
fitted values is often used to check for homoscedasticity in the errors. The conclusion
must be that either one or both criteria are not met. The model seems not to fit the data
well. From Figure 3.9, showing the predicted fitted line without random effects, we can
also see that the fit is poor for the data of this gene. Note that this plot is identical to a
predictive plot including the random effects, due to low values of the random effects.

Figure 3.9: Plot of the raw data, seen as dots, and the fitted model, seen as a black
line, for gene ”Mob4”. The blue dots represents biological replicate BR2, and the red
represents BR3.

From the biologists’ view, this gene is not considered interesting; with little consistent
activity over time. This is confirmed by the estimated area, calculated as Â = −0.078.
The first null hypothesis tested, H1

0 , provides a test statistic T1 = 11.33 and a p-value
of 3.26 · 10−6. The null hypothesis of the fixed effects parameters being equal to zero is
rejected on an α = 0.05 significance level. The second null hypothesis, H2

0 , gives a test
statistic T2 = −0.73 and a p-value = 0.45. This null hypothesis of the estimated area
being equal to zero is not rejected, using the same significance level as the first hypothesis.
This result is as expected, since the area is in fact close to zero.
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3.8 Analysis of gene with discrepancy in results be-

tween the two hypothesis tests

The last example of detailed analysis of a gene we will present in this thesis, is for the gene
called ”Higd2al1”. From analysis, we found that this gene has the largest discrepancy
in results between the two hypothesis tests. In Figure 3.10, the raw data for this gene
is plotted. We see that the points lie both above and under zero, so a fitted model will
most likely include several fixed effects parameters not equal to zero. By a rough visual
estimate, the estimated area seems to be close to zero. These two observations about the
fixed effects parameters and the estimated area might explain the discrepancy.

Figure 3.10: Plot of the raw data for gene ”Higd2al1”, which, in our data set has the
largest difference in p-values for the two null hypothesis tested. The blue dots are gene
expression measurements from biological replicate BR2, and the red dots are from BR3.

The best fitted LME model for this gene is model 4

yi = β0 + β1t+ β2t
2 + β3t

3 + β4t
4 + ui + εi,

where the estimated fixed and random effects parameters are found in Table 3.5.
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Table 3.5: Estimated values of the fixed and random effects parameters for gene
”Higd2al1”.

Parameter Estimated value
β0 -0.28378673
β1 -0.03273886
β2 1.46949119
β3 0.05858136
β4 -1.19224910
u1 −8.006525 · 10−12

u2 8.006525 · 10−12

Figure 3.11 shows a normal probability plot of the residuals for the final model, con-
ditioned on each biological replicate. As the points lie on or close to the line, the er-
rors seems to be approximately normally distributed for both biological replicates. An
Anderson-Darling test on the errors provides a p-value of 0.53, supporting the assumption
of normality in the errors.

The residuals versus the fitted values for gene ”Higd2al1” are plotted in Figure 3.12.
We see that the residuals might be randomly distributed in the plot, it is difficult to say.
The assumption of constant variance in the errors might hold and/or the assumption of
normality in the fixed effects might hold.

The area is estimated to be Â = −3.80 · 10−5, very close to zero. The results from
testing the null hypothesis of the estimated area being equal to zero, H2

0 , provides a p-
value = 0.9998. The null hypothesis is thus not rejected on a α = 0.05 level. The test
result for testing H1

0 , provides a p-value = 0.00046, and the null hypothesis of the fixed
effects parameters being equal to zero is rejected with the same significance level as for
H2

0 . These results are as expected when looking at the plot of the raw data and fitted
model in Figure 3.13.

It is worth mentioning that this gene is almost unique in our data set, with such dif-
ference in results for the two hypotheses. Other genes, such as the ”Mob4” also have a
difference, but not as extreme as ”Higd2al1”.
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Figure 3.11: A normal probability (QQ) plot of the residuals, conditioned on biological
replicate, for gene ”Higd2al1”.

Figure 3.12: Plot of the residuals versus the fitted values, conditioned on biological repli-
cate, for gene ”Higd2al1”.
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Figure 3.13: Plot of the raw data, seen as dots, and the fitted model, seen as a black
line, for gene ”Higd2al1”. The blue dots represents biological replicate BR2, and the red
represents BR3.

3.9 Remarks

Throughout this chapter, we have presented the estimated area under the fitted curves as
a possible measure of consistent activity over time for gene expression time series. Some
examples have been presented, with analysis of the fitted model using diagnostic plots
and hypothesis testing based on the results of the parametric distribution of the estimated
area.

In Chapter 2.8, we have presented different diagnostic plots for the LME model. In
our analysis, however, we have only looked at two of these, the normal probability plot
of the residuals, and the plot of Pearson residuals versus fitted values. We have not spec-
ified if the residuals in the latter are marginal or conditional. Due to the low values of
the random effects, the plots of marginal and conditional residuals are equal. It is thus
difficult to say whether a bad fit in the plots of residuals versus fitted values are caused
by lack of linearity in the fixed effects, or by lack of homoscedasticity in the errors. From
the framework of linear models, the plot of residuals versus fitted values is used as a
check for homoscedasticity in the errors. We may interpret our plots as verification or
non-verification of this assumption.

As we have chosen a model with only two values for the random effects, one for each
biological replicate, a QQ plot of the random effects will have no purpose for our differ-
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ence gene expression data set.

Generally, for most genes in our data set, the estimated variances of random effects
and of errors are small. For the random effects, the estimated values of σ2

B are of the
order 10−10 − 10−12. For the errors, the estimated values of σ2 are of order 10−1 − 10−2.
As a result, the estimated values of the random effects are small, in the order of 10−11.
When calculating the intraclass correlation for all genes in our data set using (2.5), we
find the values to be in the order of 10−10. The correlation between two observations from
the same biological replicate is small, almost negligible. Thus, the effective sample sizes,
calculated using (2.6), are Neffective = 24 for all genes. The effective sample sizes are equal
to the the actual number of observations for each gene, bn = 24, and the observations can
thus be treated as independent observations.

In this thesis we have only studied the difference gene expression data, i.e. the differ-
ence between the gastrin stimulated treatment and unstimulated control time series. For
each of the stimulated and unstimulated gene expression data, the random effects are
found to be greater than for our difference gene expression data, with values in the order
of 10−2. The choice of using the LME framework was made to handle gene expression
data in general.

The three genes presented in the prior chapters are not necessarily representative for
our difference data set. We have included analysis of these genes to illustrate some of
the extreme cases. We have used two hypothesis tests, H1

0 and H2
0 . The null hypothesis

H1
0 have been used by the biologists in our project to assess significance of differentially

expressed genes. Both ”Mob4” and ”Higd2al1” are considered significant findings under
H1

0 . However, under our suggested null hypothesis H2
0 , the two genes are not considered

significant findings. The light grey shaded area in Figure 3.1 illustrates these situations.
Introducing the area for significance assessment through H2

0 can be an alternative method
to the use of H1

0 . The next chapters of this thesis will explore this further, with the use
of simulation and permutation.
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Chapter 4

Permutation Test

A permutation test is a type of non-parametric test. It is a method for making inference
without assuming a specific form for the distribution of the chosen test statistics under
the null hypothesis.

If one need not consider the cost of data analysis, the permutation test would be con-
ducted on all genes in our gene expression data set. However, this is not possible within
the time frame of a master thesis. We will describe the test and how it can be performed.
Analysis and results using the method of permutation on our gene expression data set
is described in Chapter 6. Our procedure is summarized in the following permutation
algorithm.

4.1 The permutation algorithm

The algorithm can be divided into three steps. We will look at the difference time series
only, and we will look at the two biological replicates separately.

The two different null hypotheses we wish to test, are the same as presented in Chapter
3.5;

H1
0 : β1 = · · · = β4 = 0 vs. H1

1 : At least one β different from 0,

H2
0 : A = 0 vs. H2

1 : A 6= 0.

In advance of the permutation test, we calculate the two test statistics for the observed
data. The expressions for the test statistics are found below.

Step 1: Generate permutations

Considering the two biological replicates separately, with n = 12 observations for each
time series, we have 12! possible permutations if we randomly shuffle the time points.
As 12! is approximately equal to 4.79 × 108, taking all permutations might be costly in
terms of computer resources. This will depend on how the permutation algorithm is im-
plemented, and on the calculations needed for the test statistics. We can choose between
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a sampled permutation test, taking a sample of the 12! possible permutations, and an
exact or complete permutation test, which involves all 12! permutations. We denote the
number of permutations performed B.

Step 2: Fit LME and calculate test statistics

For each permutation, we will fit the data to an LME model and calculate test statistics
under the two null hypothesis defined in Chapters 3.5 and 4.1. We can predefine the same
model for all the permutations done on each gene, or we can fit the four different models
described in Chapter 3.2 for each permutation, and then use the best fitted model for
calculating the test statistics. The two different scenarios will now be described in detail.

Scenario 1: Predefined fixed model

In the case where a predefined fixed model is used to fit the data, there is no issue with
degrees of freedom, since this will be the same for all permutations made for a gene. We
will use model 4 as the fixed model. This decision is based on two observations; model 4
is often the best fit for the original data, and by using the most complex model, the data
will not be underfitted.

The two test statistics to be calculated under each of the two null hypothesis, H1
0 and

H2
0 , are named T ∗

1 and T ∗
2 , respectively. The test statistics have been defined in 3.5, but

we will include the expressions here for consistency. The first test statistic is

T ∗
1 = F ∼ Fν1,ν2 , (4.1)

where ν1 is the numerator degrees of freedom, and ν2 is the denominator degrees of
freedom. The expression for F is found in Equation (2.17). The second test statistic is

T ∗
2 =

Â√
cT Σ̂βc

∼ tν2 . (4.2)

Note that the numerator degrees of freedom, ν1, will be equal to both k, the number
of fixed effects parameters in the model, and the model number chosen. Note that the
observed data is also fitted to the fourth LME model. The corresponding test statistics
for the observed data are denoted T ∗

1,obs and T ∗
2,obs.

Scenario 2: Model selection using AIC

In this case, all four different possible models will be fitted to the data, and the model
with the lowest AIC value will be chosen. This is done for each permutation. Since each
permutation can take four different models, the degrees of freedom will vary with the
model choice. The test statistics need to be comparable for all models, and this is done
by computing adjusted test statistics. This method is, in terms of computational costs,
more expensive than using a predefined fixed model.

38



The first adjusted test statistic is defined as

T1 =
F − E(F )√

Var(F )
, (4.3)

where

E(F ) =
ν2

ν2 − 2
if ν2 ≥ 3,

Var(F ) =
2ν2

2(ν1 + ν2 − 2)

ν1(ν2 − 2)2(ν2 − 4)
if ν2 ≥ 3,

and where ν1 and ν2 are the numerator and denominator degrees of freedom.

The second adjusted test statistic is defined as

T2 =
T ∗

2√
Var(T ∗

2 )
, (4.4)

where Var(T ∗
2 ) =

ν2

ν2 − 2
for ν2 ≤ 3. The distributions of the adjusted test statistics T1

and T2 are not known. The two test statistics calculated for the observed data are denoted
T1,obs and T2,obs.

Step 3: Produce p-value

We will now calculate permutation p-values for each of the test statistics. Let B be the
number of permutations, and B∗ be the number of test statistics as extreme as, or more
extreme than, the observed test statistics. Then

p-value =
B∗ + 1

B + 1
. (4.5)

4.2 Simulation study

A small scale simulation study is done prior to the use of the permutation algorithm. A
simulation study can give us a better understanding of how the algorithm works, and it
can serve as a quality check of the algorithm. By simulating data under the null hypoth-
esis H1

0 for one randomly selected gene, we can examine the various test statistics and
p-values, and we can check if the random shuffling of time points is a good method for
creating permutations. We have chosen to simulate data under H1

0 , and not under H2
0 ,

since this will require the fixed effects parameters to be zero, which is easy to simulate.
The R codes used for the simulation study are found in Appendix A.

We will simulate K = 100 new data sets under the null hypothesis

H1
0 : yi = µ+ ui + ε,

with µ = β0. We sample a random gene from our original data set and fit an LME model
4 to the original data. From this model, the estimated values of β0, σ2

B and σ2 are ob-
tained. The estimated value of β0 is fixed and will be used for all K new data sets, and is
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expressed as µ. Remember that u ∼ N(0, σ2
B) and ε ∼ N(0, σ2) and independent of each

other. The values u1 and u2, for the two biological replicates BR2 and BR3 respectively,
and ε are simulated from the normal distribution with mean 0, and variance equal to the
estimated values from the LME fit of the original data. These values are simulated for
each new data set. The response values yi for each new data set is obtained using the
formula yi = µ+ ui + ε. Test statistics are calculated. For each of the new data sets, the
two scenarios of the algorithm described in Chapter 4.1 are performed with B = 10000
permutations, and test statistics and p-values are calculated.

The sampled random gene is called ”Kcng2”, with identification symbol ”ILMN 1353916”.

4.2.1 Simulation study using a predefined fixed model

For this simulation, we run the version of the permutation algorithm where the data is
fitted to a predefined fixed model for all B permutations. This predefined model is model
4. The degrees of freedom are equal for all permutations, so the test statistics T ∗

1 (4.1)
and T ∗

2 (4.2) are used.

For each of the K new data sets, a total of K parametric test statistics T∗
1,par and T∗

2,par,
and K associated parametric p-values, p1,par and p2,par, are calculated. A total of B
permutations are done for each new data set, resulting in K permutation p-values, p1,perm

and p2,perm, associated with the two test statistics. If the permutation algorithm works
well, that is, if the shuffling of time points to generate permutations is a valid method
for generating data under the null hypothesis, the parametric test statistics from the sim-
ulation should be F - and t-distributed. The p-values under the null hypotheses, both
parametric and permutation, should be uniformly distributed, as stated in Chapter 2.11.

Results: Estimated parameters

The original data from a randomly sampled gene is fitted to an LME model 4. The
estimated values for the parameters β0, σ and σB are found in Table 4.1. These values
are used for simulating the K new data sets.

Table 4.1: Estimated values of parameters

Parameter Estimated value

β̂0 0.1941745
σ̂ 0.4046577
σ̂B 5.849867 · 10−6
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Results: Test statistics

We start by looking at the test statistics calculated for each of the simulated new data sets,
the parametric test statistics T∗

1,par and T∗
2,par. Since the LME model 4 is fitted for all new

data sets, the degrees of freedom are equal for all K data sets. A plot of the parametric
test statistics T∗

1,par and the theoretical F -distribution with numerator degrees of freedom
ν1 = 4 and denominator degrees of freedom ν2 = 18 is found in Figure 4.1. We can see
that the the density of the test statistic (black line) is approximately F -distributed (red
line). Some deviation from the F -distribution can be seen in the tails, but considering
that the result comes from a small simulation study with K = 100 simulations, this is as
expected.

Figure 4.1: The density of the parametric test statistics T ∗
1,par from the 100 simulated

data sets is shown in black. The theoretical F -distribution with ν1 = 4 and ν2 = 18 is
shown in red.

A plot of the parametric test statistics T∗
2,par and the theoretical t-distribution with

ν2 = 18 degrees of freedom is found in Figure 4.2. From the plot we can see that the mean
of the density of the test statistics is somewhat shifted to the left, and some deviations
are found in the tails, especially in the lower tail. Still, the density of the test statistics
seems to be approximately t-distributed. We conclude that both parametric test statistics
are approximately F - and t-distributed, and hence the permutation algorithm is a valid
method for generating data under both null hypotheses H1

0 and H2
0 .
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Figure 4.2: The density of the parametric test statistics T ∗
2,par from the 100 simulated data

sets is shown in black. The theoretical t-distribution with ν2 = 18 degrees of freedom is
shown in red.

Results: p-values

We will now look at the various p-values generated from this simulation study. Associ-
ated with the parametric test statistics, we have p1,par and p2,par, and associated with the
permutation test statistics, we have p1,perm and p2,perm, all of which should be uniformly
distributed. Empirical Cumulative Distribution Function (ECDF) plots for test statistics
number one (left panel) and two (right panel) are found in Figure 4.3.

In the left panel of Figure 4.3, we see that the p-values for both the parametric and
the permutation test statistics seems approximate uniformly distributed. However, the
parametric p-values seems to be a better fit for the uniform distribution than the per-
mutation p-values. Both the parametric and the permutation p-values lie mostly under
the theoretical uniform distribution, indicating that the number of significant p-values are
underestimated. Kolmogorov-Smirnov tests using the function ks.test() in R are used
to test whether the two data sets p1,par and p1,perm differ significantly from each other.
The same test is also conducted to test whether each of p1,par and p1,perm differs signifi-
cantly from the uniform distribution. On a α = 0.05 significance level, all tests conclude
that both the parametric and the permutation p-values are from the same distribution,
and that both follow the uniform distribution. The results from the Kolmogorov-Smirnov
tests are found in Table 4.2.

In the right panel of Figure 4.3, we see that the p-values associated with the second
test statistic have a greater distance between the uniform distribution compared to the
p-values associated with the first test statistic. Both the parametric and the permutation
p-values deviates somewhat from the uniform distribution, but there is not evidence that
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the two are not approximate uniformly distributed. This conclusion is also supported by
Kolmogorov-Smirnov tests, which states that both densities of p-values follow the uniform
distribution. The results from the Kolmogorov-Smirnov tests are found in Table 4.2.

Figure 4.3: ECDF plots of the p-values associated with the test statistics for the method
of a predefined fixed model. Left panel: p-values associated with test statistic T1. Right
panel: p-values associated with test statistic T2. The black line represents results from
parametric calculations, the blue line represents results from permutation. The red line
is the theoretical uniform distribution.

Table 4.2: Kolmogorov-Smirnov test results for simulation by predefined fixed model.

Test data p-value Decision on α = 0.05 level
p1,par versus uniform 0.9938 Fail to reject H0

p2,par versus uniform 0.4676 Fail to reject H0

p1,perm versus uniform 0.3667 Fail to reject H0

p2,perm versus uniform 0.3667 Fail to reject H0

p1,par versus p1,perm 0.8127 Fail to reject H0

p2,par versus p2,perm 0.9938 Fail to reject H0
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Summary

From this simulation study using a predefined fixed model, we see that the two methods,
parametric and permutation, provide comparable results. The test statistics follow ap-
proximate F - and t-distribution, and the p-values are uniformly distributed. In addition,
we have seen that test statistic T ∗

2 is a suitable choice also for data simulated under H1
0 .

Thus we have verified our permutation strategy and code, and we may proceed with the
next simulation study.

4.2.2 Analysis based on model selection using AIC

The simulation based on model selection using AIC values follows the same procedure
as the one in the previous chapter, except for an additional step when fitting the LME
model for each simulation and permutation. The estimated values of the parameters used
for simulating K = 100 new data sets are the same as for the predefined fixed model
scenario. These estimated values are found in Table 4.1.

For each of the K = 100 new data sets, all four possible LME models are fitted. By
comparing the AIC values, the best fitted model is chosen and adjusted parametric test
statistics are calculated. We use adjusted test statistics T1 and T2, since the degrees of
freedom will vary among the fitted models. For each of the new data sets, B = 10000
permutations are done. For each permutation, all four possible LME models are fitted,
and the best fitted with respect to the lowest AIC value is chosen. Adjusted permutation
test statistics are calculated for each permutation. When all B permutations for each new
data set are done, permutation p-values associated with the test statistics are calculated.

We will now have a closer look at the results from this simulation study.

Results: p-values

Figure 4.4 shows ECDF plots of the p-values associated with the parametric and permu-
tation test statistics. The left panel shows the results for adjusted test statistic T1, while
the right panel shows the results for adjusted test statistic T2. The black lines represents
results for parametric p-values, the blue lines from permutation p-values. The red line is
the theoretical uniform distribution.

Looking at the left panel of Figure 4.4, we see that the p-values lie mostly above the
uniform distribution. That is, we observe more small p-values than should be expected
under the null hypothesis. This is also the case for the p-values associated with the second
test statistic, found in the right panel. This is the opposite of what we see in Figure 4.3
for the case of the predefined fixed model, where the p-values lie mostly below the uniform
distribution.

For both panels in Figure 4.4, we see that the permutation p-values (blue lines) lie closer
to the theoretical uniform distribution than the parametric p-values (black line). The
parametric p-values associated with test statistic T1 (left panel) seems not to follow an
approximate uniform distribution. This might also be the case for the parametric p-values
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associated with test statistic T2 (right panel). In addition, the parametric and permuta-
tion p-values associated with T1 have a greater distance than the p-values associated with
T2. This observation indicates that the parametric and permutation p-values for T1 does
not come from the same distribution.

Figure 4.4: ECDF plots of the p-values associated with the test statistics for the method
of model selection using AIC. Left panel: p-values associated with test statistic T1. Right
panel: p-values associated with test statistic T2. The black line represents results from
parametric calculations, the blue line represents results from permutation. The red line
is the theoretical uniform distribution.

Various Kolmogorov-Smirnov tests are conducted for looking closer at the distribution
of the p-values, and the results are found in Table 4.3. The results supports our observa-
tions from the ECDF plots, the parametric p-values for T1 are not uniformly distributed,
and hence not from the same distribution as the permutation p-values for T1. The results
from the Kolmogorov-Smirnov tests confirm that, in general, the permutation p-values
for both test statistics are better approximations to the uniform distribution under the
null hypotheses than the parametric p-values.

The non-uniform distribution of the parametric p-values associated with T1 must be
caused by the model selection step. This will in turn result in many low p-values for
the parametric method in real data.
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Table 4.3: Kolmogorov-Smirnov test results for simulation by model selection using AIC.

Test data p-value Decision on α = 0.05 level
p1,par versus uniform 0.04242 Reject H0

p2,par versus uniform 0.2099 Fail to reject H0

p1,perm versus uniform 0.9084 Fail to reject H0

p2,perm versus uniform 0.6807 Fail to reject H0

p1,par versus p1,perm 0.0001387 Reject H0

p2,par versus p2,perm 0.1913 Fail to reject H0

Summary

To sum up, we have seen that the permutation p-values are approximate uniform dis-
tributed. The parametric p-values for T1 are not uniform distributed, and different from
the permutation p-values. The parametric p-values for T2 are, by the Kolmogorov-Smirnov
tests using a significance level of α = 0.05, uniform distributed and equal to the permu-
tation p-values.

We have seen that the model selection step is the cause of the non-uniform distribu-
tion of parametric p-values associated with T1. The non-uniformity will thus cause many
small p-values in real data, and this might impact the control of the type I errors in real
data.

4.3 Remarks

In this present chapter, we have presented our permutation algorithm, and performed
two small simulation studies using the algorithm. From the analysis found in Chapter
4.2.1, we have seen that the use of test statistic T ∗

2 is valid for data generated under
H1

0 . The two strategies, predefined fixed model and model selection using AIC, have been
compared through the two simulation studies. We found that the step of model selection
using AIC produces smaller p-values than the method of using a predefined fixed model.
The permutation p-values are found to be approximate uniform distributed, and thus
validating the programming code and strategy. The distribution of parametric p-values
seems problematic when using model selection, but not for a predefined fixed model.

The next step of this thesis is to apply our permutation algorithm on real data for sev-
eral genes. In the next chapter, we will present methods used for comparing multiple
hypothesis tests. Analysis on several genes using our permutation algorithm and method
concerning multiple comparisons are found in Chapter 6.
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Chapter 5

Multiple testing

When analysing experimental data such as the gene expression data described in Chapter
3, we might wish to perform hypothesis tests for all genes. An individual test is performed
for each null hypothesis. Often the significance level is set to α = 0.05, meaning that the
probability of making a type I error is controlled at 5% for each hypothesis.

Multiple testing, also called multiple comparisons, is used when we want to test two
or more hypothesis simultaneously. This is very much the case with gene expression data,
as we have many genes, and thus many null hypothesis, to evaluate. The type I error
may be generalised to involve more than one test. In this present chapter, we will look
at two possible generalisations called the Family Wise Error Rate (FWER) and the False
Discovery Rate (FDR), and present two procedures for control. The methods presented
will in Chapter 6 be used for analysis of the entire gene expression data set.

5.1 Type I error rates

From Benjamini & Hochberg (1995) we can summarize the multiple testing problem in
Table 5.1. Here V represents the number of type I errors, or false discoveries, and T
represents the number of type II errors. The total number of hypotheses is m, and m0 is
the number of true null hypotheses. The number of non-true null hypotheses is m1, and is
equal to m−m0. The total number of not rejected null hypotheses is W , and this number
can also be written as m − R. The total number of rejected null hypotheses is R. The
only known variables are R and m. The goal is to minimize V and T , thus controlling
the type I and type II error rates.

Table 5.1: Summary table for the multiple testing problem

Accepted H0 Rejected H0 Total

True H0 U V m0

Non-true H0 T S m1

Total W R m
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From Table 5.1, we take V the be the number of type I errors among all m hypotheses.
By Ge et al. (2003), the family wise error rate is defined as the probability of at least one
type I error,

FWER = Pr(V > 0).

A strong control of the FWER is to control the FWER at level α under any combination
of true, m0, and false, m1, null hypotheses.

The false discovery rate can be defined as the expected proportion of type I errors among
the rejected hypotheses, E(V/R). There are different ways to define the expression for the
FDR, depending on how they handle the case of zero rejected hypotheses, when R = 0.
By using the indicator function, we can write

FDR = E

(
V

R
· I(R > 0)

)
.

Note that under the complete null hypothesis, that is, when m0 = m, FDR is equal to
FWER. Methods that control the FDR also control the FWER in a weak sense.

5.2 Controlling type I error rate

There have been developed many techniques to control type I error rates in the multi-
ple testing problem. We will look at two methods, the Bonferroni correction and the
Benjamini-Hochberg (BH) step-up procedure. The two methods seek to control the
FWER and the FDR, respectively. The presentation of this topic is based on Ge et al.
(2003) and Benjamini & Hochberg (1995).

Bonferroni correction

The Bonferroni correction is a method of strong level α FWER control, as it seek to
reduce the probability of even a single type I error, or false discovery. The procedure is
considered the simplest and most conservative method to control the FWER.

The raw p-values from any statistical test are denoted pi, where i = 1, ...,m, and m
is the total number of hypotheses to be tested. The Bonferroni correction method will

reject any hypothesis Hi with p-value less than or equal to
α

m
. This will control the

FWER to be less than or equal to α.

The Bonferroni single-step method will generate adjusted p-values, p̃i, given by

p̃i = min(mpi, 1).

In practice, these adjusted p-values can be found by using the function p.adjust() in R.
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Benjamini-Hochberg procedure

The Benjamini-Hochberg step-up procedure is a method for strong control of the FDR.
It is designed to control the expected proportion of false discoveries.

Let p(k) for k = 1, ...,m be the ordered raw p-values, so that p(1) ≤ p(2) ≤ · · · ≤ p(m). Then
do the step-up order, starting from k = m, then k = m− 1, until k = 1. We then define
k∗ to be the first integer k such that p(k) ≤ k

m
α. No null hypothesis is rejected if k∗ is not

defined. Otherwise the hypotheses Hk are rejected for k = 1, ..., k∗. The corresponding
adjusted p-values for the BH step-up procedure are

p̃k = min
l=k,...,m

{min(
m

l
p(l), 1)}.

In detail, we start by ordering the raw p-values from the smallest to the largest, with
indices k = 1, ...,m. The smallest raw p-value is p(1) and the largest among all hypothe-

ses is p(m). The threshold value
k

m
α depends on the index k, so this will most likely

be unique for all m hypotheses. Starting at k = m (step-up), calculating the threshold

value, we compare this with the corresponding p-value p(k). If p(k) ≤
k

m
α, then we re-

ject all H(1), ..., H(k) hypotheses, and stop the procedure. The remaining H(k+1), ..., H(m)

hypotheses are not rejected. If p(k) >
k

m
α, we continue with comparing the next p-value

p(k−1) to the corresponding threshold value
(k − 1)

m
α, and evaluate in the same manner.

The procedure will always stop after we have found the first p-value that is smaller than
or equal to the corresponding threshold value. All hypotheses with index smaller and
equal to the index at which the procedure is stopped, will be rejected.

The adjusted p-values using the BH step-up procedure can be found using the func-
tion p.adjust() in R.
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Chapter 6

Statistical analysis

In this chapter we will use the methods described in Chapters 3.5, 4 and 5 to analyse the
long time series gene expression data set. First we perform parametric tests, as described
in Chapters 2 and 3, on the full gene expression data set. Then we perform permutation
tests for a randomly selected subset of 1000 genes, where methods described in Chapters
4 and 5 are used. Compared to the analysis from Chapter 3, where a few genes are studies
in detail, we will in this chapter look at many genes collectively. The results will provide
information about our method of testing the null hypotheses H1

0 and H2
0 when applied to

a large amount of data.

Chapter 5 describes two methods for controlling type I error rates when testing multiple
hypotheses. The Bonferroni correction, controlling the family wise error rate, provides a
strong level α control. However, the method most widely used and recognised for gene
expression data sets controls the false discovery rate. We will use the Benjamini-Hochberg
step-up procedure for controlling the FDR.

6.1 Multiple testing on all genes

We will first test the two hypothesis H1
0 and H2

0 on each of the m = 9856 genes in our
gene expression data set, using the parametric methods of Chapters 2 and 3. The two
hypotheses to be tested are specified in Chapters 3.5 and 4.1. The test statistics T ∗

1 and
T ∗

2 , for each of the hypothesis tests, are calculated by equations (4.1) and (4.2) for each
gene after fitting LME models. The models are fitted using two scenarios, one with a pre-
defined fixed model (model 4), and one with model selection using AIC. The results for
both the Bonferroni correction and the Benjamini-Hochberg procedure, using α = 0.05,
are found in Table 6.1.

The percentage of significant genes for the Bonferroni correction method is calculated

with level α. Any hypothesis with p-value less than or equal to
α

m
≈ 5.07 · 10−6 is re-

jected. We see that controlling the FWER compared to the FDR gives fewer significant
genes.

Control of the FDR is the preferred method for controlling the type I error rates for
gene expression data. We see from the results of testing the first hypothesis H1

0 that 60%
of the genes are declared significantly differentially expressed, for the method of model
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selection using AIC. The opinion of the biologists in this project is that 60% differentially
expressed genes is too high. Testing the second hypothesis H2

0 of the estimated area,
however, the percentage of significant genes is nearly cut in half, to 31.6%. This is a
major improvement.

We believe that model selection using AIC is the preferred method over a predefined
fixed model for fitting LME models. This is due to the fact that the variation in the gene
expression data for different genes is large, thus forcing on a ”one model fits all” philoso-
phy does not make sense. Instead, various models should be fitted, and by the AIC value
criteria, the best fitted model is chosen for each gene expression time series. Comparing
the results using the two methods, we see that the method of model selection using AIC
provides a higher percentage of significant genes. This is explained by the model selection
step for choosing the best fitted models in advance of calculating test statistics. It is thus
expected that the number of significantly differentially expressed genes is higher when
using model selection compared to using a fixed model.

Table 6.1: Multiple testing of the two hypotheses H1
0 and H2

0 on all 9856 genes, using the
Bonferroni correction and the Benjamini-Hochberg procedure, with α = 0.05. The results
are presented as a percentage of all 9856 genes.

H1
0 : β = 0 H2

0 : A = 0
Bonferroni (FWER):
p-value, fixed model 4 5.4 % 1.8 %
p-value, model selection using AIC 6.2 % 2.9 %

BH procedure (FDR):
p-value, fixed model 4 58 % 25.2 %
p-value, model selection using AIC 60 % 31.6 %

6.2 Multiple testing on a randomly selected subset

In a similar manner as Chapter 6.1, the two hypothesis tests are carried out on 967
randomly selected genes from our data set. We have performed analysis based on both
parametric and permutation methods. We have used both schemes for fitting LME mod-
els, the predefined fixed model (model 4) and model selection using AIC.

Ideally, we would study all 9856 genes. However, analysis show that when using the
scheme of model selection with AIC, it takes about 24 hours to fit models and calculate
test statistics for 100 genes with B = 10000 permutations each, on a Xeon 2.67 GHz (Intel
CPU) running Linux (Ubuntu 10.4). The time is reduced to about 7 hours when using a
predefined fixed model. Sampling all genes would take approximate 90 days to process.
Therefore, we sampled 500 genes twice (with different seed for the randomisation), run-
ning the calculations on two different servers. The result is 967 unique genes randomly
selected from our data set.
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The R code for the analysis is found in Appendix A. A summary in pseudo code is
found below.

Make B = 10000 permutations by random shuffle of time points

For (id in 1:967)

{

Fit LME model to original data using

a) predefined fixed model 4, and

b) model selection using AIC

Calculate parametric test statistics

Calculate parametric p-values

For (b in B)

{

Construct a new data set using the permutations

Fit LME model using a) and b)

Calculate permutation test statistics for each permutation

}

Calculate permutation p-values

}

Controlling the family wise error rate

We would like to compare the results on the original data in Table 6.1, with the results
from the m = 967 randomly selected genes. This is not sensible to do for adjusted per-
mutation p-values using the Bonferroni correction, since the result is 0% significant genes

with level α = 0.05. This is explained by the threshold value
α

m
≈ 5.17 · 10−5, and the

lowest possible p-value from the permutations;
1

10001
≈ 10−4. Thus, none of the hypothe-

ses can be rejected based on permutation p-value.

Instead we have chosen to report the number of genes with a p-value below 0.05, just
to provide a comparison between the parametric and permutation methods. The results,
in percentages of all 967 genes, are found in Table 6.2. We see that in general, the num-
bers from the permutation p-values are lower compared to the parametric numbers.
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Table 6.2: Results from testing the two hypotheses H1
0 and H2

0 on a sample of 967 genes,
without using the methods of multiple testing. The numbers are the percentage of all 967
genes with p-values below α = 0.05.

H1
0 : β = 0 H2

0 : A = 0
Parametric p-values:
Predefined fixed model 4 66.7% 39.9%
Model selection using AIC 64.5% 43.0%

permutation p-values:
Predefined fixed model 4 37.0% 23.5%
Model selection using AIC 31.0% 20.3%

Controlling the false discovery rate

The results from the BH procedure for controlling the FDR are found in Table 6.3. Com-
paring the values from the parametric p-values with the p-values from Table 6.1, we see
that the results are very similar. With this, we will assume that the random sampling of
967 genes is a good representative, reflecting the original data set well.

Table 6.3: Multiple testing of the two hypotheses H1
0 and H2

0 on a sample of 967 genes,
using the Benjamini-Hochberg procedure for controlling the FDR with α = 0.05. The
results are presented as a percentage of all 967 genes.

H1
0 : β = 0 H2

0 : A = 0
Parametric p-values:
Predefined fixed model 4 60.1% 26.8%
Model selection using AIC 61.5% 33.5%

Permutation p-values:
Predefined fixed model 4 11.7% 2.6%
Model selection using AIC 7.7% 2.7%

For both original and parametric results, the method of using a predefined fixed model
gives a lower number of significant genes compared to the method of model selection
using AIC. This case is, surprisingly, the opposite of what the results for the permuta-
tion p-values show, comparing 11.7% with 7.7% under H1

0 . The results for permutation
p-values under H2

0 , 2.6% and 2.7%, shows that the two methods provides approximate
equal percentages.

ECDF plots for the p-values from model selection using AIC are found in Figure 6.1.
The left panel shows the p-values associated with test statistic T1. We see that for both
parametric (black line) and permutation (blue line) methods, the p-values lie above the
theoretical uniform distribution. Thus, both methods produce small p-values. Although
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not as extreme as for test statistic T1, we see that the p-values associated with test statis-
tic T2 in the right panel of Figure 6.1, also lie above the theoretical uniform distribution.
This is a result of using the BH step-up procedure for controlling the FDR.

Figure 6.1: ECDF plot of the p-values using the Benjamini-Hochberg procedure for con-
trolling the FDR, with α = 0.05, for the model selection set-up. Left panel: p-values
associated with test statistic T1. Right panel: p-values associated with test statistic T2.
The black line represents parametric results, the blue line represents permutation results.
The red line is the theoretical uniform distribution.

It would be interesting to analyse the 2.7% genes in detail, but this is a topic for further
research and is discussed in Chapter 7. However, we find that the permutation results of
2.6% and 2.7% under H2

0 , are subsets of the corresponding parametric results of 26.8%
and 33.5%. This is also the case under H1

0 , where the percentage of significant genes using
permutation is a subset of the corresponding parametric percentages.

We also find the results for H2
0 to be a subset of the corresponding results for H1

0 , as
presented in Table 6.4. From the biologists in this project, we know that the number
of 60% significant genes is an overestimation. By testing H2

0 , the number of significant
genes are reduced. For parametric tests, the number is almost cut in half. For permu-
tation tests, the reduction is even more drastic. From the results presented in Table 6.4,
we see that the significant genes under H2

0 also also marked as significant under H1
0 . We

may assume that the significant genes under H2
0 , is a better estimate of which genes are

actually found significant by our biologists, using other detailed analysis than presented
in this thesis. Thus, we find that the use of H2

0 is an appropriate method for assessing
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significance of differentially expressed genes in our gene expression study.

Table 6.4: Subset analysis of the results from the Benjamini-Hochberg procedure for
controlling the FDR on 967 randomly selected genes.

Analysed subset
36.8% is a subset of 60.1%
22.3% is a subset of 61.5%
2.6% is a subset of 11.7%
2.7% is a subset of 7.7%

Using p-values as test statistics

Besides evaluating the results from multiple testing, we want to check whether the ad-
justed test statistics T1 and T2 are appropriate to use instead of the well-known F and t
statistics T ∗

1 and T ∗
2 , respectively. We thus calculate new test statistics T new

1 and T new
2 to

be the negative of the parametric p-values for the F and t statistics, and use these in the
permutation algorithm. Using T new

1 and T new
2 give very similar results as using T1 and T2.

We may conclude that T1 and T2 are appropriate to use in our model selection setup.

6.3 Remarks

We have done analysis of all 8956 genes using the Bonferroni correction method and the
BH step-up procedure for controlling the FWER and FDR, respectively. We randomly
selected 967 genes to represent the whole gene expression data set. None of the hypothe-
ses tested could be rejected by controlling the FWER using the Bonferroni method. For
control of the FDR using the BH procedure, we found the results from parametric and
permutation to be different.

Initially, we believed that the model selection strategy would be a better strategy than
the fixed model, even though the results using model selection gives a higher percentage
of significantly differentially expressed genes. Before the analysis using permutation, we
also assumed this method to provide better estimates of significantly expressed genes than
the parametric approach.

The biologists in our project know that the result of 60% significantly expressed genes
under H1

0 is an overestimation. This finding is one of the main reasons why we have
suggested the alternative test of H2

0 to assess significance. For our data set, the biologists
believe that the number of significantly differentially expressed genes is in the range of
1500−3300 genes. In percentages, this is approximately 16.7−36.8%. These findings are
in accordance with research on similar gene expression problems.

When comparing our findings with the expectation from the biologists, we see that the
parametric test of H2

0 seems realistic. Our initial thought of the model selection step
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being the better strategy than using a fixed model, does not seem to be correct. The
fixed model strategy provides less significantly expressed genes than the model selection
step. The results from permutation seems to be an underestimation, when comparing our
result with the actual findings of the biologists. The size of B might influence the results
from permutation. This is discussed in Chapter 7.
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Chapter 7

Discussion and conclusion

In this thesis we have suggested an alternative statistical hypothesis test for assessing
significant activation of genes over time, using the area under the estimated curves as a
measure of consistent activity over time. We have used the framework of linear mixed
effects models for our gene expression data set. Together with assumptions concerning
the parametric distribution of the area, a hypothesis test is suggested. Detailed analysis
of model fit and hypothesis tests for some genes are presented, and multiple hypotheses
tests on several genes are conducted. Methods of simulation and permutation are used
as verification. In addition, adjusted test statistics for the hypothesis tests are suggested
and analysed.

In the present chapter, we will discuss some of the methods and results. A conclusion
based on our observations throughout this thesis is made.

7.1 The LME model for gene expression data

We have used the LME model for our data set. This model is widely used in various
biostatistical contexts. Compared to other linear models, the random effects of the LME
model seems appropriate for data sets with repeated measurements. As we have seen in
the detailed analysis of data for some genes in Chapter 3, the random effects are quite
small, in the order of 10−11. The contributions from the random effects are thus very
small in the fitted LME models. The choice of LME models were based on the whole gene
expression data set, not only the difference data set which we have studied in this thesis.
For the gastrin treatment gene expression time series and the unstimulated controls, the
random effects have been seen to take on values in the order of 10−3 to 10−1.

In Chapter 3, we present detailed analysis of model fit for data from three genes. This
is done to illustrate some of the extremities, such as the largest estimated area and the
poorest normal approximation of the residuals we found in our data set. From detailed
analysis of the gene expression data and the fitted LME models for several genes, we find
the LME model to be a good fit for our gene expression data.
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7.2 Choice of B in permutations

In this thesis, we have used the non-parametric method of permutation. Permutations are
made by randomly shuffling time points to create data under the null hypotheses we have
tested. Ideally we would do a complete permutation test, including all 12! = 4.79 × 108

possible permutations for our gene expression time series consisting of 12 time points.
The computational costs for a complete permutation test is high, and in practice it is
not a real possibility to complete. We have thus chosen to use sampled permutation tests
with B = 10000 permutations. There are some limitations using this few permutations
in a multiple testing setting, as we will now discuss .

Controlling the FWER for permutations based on the Bonferroni correction
method

With the chosen B = 10000 for the randomly selected subset of m = 967 genes, we have
seen that the smallest possible p-value from the permutations will never be smaller than
α

m
. None of the hypotheses tested are rejected. We find the minimum number of per-

mutations to be B = 20000 for the p-values to be just small enough, with level α = 0.05
control of the FWER.

How many permutations are needed for a permutation study of approximate m = 9000

genes? If we would like to use a Bonferroni cut-off, we have
α

m
≈ 5.56 · 10−6, so the

minimum number of permutations needed for the p-values to be just small enough, is
B = 180000. The time needed for conducting 10000 permutations on 100 genes was esti-
mated to be approximate 24 hours. A permutation test with B = 180000, or preferably
more, on 9000 genes is thus regarded as impossible in reality.

A control of the FWER is more strict than a control of the FDR. In the case of permuta-
tion tests on large amount of data, we deem the control of FWER impossible. Controlling
the FDR is thus regarded as a better method for multiple tests on gene expression data.

Controlling the FDR for permutations based on the BH step-up procedure

In Chapter 6.2, we saw that the result from permutation on a sample of genes, for H2
0

with model selection using AIC, gave a percentage of 2.7 significant genes. When using a
fixed model, the result is 2.6. Comparing these results with the corresponding parametric
results of 33.5% and 26.8%, respectively, we see that the permutation gives a fairly large
reduction. The biologists believe that the 2.7% and 2.6% is an underestimation.

The question is then, what if the number of permutations increased to, say, 100000 or
one million? Would the amount of significant genes then increase, decrease or remain the
same? We saw that for the Bonferroni correction method, the number B is important, and
we would assume that it would also influence the result in a BH procedure. As mentioned
before, looking at the results in Table 6.2, the trend is that the number of significantly
differentially expressed genes are higher when using the parametric approach compared
to using the permutation approach. This result suggests that the number of significant
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genes associated with test statistic T2 for permutations, should be lower than for the cor-
responding parametric p-values. Answering these questions could be an interesting topic
for further research.

7.3 A predefined fixed model versus model selection

using AIC

During the work of this thesis, we have used two different strategies for fitting LME
models in parallel. In Chapter 4.2, we did a simulation study based on data from one
gene, where the only difference in the two strategies was the introduction of model se-
lection using AIC in Chapter 4.2.2. From results and plot in Chapter 4.2.2, we saw that
the method of model selection using AIC produces small parametric p-values. The effect
of model selection using AIC is thus large, even larger than we anticipated in advance.
Would the use of model selection generate many type I errors in real data? A simulation
experiment using data not only from one gene, but from several, or all, genes in our data
set might give us an answer to this question. Due to the time frame of this thesis, this is
a suggestion for further study.

Our first impression is that the model selection method is the preferred one over a prede-
fined fixed model. Our gene expression data should be fitted to a model which is ”best
fitted”, not just fitted to the same model regardless of how the data behaves. From the
results presented in Table 6.3, we have seen that the percentages of significant genes from
permutation under H2

0 are very similar for the two methods, equal to 2.6% and 2.7% for
a fixed model and model selection, respectively. This suggests that the preferred scheme
for permutations is using a predefined fixed model, since this is a less time consuming and
computationally intensive approach than the model selection scheme.

When comparing the two schemes for the parametric results, we see a greater differ-
ence than for the permutation results. Under H1

0 , the results from a predefined model
and model selection are also very similar. A greater difference is seen for the correspond-
ing results under H2

0 . The predefined model, with the lowest number of significantly
differentially expressed genes, seems to be the better of the two schemes when performing
parametric calculations.

7.4 Communication with biologists

We have looked at the estimated area under the fitted gene expression curves as a measure
of consistent activity over time. A parametric approach have been presented in Chapters
2 and 3. The calculation of the estimated area after fitting LME models to the gene
expression data is fairly simple, and can be done on large amount of gene expression data
with little cost in computation time. The estimated area may be used as a measurement
for ranking genes with respect to effect size of activation over time.

Besides using a parametric approach to the area, we have used the non-parametric ap-
proach of permutation as presented in Chapters 4 and 5. In addition to the widely used
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hypothesis test H1
0 concerning the fixed effects, we have suggested a second hypothe-

sis test H2
0 , concerning the area. Based on our observations throughout this thesis, we

recommend testing the area as in H2
0 , in addition to, or rather than testing H1

0 . The
permutation approach under both H1

0 and H2
0 seems to give underestimations. The para-

metric approach when testing the area seems to provide a better result with respect to
the number of significantly differentially expressed genes, compared to testing the fixed
effects as in H1

0 .

The biologists have findings suggesting that the percentage of significantly differentially
expressed genes in our data set should be in the range of 16.7− 36.8%. From the results
in Chapter 6, we may conclude that using a parametric approach when testing the area
under H2

0 is in accordance with the findings of the biologists.

7.5 Conclusions

The aim of this thesis have been to find a ranking method for genes in a gene expression
study, and to assess significance of differentially expressed genes. For this purpose, we
have looked at the estimated area under the fitted gene expression curves for our differ-
ence gene expression time series.

We have introduced adjusted test statistics T1 and T2, which have the advantage of be-
ing comparable for fitted models with different degrees of freedom, unlike the F and t
statistics. Based on the analysis in Chapter 6.2, we have concluded that the adjusted test
statistics T1 and T2 are appropriate to use in our model selection set-up.

We have presented the estimated area under the fitted difference gene expression curves
as a measure of consistent activity over time. This area provides an easy, fast and cheap
way of ranking genes in a gene expression study with respect to effect size of activation
over time.

With the use of the area, we have constructed a hypothesis test H2
0 : A = 0. The

test may be carried out using both a parametric and a permutation approach, although
the parametric approach seem to give more realistic results than the permutation. When
we in addition to this take computational costs into account, which we have seen to be
approximate four times greater for the model selection step compared to the fixed model,
our recommendation is thus to use a predefined fixed model to perform parametric hy-
pothesis tests H2

0 on observed gene expression data.
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Appendix A

R code

A.1 The data set

The data set used in this thesis is the called GmUn[i,], a large matrix representing the
difference time series of gene expression data. Here i = 1, ..., 8956 is the total number of
genes. The polynomial scaling in time is called pbasis12, and biol12 is a vector contain-
ing the two possible biological replicates BR” and BR3. A printout from R of pbasis12,
biol12 and an example of GmUn[i,] is found below.

> GmUn[i=2772,]

BR2_Un_0min_1 BR2_G17_15min_3 BR2_G17_30min_5 BR2_G17_60min_7

0.000000000 -0.173953742 0.327978438 -0.007784667

BR2_G17_90min_9 BR2_G17_120min_11 BR2_G17_240min_13 BR2_G17_360min_15

-0.362210346 -0.227695180 -0.003444469 -0.223049983

BR2_G17_480min_17 BR2_G17_600min_19 BR2_G17_720min_21 BR2_G17_840min_23

0.093410069 -0.138779868 0.015321052 -0.034654529

BR3_Un_0min_1 BR3_G17_15min_3 BR3_G17_30min_5 BR3_G17_60min_7

0.000000000 -0.025587692 -0.105694925 -0.265250216

BR3_G17_90min_9 BR3_G17_120min_11 BR3_G17_240min_13 BR3_G17_360min_15

-0.168058293 -0.069448713 -0.252837199 -0.078891159

BR3_G17_480min_17 BR3_G17_600min_19 BR3_G17_720min_21 BR3_G17_840min_23

0.131747867 0.011070331 -0.070914042 -0.304416634

> biol12

[1] "BR2" "BR2" "BR2" "BR2" "BR2" "BR2" "BR2" "BR2" "BR2"

[10] "BR2" "BR2" "BR2" "BR3" "BR3" "BR3" "BR3" "BR3" "BR3"

[19] "BR3" "BR3" "BR3" "BR3" "BR3" "BR3"
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> pbasis12

1 2 3 4

1 -1.0000000 1.00000000 -1.000000000 1.0000000000

2 -0.9642857 0.92984694 -0.896638120 0.8646153296

3 -0.9285714 0.86224490 -0.800655977 0.7434662641

4 -0.8571429 0.73469388 -0.629737609 0.5397750937

5 -0.7857143 0.61734694 -0.485058309 0.3811172428

6 -0.7142857 0.51020408 -0.364431487 0.2603082049

7 -0.4285714 0.18367347 -0.078717201 0.0337359434

8 -0.1428571 0.02040816 -0.002915452 0.0004164931

9 0.1428571 0.02040816 0.002915452 0.0004164931

10 0.4285714 0.18367347 0.078717201 0.0337359434

11 0.7142857 0.51020408 0.364431487 0.2603082049

12 1.0000000 1.00000000 1.000000000 1.0000000000

13 -1.0000000 1.00000000 -1.000000000 1.0000000000

14 -0.9642857 0.92984694 -0.896638120 0.8646153296

15 -0.9285714 0.86224490 -0.800655977 0.7434662641

16 -0.8571429 0.73469388 -0.629737609 0.5397750937

17 -0.7857143 0.61734694 -0.485058309 0.3811172428

18 -0.7142857 0.51020408 -0.364431487 0.2603082049

19 -0.4285714 0.18367347 -0.078717201 0.0337359434

20 -0.1428571 0.02040816 -0.002915452 0.0004164931

21 0.1428571 0.02040816 0.002915452 0.0004164931

22 0.4285714 0.18367347 0.078717201 0.0337359434

23 0.7142857 0.51020408 0.364431487 0.2603082049

24 1.0000000 1.00000000 1.000000000 1.0000000000

A.2 Fitting an LME model

The R code for fitting LME models using the function nlme as suggested by Pinheiro &
Bates (2000) is found below. The methods of ML and REML can be specified, and are
used as described in Chapter 2.7.

library(nlme)

orgyvalue <- GmUn[i,]

lme1 <- lme(orgyvalue~pbasis12[,1], random=~1|biol12,

method = "REML", na.action = na.omit)

lme2 <- update(lme1, orgyvalue~pbasis12[,1:2])

lme3 <- update(lme1, orgyvalue~pbasis12[,1:3])

lme4 <- update(lme1, orgyvalue~pbasis12[,1:4])

AICvecks<- c(AIC(lme1),AIC(lme2),AIC(lme3),AIC(lme4))

mod <- which.min(AICvecks)

thislme <- get(paste("lme",mod,sep=""))
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Plotting raw data

Here we present the R code for plotting the raw data, scaled time versus gene expression:

plot(pbasis12[1:ntp],GmUn[i,1:ntp],pch=20,col="blue",

xlab="Scaled time", ylab="GmUn")

points(pbasis12[1:ntp],GmUn[i,(ntp+1):(2*ntp)],pch=20,col="red")

Diagnostics

When the LME models are fitted, we continue with the best fitted model according to
the criteria of lowest AIC value, and do diagnostics. Residual plots are made by the
commands plot() and qqnorm(), taking an LME object as argument. The types of
residuals (marginal, conditional, pearson, etc) can be specified. Predictions are made
using predict().

A function to calculate the IntraClass Correlation (ICC) is made. The function takes
as argument an LME object and returns the ICC value of this object.

ICC <- function(lmeobj)

{

res <- as.numeric(VarCorr(lmeobj))

return(res[1]/(res[1]+res[2]))

}

Anderson-Darling tests are used as support for other primary diagnostic tools such as
residual plots. The test is in general used on a given sample of data, to test if the sample
is drawn from a given probability distribution. We have used the test on residuals to check
for normality. The null hypothesis tested is then ”The given sample is drawn from the
normal probability distribution”. We use a significant level of 0.05 for decisions regarding
the p-values. The test is applied to a sample by using the command ad.test(), found in
the package ”Nortest”.

A.3 Calculating test statistics and p-values

The framework of the function calctestobsWP is used for multiple purposes, including
permutation tests, simulation and calculating test statistics and p-values. Several func-
tions are made, for each purpose, and all of them are stored in the file called ”calctestobs.R”.
We will give an example of the function which is used for permutation and simulation with
model selection using AIC. The function returns test statistics, p-values, model number
and the estimated area of the fitted model.
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calctestobsWP <- function(yval, pbas, bio, Acoeffs)

{

# Fit LME

plme1 <- lme(yval~pbas[,1],random=~1|bio,method="REML",na.action=na.omit)

plme2 <- update(plme1, yval~pbas[,1:2])

plme3 <- update(plme1, yval~pbas[,1:3])

plme4 <- update(plme1, yval~pbas[,1:4])

AICvecperm <- c(AIC(plme1),AIC(plme2),AIC(plme3),AIC(plme4))

mod <- which.min(AICvecperm)

plme <- get(paste("plme",mod,sep=""))

# t1: F-test (hyp H_0^1)

numDF<- anova(plme)$"numDF"[1]

denDF <- anova(plme)$"denDF"[2]

fF <- anova(plme)$"F-value"[2]

peF <- denDF/(denDF-2)

varF <- (2*denDF^2*(numDF+denDF-2))/(numDF*(denDF-2)^2*(denDF-4))

t1 <- (fF-peF)/(sqrt(varF))

# t2: t-test (hyp H_0^2)

permcoeffs <- c(plme$coefficients$fixed,rep(0,4-mod))

estAreal <- sum(permcoeffs*Acoeffs)

pcc <- Acoeffs[(1:(mod+1)),,drop=FALSE]

sigmamatrix <- plme$varFix

pvarg <- as.vector(t(pcc)%*%sigmamatrix%*%pcc)

t0 <- (estAreal)/(sqrt(pvarg))

vart0 <- denDF/(denDF-2)

t2 <- t0/(sqrt(vart0))

# Other p-values for original data:

pvalAt <- 2*pt(abs(estAreal)/sqrt(pvarg),denDF,lower.tail=FALSE)

pvalAnorm <- 2*pnorm(2*abs(estAreal),0,sqrt(pvarg),lower.tail=FALSE)

pvalANOVA <- anova(plme)$"p-value"[2]

return(list(t1=t1,t2=t2,mod=mod,t1p=pvalANOVA,t2p=pvalAt,area=estAreal))

}
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A.4 Simulation study

This is the R code used in Chapter 4. The two methods for simulation use the same frame-
work, but with some differences. We only print the code for the simulation described in
Chapter 4.2.2.

As support for other diagnostic tools such as the ECDF plots, we have used Kolmogorov-
Smirnov (K-S) tests ks.test(). K-S is a test for equality of probability distributions. By
using a two-sample K-S test, we compare two samples. The null hypothesis of the K-S
test is ”Samples are drawn from the same distribution”, and we use significance level 0.05
to make decisions.

load("lmeImage") # Data set

source("calctestobs.R")

library(nlme)

K <- 1e2

B <- 1e4

SUB <- 1

Acoeffs <- matrix(c(0, 2, -4/3, 2, -8/5), ncol=1)

permuts <- matrix(data = NA, nrow = B, ncol = 12)

Ogeneset <- setdiff(1:ngenes, 5044)

set.seed(123)

geneset <- sample(Ogeneset, SUB, replace=FALSE)

set.seed(233)

for(b in 1:B)

{

permuts[b,] <- sample(1:12, 12, rep = FALSE)

}

# could have been loop here

id <- geneset[1]

orgyval <- GmUn[id,]

# parameters used to make model, use model 4 - partly

plme <- lme(orgyval~pbasis12[,1:4], random=~1|biol12,

+ method = "REML", na.action = na.omit)

mod <- 4

beta0 <- plme$coeff$fixed[1]

sigma <- plme$sigma

sigmaB <- as.numeric(VarCorr(plme)[1,2])

orgtestobs <- calctestobs4WP(orgyval, pbasis12, biol12, Acoeffs)
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# now loop over K data sets,

newmu <- rep(beta0, 24)

newtestobs <- matrix(nrow=K, ncol=5)

permpvals <- matrix(ncol=2, nrow=K)

set.seed(9876)

for (k in 1:K)

{

print(k)

u1 <- rep(rnorm(1, 0, sigmaB), 12)

u2 <- rep(rnorm(1, 0, sigmaB), 12)

eps <- rnorm(24, 0, sigma)

newy <- newmu + c(u1,u2) + eps

# now need y=0 for first obs for each series

newyJ <- newy

newyJ[1:12] <- newy[1:12] - newy[1]

newyJ[13:24] <- newy[13:24] - newy[13]

newy <- newyJ

newtestobs[k,] <-unlist(calctestobsWP(newy,pbasis12,biol12,Acoeffs))

resmat <- matrix(ncol=3, nrow=B)

for (b in 1:B)

{

permyvalue <- newy[c(permuts[b,], permuts[b,]+12)]

permtestobs <- calctestobs(permyvalue, pbasis12, biol12,Acoeffs)

resmat[b,1] <- permtestobs$t1

resmat[b,2] <- permtestobs$t2

resmat[b,3] <- permtestobs$mod

}

permt1p <- (sum(resmat[,1 ]>= newtestobs[k,1])+1)/(B+1)

permt2p <- (sum(abs(resmat[,2]) >= abs(newtestobs[k,2]))+1)/(B+1)

permpvals[k,] <- c(permt1p, permt2p)

cat(permpvals[k,], "\n", file="rescheckAIC", append=T)

}

dput(list(newtestobs,permpvals),paste("simcheckAIC",id,"res.dd",sep=""))
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