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Abstract

The goal of this thesis has been to develop a fast simulator for large-scale
migration of CO2 in saline aquifers. We have also focused on being able to
let the CO2 storage atlas from the Norwegian Petroleum Directorate specify
the reservoir properties. In order to meet the demands of simulating on large
data sets combined with high performance, we have investigated the possibili-
ties of using graphic processing units (GPUs) to accelerate the computations.

The Intergovernmental Panel on Climate Change, IPCC, has considered
CO2 to be one of the main factors influencing the climate changes of to-
day. Capture and storage of CO2 is one of the strategies which could reduce
the amount of CO2 released into the atmosphere. However, there are still
uncertainties related to flow of CO2 in saline aquifers. It is therefore nec-
essary with fast simulators which can predict this behavior to minimize the
risks involved in a storage project.

GPUs are initially designed to accelerate graphic operations. As opposed to
standard CPUs, where most of the transistor capacity is used on advanced
logic, the GPU uses most of its transistors on floating point operations in
parallel. This results in that the theoretical upper bound for floating point
operations are 7-10 times higher on the GPU than the CPU. Thus, GPUs
have shown to be a strong tool when solving hyperbolic conservation laws
using stencil based schemes, as a large amount of the computations can be
parallelized.

In compliance with the storage atlases we have based our simulator on struc-
tured grids. Our numerical scheme consists of a finite volume method com-
bined with an explicit Euler method.
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Sammendrag

Målet med denne masteroppgaven har vært å utvikle en simulator for storskala
migrasjon av CO2 i berggrunnen, med fokus p̊a å kunne kjøre raske bereg-
ninger p̊a store datasett. Det har ogs̊a vært lagt vekt p̊a at Oljedirektoratets
CO2 lagringsatlas skal kunne være bakgrunnen for reservoar egenskapene.
For å møte disse kravene, har vi sett p̊a bruk av grafikkort (GPUer) for å
akselerere beregningene.

The Intergovernmental Panel on Climate Change, IPCC, har vurdert CO2 til
å være en vesentlig faktor i dagens klimaendringer. CO2 fangst og lagring
er en av strategiene som kan redusere utslipp. Innenfor lagringsfasen er det
fortsatt usikkerhetsmoment knyttet til flyt av CO2, og man trenger derfor
raske simulatorer som kan bidra med å minske risikoen ved eventuelle la-
gringsprosjekt.

Innenfor numerikk har man de siste årene sett et økt fokus p̊a bruk av
grafikkort. Graffikkort er i utgangspunktet designet for å akselerere grafiske
operasjoner. I motsetning til standard CPUer, hvor det meste av transis-
torene brukes til avansert logikk, bruker grafikkortet det meste av sine tran-
sistorer til å utføre flyttallsberegninger i parallell. Dette gjør at man teoretisk
sett har mulighet til å øke utføre flyttallsberegninger 7-10 ganger raskere p̊a
GPUer enn CPUer. For løsning av hyperbolske konserveringslover hvor man
har stensil-baserte numeriske skjema, kan store deler av beregningene paral-
lelliseres, slik at man kan utnytte ressursene p̊a en GPU.

I samsvar med lagringsatlasene, er simulatoren v̊ar basert p̊a strukturerte
grid. V̊art numeriske skjema er basert p̊a finite volume metoder i rom, sam-
men med eksplisitt Euler i tid.
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Chapter 1

Introduction

The goal of this thesis has been to develop a fast simulator for large-scale
migration of CO2, in saline aquifers. We also focused on being able to let the
CO2 storage atlas from the Norwegian Petroleum Directorate (NPD) specify
the reservoir properties.

At SINTEF, there has over the last years been a development of simula-
tors for CO2 flow, the Matlab Reservoir Simulation Toolbox (MRST) [1,16].
We have considered the possibilities for further improvements in terms of
runtime performance by using GPUs. We have based our GPU simulator
on a simulator for the Shallow Water equations developed by Brodtkorb et
al., [6,7]. This runs the computations solely on the GPU, and we have mod-
ified this to suit our numerical scheme.

The outline of this report is as follows: This chapter will first discuss ex-
actly why GPUs might be applicable when aiming for improved performance
within numerics, secondly the motivation behind simulating CO2 storage.
We then describe the CO2 simulator MRST and the Shallow Water simula-
tor, and why they are applicable to us. The next chapters will go through
the theory involved when simulating CO2 flow in saline aquifers; governing
equations, the idea behind vertical integration and the numerical scheme.
Then we go on to discussing the basics of GPUs; a description of GPU archi-
tectures exemplified by NVIDIA’s Fermi Architecture and an introduction
to the concepts in CUDA, the programming model we have based our GPU
implementation on. Finally, we discuss the results of our simulator, both in
terms of numerical results and performance results, along with comments for
further work.

1



2 CHAPTER 1. INTRODUCTION

1.1 Why Graphical Processing Units

In scientific computing we see a constant demand for increasing the perfor-
mance of numerical solutions. Means of achieving this have typically been to
increase the clock speed of the central processing unit (CPU). However, this
frequency is limited by power and heat restrictions, thus the introduction of
multicore processors [10]. Now, we rather see an increased focus on improv-
ing the parallelism when aiming to improve performance [10].

GPUs have the last years been considered a great tool for parallel com-
puting. Initially designed to do the large amount of calculations required for
graphical computations, the very idea behind their architecture is to execute
simple sequences of code in parallel. GPUs today consists of multiple stream
processors, each operating in a SIMD kind of way. SIMD, single instruction,
multiple data, is just that; a single instruction applied to multiple data ele-
ments.

Regarding the actual speedup gain by using GPUs instead of CPUs, a com-
parison of theoretical peak performance between NVIDIA GPUs and Intel
CPUs can be seen in Figure 1.1. As of 2012, the performance gap was ap-
proximately seven times for both gigaflops and bandwidth [5]. Thus, with
suitable algorithms the potential of increased performance due to parallelism
is clear.

On the market today, there are three main suppliers of GPUs: Intel, AMD

Figure 1.1: Theoretical peak performance of NVIDIA GPUs in comparison with Intel
CPUs. Picture is from [5]

and NVIDIA. Within the low-performance market Intel have the largest share
of the market, while AMD and NVIDIA provide most of the GPUs on the
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high performance market [5]. Within academics, NVIDIA provide the most
widespread GPUs, and is also what we have based our implementation on.
There are three languages suitable for implementation on NVIDIA GPUs -
NVIDIA CUDA, DirectCompute and OpenCL. As stated by Brodtkorb et
al., [5], CUDA is the most advanced language out of these three, and also
what we have done our implementation in.

1.2 Why Carbon Dioxide Capture and Stor-

age

The Intergovernmental Panel on Climate Change, IPCC, stated in their
Third Assessment Report [18], that human activities had, and would continue
to, influence the atmospheric composition. Also, they stated, the largest
contribution to greenhouse gases from humans was CO2. This is a result
of combustion of fossil fuels such as coal, oil and natural gas. It was pre-
dicted that the emissions of CO2 due to fossil fuel burning would continue
being the dominating influence on the atmosphere during the 21st century.
CO2 capture and storage (CCS) can play a vital role in lowering the emission
of CO2. IPCC states that CCS may be responsible for half of the emission
reduction this century.

CCS consists of three main steps; first CO2 is captured by separating it from
industrial and energy related sources, then transported to a storage location,
and here it ideally will remain away from the atmosphere for a long time [18].
Even though capturing is considered the most costly process, storage is the
most uncertain part. Knowledge about CO2 storage is based upon experi-
ence gained from the oil and gas industry, but the technology itself is new,
and fast computations are therefore important to evaluate the risks involved
when storing CO2 [18].

There are two main ways of storing CO2 today, ocean storage and geolog-
ical storage. Ocean storage will typically be either releasing CO2 into the
ocean; 800 meters or more below surface where it dissolves, or releasing it
onto the surface bed where a CO2 ”lake” will develop. Geological storage
on the other hand refers to the methods involving use of deep underground
geological formations. Here CO2 can either be injected into drained oil and
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gas reservoir, into existing reservoirs as a unit to increase recovery of oil
and gas, or into saline formations [18]. In the North Sea Basin, deep saline
aquifers and depleted oil and gas fields are regarded as the formations with
the greatest potential for CO2 storage, [11]. In our work, we have focused on
CO2 storage in saline aquifers.

When planning a geological storage project it is essential to predict the distri-
bution of CO2 such that injection can be maximized while the risk of leakage
is kept minimal. There are several mechanism which traps CO2 in a geologi-
cal storage site: First of all, when injecting CO2 more than 800 meters below
surface, CO2 will be in a supercritical or liquid state. CO2 will then be much
less dense than brine, resulting in an upward flow, which can be prevented
from flowing back to the surface if it is kept down by an impermeable cap
rock. Secondly we have solution trapping, which occurs as CO2 dissolves in
water. As it is dissolved, it is no longer a separate phase, such that forces
which originally drives it upwards is eliminated. Mineral trapping can occur
if dissolved CO2 reacts with minerals, potentially forming carbonate miner-
als. This could be the most permanent way of storage, but can potentially
take thousands of years to accomplish. Finally we have residual trapping; as
the CO2 flows through the reservoir, some of it will be trapped in the pore
space due to capillary forces [13, 18].

In Norway one has in the last years seen an increased focus towards CCS.
The Norwegian Petroleum Directorate published in 2013 a CO2 storage at-
las for the Norwegian Sea [11], concluding that in the Norwegian Sea alone,
one could store 5.5 giga ton of CO2 - a hundred times more than the actual
emissions from Norway were in 2012. When the report was written, two
CO2 storage project was in place on the Norwegian Continental Shelf. One
is the Utsira formation, where approximately 1 million tonnes of CO2 from
the gas production at Sleipner Vest Field has been injected every year since
1996 [11].

1.3 Implementation Background

1.3.1 SINTEF’s MRST Module

At SINTEF, there is currently a development of a numerical CO2 Laboratory,
funded by CLIMIT, the Norwegian research program for accelerating the
commercialization of CCS. The CO2 Laboratory is a module within the open
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source Matlab Reservoir Simulation Toolbox (MRST) [1, 16]. The toolbox
includes demonstrations of simulation methods and modeling concepts.

The theory behind the MRST simulator is based upon the same govern-
ing equations as in Section 2.1. The result is a coupled system, with the first
partial differential equation (PDE) referred to in literature as the pressure
equation and the second one referred to as the transport or saturation equa-
tion. A typical approach when solving this system is the IMPES formulation:
implicit pressure, explicit saturation. The idea is to let the elliptic pressure
equation be solved by means of an implicit method, using either the initial
data or the results from previous time steps to update the current global
pressure in the reservoir. Following this, an explicit method is used to solve
the (nonlinear) saturation equation, where the pressure from the previous
equation is used as a constant, instead of a variable.

One of the differences between our simulator and the MRST, is the fact
that while MRST supports simulation on unstructured grids, we have imple-
mented ours using structured, or cartesian, grids. By operating solely on a
cartesian grid, we hope to better take advantage of the speed-up in perfor-
mance the GPU can offer. By keeping the grid structured, it is first of all
easier to split the domain for parallel computing. Secondly, by not having
to deal with all the extra information about grid cell neighbours etc., we
reduce the amount of memory which needs to be stored in global memory,
and transferred during simulation. The latter will have an impact on perfor-
mance, see Section 4.4. Using cartesian grids is also in compliance with the
CO2 storage atlas from NPD, which is what we aim to be able to simulate on.

In the MRST module, support for simulating both on a 3D model and a
2D model is implemented. The 2D model is a vertically integrated version of
the 3D model, thus being computationally cheaper on each iteration. Dur-
ing the work with MRST, Ligaarden and Nilsen compared 3D modeling of
CO2 storage with a 2D model based upon an assumption of vertical equi-
librium (VE) [17]. They found that in cases with a low z-resolution, a VE
model is more accurate than a full 3D model, where capillary effects are
small. Also, there is a stronger decoupling between the pressure equation
and the transport equation when considering the VE model, especially for
the post injection scenario. We have thus based our work on the VE model.

Finally, as the pressure equation is elliptic, it is thus not as suitable for paral-
lel implementation, hence not as suitable for being solved on the GPU. There
is currently ongoing research regarding parallel solvers for elliptic PDEs, see
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for instance Esler et al., [9]. Another approach in our simulator would per-
haps be to let the CPU solve the pressure equation. However, this is outside
the scope of interest in this thesis, and we have thus chosen to leave this
for further work. For the time being, we therefore rely on the results from
MRST regarding the updated pressure.

Figure 1.2: An example of simulating the Sleipner Field by the MRST Toolbox.

1.3.2 The Shallow Water Simulator

Our GPU accelerated simulator is based upon the Shallow Water Simulator
implemented by Brodtkorb et al., [6, 7]. They solved an explicit Kurganov
Petrova scheme for the shallow water equations. The simulator is written us-
ing C++ and NVIDIA CUDA [23]. The C++ code handles data allocation,
deallocation and initialization, plus the data transfer between the CPU and
the GPU, while the GPU which handles all of the computations. We will
briefly describe why this simulator has been applicable to us.

The shallow water equations, derived from the Navier-Stokes equations, can
model phenomena such as river flows, tidal waves and dam breaks. The
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equations are given as follows: hhu
hv


t

+

 hu

hu2 + 1
2
gh2

huv


x

+

 hu

huv

hv2 + 1
2
gh2


y

=

 0

−ghBx

−ghBy

+

 0

−gu
√
u2 + v2/C2

z

−gv
√
u2 + v2/C2

z


i.e., a system of hyperbolic conservation laws, where h represents the depth
of water, and B, the bottom topography. When written in a more compact
form:

Qt + F (Q) +G(Q) = HB(Q,∇B) +Hf (Q)

Here Q represents the vector of conserved variables, while F and G represents
horizontal flux. HB and Hf are the bed slope and bed shear stress source
terms.

The simulator is based on a Kurganov-Petrova scheme [14], with a spatial
discretization as follows:

dQij

dt
= Hf (Qij +HB(Qij,∇B)

−
[
F (Qi+1/2,j)− F (Qi−1/2,j)

]
−
[
G(Qi,j+1/2)−G(Qi,j−1/2)

]
= Hf (Qi,j) +R(Q)ij

Now, what we see is that the shallow water simulator is based upon a system
of conservation laws, and discretized in a way based on computing the fluxes
over cell faces. When modeling CO2 storage, the governing equations are
based around not a system, but a scalar conservation law, see Section 2.1.
And although we have a different numerical scheme, namely a finite volume
method based upon the first order upwinding method, we will also base the
flux computations on cell face values.

Brodtkorb et al. implemented both an Euler scheme and a second order
Runge-Kutta scheme. Thus, both of the simulators will be explicit schemes,
with a CFL restriction (see Section 2.2.2) on the time step, which needs to
be updated on each time step for optimal performance.

The underlying grid structure of the shallow water simulator is, as in ours,
a cartesian one. With some adjustments we could therefore follow the same
approach in terms of domain decomposition. (The adjustments is due to the
fact that our scheme is first order, as opposed to the second order scheme
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implemented in the Shallow Water Simulator.)

As a result of the factors mentioned above, the modeling of CO2 and the
shallow water equations follow the same basic outline when implemented on
the GPU.



Chapter 2

Mathematical Background

In our simulator, we have aimed to model the migration of CO2 in a reservoir
with an impermeable cap rock. We have based our equations on an assump-
tion of a sharp interface between the two phases; CO2 and brine, and vertical
equilibrium within each phase. Our main variable of interest is the height of
CO2 across the reservoir. The following sections will describe how to get the
governing equation, together with the numerical scheme implemented.

2.1 CO2 Theory - Governing equations

2.1.1 Mass balance and Darcy’s law

The basic equations for transport of fluid in porous rock is the law of mass
balance and Darcy’s law. We first describe the law of mass balance:

If we let q denote the amount of some quantity, say mass or energy, the
change over time for q over any domain Ω, will be determined by the flux f
over the boundaries ∂Ω, and also by any external source or sink s. If we let
x ∈ R3, this conservation law can mathematically be described (on integral
form) as: ∫

Ω

∂q

∂t
dx = −

∮
∂Ω

f ·ν dA+

∫
Ω

s dx (2.1)

Or, written as a partial differential equation (PDE):

∂q(x)

∂t
+∇·f(x) = s(x) (2.2)

9
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When relating this to the conservation of volume for fluid in a porous medium;

∂(φρ)

∂t
+∇·(ρu) = Ψ (2.3)

Here u is the velocity and ρ the density of the fluid, while Ψ denote the
density function of any external source or sink. Rock porosity, φ is the pore
volume fraction of the rock, i.e. the ”empty” spaces, such that 0 ≤ φ ≤ 1.
Porosity is dependent of the reservoir pressure, p, and the rock’s compress-
ibility is related by cr = 1

φ
dφ
dp

[3].

In 1856, the French engineer Henri Darcy found empirically that the ve-
locity for flow in porous media is related to the gradient of the fluid pressure
and gravity. This law can be thought of as an analogue to Fourier’s law of
heat conduction and Ohm’s law of electrical conduction, however with two
driving forces rather than just one [3]:

u =
−k

µ
(∇p+ ρgez) = −k

µ
(∇p− ρg) (2.4)

Here we let k represent permeability, ∇p the pressure gradient, and µ the
viscosity of the fluid.

Permeability is the rock’s ability to transport fluid. In SI units it is mea-
sured in m2, however, it is also common to measure it in Darcy (D), where
1D ≈ 0.987·10−12 m2. k is a positive definite tensor, such that the fluid will
flow in the direction of the pressure gradient.

(2.3) and (2.4) can also be extended to multiphase flow. If we disregard
the interaction between components within each phase, equation (2.3) can
for each phase be written as:

∂(ραφsα)

∂t
+∇(ραuα) = Ψα (2.5)

where α is an index for the phase you are considering, i.e. brine or CO2 in
our case. The saturation of a phase, sα, is the volume fraction of each phase
in the porous media, meaning that∑

α

sα = 1, α ∈ {CO2, brine} (2.6)
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Darcy’s law for multiphase flow can be written as [3]:

uα = −krαk
µα

(∇pα + ραgez) = −krαk
µα

(∇pα + ραg)

Here relative permeability; krα, has been taken into account. This is due
to the fact that for multiphase flow, the actual permeability for a phase at
a given location will depend on the saturation of the other phases at this
location, but also how the phases interact with the rock. This means that
the total permeability of phase α is kα = kkrα [3].

By introducing phase mobility; λα(sα) ≡ krα(sα)
µα

, we get the following:

uα = −λαk(∇pα − ραg) (2.7)

2.1.2 Reduction of Dimensions Through Vertical Inte-
gration

A problem when modeling CO2 - brine aquifers, is that the parameters in-
cluded in our models will range over large scales, both temporal and spatial.

On the temporal scale we might have, on the largest, processes spanning
centuries. This includes for instance the post injection period. Following
this, we find the time scale of injection which typically have a lower end of 1
year. On the other side of the scale, we find the period of capillary equilib-
rium, with an approximate upper end of only a week [21].

For the spatial scale, we will typically have aquifers spanning kilometers
wide - in each direction. On the other hand, the CO2 - brine interface on
a pore scale might be of order 10−6 meters [21]. The first scale, the macro
scale, is important due to definition of domain and computational capacity.
On the latter, the micro scale, we will find the processes of mass transfer,
relative permeability, etc. We thus need approximations which can capture
processes on both sides of the length-scale we are operating in.

As we want to be able to simulate the changes our entire reservoir, we want
a model represented on the macro scale, both spatially and temporal. The
idea is to vertically integrate our model, and thus incorporate the behavior
on a micro scale into the macro scale equations by means of heterogeneous
multiscale methods (HMM). This we will do by defining a compression- and
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a reconstruction operator, denoted by C and R. The compression operator
will compress the 3D information of a variable into a 2D variable, typically by
means of integration. The reconstruction operator will give approximations
to the fine-scale parameters based on the results of the coarse scale model,
thus closing our model. An important concept in HMM is consistency, i.e.,
if we take the combined operator (RC), our coarse function will remain un-
changed.

In the following, we will use uppercase letters to denote our coarse-scale
variables, while the reconstructed fine-scale variables will be denoted by hat.
Also, the variables ξT and ξB will be used to denote the upper and lower
boundaries of our formation.

First, let us start with a compression operator for mass, which is the con-
served variable:

M i = CM imi ≡
∑
α

∫ ξT

ξB

ραφsαm
i
α dx3 =

∫ ξT

ξB

mi dx3

M i will satisfy a coarse-scale conservation law:

∂M i

∂t
+∇q·Fi = Ψi

Σ

where

Ψi
α =

∫ ξT

ξB

ψiα dx3 + Ψi
B −Ψi

T

Fi = eq·
∑
α

∫ ξT

ξB

ραuαm
i
α dx3

As we can see, the coarse scale variable Fi is a function of fine-scale variables
through uα. We will thus need to define reconstruction operators for phase
pressure and saturations.

The Dupuit Assumption

Spatial averaging of pressure is difficult, as pressure is not an additive vari-
able. What we will do is choose our compressor operator for pressure based
on subsampling rather than vertical integration, and define the sampling as
the pressure at a datum; x3 = ξP , such that

Pα = CPαpα ≡ pα(x3 = ξP ) (2.8)
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Now, we will also take into account the Dupuit assumption, which is an
assumption of no-flow perpendicular to the boundaries of our formation, i.e.:

0 ≈ uα·e3 = λα,3(sα)k3

(
∂p

∂x3

− ραge

)
This will be satisfied if

0 =

∫ x3

ξP

(
∂p

∂x3

− ραge

)
dx

′

3

⇒ pα(x3)− pα(ξP ) = (ge)

∫ x3

ξP

ρα dx
′

3

This gives us our reconstruction operator for fine-scale pressure, where the
superscript D denotes that it is based on a Dupuit assumption:

p̂α = RD
Pα ≡ Pα + (g·e)

∫ x3

ξP

ρα dx3

The Sharp Interface Assumption

When injecting CO2 at depths below 800 m, CO2 will be in a supercritical
form [20]. In a saline aquifer, the difference in density for CO2 and brine will
thus be of magnitude 100, such that CO2 will be the less dense fluid, and
typically flow above brine, along the cap rock. The depth of the interface
region between CO2 and brine can be quite thin, depending on material
properties and in particular the capillary pressure function. We will for
simplicity assume that this interface region is a sharp interface, with the
assumption of vertical equilibrium within each phase. A visualization can
be seen in Figure 2.1. As CO2 flows across the reservoir it will displace the
current phase, brine, although not completely. Some of the brine will remain
trapped in the pores, and we refer to this as the residual brine.

We now introduce the coarse scale variables we need in our sharp-interface
model. First we have the coarse-scale porosity;

Φ = CΦφ =

∫ ξT

ξB

φ dx3

As the porosity is assumed known on the fine scale, i.e., a parameter rather
than a variable, we do not need a reconstruction operator.
The coarse-scale saturation is given as

Sα = CSαsα =

∫ ξT

ξB

φsα dx3
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Figure 2.1: Our aquifer, with the two fluids separated by a sharp interface labeled ξI .
CO2 will be found in the upper layer and brine in the lower. Figure is from Nordbotten
and Celia, [21].

As we can see, the coarse scale representation still give us the equation that∑
α Sα = 1. We also vertically integrate the flux contribution;

Uα =

∫ ξT

ξB

eq·uα dx3 = −
∫ ξT

ξB

λα,q(ŝα)kq(∇qp̂α − ραeq·g) dx3

We have that

(∇p̂α − ραeq·g) = ∇qPα + ρα(g·e)∇q(x3 − ξP )− ραeqg

And by introducing

K =

∫ ξT

ξB

kq dx3

G = eqg + (g·e3)∇qξP

Λα(Sα, ŝtc) =

∫ ξT

ξB

λα,qŝα, ŝtc)kq dx3K
−1

We thus have the coarse scale conservation given by

Φ
∂Sα
∂t

+∇qUα = Υα (2.9)
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or

Φ
∂S

∂t
−∇q(Λα(Sα, ŝtc)K(∇qPα − ραG)) = Υα

Now, in the sharp interface mode, the idea is that the capillary fringe is small
enough to be neglected. This gives us the reconstructed saturation values:

ŝα =

{
sα,B x3 ≤ ξI(x)

sα,T x3 > ξI(x)

We also introduce the variable h, which is the height between different in-
terfaces, which is indicated by the subscripts. For instance, hT,B = ξT − ξB.
We can now represent the compressed saturations by means of h;

Sα = sα,B +
hT,M
hT,B

(sα,T − sα,B) (2.10)

This gives the coarse scale equation

Φ
(sα,T − sα,B)

hT,B

∂hT,M
∂t

−∇q·
[
Λα(hT,M)K (∇qPα − ραG)

]
= Υα (2.11)

where

Λα(hT,M) =

∫ ξT−hT,M

ξB

λα,q(sα,B)kq dx3K
−1 +

∫ ξT

ξT−hT,M
λα,q(sα,T )kq dx3K

−1

Now, as we can see from (2.11), we need an expression for the phase pressure,
as it is hT,M which is the variable of primary interest to us. We solve this
by keeping in mind that

∑
α Sα = 1, and sum (2.11) for each of the phases.

This gives us

∇·UΣ = ΥΣ (2.12)

(2.12) is often referred to as the pressure equation in literature. ((2.11) is
usually referred to as the saturation or transport equation). The pressure
equation can be solved with respect to UΣ in numerous ways. However, as
we aim to have a simulator implemented on a GPU, we eventually want an
explicit scheme suitable for parallelization. The fact that (2.12) is an ellip-
tic equation makes it thus less suitable for GPU implementation. There is
currently ongoing research regarding parallel solvers for elliptic PDEs, see
for instance Esler et al., [9], but this is outside the scope of interest for this
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project. So, for now, we will just assume we have solved (2.12).

In the reconstruction of the phase pressure, we chose to let Pα be given
at a sampling height, see (2.8). We now choose this sampling height to align
with the reservoir top, such that ξP ≡ ξT . This gives the expression

UΣ =−ΛbK (∇qPT − ρc(g·e)∇ξT −∆αρ(g·e)∇ξI − ρbeqg)

−ΛcK (∇qPT − ρc(g·e)∇ξT − ρceq·g) (2.13)

If we then solve (2.13) for ∇qPT :

∇qPT =
1

ΛΣ

(
−K−1UΣ + (g·e)[∆αρΛb∇(ξT − h)+

(Λb + Λc)ρc∇ξT ] + (eq·g)[ρbΛb + ρcΛc]
)

∇qPT =
−K−1

ΛΣ

UΣ +
1

ΛΣ

(g·e)∆αρΛb∇(ξT − h)+

ρc∇ξT +
1

ΛΣ

(eq·g)[ρbΛb + ρcΛc]
)

This gives the equations

Φ
(sc,T − sc,B)

hT,B

∂hT,M
∂t

+∇q·Uc = Υc (2.14a)

Φ
(sb,T − sb,B)

hT,B

∂hT,M
∂t

+∇q·Ub = Υb (2.14b)

where

Uc =
Λc

ΛΣ

(
UΣ −KΛb(g·e3)[∆αρ∇(ξT − h)]−K(eq·g)∆αρΛb

)
(2.15a)

Ub =
Λb

ΛΣ

(
UΣ + KΛc(g·e3)[∆αρ∇(ξT − h)] + K(eq·g)∆αρΛc

)
(2.15b)

2.1.3 Hysteresis

When injecting CO2 into our system, the idea is, as previously mentioned,
that the CO2 will flow along the caprock and above the brine. However,



2.2. THE NUMERICAL SCHEME 17

the brine might become completely surrounded by the invading CO2. This
leads to residual brine in the pore space, and, as it will have no connecting
paths to the rest of the brine, it will remain trapped and immobile. As
the CO2 plume moves, we will have a corresponding effect for the CO2, with
residual CO2 being trapped in the pores behind the plume. A visualization
can be seen in Figure 2.2.

ŝα


sα,B x3 ≤ ξR(x)

sα,R ξR ≤ x3 ≤ ξM(x)

sα,M x3 > ξM(x)

ξR is taken to be the furthest extent (over time) of the mobile region, such
that

ξR = min
t′∈[0,t]

ξM(t′)

This trapping mechanism is important, and will reduce the available pore
space volume. Thus, the equation (2.14) will be written as

Φ
∆sα
hT,B

∂hT,M
∂t

+∇q·Uα = Υα (2.16)

where

∆sα =

{
sα,T − sα,B if hM,R = 0

sα,T − sα,R if hM,R > 0

2.2 The Numerical Scheme

In nonlinear conservation laws one might experience discontinuities in the
solution, even though the initial data are smooth [15]. If there is a disconti-
nuity present, the PDE (2.2) does not hold, and one will have to rely on the
integral conservation law; (2.1) [15].

The finite volume methods (FVM) are numerical methods based on solv-
ing the integral form rather than the differential equation. As opposed to
finite difference methods which is based on pointwise approximations at grid
points, FVM approximate the total integral of the conserved quantity over
each grid cell. This ensures that the physical quantities are preserved within
the numerical domain.
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Figure 2.2: Our aquifer, with the two fluids separated by a sharp interface labeled ξI .
Residual CO2 will be found behind the mobile CO2 front, and residual brine will be
found in the mobile region. Picture is from [21].

The conserved variable in (2.1), namely q, is updated based on numerical
flux functions that approximate the correct fluxes. We have chosen to do
this by means of a first order upwind method. The results in an ordinary
differential equation (ODE) per grid cell, which is solved using an explicit
Euler method.

Implementing higher order schemes both in time and space will be left for
further work.

2.2.1 Finite Volume Method and Spatial Discretiza-
tion

We will be operating on grid cells, defined by

Ci,j =
[
xi −

∆x

2
, xi +

∆x

2

]
×
[
yj −

∆y

2
, yj +

∆y

2

]
For any time step, denoted by n, we let Qn

ij approximate the average value
over cell Ci,j at time t = tn:

Qn
i,j ≈

1

∆x∆y

∫ xi+
∆x
2

xi−∆x
2

∫ yj+
∆y
2

yj−∆y
2

q(x, y, tn) dy dx =

∫
Ci,j

q(x, y, tn) dx
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If we now consider (2.14a), we abbreviate the notation and write it in a more
compact way:

Φ
∂h

∂t
+∇·f(h) = Υc (2.17)

So, when integrating over (2.17), the averaged value in each cell is approxi-
mated by∫

Ci,j

∂Φ(x, t)h(x, t)

∂t
dx +

∫
Ci,j
∇·f(h,x, t) dx =

∫
Ci,j

Υc dx (2.18)

Now, by letting F (h,x, t) = ∂
∂x

f(h,x, t), and G(h,x, t) = ∂
∂y

f(h,x, t), a spa-
tial discretized version of our equation on a Cartesian grid can be written
as

∂Φi,jhi,j
∂t

= −
[
F (hi+1/2,j)− F (hi−1/2,j)

]
−
[
G(hi,j+1/2)−G(hi,j−1/2)

]
+ Υi,j

where we let F (hi,j+1) etc. be approximations of the flux over the different
faces:

F (hi,j+1) ≈ 1

∆y

∫ yj+1/2

yj−1/2

F (h(xi+1/2, y, t) dy (2.19)

Upwinding Scheme

We will use face upwind scheme to approximate the flux over each face. An
upwind method will assume that the flow of each phase can only be in one
direction, when considering the direction over one cell.

We will determine the upwind direction independently for each phase by
considering the coarse scale phase velocities from (2.15). The mobilities of
each phase will be taken from the upwind cell. If we consider the southern
face, this gives us:

Λc
i,j−1/2 =


Λc
i,j if UΣ > 0 and −

[
∇(ξT − h)(g·e3) + (eq·g)

]
> 0

or if UΣ −Λb
i−1/2,jK∆αρ[∇(ξT − h)(g·e3) + (eq·g)] > 0

Λc
i,j−1 otherwise
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Λb
i,j−1/2 =


Λb
i,j if UΣ > 0 and

[
∇(ξT − h)(g·e3) + (eq·g)

]
> 0

or if UΣ + Λc
i−1/2,jK∆αρ[∇(ξT − h)(g·e3) + (eq·g)] > 0

Λb
i,j−1 otherwise

The mobilities over the other faces are found similarly.

For each cell, the source term, Υi,j consists of what is produced in that cell
and what flows out, which again is determined by the fractional flow function.
The fractional flow for CO2, fw(sc) can be written as

fw(sc) =
Λc

Λc + Λb

The source term is therefore discretized as Υn
i,j = max(q, 0)+min(q, 0)·fw(sc).

Thus, to sum up, our final discretized scheme can be written as:

hn+1
i,j = hni,j−

∆t

Φ∆x∆y

[
F (hni+1/2,j)−F (hni−1/2,j)+G(hni,j+1/2)−G(hni,j−1/2)+Υn

i,j

]
(2.20)

2.2.2 CFL Condition and Time Discretization

We integrate the spatially discretized equation (2.20) with respect to time,
using a first order explicit Euler scheme. If we assume that the rock is
incompressible, this gives us

hn+1
i,j = hni,j −

1

Φi,j∆x∆y
∆t

[[
F (hni+1/2,j)− F (hni−1/2,j)

]
− (2.21)

[
G(hni,j+1/2)−G(hni,j−1/2)

]
−Qn

i,j

]
= hni,j + ∆tR(hn)i,j (2.22)

Explicit schemes are suitable for parallelization, but it does impose a restric-
tion on the time step, ∆t. This is known as the CFL Condition. It was
in 1928 that Courant, Friedrichs and Lewy stated a necessary, (however not
always sufficient), condition for the stability of any explicit method [15]:

CFL Condition A numerical method can be convergent only if its numerical
domain of dependence contains the true domain of dependence of the PDE,
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at least in the limit as ∆t and ∆x go to zero.

In our simulator we have implemented two ways of calculating the CFL con-
ditioned time step. The first is implemented in the MRST simulator [1, 16],
and we will thus refer to this method as MRST time stepping. This is, as we
will see, a condition which is only saturation dependent through the velocities
UΣ. Therefore, it needs only be modified when we compute a new solution
to the pressure equation. (The pressure equation, being solved implicitly,
has no time step restriction associated with it. Therefore, we will typically
require to update this more seldom than the transport equation [12].)

The second way of calculating the time step is based upon the work of
Coats [8]. This requires more computations per iteration than the MRST
method, as this depends on the phase velocities Uc, and Ub. However, when
basing our time step restriction on the current state of our system, this will
result in a time step closer to the largest one permissible. With a larger
time step, we will require fewer time steps, but it might also result in less
numerical diffusion.

Which method best suited in our simulator will depend on how much the
increased computational cost in Coats will affect the computational time per
iteration, and how big the reduction in number of time steps is.

CFL Condition, MRST

The well known CFL Condition for IMPES is given as, [8]:

Θi∆t

Φ∆x∆y
≤ 1

Here, Θ represents some function of rates and reservoir and fluid properties.

The changes in the flux function will be determined by the changes in the
gravity driven or the pressure driven velocities. The change in the pressure
driven velocity can be expressed as:

v′p =

[
UΣ

∂

∂s
fw

]
+ q,

while in the gravity driven velocity this can be expressed as:

v′g =

[
∂

∂s

(
fwΛb

) ∂
∂x
ξT

]
K∆ρg − fwΛbK∆ρg

[
∂

∂x
hT,M

]
(2.23)
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This results in the CFL condition:

∆t ≤ 1

2
min

{
Φ∆x∆y

max {v′p,x + v′p,y, v
′
g,x + v′g,y}

}
(2.24)

We will briefly make some comments on how we have implemented this: First
of all, the parabolic part (the last term of equation (2.23)) can be quite te-
dious to implement, and we have not done so. Therefore, if the CO2 plume
is very steep, and this term dominates, one will have to use Coats time step-
ping, see the section below.

When disregarding the parabolic term, we see that the only saturation depen-
dency we have, is for the derivative of the fractional flow, or the global velocity
computed in the pressure equation; UΣ. For the derivative of the fractional
flow; fw with respect to saturation, we do as implemented in MRST [1, 16]:
We use a maximum of the fractional flow function to estimate a safe time
step. This is conservative, but then the time step restriction needs only be
updated on the first iteration following an update of the pressure equation.

CFL Condition, Coats

In general, estimate the theoretical, optimal time step is difficult for non-
linear equations. We thus follow the more practical approach suggested by
Coats [8]. This means that we apply the analysis using constant coefficients
equal to local values and consider each subregion separately. Finally we
choose a globally dominant time step based on the over all lowest restriction.

For simplicity in notation, we will only derive the result for the 1D case,
but the 2D result will be discussed at the end of the section.

The equation expressing conservation of mass of CO2 in cell i in 1D is given
by

Φi

∆t
(hn+1

i − hi) = Fi1(hni−1, h
n
i )− Fi(hni , hni+1) (2.25)

We now introduce ε to denote the error between the exact solution and our
numerical solution at time t = t0 + n∆t, such that εi = hni − h̃ni . Here, h̃ni
denotes the exact solution. We now express (2.25) twice, once with hni and
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once with h̃ni . The difference between them can be written as:

Φi

∆t
(εn+1
i − εni ) =

[
Fi−1(hni−1, h

n
i )− Fi−1( ˜hni−1, h̃

n
i )
]

−
[
Fi(h

n
i , h

n
i+1)− Fi(h̃ni , ˜hni+1)

]
=
[
Fi−1(hni−1, h

n
i )− Fi−1(hni−1 − εni−1, h

n
i − εni )

]
−
[
Fi(h

n
i , h

n
i+1)− Fi(hni − εni , hni+1 − εni+1)

]
Using the first Taylor terms, this can be written as

Φi

∆t
(εn+1
i − εni ) = εni−1

∂Fi−1

∂hi−1

− εni
(∂Fi−1

∂hi−1

+
∂Fi
∂hi

)
− εni+1

∂Fi
∂hi+1

= aiε
n
i+1 − biεni + ciε

n
i−1

By using Von Neumann stability analysis, (see appendix in the article by
Coats [8]), the resulting stability condition is

∆t

Φ
(ai + bi + ci) ≤ 2ai + ci ≤ bi

As ai + ci = bi, this simplifies to

∆t

Φ

( ∂Fi
∂hni
− ∂Fi
∂hni+1

)
≤ 1 (2.26)

For the calculation of ∂Fi
∂hi
− ∂Fi

∂hi+1
, we differensiate equation (2.15). There

are four potential outcomes, as we have two cases of countercurrent and two
cases of cocurrent flows. (Brine and CO2 can either flow in the same direction
or in opposite directions.) We will do the calculations using the upstream
weighting, and for the cause of an example, assuming Λb = Λb(hi+1), Λc =
Λc(hi). Thus, to simplify notation, we only use an asterix on the phase
mobilities to represent differentiated with respect to hi+1 when differentiating
Λb, and with respect to hi when differentiating Λc. We have also introduced
Λt = Λb + Λc.

∂Fi
∂hi
− ∂Fi
∂hi+1

= −K∆ρg

[
Λ′bΛcΛt − ΛbΛcΛ

′
b

Λ2
t

− ΛbΛ
′
cΛt − ΛbΛcΛ

′
c

Λ2
t

]
(∇ξt −∇h) + ...

= −K∆ρg
[
Λ′b

Λ2
c

Λ2
t

− Λ′c
Λ2
b

Λ2
t

]
(∇ξt −∇h)K∆ρgΛb

Λc

Λt

2

∆x
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The same procedure can be done for the other countercurrent case, as well
for the two cocurrent cases, but the final result will be the same. After some
rewriting, the expression can be written as

∂Fi
∂hi
− ∂Fi
∂hi+1

=
Λc

ΛbΛt

|Ub,i|Λ′b +
Λb

ΛcΛt

|Uc,i|Λ′c + K∆ρgΛb
Λc

Λt

2

∆x
(2.27)

The stability analysis outlined in this section is as mentioned only for one
dimension. However, as discussed in [8], when advancing to two (or three)
dimensions, one only has to add an additional term of identical form for each
additional dimension.

To conclude on this chapter, we now have the mathematical background
we need for our simulator: We have the governing equations, the numerical
scheme and the time step restriction. The actual implementation will be
discussed in Chapter 4.



Chapter 3

GPU Programming Concepts

In this chapter we will describe the architecture of NVIDIA GPUs, and in-
troduce the CUDA programming model.

Increasing the performance of a computer has been a goal ever since the com-
puters were introduced. Traditionally, increasing a processor’s clock speed,
has been considered one of the main ways in achieving this. However, due
to heat and power restrictions, manufacturers also had to consider other
means. [26].

Late in the 80’s, in order to release some of the workload of the CPUs,
special processors were introduced to take care of the continuously increas-
ing amount of graphics operations. In 1999, NVIDIA introduced their first
graphical processing unit (GPU), the GeForce 256 graphics card. While
GPUs originally were supposed to do the required calculations for a better
visual experience, they would also turn out to be useful in non-graphical,
scientific applications. As the multi-core CPUs originally are constructed to
perform simultaneous execution of multiple applications, they are designed
to execute a single thread very fast, and will spend much effort on complex
logic. GPUs on the other hand, rather gain performance benefits by exe-
cuting multiple threads, and are optimized to do fast computations instead
of complex logic. [6], [25]. As a result of this, algorithms intended for non-
graphical applications, can benefit from the architecture of the GPUs, if they
are suitable for parallelization.

As one started to exploit the non-graphical use of the GPU, one had to use
graphic libraries, such as OpenGL in order to have calculations done [25].

25
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But then, in 2007, NVIDIA released CUDA-SDK , a parallel computing
language dedicated to use on GPUs. Based around C, C++ and Fortran, de-
velopers could now proceed without use of the traditional graphic processing
languages.

3.1 GPU Architecture

Optimizing GPU accelerated code is not a trivial task. The performance will
highly depend on memory transfer, and how many threads of execution one
choose to run at the same time. This in turn will depend on the underlying
architecture of the GPU. The following description is based on specifications
for the Fermi Architecture. For a more detailed description, we suggest read-
ing NVIDIAs own paper on the architecture [22], and ”GPU programming
strategies and trends in GPU computing” by Brodtkorb et al. [5] which the
following section is a short summary off. Or, for a description of the newer
GPU architecture available from NVIDIA, we suggest reading about the Ke-
pler Architecture [24].

In a Fermi-based architecture, one can find up to 512 accelerator cores, called
CUDA cores. Each of these cores have an integer arithmetic logic unit and
a floating point unit, executing one integer or floating point instruction per
clock cycle. These 512 CUDA cores are divided into 16 streaming multi-
processors (SMs), giving each multiprocessor a total of 32 cores each. The
multiprocessors also have 16 load / store units each, making it possible to
calculate source and destination addresses for 16 threads per clock. Tran-
scendental instructions, such as sine and square roots, are executed by four
Special Functions Units, which execute one instruction per thread, per clock.

Each SM operates in a SIMD - single instruction multiple data, kind of way.
They execute 32 threads (a warp) simultaneously. Multiple warps can be ac-
tive at the same time, thus reducing latency from computations or memory
transfer.

A visualization of the Fermi architecture can be found in Figure 3.1.
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Figure 3.1: To the left we see the Fermi architecture with its 16 multiprocessors
surrounding the L2 cache available to all the cores. The green represents the execution
units while the light blue represents local register file and L1 cache. To the right we
see one of the SMs contained in the architecture on the left. The Figure is from
Brodtkorb et al., [5].

Memory Organization

Memory units on GPUs are divided into three areas; registers, shared memory
and global memory. Each thread within a multiprocessor will have it’s own
private register, which are the fastest memory unit out of the three. Shared
memory, being the second fastest memory unit, is accessible to all threads
within one multiprocessor. Lastly, the slowest memory type is the main
memory of the GPU, also referred to as global memory. A visualization of
the memory hierarchy can be found in Figure 3.2.
The Fermi Architecture also include L1 and L2 caches, which operate in a
way comparable to the CPU caches, but it also have caches related more to
traditional graphics operations.

3.2 CUDA Programming Model

With the introduction of CUDA - ”compute unified device architecture”, exe-
cuting programs on the GPU became possible without knowledge of graphical
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Figure 3.2: The Fermi architecture memory hierarchy. The picture is from NVIDIAs
Whitepaper, [22]

Figure 3.3: The CUDA processing flow. Picture is from Milo et al. [19].

programming concepts. The CUDA processing flow can be seen in Figure
3.3. And as the figure shows, the main idea is to initialize the data on the
host (the CPU), copy the data to the device (the GPU), execute the GPU
program, and copy the data back to the host. A function running on the
GPU will be referred to as a kernel [25]. During kernel execution on the
GPU, the CPU can continue doing its own computations, and then synchro-
nize with the GPU as results are needed.

The CUDA programming model organize the threads in a hierarchy; a spec-
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ified number of threads are gathered in blocks, which again are gathered in
grids, see Figure 3.4 [25]. When executing a kernel, you launch it on one grid
at the time, thus letting each block be handled by one single multiproces-
sor. This provides the threads within each block access to the same shared
memory, as discussed in the previous section. To take advantage of the fact
that the SMs can execute one warp at the time, we would therefor want the
number of threads within each block to be a multiple of 32.

As indicated in Figure 3.4, each thread is assigned a unique thread id within
a block, and each block is given a unique block id within the grid. Thus
making it possible for threads executing the same code to work on different
data.

Figure 3.4: The CUDA thread hierarchy. Each grid consists of multiple blocks, which
again consists of multiple threads. Each block is executed on a streaming processor,
making it possible for threads within the same block to access the same shared data.

When optimizing the performance for code run on GPU, all of the parame-
ters mentioned above have to be taken into account. If frequently used data
is kept in shared memory, this reduces the cost of memory transfer. When
deciding on number of warps per streaming multiprocessor, we want to keep
the number as high as available register and shared memory allows [7].
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Chapter 4

A CO2 Migration Simulator on
the GPU

We will in this chapter present our CO2 simulator on the GPU. The first
sections give an overview of how we have implemented the simulator. We de-
scribe the program flow; the C++ interface and the CUDA kernels. Following
this we present the results. This includes verifying our results in comparison
with the MRST simulator, but we also compare the two different dynamic
time step approaches. (Coats time stepping and MRST time stepping, see
Section 2.2.2.) This is followed by an analysis of performance when using a
GPU. We describe the different parameters we found to affect the speed-up,
including grid size, block configuration etc.

For simplicity, we state the equation we aim to solve once again:

Φ
∆sc
hT,B

∂hT,M
∂t

+∇q·Uc = Υc (4.1)

where we recall that Uc, the phase velocity of CO2, also includes the term
UΣ, which is the solution from the pressure equation. As previously men-
tioned, solving the elliptic pressure equation is outside the scope of interest
in this thesis and we leave this for further work. Thus we rely on MRST to
get this variable.

It has been shown by Ligaarden and Nilsen [17] that when using a Vertical-
Equilibrium model, there is a stronger decoupling between the pressure equa-
tion and the transport equation for the migration phase as opposed to a 3D
model. We have therefore implemented support for (4.1) where we neglect
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the contribution from the pressure equation. This will simplify the computa-
tions, but also result in us reading fewer variables from global memory. The
impact this has on performance is further discussed in Section 4.4.

We also have the discretized scheme:

hn+1
i,j = hni,j −

∆t

Φ∆x∆y

[
F (hni+1/2,j)− F (hni−1/2,j) +G(hni,j+1/2)−G(hni,j−1/2) + Υn

i,j

]
= hni,j +

∆t

Φ∆x∆y
R(h)ni,j

(4.2)

On each time step, ∆t, is found by

∆t ≤ r

Φ∆x∆y

where the CFL restriction r is found using either the approach of Coats or
MRST.

4.1 Implementation

Our simulator is based on the work of Brodtkorb et al. [6, 7], and is written
using C++ and NVIDIA CUDA [23]. The C++ code handles the initializa-
tion process and data transfer, but all of the computations are taken care of
solely by the CUDA kernels on the GPU [6,7]. We can also store the results
from our simulator using NetCDF [2].

4.1.1 C++ Interface

Our C++ interface is responsible for all data allocation and deallocation, as
well initialization and data transfer between the CPU and GPU [6, 7]. It is
also the CPU which invokes the CUDA kernels.

A visualization of the program flow can be seen in Figure 4.1. After initializ-
ing the simulator class, we first check whether to solve the pressure equation
or not. (As previously mentioned, this does not have to be solved on every
iteration, [12].) We then enter the step function. This is where all of the
computations are performed, i.e., the CUDA kernels are invoked. As we use
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Figure 4.1: Our program flow. Initialization is done on the CPU, while the step
function run one time step on the GPU. We can also exit the simulation loop and
visualize using netCDF. Picture is a modified version of the one found in [7].

a dynamic time step, we cannot know how many time steps to perform in
advance. Hence, we check after each iteration how far in the process we have
gotten. This also gives us the opportunity to write output data to NetCDF
files if we want to.

Our simulator will always assume a rectangular domain. This makes the do-
main decomposition, see Figure 4.4, much easier. For realistic cases however,
this is not necessarily the case. Therefore, a parameter indicating whether
a cell is within the actual domain or not is needed. A visualization can be
seen in Figure 4.2. We have chosen to indicate cells outside the boundary
by a negative height of the reservoir. This approach reduces the amount of
memory we have to read from global, as opposed to storing the parameter
as an extra variable.

Every value stored is in single precision, meaning that data transfer and
arithmetic operations will execute approximately twice as fast [7]. For a
detailed description of how this affects the numerical results compared to
MRST which use double precision, see Section 4.3.1.

4.2 GPU Implementation

In Figure 4.3, we show the CUDA kernels involved in the step function.
When simulating using Coats’ time stepping, the kernels are executed in the
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Figure 4.2: To the left we have a non-rectangular domain, which on the right hand
side has been fitted to a rectangular domain on the simulator. The cells outside the
original domain are indicated with a negative reservoir height.

order visualized in a), while for the MRST approach they are executed in the
order visualized in b). For Coats time stepping, we see that we first of all do
the flux calculations, before we find the maximum time step allowed, based
on the CFL condition. Then we move on to performing the Euler time step,
and finally we impose the boundary conditions. For the MRST approach on
the other hand, we only need to calculate the maximum time step on the first
iteration following an update from the pressure equation. Thus, whenever
this is not the case, the arithmetics involved are simpler.

Figure 4.3: The CUDA kernels in the step function from Figure 4.1. a) shows the order
of the kernels when simulating with the dynamic time step using Coats’ approach, while
b) shows the order when simulating using the approach of MRST. Notice the dotted
line in b), indicating that this kernel is invoked only on the first iteration following the
pressure equation.



4.2. GPU IMPLEMENTATION 35

Before we launch our kernels, we do a domain decomposition, as illustrated
by Figure 4.4. Our global domain is decomposed into blocks which can be
executed independently. Since we are in need of neighbouring cells when
computing the flux over the interfaces, the blocks each have local ghost cells.
These overlap with the neighbouring, local boundary cells of the other blocks.
As opposed to the original simulator [6,7], we have a first order scheme, both
in time and space. When decomposing our domain, we therefore need only
two global ghost cells in each direction, versus four in the original simulator.
This gives us a larger amount of available shared memory per block, and also
a reduction in number of cells we have to process.

Figure 4.4: Our domain decomposition. The global domain is partitioned into blocks
(e). They each have local ghost cells (d), to make sure the stencil (b) kan access cell
information from other blocks. All of our variables are stored in cell centers (a), which
the interface flux is calculated from.

In the following, we will describe the implementation of our kernels. As
the flux kernel is the most expensive one, see Table 4.1, this is described
a bit more thorough. All of the kernels are also based upon the work by
Brodtkorb et al., [7].
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Flux Computation Kernel

This is the kernel where we compute the flux contributions F and G from
equation (4.2). As in the original simulator, we start by reading all the re-
quired variables from global to shared memory. This includes height and
historical maximum height of CO2, the reservoir properties; topography,
height, porosity, permeability and information regarding well(s), along with
the fluxes computed in the pressure equation - namely UΣ. UΣ have con-
tributions for both the x- and the y-direction. We also need to store F and
G in shared memory. However, as shared memory is a limited resource we
have chosen to store F and G in UΣ,x and UΣ,y respectively, after these have
been used in their required computations. We only have to make sure we
synchronize the threads. This means that within a block of threads, none of
the threads can do any further computations before they have all reached
the synchronization spot in the kernel. If not, we would (possibly), read and
write simultaneously to the same variable. It complicates the kernel, but
allows us to use less of the shared memory. This again allows each streaming
multiprocessor to keep more blocks active at the same time, which improves
the performance. For an overview on the effects of this approach see Section
4.4.2.

Before writing the result back to global memory, F and G are added to-
gether into R, to reduce the memory transfer [7]. In case of Coats time
stepping, or whenever needed by MRST time stepping, the flux kernels also
compute the CFL restriction - r, on each face. We then use shared memory
reduction to find the minimum r within each block. This results in that we
need only to write one value for r per block to global memory. Also, the
maximum time step kernel need only check one value per block.

Maximum Time Step Kernel

The maximum time step kernel is a simple kernel very similar to the one
found in the Shallow Water Simulator [6, 7]. This kernel consists of only
one block, with n threads. Depending on the size of the grid, the flux ker-
nels may consist of hundreds of blocks. Now, each thread within this single
block strides through the dataset containing r. Therefore, thread t0 consid-
ers r from the flux kernel blocks t0 + kn, thread t1 considers r from blocks
t1 + kn etc. Once all the variables has been read into shared memory, we
use shared memory reduction to find the minimum r across all the n threads.
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Finally, ∆t is computed based on the restriction in r. If we simulate during
injection, ∆t is compared to the maximum value we can have before we need
to solve the pressure equation again.

Time Integration Kernel

In this kernel we perform the time integration based on the explicit Euler
method. Here we are not limited by shared memory, and we do not need
any local ghost cells. This is a result of us storing R for each cell in the flux
kernels, as opposed to storing F and G separately [6, 7].

We read both the height and historical height of CO2, along with R and
∆t into per-thread register. They are then updated, before the height and
historical height is written back to global memory.

Boundary Condition Kernel

For the boundary conditions we have used global ghost cells, see Figure 4.4.
We have a first order scheme, and therefore we require one global ghost cell
in each direction. As we run this kernel at the end of each full time step, we
do not need to treat the boundary cells any different than other cells in the
flux computation kernel [6, 7]. We have focused on implementing a no-flux
boundary condition, and we do this simply by mirroring the values in the
neighbouring cell.

In the case of a non-rectangular domain, we have as previously mentioned,
indicated the boundary by a negative height of the reservoir, see Figure 4.2.
In this case, the fluxes F and / or G is always set equal to zero, but then
this is taken care of in the flux kernels.

4.3 Numerical Results

In this section we consider the numerical results from our simulator. We
start by comparing our results with the MRST simulator. Following this we
compare the two different time step approaches.
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4.3.1 Verification of Simulator

(a)

(b)

Figure 4.5: The test case for Section 4.3.1. a) Shows the reservoir seen from above,
with the well indicated. The stapled line shows where the figure in b) is taken from.
The case is from ”runSlopingAquiferBig.m” in MRST, [1, 16]

Before anything else, we want to verify that our simulator produces the
correct results. We compare our results to the results provided by MRST.
However, while MRST uses double precision, we run our simulator using sin-
gle precision. As previously mentioned, when using single precision on the
GPU, data transfer and arithmetic operations will execute roughly twice as
fast [7]. As our aim has been increased performance, we have thus chosen
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this approach.

The test case we have chosen is a sloping aquifer.1 This test case consists
of 160 x 160 cells, where each cell spans 250 m in every direction. A visual-
ization can be seen in Figure 4.5. The upper figure shows the domain seen
from above, while in the lower one we show a 2D cut from the side. This
cuts through the axis where the well is located.

In Figure 4.6 we show how CO2 migrates across the reservoir. First dur-
ing 100 years of injection, and secondly during 100 years after injection has
ended. Especially for the post-injection case, we can see how the structure
of the reservoir traps the CO2 .

Regarding the accuracy, we first start off by discussing the results in Fig-
ure 4.8. This plot shows the maximum error in height of CO2 between
MRST and the GPU Simulator. We found this error to be located in ar-
eas where the two velocities which contributes to R; gravity driven and
pressure driven, were close in magnitude - not in direction. This produces
an error which is more visible when simulating with single precision as op-
posed to double precision. Another factor which is also affecting this, is that
when we update the height of CO2, we compute ∆t

Φ∆x∆y
R. However, since

we need to update the pressure after a given period of time, we require that
∆t = min{∆t, time until pressure is updated}. If ∆t then is small, this will
also result in a difference compared to the double precision simulator.

Even though the maximum error might appear big, note that in Figure
4.7 that after 100 years of injection, the cells actually containing CO2 are
the same in both simulators. This shows that even though there are differ-
ences, (in this case, never larger than 0.4 m) the behavior of the simulators
are the same.

To conclude, we see that when using single precision to improve the perfor-
mance, we do loose accuracy in comparison with using double precision. If
one is to simulate CO2 storage, one would therefore need to consider whether
this accuracy loss is significant when one take into account the simplifications
made. It is also worth mentioning that for newer GPU architecture, Fermi,
there has been implemented the FMA (fused multiply-add instruction) for
single precision [22]. This reduces the error when doing a multiply and add in-
struction, by having a single rounding step instead of two separately, which is

1 See the example ”runSlopingAquiferBig.m” in MRST, [1, 16]
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Figure 4.6: A 2D cut from the test case in Figure 4.5, during 100 years of injection
and 100 years of migration. The green area is the aquifer, initially filled with brine,
while the blue area is the CO2 which we can see migrates across the reservoir.
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Figure 4.7: Top: The distribution of CO2 in the reservoir, after 100 years of injection.
Bottom: The cells where the error between our simulatar and the MRST simulator is
> 1e− 2.
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Figure 4.8: The maximum error during 100 years of injection. The maximum error is
located where the contributions from the gravity and pressure driven velocity differ in
direction but are close in magnitude.

the case in MAD (multiply-add) instructions. MAD is what is implemented
in the our NVS 3100M device. It could thus be interesting, if one has a
newer GPU available, to see if this could reduce the error when using single
precision.

4.3.2 Coats Time Stepping versus MRST Time Step-
ping

In our simulator, we have implemented support for simulating using both
MRST time stepping (Section 2.2.2) and Coats’ time stepping (Section
2.2.2). We will now briefly motivate the reason for this.

In the MRST module, one simulates the VE model using the CFL condition
referred to as ”MRST time stepping” [1, 16]. This, as mentioned in Section
2.2.2, will only need to be updated after each update of the pressure. For
the segregation part of the problem, this is (relatively) straightforward. And,
if the CO2 plume is not too steep, the segregation part will also be the the
dominating term in the CFL condition [17]. However, if the parabolic term is
the dominating term in the transport equation, one needs to find the eigen-
values of the system, in order to determine the time step restriction. This
can be a tedious part to implement, and as it is outside the scope of interest
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for this thesis, we have not focused on this. Therefore, if simulating with
MRST time stepping on the GPU simulator, this might give instabilities in
the results.

Coats time stepping requires us to find the maximum allowed time step after
each iteration. It is therefore less strict, as it will adapt better to the state
of the system.

In Figure 4.9, we see the difference when simulating using MRST time step-
ping and Coats’ time stepping. The test case is the Johansen formation [17],
and we simulate 60 years of migration. The initial conditions are based on 30
years of injection. This results in the segregation part dominating the time
step restriction, as required.

What we can see from the figure, is that Coats time stepping will complete
the simulation the fastest. This is the result of that it only requires 25 time
step to complete the 60 years, as opposed to 38, for the MRST approach.
Thus, even though the flux kernels require fewer computations when simulat-
ing with MRST, the fact that the time strep restriction is more conservative
hides this performance gain.

As we have seen that the Coats time stepping results in a faster simu-
lator, we have for the remaining of the results simulated on this approach.
It also allows us to simulate for all cases; not just when the segregation part
is dominating.

4.4 Performance Results on the GPU

What we eventually want when having a GPU based simulator, is perfor-
mance gain. There are multiple factors which can affect how well our sim-
ulator performs. Not only should the algorithms be optimized, hardware
specifications will also play a vital part. This includes optimizing the block
size configuration; having kernels which are balanced in terms of memory
transfers and computational costs; and being able to fully utilize the GPU
resources.

In the following section, we have based all of our runtime values on migration
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Figure 4.9: Simulating 60 years of migration on the Johansen formation, using MRST’s
way of computing time steps (blue) and Coats way of computing time steps (red).

on the Utsira formation2. The Utsira formation is located outside the west-
coast of Norway, and there is currently an ongoing CO2 storage project here
on parts of the formation, i.e., the Sleipner field [11]. Therefore, this example
is especially interesting. In Figure 4.10 we have included a 2D overview of
the formation. As the GPU simulator assumes a rectangular domain, we see
from the figure that on this case, a large amount of the domain is outside
the physical boundaries.

Unless otherwise specified, this grid consists of 592x1698 cells, or 1 005 216
cells. Due to memory restrictions using MRST, we have not been able to
simulate injection on this case. Thus, the initial height of CO2 has been
created by means of a Gaussian distribution.

Also recall that Ligaarden and Nilsen [17] found that when simulating
during the post-injection period, there was a stronger decoupling between
the pressure equation and transport equation when simulating based on a
vertical equilibrium model, as opposed to a full 3D model. They suggested
that this could be taken advantage of for performance purposes. We have
therefore also implemented support for a kernel which neglects the contri-

2See the example ”utsiraMigrationFromSleipner.m” [1, 16] for more information re-
garding this example.
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Figure 4.10: A 2D plot of the Utsira formation. The black arrow indicate the well at
the Sleipner field, where CO2 injection is currently ongoing.

butions from the pressure equation. This will then require to read fewer
variables from global memory and it will also require fewer computations.
Hence, in the following section, we refer to the two different kernels as the
injection kernel and the post-injection kernel. The latter might also be re-
ferred to as the migration kernel.

Even with the simplified computations in the migration kernel, the flux ker-
nels are by far the most expensive, as can be seen in Table 4.1. This section
therefore focus mainly on the flux kernels, as this is where any optimizing
will have the largest impact.

Table 4.1: Percentage of total simulation time on the Utsira formation

Injection kernel Post-injection kernel
Flux kernel 88.7 % 79.3 %
Time integration kernel 9.7 % 16.4 %
Boundary condition kernel 0.4 % 0.8 %
Maximum time step kernel < 0.1 0.1 %



46 CHAPTER 4. A CO2 MIGRATION SIMULATOR ON THE GPU

4.4.1 Optimizing the Flux Kernels

For a GPU kernel, there are mainly three bottlenecks one can encounter.
The kernel may be limited by instruction throughput, memory throughput
or latencies [4]. The communication between the CPU and the GPU, along
with synchronizations, may also be dominating bottlenecks. We will start
by looking into our flux kernels to see if they are bounded by bandwidth, or
arithmetic operations.

Math Bound versus Memory bound Kernels

To profile CUDA kernels one can use the profiler tool developed by NVIDIA;
CUDA Visual Profiler . To identify how many arithmetic operations a kernel
performs, one can simply look at the instruction-to-byte ratio. However, it
is not always the case that the profiler reports accurate figures in this mat-
ter [4]. We have therefore chosen to instead follow the method described in
”GPU Computing in Discrete Optimization”, which were found to be more
accurate by Brodtkorb et al. [4]. The idea is to create one kernel which only
performs the arithmetics from the original kernel, and one which only per-
forms the memory transfers. When comparing the runtime for each of these,
we get an estimate of how well the overlap between memory operations and
arithmetic operations are.

The memory kernel reads all the required variables from global memory into
shared memory and adds them together. (The reason we add them together,
is to make sure the compiler does not regard them as useless, and overrides
the instruction to read them.) They are then stored in R, before written to
global memory again.

For the arithmetic version of our kernel, we commented out all of the re-
quired readings from global memory, and just performed the arithmetics.
The compiler will strip away everything which does not add to the final re-
sult. This is handled by putting all load / store operations into a condition
which at runtime always will be evaluated to false.

For the math kernel, we have two different results, depending on the cur-
rent state of the system: If there is CO2 in the cells we are computing on,
you have to complete all the computations. If there is no CO2, we do not
have to complete the computations - we know that the contributions to R is
zero, and we know that this interface will not be the interface limiting the
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time step. Thus, the ratio between the math kernel and the memory kernel
will change as the system changes.

In Figure 4.11 we show the different runtimes between the arithmetic and

Figure 4.11: Runtime (in ms) for the math kernel, arithmetic kernel in comparison with
total time using the flux kernel for injection. Top: Simulation on dry cells. Bottom:
Simulation on wet cells.

the memory reads for the injection kernel. The migration kernel is shown is
Figure 4.13. We consider the injection kernel first.

What we actually want, is a kernel which is well balanced between the math
and the memory transfers. However, in our case we see that in the wet cells,
our kernel is bound by the arithmetic. This means that it is the amount of
computations which mainly contributes to the total runtime.
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One factor which may improve performance for the arithmetic within wet
cells, is to remember the way a GPU executes its instructions: 32 neighbour-
ing threads, called a warp, execute the exact same instructions. This is one
of the advantages of a GPU. However, if we within the code have branching
- typically represented by an if-else statement, all of the threads will execute
the same code. For instance, if our code looks like this:

if CO2 > 0 : function-a()
else : function-b()

Then, if all of the threads in the warp contain CO2, only function-a() will be
called. If, on the other hand, some of the threads do not contain CO2, then
each thread will call function-a() and function-b(), before masking out what
is not relevant to the particular case [4]. An illustration can be seen in Figure
4.12. The result of this, is that in the worst-case scenario, we might slow
down our code by a factor of 32.

Figure 4.12: Branching of code within a 32-wide warp the GPU. As we can see, all
of the threads needs to perform the same computations, but the result is masked out
whenever they do not apply. The Figure is from Brodtkorb et al., [4].

To avoid this kind of branching, one can try to sort the domain beforehand.
In the case of the Utsira formation, this could for instance involve sorting
based on cells which are within the physical domain or not. Then we would
maximize the amount of warps which evaluate to false when considering
whether we need to do the computations or not. Another technique is to
let the CPU perform the branching: Then we can use templates to create
two kernels; one for those which are true, and one for those which are false [4].

Another way of reducing the cost of the math kernel could be to lower the
amount of computations, by reading more variables to / from global memory.
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This would, however, then become another costly (and unnecessary) memory
transfer in the dry cells.

For the dry cells, we see that it is the memory transfers which is respon-
sible for most of the total runtime. But, an interesting feature is that even
here, the arithmetic contribute to a large amount of total runtime. This is
the result of two things in particular: First, we still need to compute the min-
imum CFL restriction r - any dry cell cannot know whether the surrounding
cells are dry. Secondly, we have to still check if the cell is dry, and when
we compute R from Rx and Ry, we also have to check if the neighbouring
cells are within the physical domain or not. (Recall that the physical domain
might be non-rectangular, even if the final grid is not.) Thus, in total, we
see from the figure that dry cells require 54 % of the total runtime that wet
cells have.

For the post-injection case in Figure 4.13, we see the same trend as in the
injection case. The memory reads are cheaper - not surprisingly: we read
fewer variables. For the arithmetic, on the other hand, these are cheaper
in wet cells. But, for dry cells, they cost the same as in the post-injection.
Thus, in this case, the dry cells actually take as much as 60 % of the time
that the wet cells do.

Hence, these results shows that for wet regions we can mainly improve perfor-
mance by improving our computational algorithms. It also shows that even
dry regions contribute largely to our computational costs. Mainly in terms
of memory transfer, but also in terms of arithmetic. This suggests that we
can benefit from having a way of checking if there actually is any CO2 in the
block we are currently operating on. This will especially have a large effect
on formations which mainly are dry, or when simulating on non-rectangular
formations which result in large numerical grids. Both which is the case on
the Utsira formation.

When trying to further improve our kernel, we have focused on trying to
reduce the costs connected to the dry cells. Although we have seen that
there is a great potential to reduce the costs in wet cells as well, we found
that for most of the cases we have considered, the amount of dry regions are
much larger than the wet regions. So for now, we leave the improvement of
the wet regions for further work.



50 CHAPTER 4. A CO2 MIGRATION SIMULATOR ON THE GPU

Figure 4.13: Runtime (in ms) for the math kernel, arithmetic kernel in comparison with
total time using the flux kernel for migration. Top: Simulation on dry cells. Bottom:
Simulation on wet cells.

Early Exit in Dry Blocks

In the following, we describe the implementation and results of an approach
where we have tried to reduce the costs connected to regions without CO2. It
is based on the work done by Brodtkorb et al. in the original simulator [6,7],
and we refer to this approach as an ”early-exit” option within dry blocks.

To implement support for early exit in dry blocks, we let both the flux kernel
and time integration kernel have access to a vector D, of size nbx×nby. Here,
nb indicates number of blocks. Now, in the time integration kernel, we use
global reduction to check if any of the cells in the current block contain any
CO2, or if there is any flux over any faces. If there is, we indicate this by
letting D(bx, by) = 1, and otherwise, D(bx, by) = 0. Here we have used bx
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and by indicate the current block. In the next time step, when we enter the
flux kernel on block (bx, by), we need to make sure none of the surrounding
blocks contain any CO2. Thus we let a thread read 5 values from D - the
value corresponding to its own block, but also the blocks on its left, right, top
and bottom. If none of the above contain any CO2, we exit the kernel for this
block. Otherwise, we continue with the memory transfer and computations.
When using the early exit option, it is also important to keep the block size
configuration (see Section 4.4.2) the same for the flux kernels and the time
integration kernel.

An overview of the average runtimes can be seen in Figure 4.14. It shows
the runtime per time step. As we can see, the early exit option increases
slightly the simulation time in blocks where there is CO2, both for the injec-
tion and the post-injection kernel. This makes sense, as we need to read an
additional variable from global memory. However, the reduction in runtime
for dry blocks is in comparison drastic. We can also see the largest change
in the injection kernel. This is as expected, as even for dry blocks this kernel
is the most expensive.

In Figure 4.15, we have shown the result of simulating 750 years of migration
on the Utsira formation. For each of the cases we run the computations using
the optimal block size configuration (see Section 4.4.2).

This plot also clearly shows why we have chosen to implement two different
flux kernels: If we consider the case where early exit option is disabled, we
see that the migration kernel has a 25 % reduction in overall runtime!
To conclude, the performance gain will be the largest when the CO2 occupies
a small fraction of the reservoir. It might also decrease as time evolves, as
we will then typically have CO2 in more cells - even if this was not the case
with these initial conditions.

4.4.2 Hardware Specific Optimization

We recall from Section 3.1, that different GPUs have different architecture.
As a result of this, different configurations will optimize for different GPUs.
We have been simulating using the NVIDIA GT218 device, and have thus
aimed to optimize for this. In this section we will start of by describing
how different block size configurations affects the performance. We will also
consider when we are really capable of fully taking taking advantage of the
GPU resources, in terms of grid sizes.
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(a)

(b)

Figure 4.14: Difference in run time when using the early exit option and not. a) Shows
the injection case, while b) shows the migration phase.
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(a)

(b)

Figure 4.15: Total runtime on the GPU, when simulating 750 years of migration on
the Utsira formation. The runtime is measured after every second year.
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Optimal Block Size Configuration

As described in Section 3.1, a CUDA kernel is executed in parallel across
a set of parallel threads. These threads are organized by the programmer
(or compiler) into blocks, which again is organized into grids of blocks. Each
block has a per-block shared memory space used for communication amongst
threads. When a block is ”active”, i.e., a thread within this block has started
executing the kernel, this block will stay ”active” until all the threads within
this block has finished. It is the SM (streaming multiprocessor) that executes
one or more blocks in parallel. They execute 32 threads simultaneously, called
a warp. All of the threads within a warp belong to the same block. Thus, to
reduce latencies, we want to keep our block size a multiple of 32.

On the NVS 3100M device, we have 2 multiprocessors available. Each of
these can keep 32 warps active at the same time. That is, a total of 1024
threads per SM. (Also recall that in the flux kernels, we let one thread op-
erate on each grid cell.) Increasing the number of warps kept active, will
increase the occupancy. The occupancy is a measure of how the streaming
multiprocessor can hide memory latencies. When a warp stalls, the proces-
sor will instantaneously switch to another warp. We therefore want as many
warps per SM as we can get. However, this might be limited by shared mem-
ory usage, register usage and block size.

Another aspect to consider when aiming for optimal block size, is that keep-
ing as much of frequently used data in shared memory as possible improves
the performance. Also, as we use local ghost cells within each block (see
Figure 4.4), we want to keep the size of shared memory as square as possible.
This minimized the ratio between internal cells and ghost cells.

Each of our streaming multiprocessor have 16 KB shared memory available,
and each block also have maximum 16 KB shared memory available. Thus,
we cannot have block size configuration which requires more than this. As
previously mentioned; for the injection kernel we store nine variables per
thread cell, and for the migration kernel this is reduced to eight.

In table 4.2, we show the average duration for the two types of flux ker-
nels which we have implemented. The results are obtained using NVIDIAs
profiler tool; nvprof. The test case is the same as previously, the Utsira for-
mation consisting of 592 × 1698 cells. It should also be mentioned that the
exact duration of the kernels changes based on the actual domain and cur-



4.4. PERFORMANCE RESULTS ON THE GPU 55

rent state of simulation. We saw this in the previous section; cells containing
CO2 take more time to handle than cells without CO2 . However, the trend
is the same, and we include the table to give an overview. The simulation is
also run without the early-exit option we presented in the previous section.
This is to best see the difference for the different block configurations.

Table 4.2: Average duration and shared memory usage for the two flux kernels using
different block configurations on the Utsira formation.

Block Flux compuations
config Injection kernel Post-injection kernel

Avg. duration Shared mem. Avg. duration Shared mem.
8x8 31.958 ms 3616 23.473 ms 3216
16x8 29.845 ms 6496 22.353 ms 5776
16x10 26.499 ms 7792 19.979 ms 6928
15x11 29.712 ms 7972 22.685 ms 7088
16x12 38.590 ms 9088 18.483 ms 8080
16x16 32.754 ms 11680 24.086 ms 10384
20x16 31.730 ms 14272 24.039 ms 12688
22x16 32.524 ms 15568 24.023 ms 13840
24x16 - - 21.138 ms 14992

As we can see from the table, the optimal block configurations in the two
flux kernels are not the same. We first consider the injection kernel.

We found the optimal block configuration for the injection phase to be blocks
with 16x10 (= 160) threads. Each block will then use approximately 7.7 KB
shared memory. This allows each multiprocessor to run 2 blocks, and thus
keeping 10 warps active at the same time.

In the case with 20x16 threads per block, we also get 10 warps active at
the same time. However, we notice that the average duration of the kernel
is approximately 8 % higher in this case. This is a result of the fact that we
now have all the threads, and thus all the warps, active within one block. As
a consequence, each time we synchronize the threads in this block, we also
synchronize across all the active warps.

Due to the amount of shared memory we require per cell in our grid, the
22x16 configuration gives the most active warps we can have per SM. We
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note, however, that this one is slower than the 20x16, even though they both
have all the warps within one block. This is the result of the block config-
uration being less square, thus we require a higher number of total ghost cells.

We can also see the result of having a block configuration which is not a
multiple of 32 in the 15x11 case. Even if two blocks can be kept active, it
cannot fully utilize the resources, and is therefore slower than the 16x10 case.

For the migration kernel, the same parameters affects the optimal block con-
figuration. However, due to a smaller amount of shared memory, the optimal
block configuration in this case is the 16x12 case. This allows us to run 2
blocks per streaming multiprocessor, such that each can keep 12 warps ac-
tive.

We now look into the effect of implementing the injection kernel the way
we did. Recall from Section 4.2, that the values UΣ,x and UΣ,y are only
needed in the x- and y-directions respectively. So, after finishing computing
the x-direction, we synchronize over the block, and let F be stored in the
array which used to hold UΣ,x. The same goes for the y-direction. If how-
ever, we had stored F and G explicitly in shared memory, we would require
11 variables per grid cell, thus also requiring more shared memory per block.
However, we would not need to synchronize across the threads in the block.
In Table 4.3 we show the different runtimes for each of these approaches.
The chosen block configurations in this table includes the block sizes which
were optimal for either one of them.

Table 4.3: Average duration and shared memory usage for the two injection kernels,
using their optimal block size configurations.

Block Injection kernel
config. 9 values per grid cell 11 values per grid cell

Avg. duration Shared mem. Avg. duration Shared mem.
16x10 26.499 ms 7792 32.952 9520
16x8 29.845 ms 6449 29.220 7936

The 16x10 block size is the optimal block size when having 9 values in shared
memory per grid cell, and, as previously mentioned, allows for two blocks to
be kept active per SM. However, for the case with 11 values per grid cell,
due to the required shared memory, we can on this configuration only keep 1
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block active per SM. That explains the large difference in the runtime. For
the block size configuration 16x8, the difference between the runtime is in
favor of the kernel having 11 values in shared memory. This is the result of
the required synchronization within the block. In total, however, we see that
we gain in performance when reducing the required shared memory.

To conclude on the block size configuration for the flux kernels, we see that
keeping as many blocks as possible active at the same time, is what improves
the performance. We also see that in our case, this is mainly restricted
by shared memory requirements. Thus this results in that for the injection
kernel, we gain performance when reusing the arrays UΣ,x and UΣ,y, even
though this requires synchronization across the block.

We also briefly discuss the block sizes used for some of the other kernels: For
the time integration kernel, we are not limited by shared memory, nor do we
need to compute on any of the ghost cells. Thus, we can use an block size
configuration of 32x16. This results in each block having 512 threads, which
is the maximum number of threads per block. We get a 100 % occupancy
as a result of this, as we maximize the bandwidth utilization [7]. If, on the
other hand, the dry exit option is chosen, we have to do so on the cost of
block size in this kernel. We would then require to use the same block size
here as in the flux kernels.

The kernel which is responsible for computing the maximum time step, based
on the restriction r, is also not limited by shared memory. Each thread here
strides through the dataset containing minimum r computed by the flux ker-
nels. If the we use a block size which results in fewer threads than number of
elements in the dataset, we lower the occupancy. If we use too many, some
of the warps will give useless feedback [7]. Thus, as in the original simulator
we use tempates to create multiples of the maximum time step kernel: One
kernel for 1,2,4,· · · , 512 kernels. At runtime, the optimal kernel is chosen.

Absolute Performance

We have tested the absolute performance of our implementation for different
domain sizes. This we have done to see how large the domain needs to be
for the GPU to fully utilize its processing capabilities.
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In Figure 4.16 we see the result of simulating using the injection kernel
on the Utsira formation. As we recall from previous sections, we do have
quite a large difference between computing wet and dry cell. Thus, the ac-
tual numbers on the y-axes will change, depending on the state of the system.

However, what is mainly of interest in this graph is the slope of the curve.
We see that the performance, in terms of cells computed on per second, will
increase until we reach approximately 5 million cells. (The reason the slope
is not smooth is due to the fact that when we refine our grid in order to get
the desired gridsize values, the ratio between number of cells in the x- and
y-direction might be slightly different, thus affecting the global padding of
our domain.)

For the early exit option, when comparing the values on the y-axes, we
see (again) that this option clearly performs better than the original kernel.
Here, we can see that the curve is more affected by the mentioned refinement
in the x- and y-direction, as this might affect how many blocks are considered
wet and dry.

MRST versus the GPU Simulator

To end this chapter, we will make some remarks about the performance of
our simulator in comparison with MRST. The aim of this thesis was, after
all, to see whether using GPUs could improve the runtime when simulating
large scale migration of CO2 in saline aquifers.

A direct comparison of the runtimes of our simulator and MRST is not a
fair comparison. First of all, MRST is based upon unstructured grids. Sec-
ondly, MRST is written using Matlab - a completely different programming
language. And third, MRST uses double precision, while we only have sin-
gle precision. What we can say, however, is that we have definately seen a
huge advantage in simulating on structured grids. The largest cases we have
considered have consisted of more than 6 million grid cells. This is more
than 6 times larger than what we were able to simulate using MRST on our
computer. And although MRST can support simulation on a larger variety
of grids, we were mainly concerned with being able to perform simulations on
the storage atlases from NPD, which as of today are on a structured format.

However, in Table 4.4 we give the runtime per iteration for the two different
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(a)

(b)

Figure 4.16: Absolute performance (per time step) of our simulator, as a function of
domain size when using the injection phase kernel. a) Shows the performance without
the early exit, while b) shows the performance with the early exit. Note the difference
between the y-axes.
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Table 4.4: Runtime per iteration on Utsira, a comparison between MRST and GPU
Simulator

Simulator Runtime
MRST 218.20 ms
GPU, using injection kernel without early exit 2.534 ms
GPU, using injection kernel with early exit 1.306 ms
GPU, using migration kernel without early exit 1.889 ms
GPU, using migration kernel with early exit 1.164ms

simulators. The test case is as previously the Utsira migration. However, as
we also needed to simulate with MRST this time, the grid consists only of
148x424 cells - i.e., far below where we have seen that the GPU simulator
fully utilize its resources.

From the table it is quite clear that the combination of simulating on struc-
tured grids, using single precision and a GPU to perform the computations,
clearly performs faster than the MRST simulator.



Chapter 5

Concluding Remarks

The goal of this thesis was to develop a fast simulator for large-scale migra-
tion of CO2 in saline aquifers. We also focused on being able to simulate on
the CO2 storage atlases from the Norwegian Petroleum Directorate.

Based on the framework from the GPU accelerated simulator for the Shallow
Water equations [6, 7], we have implemented a CO2 storage simulator. We
have shown that we can simulate on the storage atlases, and in particular we
have done so on the Utsira Formation. We can solve the transport equation
in the IMPES formulation; solving the pressure equation was outside the
scope of interest in this thesis and we leave this for further work. At the
moment we therefore rely on the results from other simulators, for instance
the MRST simulator [1, 16].

To fully take advantage of the GPU’s resources, we have based our sim-
ulator on structured grids. This reduces the memory requirements when
specifiying the reservoir properties, and lowers the costs related to memory
transfers. The simulator also uses single precision in all of its computations;
yet another choice which reduced memory related costs. We considered the
effect this had on the accuracy by comparing our results with MRST: For
areas where the pressure driven and gravity driven velocities where close in
magnitude, not in direction, this affected the height within the cells. But,
we also saw that the overall behavior, in terms of which cells were contained
CO2 or not, was the same.

Our simulator is based on the Vertical-equilibrium model [17]. We have
implemented a first order scheme, which is based on a finite volume method
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in space, and the explicit Euler method in time.

The runtime of our simulator was mainly affected by the kernel responsi-
ble for the flux computations. We reduced the runtime by implementing an
early-exit approach for dry blocks [6, 7]. This approach resulted in that we
on the Utsira formation had a reduction in runtime which was close to 50 %.
For areas which contain CO2 , some work still remain in order to optimize
the flux kernel. We briefly discussed methods which could be used in this
matter - actual implementation we leave for further work.

We also found that our simulator was mainly limited by shared memory
access. If increasing the available shared memory, we will allow more blocks
per streaming multiprocessor, hence improving occupancy. To solve this,
one can either run the simulation on newer GPUs (which typically have mor
memory available per block and per streaming multiprocessor), or implement
a solution which requires fewer variables stored in the flux kernel. This was
the case when we implemented a kernel where the contribution from the pres-
sure equation was neglected.

Finally, we found that the combination of using a GPU to perform the com-
putations, having structured grids, using single precision and implementing
the simulator in C++ / CUDA reduced the runtime per iteration with a
factor ∼ 100 compared to MRST simulator. This was on a case consisting
of only 60 000 cells, and our simulator had the best performance when we
reached 5 million cells.

Thus, based on the results we have had, we believe it is worth continuing
the development of a GPU accelerated simulator for CO2 storage in saline
aquifers.
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