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Abstract

The homotopy category of a stable (∞, 1)-category can be endowed with a trian-
gulated structure. The main objective of this thesis is to give a proof of this fact.
First it will be discussed some ideas of higher category theory, before (∞, 1)-
categories and models of (∞, 1)-categories will be studied. In particular, topo-
logical categories and simplicial categories will be mentioned, but the main focus
will be on quasi-categories, which all are models for (∞, 1)-categories. The theory
of (∞, 1)-categories, which is required in order to define stable (∞, 1)-categories,
is then discussed, in particular functors, subcategories, join constructions, under-
categories, overcategories, initial objects, terminal objects, limits and colimits are
formally discussed for quasi-categories. Finally, the definition of a stable (∞, 1)-
category will be discussed. Then the main theorem will be proved, after the
required properties of stable (∞, 1)-categories are discussed. Background theory
from ordinary categories and simplicial sets are collected in the appendices.

iii





Sammendrag

Homotopikategorien til en stabil (∞, 1)-kategori kan bli gitt en triangulert struk-
tur. Hovedm̊alet med denne oppgaven er å gi et bevis for dette faktumet. Først
vil det bli presentert noen ideer bak høyere kategoriteori, før (∞, 1)-kategorier
og modeller for (∞, 1)-kategorier vil bli studert. Spesielt er topologiske kate-
gorier og simplisielle kategorier nevnt, men hovedfokuset er p̊a teorien om kvasi-
kategorier. Teorien som kreves for å definere stabile (∞, 1)-kategorier er deretter
diskutert, spesielt er funktorer, underkategorier, join konstruksjoner, kategorier
under, kategorier over, initielle objekter, terminelle objekter, grenser og kogrenser
formelt diskutert for kvasikategorier. Tilslutt diskuteres definisjonen av en stabil
(∞, 1)-kategori sammen med nødvendige egenskaper for å bevise hovedresultatet.
Bakgrunnsteori for ordinære kategorier og simplisielle mengder er samlet i ap-
pendiksene.
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Preface

This Master Thesis is written under the course code TMA4900 Mathematics,
Master Thesis, which is the final assessment of the Master program in Applied
physics and mathematics, with specialisation in Industrial mathematics. This
master project has been supervised by Professor Petter Andreas Bergh and Post-
doc Marius Thaule at the Department of Mathematical Sciences, Norwegian Uni-
versity of Science and Technology (NTNU), and involves mainly the fields algebra,
algebraic topology and higher category theory. The project was started up by
21st August 2013 and delivered 14th January 2014.

Problem description

The main objective of this thesis is to give a proof of the fact that the homotopy
category of a stable (∞, 1)-category is a triangulated category. Moreover, the
first part of this thesis is devoted to the theory of (∞, 1)-categories. The second
part is devoted to stable (∞, 1)-categories, in particular the homotopy categories
of stable (∞, 1)-categories are studied in order to prove the main objective.

Overview

The main theorem in this thesis (the main objective rephrased as a theorem,
namely the homotopy category of a stable (∞, 1)-category is a triangulated cat-
egory) is a well known result to experts in the field. The theorem is presented in
for example [Cam13], [Gro10] and [Lur12]. A proof is also presented in [Lur12].
In this thesis there will be discussed enough details from the theory of (∞, 1)-
categories and from the theory of stable (∞, 1)-categories in order to understand
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xii Preface

and present a proof of the main theorem, and hence respond to the problem
description.

More concretely, it will first be sketched some ideas of higher categories and
in particular (∞, 1)-categories. This discussion of higher categories are mainly
based on studies of [Cam13]. In particular, the theory of (∞, 1)-categories
can conveniently be studied through models. Conceptually, models of (∞, 1)-
categories can be regarded as formalisations of (∞, 1)-categories, some models can
be motivated from known examples, that intuitively should capture the structure
of (∞, 1)-categories. Moreover, in this thesis the models topological categories
and simplicial categories are mentioned, but the most of the theory which is
discussed in this thesis, is formalised by quasi-categories.

In this thesis, it will be observed that the intuition behind why topological
categories and simplicial categories models (∞, 1)-categories easily can be moti-
vated from the homotopy hypothesis. But the theory of topological categories,
or simplicial categories, has the drawback that many of notions needed in the
discussions here may be complicated to describe. An example of such difficulty
is limits. However, the theory of quasi-categories has the advantage that many
notions from ordinary category theory can intuitively be adopted more or less
directly by applying the appropriate structure. In particular for purposes in this
thesis, limits and colimits are examples of notions that can be adopted this way.
Thus, the theory of quasi-categories is a common theme for this thesis.

The discussion of topological categories and simplicial categories are mainly
based on discussions in [Lur09] and [Cam13]. The study of quasi-categories is
mainly based on studies of [Cam13], [Gro10] and [Lur09], but also some inspira-
tion is taken from [Joy08]. This note is written by Joyal, which is an authority
in the field. Quasi-categories is said (by [Lur09]) to be introduced by Boardman
and Vogt under the name weak Kan complexes.

The discussions of the theory of stable (∞, 1)-categories are mainly based
on studies of [Cam13], [Gro10] and [Lur12]. While the explanations of the theory
in [Gro10] have the advantage to be intuitive and well motivated, [Lur12] goes
deeper and presents more proofs. When mentioned that some notions in the
theory of quasi-categories intuitively can be adopted to ordinary categories, it
is referred to the approaches in [Mac98] to for example limits and colimits as
universal arrows. Moreover, [Mac98] has also been used for studies of some other
notions of ordinary category theory which have been use for in the thesis. Quasi-
categories arise from particular simplicial sets. The studies of simplicial sets are
mainly based on [GJ09], but the nice and short summary in [Joy08] was also used
to supply these studies.

Moreover, the contents of the thesis described above are organised into the
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following chapters and appendices,

Chapter 1 Here is presented some motivations behind the project and some
ideas for higher categories and (∞, 1)-categories.

Chapter 2 This chapter discusses models for (∞, 1)-categories, more concretely
topological categories, simplicial categories and quasi-categories are stud-
ied, together with some comments why they actually model (∞, 1)-cate-
gories, there are also some sketches of comparisons of these models.

Chapter 3 In this chapter some notions in the theory of (∞, 1)-categories are
discussed, these notions are formalised by quasi-categories, and they are
required to define and understand stable (∞, 1)-categories.

Chapter 4 This chapter discusses the necessary theory of stable (∞, 1)-cate-
gories and properties of the homotopy category of a stable (∞, 1)-category,
before the main theorem is proved, again the discussion here is formally
approached by quasi-categories.

Appendix A Here is presented some definitions and some needed properties for
ordinary categories used in the discussions in the thesis.

Appendix B Here is presented some basic theory of simplicial sets mainly in
order to understand the definition and properties of quasi-categories.

Summarised, the theory of (∞, 1)-categories in this thesis, or in particular
the theory of stable (∞, 1)-categories, are mainly based on and formalised by the
theory of quasi-categories. As mentioned, this model for (∞, 1)-categories has
the advantage that many required notions, needed for purposes in this thesis,
can be adopted intuitively and well-motivated form classical cases. This is the
main advantage of this approach to the study of stable (∞, 1)-categories.

Terminology and conventions are mainly explained in the discussions in
the thesis. Some definitions with properties are referred to the appendices, often
to avoid long technical parts that might disturb the discussions. This is however
indicated in the overview of the chapters above.

The theory of (∞, 1)-categories can be approached axiomatically based on
works of Toën as indicated [Cam13], instead of approached by models as discussed
here. But this will not be paid any attention to in this thesis. This approach
to (∞, 1)-categories is however not so relevant for the theory of stable (∞, 1)-
categories either. Moreover, since (∞, 1)-categories are conceptually closely re-
lated to abstract homotopy theory, in particular to Quillen model categories (see
the motivating comments in Section 1.1), the theory of model categories can in
some sense be underlying many of the notions discussed in this thesis. But these
relationships will however not be discussed here. Nevertheless, the material in
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this thesis can hopefully give a starting point of further investigations of such
underlying subjects. But the thesis can also be a starting point of studies of how
stable (∞, 1)-categories can be used in homological algebra and a starting point
of further investigations of later chapters in [Lur12].
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Chapter 1

Higher categories

The aim for this chapter is to give and discuss some ideas from the higher cat-
egorical landscape. First the discussion is about the notion of higher categories
in general, or more precise about some basic notions in the higher categorical
language, such as, to mention a few, higher morphisms and higher invertible
morphisms. The main discussion in this thesis will obviously more concretely
be on (∞, 1)-categories, so this chapter has to be read as a preparation in or-
der to get some feeling and some understanding of what the construction of an
(∞, 1)-category actually involve. But the first coming is some introductory words
consisting of a short motivation and plan for this thesis in addition to the overview
given in the Preface.

1.1 Introduction and plan

The notion of an (∞, 1)-category can be thought of as a construction involving
objects, morphisms between objects, homotopies between morphisms, etcetera
with no upper bound (up to infinity). Homotopies here can be thought of as
higher invertible morphisms, and will be discussed later (in Section 1.2.3). But
this picture, of an (∞, 1)-category “constructed” this way, is an important sketch
to have in mind. This is because many notions in the understanding of (∞, 1)-
categories themselves, but also notions in their theory, can be captured intuitively
from this picture.

In particular the term ‘homotopy’ here gives a first psychological clue of
what the construction of an (∞, 1)-category involve. In this setting homotopies
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2 Chapter 1. Higher categories

can be thought of as invertible higher structures connecting lower dimensional
homotopies, or connecting morphisms in the 1 dimensional base case. Moreover,
the term ‘homotopy’ give an indication that topological spaces can be involved
in the study of (∞, 1)-categories. In fact, a model of (∞, 1)-categories can be
obtained by category like constructions with their Hom-objects in topological
spaces, namely a category enriched over topological spaces. The reason why this
actually can work can be motivated from the homotopy hypothesis (stated in
Section 1.2.3). This model for an (∞, 1)-category is called topological categories,
and they are defined in the next chapter (in Section 2.1.1).

Similar as in the Preface, at this point it should be remarked that in most
practical cases the theory (∞, 1)-categories is studied by models. A model of
(∞, 1)-categories can be regarded as a formalisation of (∞, 1)-categories, often
obtained from known examples. This can conceptually mean that a model of
(∞, 1)-categories should capture the structure of (∞, 1)-categories. Above, topo-
logical categories was mentioned to be a model for (∞, 1)-categories, simplicial
categories is an other, but in this thesis the study of quasi-categories will be in
particular interest.

The advantages of the theory of quasi-categories are that many notions,
like limits and colimits, adapt easily and intuitively from classical category theory,
which is useful for many purposes in this thesis, as mentioned in the Preface. In
particular, the (∞, 1)-categorical notions of initial objects, terminal objects, pull-
backs and pushouts are key ingredients in order to define stable (∞, 1)-categories.
These promised approaches to required notions in the (∞, 1)-categorical language
formalised by quasi-categories are discussed in Chapter 3. The final chapter
(Chapter 4) is devoted to the study of stable (∞, 1)-categories, formalised by the
established notions in the theory of quasi-categories. Finally in Chapter 4, the
overall aim for this thesis is proved, namely that the homotopy category of a
stable (∞, 1)-category can be endowed with a triangulated structure (Theorem
4.3.2.4).

Now some underlying motivation will be discussed. One of the motivations
behind this project, or a motivation behind studies higher categories overall, is
the observation that the rich structures of higher categories capture a lots infor-
mation. This is information and requirements that else would have to be added
for many situations based on ordinary categorical cases. In particular, the under-
standing of (∞, 1)-categories by a construction consisting of objects, morphisms,
homotopies of morphisms, homotopies of these homotopies etcetera, should ben-
efit any situation where some notion of homotopies are involved. Such situations
are clearly homotopy theory itself, homological algebra and any theory where
Quillen model categories may occur. So an idea is that, in some situations where
homotopy theory is involved, for example those situations that were mentioned,
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these situations can in some cases be studied from properties of (∞, 1)-categories
instead of the classical approach by equipping particular ordinary categories with
additional data for the homotopical structure.

There is even more to be said about the examples mentioned above. In-
stead of requiring strict isomorphisms there is required a weaker replacement,
namely weak equivalences for model categories and quasi-isomorphisms for ho-
mological algebra. This requirement can also be covered by the structure of
(∞, 1)-categories by the description that any homotopy (higher morphism) is
invertible up to higher homotopies. These weaker notions (than isomorphisms)
motivate also for use of the theory of (∞, 1)-categories in other fields, where
such weaker notions are frequently used. In particular the field of derived alge-
braic geometry makes use of (∞, 1)-categories. Derived algebraic geometry can
be interpreted as the subject obtained when replacing the meaning of commu-
tative rings in algebraic geometry by commutative differential graded algebras,
but concerning about them only up to quasi-isomorphism. So, all these examples
can be regarded as a reflection over the same themes, considering a weaker, but
homotopically well-behaved, notion than isomorphisms.

Common for the motivating examples discussed so far is that they can
be though of as captured by the framework of (∞, 1)-categories, because of the
structural picture of higher homotopies sketched for (∞, 1)-categories. In a sim-
ilar way, triangulated categories can in some sense be thought of as captured by
the framework of stable (∞, 1)-categories. Before this perspective is discussed
further, it should be mentioned a few words about the homotopy category of an
(∞, 1)-category.

The homotopy category of an (∞, 1)-category C can be though to as a de-
categorification of C . Conceptually, this can be interpreted as making C into an
ordinary category by strictifying all higher homotopies. This strictifying concep-
tually means that higher homotopies are turned into isomorphisms. The construc-
tion of the homotopy category is formalised by the models for (∞, 1)-categories
discussed in this thesis. More details are discussed in Chapter 2.

Although it can be found examples of triangulated categories that do not
arises from homotopy categories of stable (∞, 1)-categories, the most natural
examples arise this way (as mentioned in [Cam13]). So an idea is that stable
(∞, 1)-categories contain the structure of triangulated categories, as mentioned,
but stable (∞, 1)-categories are better behaved in many cases, and can some-
times be regarded as a replacement of triangulated categories fixing some of their
drawbacks (as mentioned in [Cam13]). Instead of requiring additional data sat-
isfying certain axioms, triangulated structures can possible with this description
be viewed as a property of the theory of stable (∞, 1)-categories, which definition
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is intuitive and well motivated.

The motivation of the studies of stable (∞, 1)-categories can be approached
differently, as done in [Lur12]. The formation of the derived category of an
abelian category by the usual localisation on quasi isomorphisms may have the
drawback that it does not “remember” actually why objects are homotopic to one
another. It may be possible to correct this by viewing the derived category as the
homotopy category of an underlying (∞, 1)-category. The (∞, 1)-categories that
are constructed in this way (in order to satisfy the ideas for derived categories)
can argued to have the property of being stable.

The main theorem (Theorem 4.3.2.4) states that the homotopy category of
a stable (∞, 1)-category is a triangulated category. Although there will not be a
discussion about how the theory of triangulated categories is captured by stable
(∞, 1)-categories, the main theorem and its proof can nevertheless be regarded
as a first qualified indication of the assertions discussed above may hold in some
cases.

In particular, from the proof of the main theorem it can be observed that
the octahedron axiom (axiom (TR4) in Definition A.2.2.1) follows almost directly
by basic properties of stable (∞, 1)-categories. These basic properties can easily
be described, which gives an indication of that stable (∞, 1)-categories in fact are
“nicer behaved” than triangulated categories, since the most natural examples of
triangulated categories arise from homotopy categories of stable (∞, 1)-categories.

These motivating comments can be regarded as underlying motivation for
the discussions here. However, the main objective for this thesis is to discuss and
establish the required equipments needed in order to understand the statement
for and discuss a proof of the main theorem (Theorem 4.3.2.4), and then respond
to the Problem Description in the Preface. A short overview of the content in
the chapters is also given in the Preface.

1.2 Ideas of higher categories

The aim for this section is to discuss some ideas behind the notion of higher
categories. The approach here will be quite conceptual, and can be read as
an attempt of motivating for some of the ideas behind the discussions in the
next chapters. In particular, the landscape of higher categories will be explored
through generalisations of the 2-categorical structure that the category of all
(small) categories Cat can be equipped with. There will be descriptions of the
ideas of higher morphisms and higher homotopies, together with a sketch of
some requirements these data have to satisfy in order to give some appropriate
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meaning for notions of higher categories. Briefly, the intention here is to give
some underlying ideas of some of the ingredients in forthcoming discussions in
this thesis.

1.2.1 Ideas of higher morphisms

The first example of a higher category is the category of all (small) ordinary cat-
egories, Cat. Or, more precisely Cat can be equipped a 2-categorical structure
when considered that Cat consists of (small) ordinary categories as objects, func-
tor between categories and natural transformations between functors, together
with composition laws that satisfy interchanging and units laws. The two latter
ones will be discussed later. First this 2-dimensional structure on Cat can be
visualised the following way,

• let A , B and C be categories,

• let F0, F1, F2 : A → B and G0, G1, G2 : B → C be functors,

• and let α0 : F0 → F1, α1 : F1 → F2, β0 : G0 → G1 and β1 : G1 → G2 be
natural transformations.

These data can be structured into the following diagram,

A B C .

F0

F1

F2

G0

G1

G2

α0

α1

β0

β1

In particular, this additional construction obtained on Cat can be equipped with
two composition rules. The first rule, called vertical composition, is obtained from
the usual composition rule of natural transformation, when they are regarded as
morphisms in functor categories. Let for now the operation of vertical composi-
tion be denoted ◦, and observe then that composing α1◦α0 in the diagram sketch
above, give a natural transformation α1 ◦ α0 : F0 → F2, whose components are
given by (α1 ◦ α0)A = (α1)A ◦ (α0)A : F0(A) → F2(A) for any object A ∈ A .
The required associativity relations can easily be checked, details are described
in [Mac98].

From the diagram sketch above, when α0 : F0 → F1 and β0 : G0 → G1 are
natural transformations where the target of F0 and F1 coincides with the source
of G0 and G1, it can be constructed a natural transformation G0F0 → G1F1

obtained from α0 and β0. This composition of α0 with β0 is referred to as the
horizontal composition of α0 with β0. For now, let the operation of horizontal
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composition of natural transformations be denoted •. The components of β0 •α0

are given by the diagonals (upper-right or left-bottom composing) in similar
diagrams to the following,

G0(F0(A)) G1(F0(A))

G0(F1(A)) G1(F1(A)),

(β0)F0A

G1((α0)A)G0((α0)A)

(β0)F1A

for all A ∈ A . These diagrams commute by definition of natural transformations.
So for A ∈ A , the component of β0 • α0 at A can, for example, be chosen
to be (β0 • α0)A = ((β0)F1A) ◦ (G0((α0)A)). The requirement that horizontal
compositions actually give rise to natural transformations can easily be observed,
a description can again be found in [Mac98].

In fact, even more is true, the composition rules interchange with one an-
other and are unitary. The latter means that the vertical composition and the
horizontal composition are sharing units, that means the unit for one composition
is also a unit for the other. The units are obviously the identity natural trans-
formations. While the interchange law basically means that composing vertically
first then horizontally coincides with first composing horizontally then vertically,

(β1 ◦ β0) • (α1 ◦ α0) = (β1 • β0) ◦ (β0 • α0). (1.2.1.i)

The interchanging law can easily be verified for the 2-dimensional categorical
structure on Cat, again this verification is indicated in [Mac98]. From the data
of categories, functors and natural transformations together with the operations
of vertical composition and horizontal composition, which satisfies the required
interchanging and unit laws, it can be concluded that Cat can be equipped with
the structure of a (strict) 2-category. This conceptually means that there are
notions of vertical composition and horizontal compositions that coincide at the
“start points” and “end points” by satisfying the unitary law and interchange
law, as for Cat.

The term ‘2-categorical’ structure on Cat can reflect the following termi-
nology,

• the 0-morphisms or the objects are categories

• the 1-morphisms are functors connecting the objects, objects are categories

• the 2-morphisms are natural transformations connecting 1-morphisms, 1-
morphisms are functors
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Finally it can also be mentioned that, in this 2-dimensional categorical structure
of Cat, there are also notions of higher morphisms, 3-morphisms, 4-morphisms
etcetera, but all these are regarded as identities in 2-categorical structures. When
higher morphisms are so, then they are said to be trivial.

The ideas of a 2-category sketched above can be generalised to notions of
higher morphisms. The notion of an n-category, is a construction that consists of
higher morphisms for arbitrary k, but when k > n all higher morphisms are re-
garded to be trivial. The notion of an n-category will also involve a large amount
of operations of compositions that satisfy various appropriate associativity, inter-
change and unitary laws. The notion of an ∞-category1 reflects that there are
no upper bounds from where higher morphisms are trivial.

Moreover, observe now that there were not mentioned any requirements
for associative laws for the 2-categorical structure on Cat. The reason for that
is the indicated strictness property for this 2-categorical structure. In fact any
2-category is equivalent (in some sense) to a strict one ([Cam13]). The ideas of
strictness are taken up again later (in Section 1.2.4). But conceptually, strictness
properties can be thought of that there are strict equalities between composi-
tions and their candidates of compositions, similar as for ordinary categories. In
weaker cases there are weaker notions than equalities, for example homotopies,
connecting the composition to a candidate of the composition, but there may be
more choices for such candidates. Secondary this weaker notion of compositions
have consequences for associativity (composable triples), etcetera.

From this it can be concluded that, when higher categories are thought
of this way discussed here, there are a lots of data and requirement to take in
account. As mentioned for (∞, 1)-categories, models can be used in order to
formalise some ideas of higher categories. Some models of higher categories are
obtained from geometric shapes of cells. Morphisms are often in these models
represented by cells. The 2-categorical structure on Cat, that was visualised a
sketched of above, is an example of globular shaped cells, because of the geometric
shapes of these cells. A globular 2-cell is pictured below,

• •

Other shapes of cells are cubes, next visualised by a 2-cube,

1In [Gro10], [Lur09], [Lur12] the term ∞-category is used for what here will be called a
quasi-category, namely, as mentioned, a model for (∞, 1)-categories.
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• •

• •

with 1-cubes as boundary. The cubical shaped cells occur naturally when a
model for higher categories is motivated by higher homotopies of topological
spaces X × [0, 1]n → Y . The final shape discussed here is simplicial shaped cells,

•

• •

where the 2-cell visualised above may in some cases be regarded as a 2-morphism
assigning a composition to a candidate for the composition. This idea will be
taken up again in the discussion of quasi-categories in Section 2.2. There are
also other shapes of cells which benefit their situations, some more are listed in
[Cam13].

Some other elementary examples of lower dimensional higher categories can
be approached as follows. As discussed, Cat was the first example of a construc-
tion that can intuitively be equipped with a 2-categorical structure. Similarly,
any ordinary category is obviously a first example of a 1-category. Any set or
any discrete category can be regarded as elementary example of a 0-category.

1.2.2 Inductive interpretation of higher categories

Observe now the following from the example of the 2-categorical structure on
Cat,

• functors A → B are 1-morphisms in Cat, but 0-morphisms (objects) in
the functor category Fun(A ,B)

• natural transformations of functors A → B are 1-morphisms in Fun(A ,B)
but 2-morphisms in Cat,

so even the collection of 1-morphisms in this 2-categorical structure on Cat can
be regarded a 1-category itself, namely the category of functors and natural
transformations. This observation can indicate that there are inductive ways of
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thinking about higher categories. As exemplified with Cat, 2-categories seem to
have their Hom-objects in 1-categories.

These observations can be generalised to an inductive interpretation of the
notion of higher categories. In view of enriched categories (Definition A.1.2.1) a
strict n-category can be regarded as an enriched category of (n − 1)-categories.
But in order to describe not only the particular cases of strict n-categories, it
should be searched for a notion of “weakly enriched”. Consequences of these
notions for higher categories will be discussed in more details later (in Section
1.2.4).

Now, by following these ideas even further, (n − 1)-categories can be re-
garded as weakly enriched over (n − 2)-categories, and so forth. This iteration
terminates at the base cases of 1-categories and 0-categories, which are well known
as ordinary categories and sets respectively from discussions previously (Section
1.2.1). So from this, it can be concluded that there are clearly iterative interpre-
tation of higher categories, one of them is the procedure described here.

However, at this point it should be remarked that the notion of∞-categories
can not directly be approached by this inductive interpretation of higher cate-
gories. The following problem may occur. In the inductive interpretation an
∞-category can be regarded as “weakly enriched” over (∞− 1 =∞)-categories,
which does not give anything useful.

1.2.3 Higher invertible morphisms and (n, k)-categories

The aim for this part is to discuss the notions of higher invertible morphisms
and (n, k)-categories. Conceptually, the notation of an (n, k)-category means an
n-category, where all morphisms from level (k + 1) and above are invertible in
the sense of higher categories, this sense will be discussed in this section. Well,
morphisms above level n are clearly invertible, since they are assumed to be
trivial, but higher categorical invertibility is a weaker notion.

It can often be convenient to think about higher invertible morphisms in
a similar way as homotopies. Conceptually in order to sketch some ideas, a j-
morphism α is said to be invertible in the sense of higher categories if there is
an other j-morphism β together with invertible (again in the higher categorical
sense) (j + 1)-morphisms connecting compositions of α with β to the suitable
identities for this operation of composition. These (j + 1)-morphisms connecting
compositions of α and β to identities are again invertible in the same sense that
there are (j+2)-morphisms connecting appropriate compositions of these (j+1)-
morphisms to the suitable identities, etcetera. For (n, k)-categories this notion
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of invertibility should hold for all j-morphisms, where k < j ≤ n.

This notion of higher invertible morphisms is not really that mysterious
that it might look like at a first sight. Recall that in an ordinary category C
two objects are said to be isomorphic if there is an invertible morphism between
them. So passing one level up from objects themselves to morphisms is necessary
in order to establish the actual meaning of “two objects that in fact are the same
object”.

Moreover, two categories A and B in Cat are said to equivalent if there
are functors F : A � B : G in opposite directions, together with invertible natu-
ral transformations, namely natural isomorphisms, which are connecting suitable
compositions of the functors with appropriate identities, namely GF with IA and
FG with IB (where IA and IB are the identity functors on A and B respec-
tively). This may give a first indication of that the notion of higher invertible
morphisms described above is in fact an appropriate generalisation of the notions
of isomorphisms and equivalences that can be extracted from ordinary categories
and from the 2-categorical structure on Cat, respectively.

As indicated, an invertible j-morphism can also be thought of as an invert-
ible morphism “up to homotopy”, namely up to the required invertible (j + 1)-
morphisms which can be thought of as homotopies “deforming” the required
compositions of the invertible j-morphisms with its “inverse” to the appropriate
identities. Moreover, these homotopoies are again invertible up to higher homo-
topies etcetera, in fact an invertible j-morphism can be though of as a homotopy
itself that connects the appropriate notion of source and target to one another.

So, as mentioned in the introduction, it is often convenient to think about
(∞, 1)-categories as a construction consisting of objects, morphisms between ob-
jects, homotopies between morphisms, higher homotopies between these homo-
topies, etcetera, with no upper bound. This interpretation of (∞, 1)-categories
can also be regarded as a first generalisation of ordinary categories, by more
carefully replacing equalities by homotopies. For example, in (∞, 1)-categories
compositions can be required to be connected to candidates of compositions by
homotopies, not required to be equal their candidates as for ordinary categories.

Thinking along the same lines, by replacing equality systematically by iso-
morphism, any set or discrete category can be thought of as formed into an (∞, 0)-
category, which frequently will be called a ∞-groupoid2. Recall that a groupoid
is often defined to be a category where all morphisms are isomorphisms, then

2At this point it should be warned that in [Gro10] and [Lur09] the term ∞-groupoid is
defined to be a quasi-category where even all 1-morphisms are invertible, here this notion can
be referred to as a “quasi-groupoid”, but the study of these notions will not be discussed that
much in this thesis.
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the term ∞-groupoid can reflect the construction obtained from a groupoid but
where the notion of isomorphisms are replaced by weaker notions of homotopies.
Similar, an n-groupoid denotes a (n, 0)-category.

Now, take up the discussions of the inductive perspective of higher cate-
gories from the previous section (Section 1.2.2), in order to use these ideas on
(n, k)-categories. From the inductive perspective of higher categories, (n, k)-
categories can be thought of as constructions with their mapping objects in
(n − 1, k − 1)-categories. Or more precisely, (n, k)-categories can be thought
of as (the appropriate sense of) enriched over (n− 1, k− 1)-categories. Similarly,
(∞, n)-categories can be thought of having their mapping objects in (∞, n− 1)-
categories.

While the cases of (n − 1, k − 1)-categories the inductions reduce to the
base case of (n− k, 0)-categories or (n− k)-groupoids, the inductive perspective
of (∞, n)-categories reduces to an understanding of (∞, 0)-categories, namely∞-
groupoids, as base case. An understanding of these base cases can be approached
by the homotopy hypothesis, which was proposed by Grothendieck, but a version
stated in [Cam13] will be used here. The next aim is to discuss this approach.

But first some terminology, recall from algebraic topology that an n-type
often denotes a topological space X, whose k-homotopy groups are trivial for all
k > n and for all choices of base points, so πk(X,x) = 0 for all k > n and for all
x ∈ X. Let X be a topological space, the idea of the fundamental n-groupoid of
X, denoted π≤nX, can be interpreted as a higher categorical construction, where
objects are points in X, 1-morphisms are continuous paths, 2-morphisms are
homotopies of continuous path, 3-morphisms are homotopies of 2-morphisms,
etcetera, up to the decision that n-morphisms are said to be equal if they are
homotopic with one another. If n = ∞, then this means that there is no upper
bound for such decisions. The homotopy hypothesis attempts to describe the
following connections between fundamental n-groupoids and n-groupoids (defined
as (∞, 0)-categories).

The homotopy hypothesis: Any topological space should have a fundamental
n-groupoid, π≤nX, including n =∞. Any n-groupoid should be equivalent to the
fundamental n-groupoid for some topological space X. Furthermore, the theory
of n-groupoids should contain the same information as the homotopy theory of n-
types. These theories are then said to be equivalent. When n =∞ the ‘homotopy
theory of n-types’ is often called ‘homotopy theory’ for short.

From the inductive perspective for higher categories, (∞, 1)-categories can
be thought of as weakly enriched over∞-groupoids. Now, the homotopy hypothe-
sis suggests that instead of enriched over∞-groupoids it may instead be possible
to enrich over topological spaces, or simplicial sets whose homotopy theory is
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known to be equivalent to the homotopy theory of topological spaces. In fact,
models of (∞, 1)-categories can be defined this way, since it can be argued that
enrichments over∞-groupoids can be “strictified”. These models are called topo-
logical categories and simplicial categories respectively, and are discussed further
in Section 2.1. In the next section, the discussions about higher categories as
weakly enriched categories from Section 1.2.2 will be continued, but now viewed
in the light of this section.

1.2.4 Higher categories as “weakly” enriched categories

Recall that any category with finite products can be equipped with a monoidal
structure, by taking the tensor product to be the category theoretical product.
Such monoidal structures are called cartesian monoidal structures.

With motivation from the inductive perspective of higher categories, a
strict n-category can be defined to be an enriched category over the cartesian
monoidal category StrCatn−1. The category StrCatn consists of objects all
strict n-categories and the morphisms are given by enriched functors. This de-
fines a valid recursion with base cases StrCat1, which is the 1-category of all
categories and functors, namely Cat, and StrCat0, which is the category of sets
and functions. The requirement, that there are all finite products in StrCatn
for n ≥ 0, is inhered from the usual category theoretic product in the base cases.
Hence, StrCatn is a cartesian monoidal category as required. This discussion
gives an understanding of the notion of strict n-categories (for finite n).

The until now discussed example of a 2-category, namely Cat, was men-
tioned to be an example of a strict 2-category, since it can be regarded as en-
riched over functor categories with category theoretical products. In fact, any
2-category is equivalent to a strict 2-category. This can argued to be a conse-
quence of MacLane’s coherence theorem. This consequence is indicated in some
more details in [Cam13].

However, there is at least an example of a 3-category that is not equivalent
to a strict one, namely the fundamental 3-groupoid of the 2-sphere π≤3S

2, as
discussed in [Cam13]. So, there is at least some need for a notion of weaker
enrichments in order to understand higher categories from this perspective, since
there are clearly examples of those.

As previously indicated in this chapter, a description of higher categories
will often involve various notions of composition laws together with requirements
expressed by numerous associativity, interchanging and unitary laws, in order
characterise their structure. Sometimes a composition law can be thought of



1.2. Ideas of higher categories 13

as a certificate or verification that there exists a candidate for a composition of
two higher morphisms together with even higher invertible morphisms that are
connecting the candidates to the “actual” composition.

These notions can be reflected in an associativity law of a composition in
the following way. Let f , g and h be a composable triple by some composition
rule of p-morphisms in a certain higher category. Then the expressions (hg)f and
h(gf), where the symbol for the composition is omitted, are not claimed to be
equal, but the expressions are connected by an invertible (p+ 1)-morphism

α : (hg)f → h(gf), (1.2.4.i)

where α often is referred to as an associator for this composition.

Now, for any composable quadruple f , g, h and k of p-morphisms, with the
same composition rule, there are two different way of relating the compositions
((kh)g)f → k(h(gf)), which can be obtained by an argument using appropriate
expressions involving the associator and the unitor for this composition. These
two ways are displayed as the upper and downer paths in the following diagram,

((kh)g)f (kh)(gf) k(h(gf))

(k(hg))f k((hg)f).

Recall that this diagram is similar to the pentagon diagram in the usual definition
of monoidal categories. This diagram is required to commute in the monoidal
categorical case. But this is not the case for higher categories. In the situation of
higher categories the pentagon diagrams commute only up to invertible (p+ 2)-
morphisms, called pentagonators. A pentagonator should satisfy its own diagram
condition up to even higher morphisms, etcetera.

So, form this discussion it can be concluded that the higher categorical
notions of operations of compositions, by assigning to compositions candidates of
the compositions, should come together with the data of associators, pentagona-
tors, etcetera, at least in the descriptions given here. Requiring all these data, a
composition rule is said to be associative up to coherent homotopy, and diagrams
in higher categories that consider all these data coming with a composition rule
are said to be homotopy coherent or diagrams are said to commute up to coherent
homotopy. The notion of homotopy coherent diagrams is the analogous notion
to commutative diagrams for ordinary categories.

Describing higher categories this way, by drawing all these diagrams con-
sidering all these data, turns quite complicated, when taking care of all structure



14 Chapter 1. Higher categories

following with a composition law. According to [Cam13], writing up a definition
of (weak) higher categories this way is properly done only up to 3-categories and
4-categories. This gives additional motivation of introducing models of higher
categories. Some models for (∞, 1)-categories will be discussed in the next chap-
ter (Chapter 2).







Chapter 2

Models for (∞, 1)-categories

The aim for this chapter is to define topological categories, simplicial categories
and quasi-categories, which are models for (∞, 1)-categories. It will also be
discussed how homotopy categories for these models are constructed. This is
followed up by some ideas around the comparison of simplicial categories and
quasi-categories.

The reason why topological categories and simplicial categories model
(∞, 1)-categories can intuitively be motivated from the homotopy hypothesis,
as indicated in the previous chapter. This discussion will be taken up again
in this chapter. There will also be discussed some motivation before defining
quasi-categories, with some further words why they model (∞, 1)-categories.

As mention previously, a model describing (∞, 1)-categories can be thought
of as a formalisation of the ideas behind (∞, 1)-categories. Although an axiomatic
approach to (∞, 1)-categories has been carried out based on works of Toën (as
mentioned in [Cam13, Section 4.1]), the study of (∞, 1)-categories in this thesis
is carried out through these models mentioned above.

When quasi-categories have their benefit in this thesis, that many no-
tions and constructions from the theory ordinary categories can be adopted intu-
itively and well-motivated (this will be discussed in Chapter 3), other models for
(∞, 1)-categories may have their benefit for other purposes of studies of (∞, 1)-
categories. Other examples of models for (∞, 1)-categories are Segal categories,
complete Segal spaces and relative categories. Some more are even mentioned in
[Cam13].

17
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2.1 Simplicial and topological categories

In this section will topological categories and simplicial categories be defined.
Then the notion of homotopy categories of these models for (∞, 1)-categories
will be discussed.

2.1.1 Definition of topological categories

First some motivation, recall from the discussion of higher categories from the
inductive perspective, as mentioned some idea of in the previous chapter, that it
is natural to search for models for (∞, 1)-categories, that involve weakly enrich-
ments over (∞, 0)-categories, namely ∞-groupoids. The homotopy hypothesis
suggests that the theory of ∞-groupoids is equivalent to the homotopy theory
for topological spaces. So from this motivation it can be expected to search for a
model for (∞, 1)-categories defined as a category weakly enriched over topological
spaces. In fact, as mentioned in the previous chapter and in [Cam13, Section 3.1],
it turns out that enrichments over∞-groupoids always can be “strictified”. Then
it seems that a model for (∞, 1)-categories even can be defined as a category en-
riched over topological spaces. This consequence gives a much nicer description,
than first expected, since ‘weakly enriched’ may not that well-behaved after all.

Remark 2.1.1.1. The category of compact generated weakly Hausdorff topo-
logical spaces will be denoted CG. Often the category CG will be referred to as
the category of topological spaces or the category of spaces for short. The restric-
tion to compactly generated weakly Hausdorff topological spaces has to do with
technicalities and safety reasons in homotopy theory, which will not be discussed
further in this thesis. But an idea is that enrichment should be over a sufficiently
“nice enough” category in order to avoid these technicalities, if possible.

Definition 2.1.1.2. A topological category is a category enriched over compactly
generated weakly Hausdorff topological spaces, CG. The category of topological
categories and enriched functors will be denoted topCat.

More concretely, a topological category C consists of a collection of objects
and for each ordered pair of objects X,Y a (compactly generated weakly Haus-
dorff topological) mapping space MapC (X,Y ). The operation of composition is
given by a continuous map

MapC (Y, Z)×MapC (X,Y )→ MapC (X,Z), (2.1.1.i)

where the product taken over (compactly generated weakly Hausdorff) topologi-
cal spaces.
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Conceptually, functors of (∞, 1)-categories are regarded to map “higher
homotopies” to “higher homotopies” in order to preserve the (∞, 1)-categorical
structure. So, let F : C → D be a functor of topological categories, in the model
topological categories the induced map on the mapping spaces

FX,Y : MapC (X,Y )→ MapD(FX,FY ), (2.1.1.ii)

where X and Y are objects of C , is then required to be a continuous map,
since FX,Y is a map of homotopy types from the description of mapping “higher
homotopies” to “higher homotopies”. So, the definition of topCat, with enriched
functors, appears to be the correct one, after all.

The next definition denotes some particular functors of topological cate-
gories,

Definition 2.1.1.3. A functor F : C → D of topological categories is said to be
a strong equivalence if F is an equivalence of enriched categories, that is

• for every pair of objects X,Y in C the induced map

FX,Y : MapC (X,Y )→ MapD(FX,FY ) (2.1.1.iii)

is a homeomorphism.

• and every object in D is isomorphic (in D) to an object mapped from C ,
that is an object of the form F (X), where X ∈ C .

Moreover, this definition can be used for any kind of enriched functor,
just by replacing homeomorphism FX,Y with the appropriate notion of isomor-
phism. Observe now in the situation of ordinary (small) categories, which can
be regarded as categories enriched over Set, the notion of strong equivalences
coincides with the usual notion of equivalences of categories in the sense of or-
dinary category theory (fully faithful and essentially surjective functor). As the
name strong equivalence suggests, there is a notion of “weak equivalences”, that
denotes functors that behave like homotopy equivalences on the mapping spaces,
but this will be defined later.

2.1.2 The homotopy category of a topological category

Recall that the notion of a “homotopy category” in classical cases is a category,
whose collection of objects is the same as the original category, while the Hom-sets
are equivalence classes of homotopic morphisms in the original category. As al-
ready mentioned, the homotopy category of an (∞, 1)-category C can be thought
of as a decategorification of C determined by “strictifying” higher homotopies.
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This can be thought of as identifying those 1-morphisms that is connected by 2-
morphisms. Visually, this means for a topological category C that 1-morphisms
in the same path connected components in their mapping space, say MapC (X,Y ),
are identified with one another. From a geometrical interpretation of topologi-
cal categories, morphisms in the same path connected component are homotopic
with one another. This leads to the next definition.

Definition 2.1.2.1. The homotopy category of a topological category C is de-
fined to be a construction, denoted hC , whose

• collection of objects in hC is same as the collection of objects in C .

• the Hom-sets are determined from the path connected components of the
mapping spaces, namely

HomhC (X,Y ) = π0(MapC (X,Y )) (2.1.2.i)

for each pair of objects X,Y in hC (or C ).

• composition in hC is inhered from the composition in C by applying the
functor π0.

In particular, hC is a category in the ordinary sense.

For the composition rule on hC in the definition above the following should
be remarked. First the functorality of π0 follows for example from discussions in
[Ark11, p. 50]. Second, it can be shown that π0 preserves products (as stated in
[Lur09]) then this gives rise to the composition rule described in the definition.

So, the intuition of associating 1-morphisms in the same path connected
component with one another was used to determine this first approach to the
homotopy category of a topological category. The aim now is to present an
alternative approach based on the theory of CW-complexes.

But first recall that a continuous map f : X → Y of topological spaces is
said to be a weak homotopy equivalence if f is carried to a bijection π0X → π0Y
of sets and group isomorphisms πi(X,x)→ πi(Y, f(x)) for all i ≥ 1 and for every
point x ∈ X. Further, let C CW denote the topological category whose objects
are CW-complexes and the mapping spaces MapCCW

(X,Y ) are the set of contin-
uous maps equipped with the (compactly-generated version of the) compact-open
topology. The homotopy category of C CW will be denoted H and called the
homotopy category of spaces.

As stated in [Lur09, Section 1.1.3], one of the versions of the Whitehead
theorem implies that any compactly generated topological space can homotopi-
cally be related to a CW-complex. In fact, for any compactly generated space
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X ∈ CG there exists a CW-complex X ′ and a weak homotopy equivalence
φ : X ′ → X, relating X to X ′.

Passing further to the homotopy category, C CW → H , defines a functor
θ : CG→H that assigns X 7→ [X] = X ′, where X ∈ CG and X ′ is the related
CW-complex. This construction is well-defined since weak homotopy equivalences
in C CW are per definition mapped to isomorphisms in H . Furthermore, observe
that any topological category D , which is per definition enriched over CG, can
be inverted into a H -enriched category, which will be denoted hD and called the
H -enriched homotopy category of D . This observation relies on the fact that θ
preserves products (as stated in [Lur09, Section 1.1.3]), and hence by the theory
of enriched categories ([Lur09, Appendix A.1.4]), for each CG-enriched category
θ defines an H -enriched category. Moreover, hD can be described as follows,

• the objects of hD are the same as in D ,

• the H -enriched mapping spaces of hD are given by

MaphD(X,Y ) = [MapD(X,Y )], (2.1.2.ii)

• the compositions in hD are inhered from the compositions in D just by
applying the functor θ : CG→H .

In particular, let C be a topological category, the homotopy category hC
and the H -enriched homotopy category hC are compatible with one another.
The collections of objects are the same from definition. In fact, for any topological
space X there is a canonical bijection π0X ' MapH (∗, [X]), which relates the
path connected components of X with the “H -enriched elements” in [X]. This
observation applied on mapping spaces gives,

π0 MapC (X,Y ) = HomhC (X,Y ) ' MapH (∗, [MapC (X,Y )]), (2.1.2.iii)

and hence hC can be understand as the underlying category of the H -enriched
category hC (as discussed in [Lur09, Remark 1.1.3.5]). In the most of the dis-
cussions here there will not be distinguished between these interpretations of the
homotopy category of a topological category, both denoted hC clear from the
situation if the H -enriched structure is required.

Definition 2.1.2.2. A functor F : C → D of topological categories is said to
be a weak equivalence (or simply an equivalence for short) if the induced functor
hC → hD is an equivalence of H -enriched categories. This means that, F is an
equivalence if and only if

• for each pair of objects X,Y in C the induced map

FX,Y : MapC (X,Y )→ MapD(FX,FY ) (2.1.2.iv)
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is a weak homotopy equivalence of topological spaces,

• every object Y ∈ D is isomorphic to an object FX ∼= Y for some X ∈ C .

A morphism f : X → Y in any topological category D is called an equivalence if
the induced morphism in hD is an isomorphism.

2.1.3 Simplicial categories

Simplicial sets are important in many interpretations of higher categories. In
the previous chapter it was observed that simplicial sets gave rise to a shape
of cells. The definition of quasi-categories in the next section builds further
on these ideas. But here, the singular complex and the geometric realisation
establish a compatibility between the homotopy theories of topological spaces and
of simplicial sets (see the expression in Equation 2.1.3.i below). So motivated from
the homotopy hypothesis again, it can be looked for a model of (∞, 1)-categories
enriched over simplicial sets.

Definition 2.1.3.1. A simplicial category is a category enriched over simplicial
sets. The category of simplicial categories and simplicial enriched functors will
be denoted by sCat.

Remark 2.1.3.2. At this point there are some restrictions that have to be
remarked. In this thesis simplicial categories are restricted to actually mean
fibrant simplicial categories, which means that the mapping spaces are restricted
to be Kan complexes (Definition B.2.2.3).

The relationship between topological categories and simplicial categories
as models for (∞, 1)-categories will now be discussed in some more details than
mentioned above. Moreover, in the interpretation of (∞, 1)-categories as a con-
struction consisting of objects, morphisms of objects, homotopies of morphisms
etcetera, it can be search for connections between topological categories and sim-
plicial categories preserving all this structure. Conceptually, in a comparison of
topological categories with simplicial categories verifying that they are modelling
the same higher categorical notion, it should be searched for “equivalence” maps
that preserves all homotopical structure. In fact, this can be argued to follow
from properties of the adjunction,

(||,Sing) : sSet→ CG, (2.1.3.i)

where || denotes the geometric realisation, while Sing denoted the singular com-
plex. An element wise establishment of these functors can be found for example
in [Wei94, Chapter 8], while discussions probably more abstractly can be found
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in [GJ09, Chapter III]. In particular, there will only be discussed some ideas
of the properties that (||,Sing) should satisfy here, while some more details are
discussed in [Lur09, Section 1.1.4]. In fact, the unit maps

S → Sing |S| (2.1.3.ii)

for the adjunction (||,Sing) and the counit maps

|SingX| → X (2.1.3.iii)

are weak homotopy equivalences for every simplicial set S and every (compactly
generated) topological space X. This is stated in a theorem of Quillen (as men-
tioned in [Lur09, Section 1.1.4]).

Now, as stated in [Lur09, Section 1.1.4] the functors || and Sing preserve
finite products, then they induce enriched categories in the respectively categories
sCat and topCat. In particular, for any simplicial category C the geometric
realisation || indices a topological category D whose objects are the same as C ,
but mapping spaces are given by

MapD(X,Y ) = |MapC (X,Y )| (2.1.3.iv)

and the composition is induced from C . Similar comments applies for Sing, which
for any topological category induces a simplicial category. Since it can be shown
that the unit and counit maps are homotopy equivalences from the comments
above, the induced comparison by || and Sing have to be understand as an equiv-
alence between the theory of topological categories and simplicial categories as
models for (∞, 1)-categories, as suggested in the motivating comments before this
section.

Remark 2.1.3.3. Next observe that the category obtained from inverting weak
homotopy equivalences in CG is equivalent to the category obtained from in-
verting weak homotopy equivalences in sSet, since the unit and counit maps are
weak homotopy equivalences. In both cases this category will be denoted H .
This means that the homotopy category of a simplicial category can be regarded
as a H -enriched category, similar as for topological categories. Moreover, the
notions described in Definition 2.1.2.2 can be adapted more or less directly to
simplicial categories, so a functor of simplicial categories is said to be a weak
equivalence if the induced functor between the homotopy categories is an equiv-
alence.
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2.2 Quasi-categories

As indicated previously, quasi-categories is a model of (∞, 1)-categories which
arises from simplicial sets with particular properties. Although topological cate-
gories or simplicial categories give a nice psychological aid when thinking about
the ideas behind the notion of (∞, 1)-categories, there can be argued to be some
troublesome technicalities when defining notions like limits and other construc-
tions. But as mentioned, many such construction, needed for purposes in this
thesis, can be defined intuitively for quasi-categories. However, this is the theme
for the next chapter (Chapter 3).

The aim for this section is to give the precise definition of quasi-categories
and discuss the notion of a homotopy category for quasi-categories. While some
motivation is given here in this section, in the next section (Section 2.3) there
will be discussed some more ideas of why quasi-categories actually model (∞, 1)-
categories, together with some ideas from the comparison of quasi-categories with
simplicial categories.

2.2.1 Definition of quasi-categories

First some motivation will be discussed before the definition of quasi-categories
will be stated. There are certain examples, or more precisely classes of exam-
ples, that at least should be contained in any interpretation of (∞, 1)-categories,
namely

(a) ordinary categories, and

(b) ∞-groupoids.

The class (a) should be contained in any model of (∞, 1)-categories, since higher
morphisms in any ordinary categories are regarded to be trivial, hence much
stricter than the interpretation of higher morphisms as homotopies in (∞, 1)-
categories. The class (b) should also be contained in any model of (∞, 1)-
categories, since all higher morphisms in ∞-groupoids can be regarded as in-
vertible, not only them from “level” 2 and above.

These classes (a) and (b) can be shown to correspond to particular sub-
classes of simplicial sets. So, these subclasses, that correspond to (a) and (b), give
a first indication that there probably can be defined a model of (∞, 1)-categories
by a subclass of simplicial sets, that contains both subclasses correspond to (a)
and (b). The following discussion explores further how ordinary categories and
∞-groupoids correspond to subclasses of simplicial sets.
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First the subclass of simplicial sets that corresponds to ∞-groupoids,
namely item (b), will be discussed. Recall the homotopy hypothesis suggests
that anything that is modelling homotopy types should also be modelling ∞-
groupoids. Without topological spaces themselves, a good model of homotopy
types are Kan complexes, as claimed in [Cam13]. Now some thoughts and ideas
behind this claim. Recall that a simplicial set K is said to be a Kan complex if
all horns in K admit fillers

Λnk S.

∆n

∀

∃

First observe that any 1-simplex (edge) inK has a “left inverse”, let f : X → Y be
a 1-simplex inK, then f together with the identity map onX, namely idX = s0X,
give the data of a horn (•, idX , f) : Λ2

0 → K, which from assumption can be filled
by a 2-simplex α : ∆2 → K as illustrated by

Y

X X.

f g

idX

α

So, the horn filler property ensures the existence of a 2-simplex α in K, with
d0α = g. The 2-simplex α can be regarded as connecting the composition g ◦ f
to idX . The arrow g can be thought of as an inverse of f , but an inverse up to
a higher morphism, which α can be thought of as an example of. In particular,
α, as any 2-morphism, is invertible (up to 3-morphism) by applying the similar
argument to an appropriate 3-horn, etcetera. The dual argument, namely with
the identity on the other side, ensures that there also exists some arrow that
can be thought of as a right inverse of f . Similar arguments can conceivable be
applied to higher morphisms as well. The impotence of the horn filler property
will be prominent in the forthcoming discussions.

Now to the discussion of how ordinary categories, item (a) above, corre-
spond to a subclass of simplicial sets. Recall from Section B.3.2 that the simplicial
sets, which arise as nerves of categories, can be characterised by the following re-
sult. A simplicial set S is isomorphic to the nerve N(C ) of some category C if
and only if all inner horns in S admit unique fillers. This means that for any
horn Λnk → S with n > 0 and 0 < k < n, there exits a unique map ∆n → S such
that the following diagram commute,
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Λnk S.

∆n

∃!

An intuitive approach to this result is that any category C always is equipped
with a strict composition rule, namely a unique way to obtain an arrow h = g ◦ f
for each composable pair f, g. This property can be regarded as certified by the
unique filler of the horn (g, •, f) : Λ2

1 → N(C ), which in this case is the filler
γ : ∆2 → N(C ) with boundary ∂γ = (g, h, f). A proof of this result can be
found after [Lur09, Proposition 1.1.2.2].

So an idea, that can be extracted from these motivating comments, is that
it can be searched for a model of (∞, 1)-categories that arises from a subclass of
simplicial sets containing at least the examples of (a) ordinary categories and (b)
∞-groupoids. In fact it turns out that it works to assume that all horns admit
inner fillers, which is the definition of a quasi-category.

Definition 2.2.1.1. A simplicial set X is said to be a quasi-category if any
inner horn in X admits a filler. That is for any horn Λnk → X with n > 0 and
0 < k < n there exists a (not necessarily unique) map ∆n → X such that the
following diagram commutes in sSet,

Λnk X.

∆n

∃

The term quasi-category is used by Joyal, for example in [Joy08], which
also is the terminology used in [Cam13]. In many other texts, like [Gro10], [Lur09]
and [Lur12], the term∞-category is used, while the pioneers Boardman and Vogt
used the term weak Kan complex. But the term ∞-category has already been
given another meaning here, so the term quasi-category will be used.

Now some immediate comments to the definition of quasi-categories will
be discussed. First observe that the classes (a) and (b) from the motivation
before the definition clearly are covered by the definition of quasi-categories, by
requiring that any inner horn admits a (not necessarily unique) filler.

Next, the terminology from simplicial sets, and Kan complexes, will be
used for quasi-categories. Let C be a quasi-category. An object X ∈ C is defined
to be an element X ∈ C 0

∼= HomsSet(∆
0,C ), an arrow f : X → Y in C is
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defined to be an element f ∈ C 1
∼= HomsSet(∆

1,C ), with source d1f = X and
target d0f = Y , while identity arrows in C are given by s0X = idX ∈ C 1

∼=
HomsSet(∆

1,C ) for all objects X ∈ C . All isomorphisms in the terminology
here follow from notation and the Yoneda lemma.

The composition rule of arrows can be regarded as an formalisation of
the geometric interpretation for simplicial shaped cells in Section 1.2.1. Let
f : X → Y and g : Y → Z be arrows in a quasi-category C , then this composable
pair can be represented by the horn (g, •, f) : Λ2

1 → C in C . From definition of
quasi-categories there exists a filler α : ∆2 → C connecting the composition g ◦ f
with the arrow d1α = h : X → Z, which can be regarded as a candidate for the
composition. But this filler is not unique, as for ordinary categories. However,
the collection of all such choices of candidates for a composition g ◦ f can be
shown to be a contractible Kan complex. So, composition can be regarded as
well-defined up to homotopy after all. This discussion continues more formally
in Section 2.3.

Before introducing the homotopy category of quasi-categories it is conve-
nient to discuss the notion of the opposite (quasi-)category of a quasi-category.
While the opposite (topological) category of a topological category, or opposite
(simplicial) category of simplicial category C , is easy to describe, just by “revers-
ing” the mapping spaces, namely MapC op(X,Y ) = MapC (Y,X), the definition
of the opposite quasi-category, or opposite category for short, of a quasi-category
C is the same as the definition of the opposite of a simplicial set S, as defined in
Definition B.1.2.10, namely Sop(J) = S(Jop) for any (free category on a) linear
quiver J . Let C be a quasi-category, then C op is a quasi-category. In particular,
C is a quasi-category if and only if C op is a quasi-category. This follows from
the observation that C admits some filler for the horn Λnk → C (with n > 0 and
0 < k < n) if and only if C op admits some filler for the horn Λnn−k → C op (as
also indicated in [Lur09, Section 1.2.1]).

When introducing some new objects, it is often convenient to introduce
the appropriate notions of maps between them. Functors of quasi-categories can
be defined as the following.

Definition 2.2.1.2. Let C and D be quasi-categories, then a functor of quasi-
categories F : C → D is a map of simplicial sets.

One of the great advantages working with quasi-categories is that all func-
tors can be described this way. In particular, the collection of all functors of
quasi-categories C and D is the simplicial mapping space HomsSet(C ,D) (as in-
dicated in [Cam13]), and will often be denoted Fun(C ,D). In the next section
(Section 2.3) it will be said a few words about why this definition capture the
appropriate notions of maps of higher morphisms, which is not yet so much dis-
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cussed. But, the first aim is to establish the notion of the homotopy category of
a quasi-category.

2.2.2 The homotopy category of a quasi-category

Recall that a homotopy category of an (∞, 1)-category can be though of as a
decategorification, by stricifying higher homotopies. In terms of quasi-categories,
this decategorification can be expressed by relating those 1-morphisms that are
“homotopic” to one another, namely the 1-morphisms that are connected by a
particular kind of 2-simplices, which give rise the notion of homotopies. The
approach to the notion of homotopy categories of quasi-categories presented here
in this section build on discussions in [Lur09, Section 1.2.3] and [Gro10, Section
1.1].

Now, with these motivating remarks in mind, the next is the definition of
homotopic edges in a quasi-category.

Definition 2.2.2.1. Let C be a quasi-category and let f : X → Y and g : X → Y
be two arrows in C having the same source and target, g is said to be homotopic
with f , written g ' f , if there is a 2-simplex α : ∆2 → C visualised by,

Y

X Y

g idY

f

α

namely with a 2-simplex α satisfying d0α = idY , d1α = f and d2α = g. In this
situation α is said to be a homotopy from g to f .

The quasi-categorical interpretation of homotopy defined above is an equiv-
alence relation, which will be observed next.

Proposition 2.2.2.2. Let C be a quasi-category and let X and Y be vertices
in C . Then the homotopy relation defined above is an equivalence relation on
edges from X to Y .

Proof : First observe that the relation is reflexive. Let g : X → Y be an edge,
and let α denote the 2-simplex obtained from α = s1g. Now use the simplicial
identities (Definition B.1.2.4) to show that d1α = d1s1g = g, d2α = d2s1g = g
and d0α = d0s1g = s0d0g = s0Y = idY , which proves that α is a homotopy from
g to g.
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For symmetry, let f : X → Y and g : X → Y be edges and let β be a
homotopy from f to g. The aim now is to find a homotopy from g to f . Let α
now denote a homotopy form f to f and let γ = s0 idY = s1 idY = s2 idY denote
the homotopy from idY to itself. The homotopies β, α and γ give the data to
the horn (γ, •, α, β) : Λ3

1 → C which has a filler ω : ∆3 → C from assumption of
C being a quasi-category. Denote δ = d1ω which is clearly a homotopy from g
to f . This proves symmetry.

For the remaining transitivity relation, let f , g and h be edges from X to Y ,
and let β again denote a homotopy from f to g and let ε denote a homotopy from
g to h. Again let γ denote the homotopy from idY to it self. The homotopies β, ε
and γ give the data of a horn (γ, ε, •, β) : Λ3

2 → C which has a filler χ : ∆3 → C .
The transitivity relation follows from the observation that ζ = d2χ is a homotopy
from f to h. This proves transitivity and shows that the quasi-categorical notion
of homotopy is an equivalence relation.

Remark 2.2.2.3. Now it should be remarked that instead of in Definition 2.2.2.1
defining the quasi-categorical notion of a homotopy, from the edge f : X → Y
to the edge g : X → Y in a quasi-category C , as a 2-simplex λ with boundary
∂λ = (idY , g, f), the quasi-categorical notion of a homotopy can be defined as
2-simplex that has the identity on the left side, here exemplified by η a homotopy
from f to g, with this interpretation of homotopies, can be visualised by

X

X Y,

idX f

g

η

which formally means that d0η = f , d1η = g and d2η = idX . An equivalent
statement can be phrased as, if α is a homotopy from f to g then it follows
that there is a 2-simplex η in C as visualised by the diagram above. If so this
will also prove that homotopic edges in C remain homotopic when passing to
the opposite category C op, since passing to the opposite category reversing the
arrows in terms of reflecting the indices.

Proof : Let θ denote the homotopy from f to itself, let κ = s0f an let λ be as in the
remark. Since d1s0f = id f = f , these data defines a horn (θ, λ, •, κ) : Λ3

2 → C
in C , which has a filler υ : ∆3 → C with d2υ = η, as in the statement in the
remark.

In order to define the “homotopy category”, denoted hC , of a quasi-
category C , there is need for a well-defined notion of compositions. In particular
so far define hC as follows
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• the class of objects in hC which is the same as the set of objects in C ,

• the set morphisms HomhC (X,Y ) for each pair of objects X and Y , defined
to be the set of equivalence classes of homotopic edges X → Y .

Moreover, for a given edge f : X → Y in C let the equivalence class of edges
homotopic to f be denoted [f ], and let g : Y → Z be another edge in C . The
composition law in hC is induced from the compositions in C as follows. Let
σ : ∆2 → C denote the filler of the horn (g, •, f) : Λ2

1 → C , then the suggested
composition of homotopy classes is defined to be [g] ◦ [f ] = [d1σ]. This will be
referred to as the composition law in hC . Clearly, there are several well-defined
issues concerning this definition, which will now be taken into consideration.

Proposition 2.2.2.4. Let C be a quasi-category with edges f : X → Y and g :
Y → Z. Then the composition rule [g] ◦ [f ] = [d1σ] defined above is independent
of choice of representative for the equivalence classes [f ], [g] and [d1σ].

Proof : First let σ and σ′ both be fillers of the horn (g, •, f) : Λ2
1 → C with

d1σ = h and d1σ
′ = h′, and let π be the homotopy from g to it self, then σ,

σ′ and π give the data of a horn (π, •, σ′, σ) : Λ3
1 → C which admits a filler

µ : ∆3 → C . The 2-simplex d2µ is then a homotopy from h to h′, which proves
that all choices of candidates for the composition are homotopic to one another.

Next choose representatives f, f ′ ∈ [f ] and let ν denote the homotopy from
f to f ′, while ξ : ∆2 → C denote a filler of horn (g, •, f) : Λ2

1 → C and denote
ρ = s0g, then these 2-simplices give the data of a horn (ρ, •, ξ, ν) : Λ3

1 → C
and let τ : ∆3 → C denote a filler of this horn. Further, denote ξ′ = d1τ , then
d2ξ
′ = f ′, d0ξ

′ = g and d1ξ
′ = h which proves independence of representative

for the homotopy class [f ]. Moreover, the dual argument verifies independence
of representative for [g], then the proposition is proved.

The last verifications needed, in order to prove that hC defines an ordinary
category after all, are existence of identities and associativity of compositions.

Proposition 2.2.2.5. Let C be a quasi-category, then the operation of compo-
sition in hC is associative and has two-sided units.

Proof : First let f : W → X be a 1-simplex in C , it follows directly from the
composition rule that [idX ] ◦ [f ] = [f ], since the 2-simplex s1f is a filler of the
horn (idX , •, f) : Λ2

1 → C . This proves that [idX ] is a left unit of [f ]. The
equivalence class [idX ] is also a right unit of equivalence classes [g] represented
by edges g : X → Y in C , this follows by applying the dual argument. This
proves the unit law for the composition.

Moreover let f and g be as above and h : Y → Z be a third edge in C .
Define the following
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(a) let α : ∆2 → C denote a filler of the horn (g, •, f) : Λ2
1 → C , denote d1α = i

(b) let β : ∆2 → C denote a filler of the horn (h, •, g) : Λ2
1 → C , denote d1β = j

(c) let γ : ∆2 → C denote a filler of the horn (h, •, i) : Λ2
1 → C , denote d1γ = k

These data define the horn (β, γ, •, α) : Λ3
2 → C which admits a filler ω : ∆3 → C .

In particular, denote δ = d2ω. Now observe d0δ = j, d1δ = k and d2δ = f , which
proves [k] = [j] ◦ [f ] = ([h] ◦ [g]) ◦ [f ] where the last bracket follows from (b)
above. Recall from (c) and (a) that [k] = [h] ◦ [i] = [h] ◦ ([g] ◦ [f ]). Hence the
composition rule on hC is associative.

From all this it can be concluded that hC is a category in the ordinary
sense.

Definition 2.2.2.6. Let C be a quasi-category. Then hC as defined above is
called the homotopy category of C .

Moreover, some terminology from topological categories and simplicial cat-
egories can be adopted to quasi-categories. An arrow f : X → Y in a quasi-
category C is said to be an equivalence if [f ] : X → Y is an isomorphism in
hC .

2.3 Model for (∞, 1)-categories

Essentially all properties needed in order to determine the homotopy category
of a quasi-category followed from the inner horn filler property in the previous
section. The aim for this section is to discuss the inner horn filler property even
further in order to sketch some additional ideas of why quasi-categories actually
model (∞, 1)-categories. Moreover, like in many other mathematical disciplines,
in order to understand the theory of quasi-categories themselves it is important
to understand properties of the functors between them. Therefore a discussion
of functors will be merged with the discussions of higher morphisms, mapping
spaces and homotopy coherent diagrams in this section.

2.3.1 Mapping spaces and higher morphisms

Recall that (∞, 1)-categories conveniently can be thought of as a construction
consisting of objects, morphisms between objects, homotopies between mor-
phisms, homotopies between these, etcetera, with no upper bound. So, there
are clearly notions of morphisms of arbitrary dimensions, which from level 2 and
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above are invertible, and such invertible morphisms can be regarded as homo-
topies. When quasi-categories model (∞, 1)-categories, there can be searched for
how these notions are covered by the definition of quasi-categories. The aim for
this section is to explore some of these ideas. The discussion here is mainly in-
spired by the approach in [Gro10, Section 1.1], but also by [Cam13, Section 3.2]
and [Lur09, Section 1.2.2].

But first, the following attempts to structuring the ideas sketched in the
previous paragraph. This way of thinking about higher morphisms may be con-
venient in this section. Higher morphisms in an (∞, 1)-category can be regarded
as homotopies of lower dimensional morphisms. In particular, n-morphisms can
be regarded as (n−1)-homotopies of (n−1)-morphisms, these (n−1)-morphisms
can again be regarded as (n − 2)-homotopies of (n − 2)-morphisms, for n ≥ 2,
1-morphisms are not assumed invertible.

The first aim is to give an explanation of the notion of higher morphisms
in a quasi-category C . Here it will be appealed to a globular understanding of
higher morphisms, mainly in order to give some ideas and illustrations. Some
ideas and an illustration of globular shaped cells can be recalled from the short
mentioning in Section 1.2.1. The discussion here does not give any formal details,
but the main objective of the discussion is to give some ideas.

The aim now is to develop some terminology, which can help to make
the notions discussed so far in this section more precise. Let ∆{i0,i1,...,ik} ⊆ ∆n

denote the k dimensional subsimplex of ∆n spanned by the vertices i0, i1, . . . , ik of
∆n. For example ∆{0,2,3} ⊆ ∆3 denote the 2 dimensional subsimplex illustrated
by

2

0 3,

namely the front simplex (opposite of 1) in the following illustration of ∆3,

1

0 2

3.
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Moreover, for any simplicial set S with some vertex X, let consnX : ∆n → S
denote the constant n-simplex on X, which means that any vertices of consnX
is equal X, any edge is equal idX , etcetera. For example, the simplex ∆2 → S
visualised by

X

X X,

idX idX

idX

attempts to illustrate cons2
X .

Next, some familiar examples will be discussed. First recall and observe
that any edge f : X → Y in a quasi-category C is given by a 1-simplex f : ∆1 →
C with f |∆{0} = X and f |∆{1} = Y . Secondly, let f, g : X ⇒ Y be parallel
edges in C then observe that a (1-)homotopy α of from f to g (if such exists) is
defined to be a 2-simplex α : ∆2 → C with α|∆{0} = X and α|∆{1,2} = cons1

Y .
Homotopies of parallel edges, such as α, can be regarded as 2-morphisms from
X to Y in this interpretation of quasi-categories as models for (∞, 1)-categories.

The idea now is to generalise these established observations for homotopies
in order to obtain the appropriate notions of higher morphisms, and higher homo-
topies. In particular, taking up the discussion from the introductory words of this
section, the notion of an n-morphism from X to Y , which should coincide with
notion of a (n − 1)-homotopy, can be understand as an n-simplex ω : ∆n → C
with ω|∆{0} = X and ω|∆{1,2,...,n} = consn−1

Y . Then ω can be regarded as an
(n− 1)-homotopy of (n− 1)-morphisms between X and Y , by thinking in terms
of globular cells.

In order to illustrate these ideas by a concrete example, next is the case
of n = 3 discussed. Let τ : ∆3 → C illustrate the notion of a 3-morphism
between the edges X and Y , then by the discussion above τ |∆{0} = X while
τ |∆{1,2,3} = cons2

Y . Then τ can be visualised by,

Y

X Y

Y.

idY

idY

idY
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Furthermore, denote d3τ = α, d2τ = γ and d1τ = β. Observe then that α, β and
γ all are 1-homotopies and hence they can be regarded as 2-morphisms from X
to Y . In particular, τ can be regarded as a 2-homotopy from α to β.

Moreover, give name to the edges such that the 2-simplices above determine
the following,

α : f ' g, β : g ' h, γ : f ' h. (2.3.1.i)

Now with α, β and cons2
Y given a priori, τ is clearly a filler of the horn

(cons2
Y , β, •, α) : Λ3

2 → C . This was in fact the argument that was used to verify
the transitivity of the homotopy relation from the proof of Proposition 2.2.2.2 in
the previous section. But now in the discussion here, τ can also be regarded as a
2-homotopy assigning the “vertical” composition of α with β to a candidate of this
“vertical” composition, since τ is as a filler of the horn (cons2

Y , β, •, α) : Λ3
2 → C .

Here let this vertical composition can probably be denoted β • α ≈ γ. From this
the higher inner horn filler property can also be regarded as a certificate for this
notion of composition.

The notion of higher homotopies, described above, should be invertible,
since quasi-categories are models for (∞, 1)-categories, where higher morphisms
are assumed to be invertible. For 1-homotopies, which correspond to 2-mor-
phisms, this can be indicated by the verification of that the homotopy relation
on quasi-categories is symmetric (from the proof of Proposition 2.2.2.2). Hence,
for a given 1-homotopy, say α : f ' g as above, a filler υ : ∆3 → C of the
horn (cons2

Y , •, κ, α) : Λ3
1 → C , where κ denotes the homotopy from f to itself,

verifies the existence of a 1-homotopy denoted ε = d1υ, that can be regarded
as a candidate for the “vertical” composition ε • α ≈ κ. It is more or less clear
that κ : f ' f can be regarded as an identity 2-morphism for this vertical
composition, since α • κ ≈ α (now for arbitrary α : f ' g) and κ • ε ≈ ε (now
for arbitrary ε : g ' f). Since κ can be regarded as an identity, the observation
ε • α ≈ κ indicates that 1-homotopies in quasi-categories are invertible in this
interpretation.

The notion of higher homotopies can also probably be argued to be invert-
ible by applying an appropriate horn filler generalising the previous discussion of
1-homotopies. However, this can be approached by properties of the collection of
all n-morphisms for n ≥ 1 between fixed vertices. This notion will corresponds
to what later will be referred to as mapping spaces in quasi-categories. The next
aim is to give some conceptual ideas of these notions.

Let C be a quasi-category and let X and Y be vertices in C . For all
possible choices of n, the collection of n-morphisms from X to Y , as defined
above, is denoted HomL

C (X,Y ) and referred to as the set of left morphisms in
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C . Moreover, it can be argued for that HomL
C (X,Y ) is a simplicial set itself,

where the n-cells, ∆n → HomL
C (X,Y ), are represented by the set of all (n+ 1)-

morphisms. In fact, it can be proved that HomL
C (X,Y ) is a Kan complex (as

indicated in [Lur09, Proposition 1.2.2.3]).

As indicated before (for example in Section 2.2.1) a consequence of being a
Kan complex is that any simplex (n ≥ 1) in HomL

C (X,Y ) is invertible, firstly in-
dicated since all horns can be filled, secondly known for sure since Kan complexes
are known model∞-groupoids. All (higher) homotopies are then invertible, since
a (higher) homotopy is, from construction, a simplex in HomL

C (X,Y ), in particu-
lar an n-morphism is an (n− 1)-simplex in HomL

C (X,Y ). Hence the requirement
that every higher morphism should be invertible seems to be satisfied in this
interpretation of quasi-categories.

Observe now that there is an obvious dual notion to the left morphisms.
With the same setup as above, the space of right morphisms, denoted
HomR

C (X,Y ), is constructed by using the dual interpretation of homotopies “with
the identity on the left”. The space of right morphisms is given by the collection
of n-simplices β : ∆n → C for various n ≥ 1 with β|∆{0,...,n−1} = consn−1

X while

β|∆{n} = Y , which can, dually to HomL
C (X,Y ), be shown to be a Kan complex.

To summarise, motivated by intuition of what higher homotopies should
be, two candidates for the notion of mapping spaces in quasi-categories have
been discussed. But, at this point it should be remarked that there is no obvious
(“horizontal”) composition rule

◦ : HomL
C (Y,Z)×HomL

C (X,Y )→ HomL
C (X,Z) (2.3.1.ii)

for these descriptions of mapping spaces. This concern is also formulated in
[Lur09, Remark 1.2.2.4].

However, a third candidate for the quasi-categorical notion of a mapping
space can be obtained from the pullback of a diagram of simplicial sets assigning
edges to the fixed vertices X and Y in a quasi-category C . This approach is
the perhaps most natural way of thinking of a mapping space of all morphisms
from X to Y , since this pullback can be thought of as containing the information
of simplices in C that “fit with” X and Y . In order to do so, recall that for
any simplicial sets S and T the internal Hom, or the simplicial mapping space
MapsSet(S, T ), is itself a simplicial set, where the n-simplices in MapsSet(S, T )
are given by MapsSet(S, T )n = HomsSet(S × ∆n, T ). A discussion of simplicial
mapping spaces can be found at [GJ09, p. 20].

In fact, even more is true, if C is a quasi-category then the simplicial map-
ping space MapsSet(S,C ) is a again a quasi-category for any arbitrary simplicial
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set S. This is a special case of [Lur09, Proposition 1.2.7.3]. Often when the
property of MapsSet(S,C ) of being a quasi-category is important, then the nota-
tion Fun(S,C ) = MapsSet(S,C ) will be used, while when the simplicial structure
on this simplicial mapping space is important the already established notation
MapsSet(S,C ) will be used. For other purposes when no particular structure is
important the notation HomsSet(S,C ) will be used.

Now back to the promised third description of mapping spaces. Edges
in a quasi-category C can be represented by vertices of the simplicial mapping
space MapsSet(∆

1,C ), while pairs of vertices in C can be represented by vertices
of the simplicial mapping space MapsSet(∆

0
∐

∆0,C ) ∼= C ×C . Moreover, the
canonical projection

π : MapsSet(∆
1,C )→ MapsSet(∆

0
∐

∆0,C ) (2.3.1.iii)

can be constructed by sending each edge in C to the pair consisting of its source
and target, that is, the projection π corresponds to the expression d1 × d0. Fur-
thermore, let

(X,Y ) : ∆0 → MapsSet(∆
0
∐

∆0,C ) (2.3.1.iv)

denote the simplicial map that corresponds to the vertex in MapsSet(∆
0
∐

∆0,C )
that is represented by the pair (X,Y ) of vertices in C . Now, the third description
of mapping space in C is given by the pullback

MapC (X,Y ) MapC (∆1,C )

∆0 MapC (∆0
∐

∆0,C )

π

(X,Y )

over sSet. This pullback is known to exists, since sSet, as every Set-valued
presheaf category, is both cartesian and cocartesian (Proposition B.1.2.2). More-
over, it is more conceivable what a “horizontal” composition in this interpretation
of mapping spaces, by using the properties of sSet over again.

Again this third approach to the interpretation of the mapping spaces
MapC (X,Y ) is perhaps the most intuitive, since it is constructed by using the
properties of the simplicial structure of C . By construction MapC (X,Y ) can
be thought of as the simplicial set of all morphisms starting in X and ending
in Y . The simplicial set MapC (X,Y ) has in fact the correct homotopy type,
as indicated at [Cam13, p. 14], so then this description of the quasi-categorical
mapping space seems to work after all. Moreover, some further discussions of
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this perspective of the quasi-categorical mapping spaces can be found in [Cam13,
Section 3.2].

Moreover, for a quasi-category C , the last notion of a mapping space,
which has already been given the notation MapC (X,Y ), is however related to
the spaces of left morphisms and right morphisms. In fact there are natural
inclusions,

HomL
C (X,Y ) ↪→ MapC (X,Y )←↩ HomR

C (X,Y ), (2.3.1.v)

which both can be shown to be homotopy equivalences. This result is indicated
in [Lur09, Section 1.2.2] with references to [Lur09, Corollary 4.2.1.8], which un-
derstanding of requires more details than will be given here. So, the three de-
scriptions of mapping spaces model the same homotopy types, which again is
indicated in [Cam13] to be the correct one, after all.

Definition 2.3.1.1. Let C be a quasi-category with vertices X and Y . Often the
term mapping space will be used for the third description, namely MapC (X,Y ),
while the space of left morphisms or the space of right morphisms will be used
for the others, as already decided. But, when clear from situation, the notation
MapC (X,Y ) will denote all these cases, all referred to as the mapping space, since
they all model the same homotopy type.

So, in this section it has been discussed how higher homotopies and map-
ping spaces in quasi-categories can be described from intuition and generali-
sation. These notions supply the understanding of quasi-categories as models
for (∞, 1)-categories, for example by the notion of higher homotopies and that
mapping spaces can be shown to be Kan complexes, which are known to model
∞-groupoids. In the next section the notion of functors and homotopy coherent
diagrams will be discussed for quasi-categories.

2.3.2 Functors and homotopy coherent diagrams

Recall from Definition 2.2.1.2 that any functor of quasi-categories is a map of
simplicial sets. In this section there will be sketched some ideas why this definition
is natural and works well after all. Homotopy coherent diagrams, regarded as a
special examples of functor, will also be discussed.

First observe that any simplicial map f : S → T preserves the simplicial
structure in the sense that vertices are mapped to vertices, arrows to arrows,
n-simplices to n-simplices, etcetera. This follows easily from the forthcoming
interpretation. Let ω : ∆n → S be an n-simplex in S. The following commutative
diagram
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∆n S

T,

ω

f
fω

indicates that the corresponding element ω ∈ Sn (by applying the Yoneda lemma)
is mapped to an element in Tn, which corresponds to fω in the diagram (by apply-
ing the Yoneda lemma again). Moreover, any simplicial map f : S → T preserves
also faces and degeneracies of any n-simplex ω : ∆n → S. This follows directly
since simplicial maps are natural transformations. These arguments ensure that
simplicial maps preserve all expected structure.

Now some comments of what these structure preservations actually mean
for simplicial maps of quasi-categories. Let C and D be quasi-categories, then it
is required for a simplicial map F : C → D to send objects to objects, arrows
to arrows, higher homotopies to higher homotopies, etcetera, in order to give
rise to a functor of quasi-categories, as a model for (∞, 1)-categories. But this
follows directly from the structure preservation of simplicial maps sketched above.
For example, higher homotopies in C can be thought of as particular simplices
that are constant on “one side”, as argued for in the previous section. Since
degeneracies are preserved, constant simplices are sent to the constant simplices,
etcetera. This, together with all preservations of structure, indicates conceptually
that homotopies are mapped to homotopies as required.

Following the same thoughts, it can be argued that horns in C will be sent
to horns in D . Moreover, let α : ∆2 → C denote a filler of the horn (g, •, f) : Λ2

1 →
C , then F (α) is also a filler of the horn F (g, •, f) = (F (g), •, F (f)) : Λ2

1 → D . So
the essence of all these ideas is that the description of functors of quasi-categories
as simplicial maps is naturally motivated from the discussion so far. So from this,
the functors of quasi-categories are conceivable to be exactly the simplicial maps,
so the collection of all such functors can be regarded as the simplicial mapping
space MapsSet(C ,D) = Fun(C ,D), as previously stated.

As previously discussed, the fact that inner horns in a quasi-category C
can be filled gives the appropriate notion of compositions in quasi-categories.
For edges f : X → Y and g : Y → Z in C the inner horn filler property claims
that there is a 2-simplex α with boundary, say ∂α = (g, h, f), assigning the
composition gf to a candidate h for the composition. All these data are going
into the notion of a triangle shaped diagram for quasi-categories. Recall also, as
usual there can be more 2-simplices filling the horn (g, •, f) : Λ2

1 → C , which
give rise to “the same” triangle shaped diagram, in the meaning that all choices
of candidates for the composition are homotopic to one another, so there are
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2-homotopies connecting such certificates, invertible up to higher homotopies,
etcetera. This can also be viewed a consequence of the proof of the proposition
asserting that compositions in the homotopy category of a quasi-category are
well-defined (Proposition 2.2.2.4).

Moreover, the notion of triangle shaped diagrams above can be generalised
to strings of composable arrows in C , which can be encoded by concatenations
of Λ2

1-horns of required length. Formally, let

Pn = ∆1
∐
∆0

· · ·
∐
∆0

∆1, (2.3.2.i)

denote the concatenation of n standard edges ∆1, then a string of length n of
composable edges in C can be obtained from a simplicial map Pn → C . A
string of length n = 3 is used in the proof of Proposition 2.2.2.5 in order to
prove that the induced composition rule on hC is associative. The obtained
homotopy associating h(gf) with (hg)f can be understand as the associator for
the composition in C , in view of the notion of associator from the first chapter (in
Section 1.2.4). Similarly, the pentanator can be obtained from strings of length
n = 4, etcetera.

Recall the notion of homotopy coherence from the first chapter (Section
1.2.4), with all the additional data of associators, pentagonators etcetera, dia-
grams in higher categories are often said to commute up to coherent homotopy.
The aim now is to give some ideas how homotopy coherent diagrams are expressed
for quasi-categories as models for (∞, 1)-categories. So, for a triangle shaped di-
agram, as seen above, the inner horn fillers property ensures the existence of a
2-simplex assigning a composition to a candidate for the composition, with all
choices homotopic to one another.

In particular, a diagram of arbitrary (non-cyclic) shape in a quasi-category
C , which always can be visualised as a shape build up by vertices and edges, can
be interpreted as a simplicial map F : X → C , where X is the shape of the
diagram, or more precisely, X is the nerve of the free category on the underlying
directed graph of the diagram visualised by vertices and edges in C . The discus-
sion about strings of arbitrary lengths in quasi-categories above can be generalised
to any diagram of arbitrary (non-cyclic) shape (as indicated in [Cam13]). This
means that any diagram in C commutes up to coherent homotopy, as required
for a model for (∞, 1)-categories. So, from this it can be concluded that the inner
horn filler property gives not only the appropriate notion of compositions, but
also the appropriate notion of homotopy coherent diagrams in quasi-categories.

Equivalently, the idea of homotopy coherent diagrams can also be inter-
preted as a lifting property. This perspective of homotopy coherent diagrams is
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discussed in [Lur09, Section 1.2.6]. In particular, let X denote the nerve of the
free category of the directed graph with the shape of an arbitrary diagram, as
described above. A homotopy coherent diagram in a quasi-category C can be
interpreted as a functor F : X → hC (by forget the nerve of X) together with
all additional data of higher homotopies available in order to lift F to a functor
F : X → C of quasi-categories. These additional data are basically the same as
the data mentioned for the first perspective from discussion.

2.3.3 Contractable spaces of choices

Recall again that all choices for fillers of a horn Λ2
1 → C give homotopic candi-

dates for a composition. Thinking geometrically, all such candidates for a compo-
sition represented by a fixed horn are in the same path connected component of
an appropriate notion of a “space” of candidates, since they are all homotopic to
one another. Hence, composition can be said to be “defined up to a contractable
space of choices”. The aim for this section is to give some ideas of this assertion.

But first, the following result characterises the simplicial sets that have
the property of being quasi-categories.

Proposition 2.3.3.1. A simplicial set C is a quasi-category if and only if the
map

MapsSet(∆
2,C )→ MapsSet(Λ

2
1,C ), (2.3.3.i)

induced from the inclusion Λ2
1 ↪→ ∆2, is a trivial Kan fibration.

This proposition is also stated in [Cam13, Proposition 3.4 and Remark
3.5] and in [Gro10, Theorem 1.11]. The result is due to Joyal. In particular,
the proposition implies that the fibers over the map in Equation 2.3.3.i are con-
tractable Kan complexes (as stated in [Cam13, Proposition 3.4]). Although both
directions in the proposition are true, it will mainly be assumed that C is a quasi-
category here. The aim now is to see use of this proposition in some examples in
order to formalising some of ideas and expectations discussed previously.

A filler of the horn Λ2
1 → C can be interpreted as a certificate that ensures

the existence of a candidate of a composition, as discussed various places previ-
ously. Fibers over the map in Equation 2.3.3.i can be interpreted as choices for
certificates of composition, homotopies of these certificates, etcetera, analogously
to the data obtained under the discussion of homotopy coherent diagrams pre-
viously. For example, as indicated in the discussion of mapping spaces (Section
2.3.1), a composable pair is given by some vertex

∆0 → MapsSet(Λ
2
1,C ). (2.3.3.ii)
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The fiber over MapsSet(∆
2,C )→ MapsSet(Λ

2
1,C ) (Equation 2.3.3.i) at this ver-

tex is given by the following pullback in sSet,

Fib MapsSet(∆
2,C )

∆0 MapsSet(Λ
2
1,C )

which can be interpreted as the space of all possible candidates of composition
of the composable pair determined by the vertex ∆0 → MapsSet(Λ

2
1,C ). From

Proposition 2.3.3.1 this space is a contractable Kan complex. Geometrically,
contractable can be interpreted as the space Fib in the diagram above has triv-
ial homotopy type. Hence all choices of candidates of the composition can be
regarded as homotopic to one another, as discussed previously. Moreover, the
assertion that the simplicial set Fib is a Kan complex guarantees that all sim-
plices (n ≥ 1), which for the simplicial set Fib can be interpreted as certificates
of compositions, homotopies of these etcetera, are invertible, as discussed. So,
for a quasi-category C the requirement that MapsSet(∆

2,C )→ MapsSet(Λ
2
1,C )

is a trivial Kan fibration formalise the properties of the notions of compositions
and candidates for them discussed previously.

Furthermore as indicted in [Cam13], Proposition 2.3.3.1 can be generalised
(or at least one of the direction in the proposition) to strings of composable
morphisms of arbitrary length. Let C be a quasi-category and let Pn be defined
as previously (in Equation 2.3.2.i), namely

Pn = ∆1
∐
∆0

· · ·
∐
∆0

∆1. (2.3.3.iii)

Then the simplicial map Pn → C represents a string of n composable morphisms
in C . Then the map

MapsSet(∆
n,C )→ MapsSet(Pn,C ), (2.3.3.iv)

obtained from the inclusion Pn ↪→ ∆n can be shown to be a trivial Kan fibra-
tion ([Cam13]). This result can be interpreted as giving a precise meaning to
the situations of composable strings of arbitrary lengths, as discussed previously.
For example the case where n = 3 describes associativity of the composition, the
result can be interpreted as specify a precise meaning of compositions being asso-
ciative ([Cam13]). The fiber over the map MapsSet(∆

3,C )→ MapsSet(P3,C ) at
∆0 is a contractable Kan complex, so all higher simplices can be regarded as in-
vertible and homotopic to one another, which basically also have been formulated
previously for the notion of associativity.
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Even more generally Proposition 2.3.3.1 can be extended to arbitrary dia-
grams in C , as stated more precisely in [Cam13, Proposition 3.6]. The idea behind
this generalisation is to interpret arbitrary diagrams as a functor F : X → C ,
where X denotes the nerve of the free category of the directed graph describing
the shape of the diagram, in the same way as discussed for homotopy coherent
diagrams in Section 2.3.2. Similarly as for associativity discussed above, this gen-
eralisation can be interpreted as specify a precise sense of the notion of homotopy
coherent diagrams in quasi-categories.

Summarised, the Proposition 2.3.3.1 and its generalisations gives more
precise interpretations of many of the notions discussed previously, which are
particular important when discussing limits and other universal constructions
for quasi-categories in Chapter 3. The nest section sketches some ideas in the
comparison of simplicial categories and quasi-categories.

2.3.4 Comparison of quasi-categories with simplicial cate-
gories

Up until now in this part, some (∞, 1)-categorical properties have been discussed
for quasi-categories. The aim now is to discuss some ideas of a comparison of
quasi-categories with simplicial categories. Moreover, from the comparison of
topological categories with simplicial categories in Section 2.1.3 recall that it
was searched for constructions that preserved the homotopical structure. But
this followed easily, since the unit maps and the counit maps for the adjunction
(||,Sing) : sSet → CG can be proved to be weak homotopy equivalences. The
aim for this section is to give some ideas of the comparison of quasi-categories and
simplicial categories. Finally, it will be discussed some short ideas of alternative
approaches to mapping spaces and the homotopy categories for quasi-categories.
In particular, it will first be given a definition of C[•] and sN. In fact C[•] and sN
define an adjoint pair

(C[•], sN) : sSet→ sCat, (2.3.4.i)

which can be shown (as stated in [Gro10, Theorem 1.27]) to be a Quillen-
equivalence, where sSet and sCat are equipped with appropriate model struc-
tures, which will be referred to as the “Joyal model structure” and “Bergner
model structure” respectively. The discussion here has been inspired by [Gro10,
Section 1.2] and [Lur09, Section 1.1.5].

First the definition of C[•] : sSet → sCat. Evaluated on representable
presheaves, say ∆p, C[∆p] is defined to be the simplicial category, where

• objects are {0, 1, 2, . . . , p}, namely the standard vertices in ∆p and
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• mapping spaces are determined by

MapC[∆p](i, j) =

{
NPi,j for i ≤ j
∅ for i > j,

(2.3.4.ii)

where Pi,j denotes partially ordered sets of subsets {i, j} ⊆ S ⊆ {i, . . . , j}
which are ordered by the relation ≤ where S′ ≤ S if S ⊆ S′

Compositions are induced from unions of subsets. Sketches presented in [Gro10,
pp. 10-11] visualise these constructions for lower dimensional simplices. More-
over, for a morphism f : [p] → [q] in ∆, the simplicial functor C[f ] : C[p] → C[q]
is defined by

• C[i] = f(i) ∈ C[∆q] for ever object i ∈ C[∆p]

• for i ≤ j in C[∆p] the map MapC[∆p](i, j) → MapC[∆q ](f(i), f(j)) induced
from f is obtained by the nerve of the map Pi,j → Pf(i),f(j) that assigns
S 7→ f(S)

A detailed description of the functor C[•] is however given in [Lur09, Section
1.1.5]. Now, as indicated at [Lur09, p. 23], since sCat admits (small) colimits,
the functor C[•] can be shown to preserve colimits. Then since C[•] up until now
has been defined on representable presheaves, it can be extended uniquely, up to
unique isomorphism, to a functor of arbitrary simplicial sets, C[•] : sSet→ sCat.
Recall that arbitrary simplicial sets can be regarded as colimits of representable
simplicial sets.

Next the construction of the simplicial nerve functor sN : sCat → sSet
will be discussed. For any simplicial category C , the simplicial set sN(C ) is
defined to have n simplices

sN(C )n ∼= HomsSet(∆
n, sN(C )) = MapsCat(C[∆n],C ) ∈ sSet, (2.3.4.iii)

where the isomorphism in the expression above is obtained by the Yoneda lemma
as usual, the equality is the definition. The construction of the simplicial nerve
establishes the adjunction

(C[•], sN) : sSet→ sCat, (2.3.4.iv)

by definition. This is as also stated in [Gro10, Remark 1.20].

The aim now is to give some ideas why this adjunction determines the
first step of a comparison of simplicial categories with quasi-categories. In fact,
by following the discussion in [Gro10, Section 1.2], sSet can (with some re-
quirements) be equipped with a model structure, choosing fibrant objects to be
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quasi-categories. This is often called the Joyal model structure on simplicial sets,
named after Joyal.

Moreover, sCat can (with some requirements) be equipped with a model
structure taking fibrant objects to be those simplicial categories whose mapping
spaces are Kan complexes. This is often referred to as the Bergner model struc-
ture on simplicial categories, named after Bergner. Recall that the definition of
simplicial categories is often restricted to these fibrant simplicial categories in
order to model (∞, 1)-categories, as stated in Remark 2.1.3.2.

With these model structures, the adjunction (Equation 2.3.4.iv) can be
shown to be a Quillen equivalence ([Gro10, Theorem 1.27]). The idea is that
this Quillen equivalence solve the comparison problem, since this can conceptu-
ally be regarded as implying that quasi-categories behave homotopically similar
as fibrant simplicial categories. Then they model the same higher categorical
concept, namely (∞, 1)-categories.

With the established connection between simplicial categories and quasi-
categories, some notions for quasi-categories can be approached differently. In
particular, one of the benefits with simplicial categories is that the mapping
spaces can easily be described, since simplicial categories is defined to be cate-
gories enriched over sSet. Let D be a quasi-category, then the mapping spaces
in D can be described by the construction MapC[D](X,Y ) for any vertices X
and Y , as indicated [Lur09, p. 27]. It turns out that this approach can in some
situations be used to a procedure for strictifying compositions in quasi-categories
by using simplicial enrichments ([Cam13, p. 15]). However, it turns out that
this construction has some serious drawbacks, so it is not usually used in other
practical situations ([Lur09, p. 27]).

The construction of homotopy categories was easily obtained in the simpli-
cial categorical setting, simply by applying the geometric realisation functor. The
construction of homotopy categories of quasi-categories can be approached by this
construction from simplicial categories. In order to do so, let h : sCat → Cat
denotes the functor that to each simplicial category assign its homotopy category.
The homotopy category of a quasi-category C can be obtained by applying the
composition of the functors

sSet
C[•]−−→ sCat

h−→ Cat . (2.3.4.v)

Restrict the composition of the functors above to quasi-categories and denote
this composition by h. This description of the homotopy category, which can be
denoted hC , of a quasi-category C is naturally equivalent to the description given
earlier, which was denoted hC , in fact hC and hC are isomorphic as categories, as
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proved in [Lur09, Proposition 1.2.3.9]. In both these cases the homotopy category
will then be denoted hC .

Recall that the nerve of an ordinary category is a quasi-category. More-
over, the nerve functor N : Cat → sSet can be shown to commute with the

composition Cat
i−→ sCat

sN−→ sSet, where i denotes the inclusion of Cat in to
sCat, so N = sN ◦i, as indicated in the proof of [Lur09, Proposition 1.2.3.1]. In
fact, (h, i) : sCat→ Cat is an adjoint pair, which can be seen from the adjunc-
tion (π0, j) : sSet→ Set used on the enrichments, where j denotes the inclusion
Set → sSet, again indicated in the proof of [Lur09, Proposition 1.2.3.1]. By
composing with the adjunction (C[•], sN) : sSet→ sCat establishes the adjunc-
tion (h ◦C[•], N = sN ◦i) : sSet→ Cat. In fact for a (fibrant) simplicial category
C the descriptions hC and hsNC are equivalent ([Lur09, Warning 1.2.3.3]). All
ideas and sketches given here are more formally and detailed discussed in [Lur09,
Section 1.2.3].

However, as already mentioned, it turns out that many notions in the
(∞, 1)-categorical language, like limits and colimits, are easily obtained in the
quasi-categorical setting. In the next chapter there will be description of some of
these notions that are used further in the discussions of stable (∞, 1)-categories
in the final chapter.





Chapter 3

Notions in the language of
(∞, 1)-categories

The aim for this chapter is to adapt some of the notions from the theory of ordi-
nary categories to the language of (∞, 1)-categories. In particular, notions that
will be used in the theory of stable (∞, 1)-categories in the next chapter will
be discussed here. These notion will formally be discussed for quasi-categories,
since quasi-categories have the advantage that many of these necessary notions
can be adapted intuitively and well motivated from the ordinary categorical lan-
guage. First the discussion of functors of quasi-categories will be continued from
the previous chapter. Then constructions that are used in the establishments of
for example terminal objects and limits will be discussed. In particular, these
constructions are join constructions for quasi-categories together with overcate-
gories and undercategories for quasi-categories. Finally, initial objects, terminal
objects, limits and colimits will be discussed. Moreover, a particular attention
will be given to pullbacks and pushouts, since they are key constructions in the
theory of stable (∞, 1)-categories that will be discussed in the next chapter. The
insight in quasi-categories will be made a practical use in the establishment of
stable (∞, 1)-categories in the next chapter.

3.1 Functors and subcategories

In this section the discussion of functors will be continued from the previous
chapter. Finally, there will be described a notion of a sub-(∞, 1)-category C ′ ⊆ C
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of an (∞, 1)-category C , but in the setting quasi-categories.

3.1.1 Functors of (∞, 1)-categories

Recall that a functor of quasi-categories F : C → D was defined to be a map
of simplicial sets. For topological categories and simplicial categories functors
were defined to be enriched functors. However, there are some difficulties in
giving a description of the collection of all functors C → D , when C and D
are topological categories or simplicial categories. This is exemplified in [Lur09,
Remark 1.2.7.1]. A problem that may occur is that the “obvious” descriptions of
such collections of functors do not have enough natural transformations, in order
to be the appropriate description.

However, for quasi-categories C and D the collection of functors Fun(C ,D),
namely the simplicial mapping space MapsSet(C ,D), is a quasi-category itself,
as mentioned in the previously. Even the simplicial mapping space Fun(S,C ) =
MapsSet(S,C ) is a quasi-category for any arbitrary simplicial set S.

Proposition 3.1.1.1. Let C be a quasi-category and let S be a simplicial set,
then the simplicial set Fun(S,C ) = MapsSet(S,C ) is a quasi-category.

This is also mentioned in [Cam13, Section 3.2] and is one of the state-
ments in [Lur09, Proposition 1.2.7.3] and in [Gro10, Proposition 2.2]. This easy
description of the collection of functors has some advantages for quasi-categories.
For example, recall that diagrams in a quasi-category C can be thought of as
a functor F : X → C , where X is the nerve of the free category on the di-
rected graph with the shape of the diagram, then some appropriate properties
or constructions of quasi-categories can be inhered to Fun(X,C ), which repre-
sents the quasi-category of all diagrams in C with this shape given by X. It
will be seen in the next chapter that the “full subcategory” of the quasi-category
of square shaped diagrams Fun(∆1 × ∆1,C ) spanned by the squares that are
pushout squares is important in the discussion of stable (∞, 1)-categories. The
forthcoming section discusses the notion of subcategories for quasi-categories.

But now, the notion of equivalences of quasi-categories will be defined.
Recall from Section 2.3.4 that the homotopy category of a quasi-category can be
regarded as an H -enriched category.

Definition 3.1.1.2. Let F : C → D be a functor of quasi-categories. Then F
is said to be an categorical equivalence, or equivalence for short, if the induced
functor on the homotopy categories hC → hD is an equivalence of H -enriched
categories.
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In fact, the notion of categorical equivalences can also be defined for ar-
bitrary maps f : S → T of simplicial sets by approach the comparisons and
the notion of H -enriched categories slightly more generally than discussed pre-
viously. This approach is the one considered in [Lur09], but [Gro10] seems to
approach this through model categories and Dwyer-Kan equivalences. However,
with this notion established, the following can be shown to be true.

Proposition 3.1.1.3. First, let F : C → D be a categorical equivalence
of quasi-categories and S an arbitrary simplicial set, then the induced map
Fun(S,C )→ Fun(S,D) is an categorical equivalence of quasi-categories. Second,
let now f : S → T be a categorical equivalence of simplicial sets and let C be
a quasi-category, then the induced map Fun(T,C ) → Fun(S,C ) is a categorical
equivalence of quasi-categories.

This result is again a special case of [Lur09, Proposition 1.2.7.2], similar as
[Gro10, Proposition 2.2], and is due to Joyal, a proof will often require far more
theory and details than will be discussed here. However, from this proposition
above observe that the formation of functor categories is an invariant notion
under equivalences, as expected for quasi-categories.

3.1.2 Subcategories of quasi-categories

The aim for this section is to give some ideas of the notion of a sub-(∞, 1)-
category of an (∞, 1)-category, but in the quasi-categorical setting. In fact, the
general axiomatic setting of sub-(∞, 1)-categories involves quite much structure,
in particular it can be carried out by a recursive matter, with base cases involving
equivalences C → D . But this will not be discussed here.

However, the discussion here basically follows the interpretation in [Lur09,
Section 1.2.11] for quasi-categories. In particular, let C be a quasi-category, the
interpretation of a sub-quasi-category here is obtained from a subcategory of the
homotopy category hC by “pulling back” the nerve of this inclusion in C . The
precise definition of a sub-quasi-category is the following.

Definition 3.1.2.1. Let C be a quasi-category and let hD ↪→ hC denote the
inclusion of a subcategory hD of the homotopy category hC of C . A sub-quasi-
category, or subcategory for short, is the pullback of C with the nerve of the
inclusion above, namely the limit of N(hD)→ N(hC )← C over simplicial sets,
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D C

N(hD) N(hC ).

Then D obtained this way is referred to as the sub-quasi-category of C spanned
by hD , or the subcategory of C spanned by hD for short.

Conceptually, this construction of D can visually be understand of being
the simplicial subset of C , that has the same objects as hD , and the mapping
spaces are obtained from connected components of the mapping space of C , whose
homotopy equivalence classes are equivalent to the Hom-sets of hD .

Definition 3.1.2.2. Let C be a quasi-category. If hD in the construction of
subcategories in Definition 3.1.2.1 above is a full subcategory of hC , then D is
said to be the full subcategory of C spanned by the objects of hD .

As mentioned, full subcategories of certain functor categories, for example
of square shaped diagrams that are spanned by the squares with the property of
being quasi-categorical pushout squares, are important parts of the constructions
that go in to the discussion of the theory of stable quasi-categories in the next
chapter.

3.2 Constructions

The main aim for this section is to define notions of initial objects and terminal
objects together with limits and colimits in the (∞, 1)-categorical language, which
formally are discussed for quasi-categories. This involves a discussion of joins
of quasi-categories and overcategories and undercategories for quasi-categories
in order to prepare for the main objectives. The discussion here is based on
studies of [Gro10] and [Lur09, Section 2.2], but inspiration is also taken from
[Cam13, Section 5], which the latter seems to give a somewhat slightly more
general approach.

The title of the section reflects that there are constructed “new” gadgets
from others, for example a join of two quasi-categories is a “new” quasi-category
constructed from the two original ones, while limits can be defined as particu-
lar ‘universal’ diagrams or functors. The term ‘universal’ should really in the
quasi-categorical setting, or in any (∞, 1)-categorical setting, as usual be inter-
preted as ‘universal up to homotopy’ or ‘universal up to a contractable space of
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different choices of candidates’, as discussed various places previously. In partic-
ular, pullback diagrams and pushout diagrams will be discussed because of their
importance in the next chapter, as already said a few words of.

3.2.1 Join constructions

Next aim is to define the notion of “joins of quasi-categories”. But first some
motivation from ordinary categories will be discussed. For ordinary categories C
and D , the join of C and D is defined to be a category denoted C ?D where

• an object of C ?D is either an object of C or an object of D

• the morphism sets are given as follows, for objects X and Y of C ?D ,

HomC ?D(X,Y ) =


HomC (X,Y ) if (X ∈ C ) ∧ (Y ∈ C )

HomD(X,Y ) if (X ∈ D) ∧ (Y ∈ D)

∅ if (X ∈ D) ∧ (Y ∈ C )

{∗} if (X ∈ C ) ∧ (Y ∈ D).

(3.2.1.i)

Composition of morphisms is determined from definition, since C and D are full
subcategories of C ?D by construction.

These motivating comments continue now with some examples of joins
for ordinary categories. First let C be an arbitrary ordinary category, while
[0] denotes the category with one object and only identity morphism as usual.
Remark that [0] is the terminal object in Cat. The join C ?[0] is often denoted
C . and called the right cone on C . From definition of join, the right cone C . is
constructed from adjoining an object ∞ to C , such that for all objects X in C
there exists a unique arrow X →∞. So, the shape of C . can be visualised as a
cone (formed by various arrows) ending in ∞. The construction of C . has some
relations to colimits viewed as a universal arrows, as colimits are approached
in [Mac98, Chapter III], since C . can be viewed as a “completion” of diagrams
F : X → C of certain shapes. These notions will be discussed further in the
definitions of limits and colimits in Section 3.2.4.

In order to give an illustration of the join constructions for ordinary cat-
egories, take for example the category C = (• ← • → •) in consideration. The
right cone C . ∼= [1]2 can be illustrated by the following commutative diagram
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• •

• •

completing C into a square, where the arrow going diagonally is captured by
either the upper-right composition or the left-lower composition.

For a category C , the dual notion C / = [0]?C is called the left cone on C ,
and is constructed by adjoining an object −∞ to C such that for all objects X in
C there is a unique arrow −∞→ X. Considering the dual of the example above,
let C denote the category (• → • ← •), then the construction of the left cone
C / completes C to a square. Dually, left cones have some relations to diagrams
and limits viewed as universal arrows, which also are discussed further in Section
3.2.4.

There is a corresponding notion of joins of simplicial sets, which are defined
in the following way.

Definition 3.2.1.1. Let S and T be simplicial sets. The join of S and T denoted
S ? T is defined to be the simplicial set with

(S ? T )n = Sn ∪

 ⋃
i+j=n−1

Si × Tj

 ∪ Tn. (3.2.1.ii)

In order to prepare for the next proposition there will first be introduced
some notation. Let sSetS/ denote the category of simplicial sets under S (the
definition of undercategories can be found at the beginning of Section 3.2.2).
Then the join operation induces a functor

S ? (−) : sSet→ sSetS/ (3.2.1.iii)

obtained by sending T 7→ S ? T , while a map f : T → V of simplicial sets is sent
to the morphism S ?T → S ?V obtained from the identity when restricted to the
S part and f restricted to the T part of S ?T , which obviously gives a morphism
in sSetS/. Similar comments can be applied to the induced functor

(−) ? S : sSet→ sSetS/ . (3.2.1.iv)

Moreover, the join operation on simplicial sets can be characterised by the fol-
lowing properties.

Proposition 3.2.1.2. Let S and T be simplicial sets, then
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(i) the induced functors S ? (−) : sSet→ sSetS/ and (−) ? S : sSet→ sSetS/
preserves colimits

(ii) for representable simplicial sets ∆k there are natural isomorphisms φi,j :
∆i−1 ?∆j−1 → ∆(i+j)−1 for all i, j ≥ 0.

In fact, the isomorphisms φi,j equips sSet with a monoidal structure with tensor
unit given by the empty simplicial set ∆−1.

This proposition is similar to [Gro10, Proposition 2.6], and corresponding
notions are also discussed in [Lur09, Section 1.2.8].

The ordinary nerve functor carries in fact joins of ordinary categories over
to joins of simplicial sets. More precisely, there are natural isomorphisms

N(C ?D) ∼= N(C ) ? N(D) (3.2.1.v)

for ordinary categories C and D , as stated in [Lur09, Section 1.2.8]. This gives
the first indication that the join construction on simplicial sets is the appropriate
notion of join construction for quasi-categories. In fact, a join of quasi-categories
is again a quasi-category, and hence quasi-categories are closed under joins.

Proposition 3.2.1.3. If C and D are quasi-categories, then the join construction
C ?D is again a quasi-category.

Remark 3.2.1.4. A similar proposition is stated in [Lur09, Proposition 1.2.8.3].
This proposition is due to Joyal, as stated before [Lur09, Proposition 1.2.8.3].
Now it will be sketched some ideas of the proof, but a slightly more rigid discussion
can be found in the proof of [Lur09, Proposition 1.2.8.3].

“Proof” of Proposition 3.2.1.3: So, the inner horn filler property has to be checked
for C ?D in order to prove the proposition. Let p : Λni → C ?D be a horn in
C ?D , where 0 < i < n and n > 0. There are two mutually exclusive cases to
consider, (a) if p carries the horn entirely to either C or D , or (b) if p does not,

(a) the required horn filler property follows immediately, since both C and D
are quasi-categories from assumption

(b) assume without loss of generality that p carries the vertices {0, 1, . . . , j} into
the C part and the vertices {j + 1, j + 2, . . . , n} into the D part of C ?D .
Now, restrict p to these vertices in order to obtain maps ∆{0,1,...,j} → C
and ∆{j+1,j+2,...,n} → D which together determine a map ω : ∆n → C ?D .
This map ω is then a filler for p, which proves the required horn filler
property.

The mutually exclusive cases (a) and (b) prove the proposition.
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The definition of left cones and right cones are inhered from join construc-
tions of ordinary categories to the join construction of simplicial sets,

Definition 3.2.1.5. Let S be a simplicial set, the right cone on S is the join
S. := S ?∆0 while the left cone on S is the join S/ := ∆0 ? S.

The discussion of join constructions closes up with some comments about
square shaped diagrams in quasi-categories, which take some ideas from the dis-
cussion for square shaped ordinary categories at the beginning of this section.
Let C be a quasi-category, recall that the notion of a diagram in C should be
interpreted as a homotopy coherent diagram. Hence, a square in C should be
interpreted as a simplicial map ∆1×∆1 → C visualised by the following vertices
and edges forming this square shaped diagram in C ,

X ′ X

Y ′ Y,

p′

qq′

p

as illustrated in [Lur09, Section 4.4.2]. Such diagram actually contains the in-
formation of an edge going “diagonally” r : X ′ → Y together with homotopies
α : r ' p ◦ q′ and β : r ' q ◦ p′ satisfying their higher relations, etcetera.

Analogously with square example for ordinary categories, where the ordi-
nary category (• → • ← •) can be made into a commutative square by the right
cone, the horn Λ2

0 in C can visually be made into a square by the right cone
(Λ2

0). ∼= (∆1)2 in C , since the data of this right cone and the square in fact is
the same. Similarly, the horn Λ2

2 in C can also be made into a square by the left
cone (Λ2

2)/ ∼= (∆1)2 in C , analogously with that the category (• ← • → •) can be
made into a square by the left cone. Later, the description (Λ2

0). ∼= (∆1)2 ∼= (Λ2
2)/

will be used for the discussions of colimits and limits, in particular of pushouts
and pullbacks.

3.2.2 Overcategories and undercategories

The aim of this part is to introduce the notions of overcategories and undercat-
egories for (∞, 1)-categories, which ideally should be called over-(∞, 1)-categories
and under-(∞, 1)-categories, and frequently will be referred to as (∞, 1)-categorical
slice constructions. As usual, the discussion here builds on intuition from the no-
tions of overcategories and undercategories form ordinary category theory, and
will be formalised in the theory of quasi-categories. So, let C be a category.



3.2. Constructions 55

Recall from ordinary category theory that the category of objects over X ∈ C or
the overcategory, denoted C /X , is a category defined by,

• the objects in C /X are morphisms in C of the form Y → X ending in X

• the morphisms in C /X are given by morphisms in C making triangles of
the form

Y X

Z X

commutative.

Composition is defined the obvious way.

However, this definition can be rephrased in terms of joins of ordinary
categories. Let x : [0] → C denote the functor that picks out X ∈ C . The
overcategory C /X can be described by the following universal property, for any
category D there is a bijection

Hom(D ,C /X) ∼= Homx(D ? [0],C ) = Homx(D.,C ), (3.2.2.i)

where Homx(D.,C ) denotes the subset Homx(D.,C ) ⊆ Hom(D.,C ) that only
contains functors F : D. → C restricted to the cone (to the adjoined object ∞)
coincides with the map x, namely Homx(D.,C ) = {F : D. → C | F |∞ = x}.
The characterisation of C /X in Equation 3.2.2.i can be observed directly from
the categorical constructions of cones and overcategories, as indicated in [Gro10,
Section 2.3].

Alternatively, form definition, Homx(D.,C ) can be obtained from a pull-
back

Homx(D.,C ) Hom(D.,C )

{x : [0]→ C } Hom([0],C )

over Set, which can give a slightly more “category theoretical” approach to the
interpretation of the characterisation of C /X in Equation 3.2.2.i.

More generally, given an arbitrary functor f : I → C of ordinary cate-
gories that can be thought of as a diagram in C as usual, then the category over
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f , denoted C /f , can be defined to be the category that is characterised by the
following property

Hom(D ,C /f ) ∼= Homf (D ?I ,C ), (3.2.2.ii)

for any other category D , where the set Homf (D ? I ,C ) denotes the set of
functors D ?I → C that agrees with f when restricted to I . This can also be
described from a pullback, similar to the one above.

The appropriate notion of overcategories for quasi-categories can be adapted
more or less directly from the characterisations in Equation 3.2.2.i and Equation
3.2.2.ii above. This was done by Joyal, but the discussion here is based on studies
of [Lur09, Section 1.2.9] and [Gro10, Section 2.3].

First adapt the notation used previously from ordinary categories to sim-
plicial sets. For simplicial sets S, T , K and a simplicial map p : K → S, the
set Homp(T ?K, S) denotes the set of simplicial maps T ?K → S that restricted
to K coincide with p. The set Homp(T ? K, S) can also be regarded as obtained
from an appropriate pullback, similarly as in the ordinary category theoretical
case above. The next proposition ensures existence of a simplicial set with similar
characterisation as ordinary categorical overcategories in Equation 3.2.2.ii.

Proposition 3.2.2.1. Let K and S be simplicial sets and let p : K → S be a
map of simplicial sets. Then there exits a simplicial set S/p characterised by the
following universal property, for any simplicial set T there are bijections

HomsSet(T, S/p) ∼= Homp(T ? K, S), (3.2.2.iii)

where Homp(T ? K, S) is defined just as above.

Remark 3.2.2.2. This proposition is given as [Lur09, Proposition 1.2.9.2] and
[Gro10, Proposition 2.9], and the following “proof” here sketches some ideas.

“Proof” of Proposition 3.2.2.1: First consider the case where T = ∆n is a rep-
resentable presheaf. This gives the following description of the n-simplices in
S/p,

(S/p)n ∼= HomsSet(∆
n, S/p) ∼= Homp(∆

n ? K, S), (3.2.2.iv)

where the first isomorphism is the Yoneda lemma and the last is the required
characterisation in the proposition. So from this it is clear that n-simplices
(S/p)n obviously exist from definition of Homp(∆

n ? K, S). In fact, the middle
and the right entry in Equation 3.2.2.iv above are compatible with colimits in the
entry T = ∆n, which fact is stated in the proof of [Lur09, Proposition 1.2.9.2].
This fact extends the result for representable presheaves carried out in Equation
3.2.2.iv to arbitrary simplicial sets T , which proves the proposition.
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Next concern is whether or not quasi-categories are closed under slice con-
structions, or more precisely this can be phrased as, if S in the proposition above
is a quasi-category and p : K → S a map of simplicial sets, is then the slide con-
struction S/p again a quasi-category? This is discussed in [Lur09, Proposition
1.2.9.3], but its proof requires some more details from [Lur09, Chapter 2], and
will not be presented here. However, next is presented a special case of [Lur09,
Proposition 1.2.9.3].

Proposition 3.2.2.3. Let C be a quasi-category, let K be a simplicial set and let
p : K → C be a map simplicial sets. Then the simplicial set C /p from Proposition
3.2.2.1 is a quasi-category.

Definition 3.2.2.4. Let C be a quasi-category and let p : K → C be a map of
simplicial sets. Then the quasi-category C /p, that arises from the arguments in
Proposition 3.2.2.3 above, is called a quasi-category over p, an over-quasi-category
or simply an overcategory for short.

This interpretation of overcategories for quasi-categories can be motivated
by the fact that it can be shown to exists canonical isomorphisms between nerves
of over-ordinary-categories and over-quasi-categories of nerves. More precisely,
for an object X in an ordinary category C there can be obtained a canonical
isomorphism N(C /X) ∼= (N(C ))/X , as stated in [Lur09, Remark 1.2.9.6]. This
establishes the first example of a over-quasi-category, and gives a first clue that
the definition above is an appropriate one after all.

The notion of an overcategory (in the quasi-categorical sense) can be du-
alised by interchanging (T ? K) with (K ? T ) in the definition. Hence, let C be
a quasi-category and let p : K → C be a simplicial map, then the undercategory
denoted C p/ is defined to be the quasi-category that arises from the following
universal property,

HomsSet(T,C p/) ∼= Homp(K ? T,C ), (3.2.2.v)

for every simplicial set T .

The constructions of overcategories and undercategories will be used in
the establishments of initial objects, terminal objects, limits and colimits for
quasi-categories, that will follow in the next sections.

3.2.3 Initial objects and terminal objects

The aim for this section is to define the notions of initial and terminal objects
for (∞, 1)-categories. Recall that for an ordinary category C , an object I in C
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is said to be initial if HomC (I, Y ) consists of a single element for all objects Y
in C , that is HomC (I, Y ) is trivial for all objects Y in C . Dually, an object T is
said to be terminal if HomC (Y, T ) is trivial for all other objects Y , namely that
T is initial in the opposite category C op. The aim now is to adapt these ideas to
the setting of (∞, 1)-categories.

In the first approach, in order to adapt these ideas to the (∞, 1)-categorical
language, it should be searched for an appropriate notion of “trivial” mapping
spaces. So, with the homotopical structure of (∞, 1)-categories in mind, it should
be searched for a notion of mapping spaces being homotopic to a point. More
precisely, let C for example be a topological category, then an object T is said to
be terminal if the mapping spaces MapC (X,T ) are (weakly) contractable for all
objects X in C . Geometrically, replacing a terminal object T by an equivalent one
mapping spaces remain contractable, hence this suggestion of notion of terminal
objects can be regarded as an invariant notion under equivalences.

For a topological category C with a terminal object T , when passing to
the homotopy category hC , it is clear that T now is terminal in the ordinary cat-
egorical sense in hC . This follows from construction of the homotopy category by
identifying morphisms that lies in the same path connected components. In fact,
T is terminal in the ordinary categorical sense in hC if and only if MapC (X,T )
is (weakly) contractable for all X ∈ C . This first approach to the definition of
terminal objects is taken from [Lur09, Definition 1.2.12.1].

Definition 3.2.3.1. Let C be a topological category or a simplicial category, an
object T in C is said to be terminal if T is terminal in the homotopy category
hC , regarded as H -enriched category. Equivalently, T is terminal if the mapping
spaces MapC (X,T ) are (weakly) contractable for all X ∈ C .

The second approach to terminal objects is obtained from slice construc-
tions. Again, the motivation behind this approach is taken from properties in the
theory of ordinary categories. If T is a terminal object in an ordinary category C ,
then the category of objects over T is equivalent to the category itself, C /T

∼= C .
This follows directly from definition of T being terminal, since for any object
X ∈ C observe that there is a unique uX : X → T , hence for any f : X → Y the
composition uY f = uX : X → T . These observations coincide precisely with the
definition of C /T .

This gives some motivation for the approach to terminal objects for sim-
plicial sets, since there is defined a notion of slice constructions for these. But,
before that it should be remarked that the notion of ‘isomorphism’ is a too strict
notion in order to define an appropriate analogy for quasi-categories, or simplicial
sets, as usual. Analogous to the first approach based on mapping spaces, there
should be searched for a quasi-categorical similarity to isomorphism, which here
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turns out to be trivial Kan fibrations, as usual for quasi-categories.

Definition 3.2.3.2. Let S be a simplicial set, a vertex T in S is said to be
strongly terminal if the projection S/T → S is a trivial Kan fibration.

The next proposition, which is also stated as [Lur09, Proposition 1.2.12.4],
gives the first connection between these two approaches to terminal objects, but
for quasi-categories.

Proposition 3.2.3.3. Let C be a quasi-category and let T be an object in C .
The object T is strongly final if and only if for every object X in C the Kan
complex HomR

C (X,T ) is contactable.

Remark 3.2.3.4. With inspiration from the proof of the similar result in [Lur09,
Proposition 1.2.12.4], some ideas of the direction “⇒” will be discussed next,
while the other direction “⇐” possibly requires some results from [Lur09, Chapter
2], which not will be discussed here.

“Proof” of Proposition 3.2.3.3: First, recall that the space of right morphisms
HomR

C (X,T ) is defined to be the set of simplicial maps ∆n → C , which restricted
to ∆{0,1,...,n−1} maps to consn−1

X , while restricted to ∆{n} maps to T . From

construction, it can easily be shown that HomR
C (X,T ) can be obtained by a

pullback HomR
C (X,T ) = {X} ×C C /T ,

{X} ×C C /T C /T

{X} C

over sSet. But this pullback precisely defines a fiber over C /T → C (at {X}).

Now for “⇒” assume that T is strongly final, then C /T → C is a trivial
fibration. Now since C /T → C is assumed to be a trivial Kan fibration this

implies that its fibers are contractable Kan complexes. Hence, HomR
C (X,T ) is

then a contractable Kan complex, since it arises as a fiber over C /T → C (at
{X}).

First observe that for simplicial sets strongly terminal objects are terminal.
The aim now is to state some ideas from [Lur09, Corollary 1.2.12.5] in order to
see this. Let S be a simplicial set with a strongly final object T then there
exists a split epimorphism f : S. → S mapping the cone point f : ∞ 7→ T . By
functorality, f is carried over to a split epimorphism f : hS. → hS, which maps
the cone point f :∞ 7→ T . Hence T is terminal in hS, and by definition terminal
in S.
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Secondly observe that for quasi-categories the converse is also true, ter-
minal objects are strongly terminal. This is also stated in [Lur09, Corollary
1.2.12.5]. To see this, let C be a quasi-category and let T be a terminal object in
C . Since the Kan complex of right morphisms represents the mapping space of C
(up to homotopy), then HomR

C (X,T ) is contractable from definition of terminal
object. The proof of Proposition 3.2.3.3 above establishes that HomR

C (X,T ) is
the fiber over C /T → C , which then is a trivial Kan fibration. Finally, T is
strongly terminal, since C /T → C is a trivial Kan fibration.

Definition 3.2.3.5. Let C be a topological category, a simplicial category or
a quasi-category. The dual interpretation of terminal objects are called initial
objects.

As usual the behaviour of nerves of terminal (or initial) objects gives the
first indication if the notion of terminal (or initial) objects determined for quasi-
categories is the appropriate one. In fact, as exemplified in [Lur09, Example
1.2.12.7], let C be an ordinary category and let T be an object in C , then T is
terminal in C if and only if it is terminal in N(C ). Similar remarks applies if T
happens to be initial.

In ordinary categories, initial objects, and terminal objects, are unique up
to unique isomorphism. As usual the analogy to this notion of uniqueness for
quasi-categories is unique up to a contractible space of choices. More precisely,
the collection of all terminal objects in a quasi-category C , if there are any, should
be a contractable Kan complex. This is stated in the next proposition, which is
due to Joyal. A proof is presented in [Lur09, Proposition 1.2.12.9]. Similar
notions is also discussed in [Gro10, Remark 2.13].

Proposition 3.2.3.6. Let C be a quasi-category and let D denote the full
subcategory spanned by the terminal objects of C . Then D is either empty or a
contractable Kan complex.

The notion of initial and terminal objects plays a central role in the discus-
sion of colimits and limits for (∞, 1)-categories, which is coming next. Moreover,
existence of zero objects, which are both initial and terminal, is one of the key
ingredients in the definition of stable (∞.1)-categories in the next chapter.

3.2.4 Limits and colimits

Similar as in the presentation of initial objects, there will be discussed two ap-
proaches to the notions of limits and colimits in the theory of (∞, 1)-categories.
In particular, the first approach is obtained from a characterisation by using
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homotopy limits and homotopy colimits, which is primarily motivated by con-
sidering the theory of simplicial categories and topological categories. While the
second approach is obtained from terminal objects and initial objects in slice cat-
egories of certain diagram functors, which is motivated by considering the theory
of quasi-categories. Let in any of the approaches lim←−(p) and lim−→(p) denote the ap-

propriate notion of (∞, 1)-categorical limit and colimit respectively of a diagram
p : I → C .

Although the notions of terminal objects and initial objects in a topologi-
cal category, or a simplicial category, C seem to work well when defined as initial
objects and terminal objects in the homotopy category hC , a similar approach,
by defining the notions of (∞, 1)-categorical limits and colimits via the homotopy
category hC does not always work. Conceptually, a problem with this approach
can be that such constructions on the homotopy category do not require enough
structure to obtain the appropriate notions. This can be regarded as a conse-
quence of the difference between the notions of homotopy commutativity and
homotopy coherency in the (∞, 1)-categorical setting, where the first notion may
not consider all required higher structure.

The appropriate (∞, 1)-categorical notions of limits and colimits are often
referred to as homotopy limits and homotopy colimits respectively, in order to
distinguish to the ordinary notions. There will be no explicit description of
homotopy limits and homotopy colimits for topological categories here, such as
given in [Lur09, Example 1.2.13.1 and Example 1.2.13.2] with further discussions
in [Lur09, Appendix A.2.8], but rather a characterisation of these notions in
relation to homotopy limits and homotopy colimits in topological spaces. This
characterisation is discussed in the following remark.

Remark 3.2.4.1. Let C be a topological category and let p : I → C be functor
representing a diagram in C . The homotopy limit lim←−(p) of p in C , if it exists, can

be characterised by a homotopy limit in topological spaces, denoted holim(−),
up to equivalence, by existence of a weak homotopy equivalence

MapC (Y, lim←−(p))
'−→holimα∈I {MapC (Y, p(α))}, (3.2.4.i)

which is natural in Y ∈ C . Moreover, the homotopy colimit lim−→(p) of p in C if it
exists can be characterised, up to equivalence, by existence of a weak homotopy
equivalence

MapC (lim−→(p), Y )
'−→holimα∈I op{MapC (p(α), Y )}, (3.2.4.ii)

which is natural in Y ∈ C .

This characterisation of limits and colimits for topological categories can
be motivated from the characterisation of limits and colimits in ordinary category
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theory obtained by the following bijections

HomC (Y, lim(p)) −→limα∈I {HomC (Y, p(α))} (3.2.4.iii)

HomC (colim(p), Y ) −→limα∈I op{HomC (p(α), Y )}, (3.2.4.iv)

which are natural in Y .

The generalisation to the characterisations in Remark 3.2.4.1 above can
be regarded as a first expected approach to the notion of limits (and colimits)
for (∞, 1)-categories. Geometrically, one of the ideas behind the notion of homo-
topy limits for topological spaces can be regarded as the construction obtained
when replacing the strict notion of isomorphism in ordinary categorical limits
by the homotopical corresponding notion, which can be regarded as paths. The
characterisations in Remark 3.2.4.1 are also stated in [Cam13, Section 5.2] and
[Lur09, Remark 1.2.13.3] with references to a further discussion in [Lur09, Re-
mark A.3.3.13].

The aim now is to exemplify the characterisations in Remark 3.2.4.1 by
the established notions of initial objects and terminal objects. Recall that initial
objects and terminal objects can be regarded as trivial colimits and trivial limits
respectively in ordinary categories, which means that the index category I is
trivial. If I is trivial in the characterisation in Remark 3.2.4.1, then it can easily
be observed that the mapping spaces have the same homotopy type as the point
for all Y , and they are then contractable, as required.

It turns out that the characterisations in Remark 3.2.4.1 are important in
proving that the homotopy category of a stable (∞, 1)-category can be regarded
as an enriched category over abelian groups. However, the next aim is to discuss
the promised second approach to limits and colimits, which can be motivated
from the interpretation of limits and colimits in ordinary categories as universal
arrows, which is described in [Mac98, Chapter III].

Let p : I → C be a functor of ordinary categories representing a diagram
in C and let δ : C → Fun(I ,C ) be the diagonal map. Let C ∈ C , then a natural
transformation τ : δC → F is called a cone from the vertex C to the base p.
This can be visualised by the shape of various components of τ all starting at C
spreading out to targets of p evaluated on arrows in I , for example

τJ = p(u)τI : C → p(J) (3.2.4.v)

for all arrows u : I → J in I .

Moreover with the same notation as in the previous paragraph, for C ∈ C
all cones δC → p can be organised into a category cone(C , p), which is precisely
equivalent to the description of the slice category C /p by construction. Now a
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limit (in the ordinary sense) is a universal cone from the vertex denoted lim(p)
to the base p, namely δ lim(p)→ p is a universal cone, which means that for any
other cone δC → p there exists a unique natural transformation δC → δ lim(p)
in cone(C , p). This implies that lim(p) → p can be regarded as terminal in
the slice C /p. Similarly, an (ordinary category theoretical) colimit of a diagram
p : I → C can be regarded as an initial object in the slice C p/. This motivates
for definitions of limits and colimits for quasi-categories, due to Joyal, but the
next definition is stated similarly as [Lur09, Definition 1.2.13.4].

Definition 3.2.4.2. Let C be a quasi-category and let p : K → C be a map of
simplicial sets. A colimit for p is defined to be an initial object of the undercat-
egory C p/ denoted lim−→(p), while a limit for p is defined to be a terminal object

of the overcategory C /p denoted lim←−(p).

Remark 3.2.4.3. Let p : K → C be a diagram in a quasi-category C . From
definition a limit lim←−(p), if it exists, is a terminal object in C /p, so in particular

lim←−(p) is an object in C /p, which all can be represented by maps ∆0 → C /p.
Recall that the slice C /p can be characterised by, for any simplicial set T , those
simplicial maps T ? K → C which agree with p when restricted to T , namely
HomsSet(T,C /p) ∼= Homp(T ? K,C ). In particular, choose T = ∆0, as a special
case limits lim←−(p) correspond to simplicial maps ∆0 ? K → C when restricted to
K coincide with p. Generally simplicial maps of the form K/ → C are referred
to as limiting diagrams. The dual notion of a colimiting diagrams are simplicial
maps K. → C when restricted to K coincide with p.

In ordinary category theory limits and colimits are uniquely determined
up to unique isomorphism. For quasi-categories, recall from the previous section
that the collection of initial objects is either empty or a contractable Kan complex
(Proposition 3.2.3.6). Similar result applies for the collection of terminal objects.
Now, when limits and colimits are defied to be terminal objects and initial objects
respectively in appropriate slice categories, then the same proposition can be
applied. So, let p : K → C be a simplicial map and C a quasi-category, then
the collection of all limits lim←−(p) is either empty or a contractable Kan complex.

Similar for the collection of all colimits lim−→(p) is either empty or a contractable
Kan complex.

Similar as for the ordinary categories a pullback is defined to be a limit of
the diagram visualised by α = (• → • ← •). In Section 3.2.1 it was observed that
square shaped diagrams completing this α can be visualised as a simplicial map
p : (Λ2

2)/ → C , so a pullback can then be regarded as a terminal object in the
slice C /p. Similarly a pushout can be regarded as an initial object of C q/, where
q : (Λ2

0). → C . Pullbacks and pushouts for (∞, 1)-categories, now formalised
by quasi-categories, are important in the definition and theory of stable (∞, 1)-
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categories discussed in the next chapter.







Chapter 4

Stable (∞, 1)-categories

Recall from the introduction in Section 1.1 that stable (∞, 1)-categories can in
some situations be regarded as a better behaved replacement for triangulated
categories, which may fix some drawbacks in their theory ([Cam13]). Moreover,
many prominent examples of triangulated categories arise as homotopy categories
of stable (∞, 1)-categories ([Cam13]). The discussion in this chapter will not go
into these motivating comments. But, the overall aim for this thesis after all
is to prove that the homotopy category of stable (∞, 1)-categories is in fact a
triangulated category. The discussion here is mainly based on studies of [Lur12,
Section 1.1.1 and Section 1.1.2], with inspiration from [Cam13, Section 5.4.2] and
[Gro10, Section 5.1].

Moreover, first objective here is to define the notion of stable (∞, 1)-
categories, which is a definition closely related to classical homotopy theory. Sim-
ilarly, fiber sequences and cofiber sequences arise as particular pullback diagrams
and pushout diagrams respectively. In the setting of quasi-categories it is known
from Section 3.2.4 how these can be constructed. Then the next objective is to
define suspension and loop functors for (∞, 1)-categories that admit cofibers and
fibers respectively. The last objective is to present a proof of the main result,
namely that a homotopy categories of a stable (∞, 1)-categories is triangulated.

4.1 The notion of (∞, 1)-categorical stability

The aim for this section is to discuss the data that go into the definition of a stable
(∞, 1)-category. These are motivated by notions in classical stable homotopy
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theory.

4.1.1 Pointed (∞, 1)-categories

The idea of a pointed quasi-category is similar to the idea for pointed topological
spaces or the unit element in groups, namely existence of an object that is both
initial and terminal. The first definition corresponds to the notion of zero objects
for (∞, 1)-categories.

Definition 4.1.1.1. An object in an (∞, 1)-category is said to be a zero object
if it is both initial and terminal. If an (∞, 1)-category contains a zero object it
is said to be pointed. A zero object is often denoted by the symbol 0.

Recall the definitions of initial objects and terminal objects for topolog-
ical categories, or simplicial categories, and quasi-categories from Section 3.2.3.
Moreover, let for example C be a topological category that contains zero ob-
jects. From definition of zero objects of both being initial and terminal, it follows
directly that the mapping spaces MapC (X, 0) and MapC (0, X) are both con-
tractable, where 0 ∈ C is a zero object. In particular, let C be a quasi-category,
in Proposition 3.2.3.6 (or in [Lur09, Proposition 1.2.12.9]) it was stated that
the full subcategory of C spanned by the initial objects of C , or dually the full
subcategory of C spanned by the terminal objects of C , is either empty or a con-
tractable Kan complex. The full subcategory spanned by zero objects is either
empty or a contractable Kan complex as well. As usual determination up to a
contractable Kan complex is the (∞, 1)-categorical correspondence to unique up
to isomorphism for the ordinary categorical setting.

The following remark, which also is given in [Lur12, Remark 1.1.1.2], states
some conditions that the zero objects in quasi-categories should satisfy. These
conditions are similar to the notion of zero objects in the theory of ordinary
categories.

Remark 4.1.1.2. Let C be a quasi-category (topological category or simplicial
category), then C is pointed if and only if the following conditions are satisfied,

(1) C has an initial object ∅

(2) C has a terminal object 1

(3) there exists a morphism f : 1→ ∅ in C

First observe that the “only if part⇒” is clear from the definition of zero objects
being both initial and terminal. While for the converse “⇐” assume that (1), (2)
and (3) are satisfied. From the assumption that ∅ is initial, the mapping space
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MapC (∅, 1) is contractable, so it is known for sure that there exists at least one
morphism g : ∅ → 1 and that all morphisms ∅ → 1 are homotopic. Now, since
∅ is initial it follows that f ◦ g ' id∅, and since 1 is terminal it follows that
g ◦ f ' id1. This follows since the identity is clearly a map id1 : 1 → 1 together
with the universal properties of 1 being terminal. Similar comment applies for ∅.
From this it follows that f is an equivalence with a homotopy inverse g, then ∅
is also a terminal object of C , hence C is pointed as required.

Similar as for the notion of zero morphisms in the theory of ordinary cat-
egories, in a pointed (∞, 1)-category there is a homotopy class of morphisms be-
tween any two objectsX and Y factoring through the zero object. The morphisms
that are represented by this homotopy class are called zero morphisms. Again,
zero morphisms are uniquely determined in the appropriate (∞, 1)-categorical
sense. The next remark, which is similar to [Lur12, Remark 1.1.1.3], concerns
about the notion of zero morphisms in topological categories (simplicial cate-
gories) and quasi-categories.

Remark 4.1.1.3. Let C be a pointed quasi-category (topological category or
simplicial category) and let 0 denote a zero object in C . For any objects X and
Y in C the natural map,

MapC (0, Y )×MapC (X, 0)→ MapC (X,Y ) (4.1.1.i)

has a contractable domain, which corresponds to the notion of zero morphisms in
the (∞, 1)-categorical setting. When passing to the homotopy category hC this
gives a well-defined morphism X → Y , analogously to the zero morphism in the
sense of ordinary categories.

4.1.2 Fibers and cofibers

Now when the notion of pointed (∞, 1)-categories is established the next building
block towards the definition of stable (∞, 1)-categories is the notion of fibers and
cofibers, which can be obtained from particular pullback and pushout squares
respectively. This is analogous to classical theory. But the first aim is to establish
some notation for the particular square diagram which gives rise to fibers and
cofibers afterwards.

Definition 4.1.2.1. Let C be a pointed (∞, 1)-category and let 0 denote a zero
object. A triangle in C is a square shaped diagram which can be visualised by
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X Y

0 Z.

f

g

A triangle is said to be a fiber sequence if it is a pullback square, while a triangle
is said to be a cofiber sequence if it is a pushout square.

Recall the discussions about square shaped diagrams for quasi-categories
from Section 3.2.1 and Section 3.2.4. Some additional comments will now follow
for triangles in pointed quasi-categories. So let C be a pointed quasi-category, a
triangle in C is a square shaped diagram ∆1×∆1 → C that can be visualised by

X Y

0 Z.

f

g

Now, the established isomorphisms

(Λ2
0). ∼= (∆1)2 ∼= (Λ2

2)/ (4.1.2.i)

can give a convenient understanding of the required pushout and pullback squares
in the definition of cofiber sequences and fiber sequences respectively. Moreover,
a triangle in C can from construction be described by the following data,

(1) a composable pair of morphisms f : X → Y and g : Y → Z in C

(2) a 2-simplex α : ∆2 → C visualised by the diagram

Y

X Z

f g

h

where h is a candidate of the composition of f with g.

(3) a 2-simplex β : ∆2 → C visualised by
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0

X Z
h′

where h clearly is homotopic with h, h′ ' h, hence h′ will be written h.
This 2-simplex β can be viewed as a null homotopy of h, namely that this
2-simplex β connects h with the zero morphism.

Often a triangle is indicated by specifying the data of item (1), namely an inner
horn Λ2

1 → C visualised by

X
f−→ Y

g−→ Z, (4.1.2.ii)

with (2) and (3) implicitly being assumed.

Next definition establishes some more notions concerning the theory of
stable (∞, 1)-categories. Again these notions are taken more or less directly from
classical cases.

Definition 4.1.2.2. Let C be a pointed quasi-category, let 0 denote a zero object
and let g : X → Y be a morphism in C .

• A fiber of g is a fiber sequence of the form

W X

0 Y

g

in C , namely a pullback in C . But often, it is the object W that is referred
to as the fiber of g, and write W = fib(g).

• Dually, a cofiber of g is a cofiber sequence of the form

X Y

0 Z

g

in C , namely a pushout in C . Similarly, the object Z is often referred to
as the cofiber of g, and write Z = cofib(g).
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It should be clear from situation what interpretation of fibers and cofibers that
is intended.

Since fibers and cofibers are determined by pullbacks and pushouts respec-
tively they are uniquely determined up to equivalence, or more precisely. The
next aim is to follow some of the ideas in [Lur12, Remark 1.1.1.7] in order to
make this more precise for cofibers. The dual ideas apply for fibers.

Let C be a pointed quasi-category that contains a morphism f : X →
Y . The statement that a cofiber of f if it exists is uniquely determined up
to equivalence, can here in the quasi-categorical setting be interpreted as, the
map, that assigns to each morphism in C a cofiber, is a trivial Kan fibration.
This interpretation has been seen previously for other constructions. In order
to give some ideas behind this result, define E to be the full subcategory E ⊆
Fun(∆1 × ∆1,C ) spanned by all square diagrams ∆1 × ∆1 → C having the
property of being cofiber sequences. So, the full subcategory E is spanned by the
triangles in C that have the property of being pushouts. Let

θ : E → Fun(∆1,C ) (4.1.2.iii)

denote the forgetful functor that maps each object in E to its top row, namely
the pushout diagram

X Y

0 Z

g

h

is mapped to g : X → Y , so θ forgets everything in the pushout square except for
the top arrow, as illustrated. By using the result [Lur09, Proposition 4.3.2.15]
twice it can be shown (as stated in [Lur12, Remark 1.1.1.7]) that θ : E →
Fun(∆1,C ) is a trivial Kan fibration, whose fibers are either contractable, when
g happens to admit a cofiber, or empty, if g does not. In particular, if every
morphism in C is in addition assumed to admit a cofiber, it then turns out that
θ is a trivial Kan fibration. If so, since θ is a trivial Kan fibration, it clearly
admits a section, which will be denoted

cofib′ : Fun(∆1,C )→ E . (4.1.2.iv)

Visually the map cofib′ takes a morphism g : X → Y in C and send it to its
cofiber sequence
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X Y

0 Z,

g

which is uniquely determined up to a contractable space formed by the possible
choices for cofiber sequences for g. Moreover, let T denote the terminal object
of ∈ ∆1 × ∆1 and let evT : Fun(∆1 × ∆1,C ) → C denote the evaluation map
at the terminal T . Visually, evT sends each diagram in Fun(∆1 ×∆1,C ) to its
right-down entry in C . The notation cofib will often be used for the composition,

Fun(∆1,C )
cofib′−−−→ Fun(∆1 ×∆1,C )

evT−−→ C (4.1.2.v)

namely cofib = evT ◦ cofib′. So, visually this means that a morphism g : X → Y
will be sent by cofib′ to a pushout diagram

X Y

0 Z

g

namely the cofiber sequence to g, let this diagram be denoted α ∈ E , then
evaluating α at T , it will eventually be mapped to Z = cofib(α). Hence, g 7→
α 7→ Z = cofib(g), which is a formalisation of the notation described in Definition
4.1.2.2.

Remark 4.1.2.3. In the discussion above, the fact that θ could be shown to
be a trivial Kan fibration relied on the result [Lur09, Proposition 4.3.2.15]. This
proposition establishes a general criteria when certain maps of simplicial sets are
trivial Kan fibrations (as stated in [Gro10]). So, under the assumptions deter-
mining θ, it can be chosen a section of θ, which was called cofib′. The proposition
cited here ([Lur09, Proposition 4.3.2.15]) is also central in the determinations of
loop functor and suspension that will follows later.

By [Lur12, Remark 1.1.1.8] the functor cofib : Fun(∆1,C )→ C can also be
identified as a left adjoint to the left Kan extension functor C ' Fun({1},C )→
Fun(∆1,C ), which to each object X in C associates a zero morphism 0 → X.
From [Lur09, Proposition 5.2.3.5] it can be shown that the functor cofib preserves
all colimits that happen to exist in Fun(∆1,C ).
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4.1.3 Definition of stability

With the data considered so far, the next aim is to define stable (∞, 1)-categories.

Definition 4.1.3.1. An (∞, 1)-category C is said to be stable if it satisfies the
following conditions,

(1) there exists a zero object 0 in C , hence C is pointed

(2) every morphism in C admits a fiber and a cofiber

(3) a triangle in C is a fiber sequence if and only if it is a cofiber sequence,
hence a triangle is a pullback if and only if it is a pushout.

Now some relations to classical cases will be mentioned. From algebraic
topology recall that a spectrum consists of a infinite sequence of pointed topo-
logical spaces {Xi}i≥0 together with homeomorphisms Xi ' ΩXi+1, where Ω
denotes the loop space functor. As indicated in [Lur12, Example 1.1.1.11], the
collection of spectra can be organised into a stable quasi-category, which will be
denoted Sp. The construction Sp can be regarded as the first canonical example
of a stable quasi-category, which motivates the terminology in the definition of
a stable quasi-category. A stable quasi-category can be regarded as structured
somewhat similarly as Sp. In fact, the homotopy category hSp can be identified
with the classical stable homotopy category.

As mentioned in [Lur12, Example 1.1.1.12], for an abelian category A it
can be constructed a stable quasi-category, denoted D(A ), under some require-
ments. The homotopy category hD(A ) of D(A ) can in fact be identified with
the usual derived category of A as it is defined in homological algebra.

So far in this section it has been seen that notions in the theory of quasi-
categories formalise the ideas of what stable (∞, 1)-categories should be to a
rigid and appropriate definition, since the notions of pushouts, pullbacks and zero
objects are well established for quasi-categories. From the formal definition it can
also be observed that stability can be regarded as a property of (∞, 1)-categories.
The property of stability for (∞, 1)-categories, as such properties should be, does
not, at a first sight, involve any additional data, that should satisfies various
axioms, etcetera. Definitions by properties are often attractive descriptions, since
they are often much easier to deal with, without concerning all these additional
data. For example additive and abelian categories can be regarded as descriptions
by properties, but the definition of triangulated categories requires the additional
data of a class of distinguished triangles (Definition A.2.2.1).
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4.2 Constructions of suspension functor and loop
functor

The objective for this section is to construct and discuss the meaning of “suspen-
sion functor” and “loop functor” for (∞, 1)-categories, formalised by the theory
of quasi-categories. These functors are major parts of the triangulated structure,
which construction and proof of is again the overall aim for this chapter. The
discussions here are mainly inspired by studies of [Gro10, Section 5.1] and [Lur12,
Section 1.1.2]

But first the notion of suspension and loop functor for based topological
spaces will be recalled. Let X be a based topological space, then the suspension
of X, denoted ΣX, is constructed from to be the homotopy pushout

X ∗

∗ ΣX,

where ∗ denotes the base point. Dually, the loop functor, denoted ΩX, is con-
structed by the homotopy pullback

ΩX ∗

∗ X.

More details of these notions are described in [Ark11].

4.2.1 Suspension functor

First the construction of suspension functor will be discussed. First assume that
C is a pointed quasi-category. Define

M Σ ⊆ Fun(∆1 ×∆1,C ) (4.2.1.i)

to be the full subcategory of Fun(∆1 ×∆1,C ) spanned by diagrams of the form
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X 0

0′ Y

all having the property of being pushout squares in C , where 0 and 0′ are zero
objects in C . Now let

evI : M Σ → C (4.2.1.ii)

denote the functor obtained from evaluating a diagram α ∈ M Σ at the initial
object I of ∆1 × ∆1. The functor evI can visually be thought of as mapping
the diagram above to the upper-left entry X, namely “taking out” the “initial
object” in the diagram.

Further, assume that C is a pointed quasi-category that admits cofibers,
which again means that any morphism in C admits a cofiber. By applying [Lur09,
Proposition 4.3.2.15] twice the following can be shown.

Proposition 4.2.1.1. Let C be a pointed quasi-category which admits cofibers.
Then the evaluation map evI : M Σ → C is a trivial Kan fibration.

This proposition is a special case of [Gro10, Proposition 5.3], a result
which also is indicated in the discussion in [Lur12, Section 1.1.2]. Moreover, let
sΣ : C →M Σ denote a section of evI ,

M Σ C
evI

sΣ

which exists by the fact that evI is a trivial Kan fibration.

Now, let evT : M Σ → C denote the evaluation at the terminal object T
of ∆1 × ∆1, which can be visualised by “taking out” the lower-right object Y
of the pushout diagram above. The suspension is defined to be the following
composition of functors.

Definition 4.2.1.2. Let C be a pointed quasi-category which admits cofibers.
The suspension functor on C is defined to be the composition

C M Σ C ,
sΣ evT

namely Σ = evT ◦sΣ : C → C .
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The choice of section for evI in the definition of Σ arises the usual well-
defined issue in the theory of quasi-categories. The suspension functor is well-
defined up to a contractable space of choices (as stated in [Gro10, Remark 5.5]),
which is enough for the most quasi-categorical purposes as usual.

Finally, it can be observed that the construction of suspension functor,
which is now determined for quasi-categorical in a precise way, is visually analo-
gous to the suspension functor from classical homotopy theory for based topolog-
ical spaces, which was mentioned in the opening comments of this section. This
picture, by taking the homotopy pushout of (∗ ← X → ∗), can conveniently be
kept in mind when the (∞, 1)-categorical suspension functor is discussed. In this
section it has been shown that this picture can be made precisely for pointed
quasi-categories which admit cofibers.

4.2.2 Loop functor

The aim now is to construct the dual notion of suspension functor, namely loop
functor on a quasi-category with appropriate properties. Again, first let C be a
pointed quasi-category and define

M Ω ⊆ Fun(∆1 ×∆1,C ) (4.2.2.i)

to be the full subcategory of Fun(∆1 ×∆1,C ) spanned by diagrams of the form

X 0

0′ Y,

which have the property of being pullback squares in C , again 0 and 0′ are
zero objects in C . In order to construct the loop functor on C , apply the same
arguments as above to the dual notions. So, let C in addition admits fibers (every
morphism admits a fiber) and let

evT : M Ω → C (4.2.2.ii)

denote the evaluation on the terminal object T of ∆1 × ∆1, similar as above.
Then by applying [Lur09, Proposition 4.3.2.15] twice the following can be shown.

Proposition 4.2.2.1. Let C be a pointed quasi-category which admits fibers.
Then the functor evT : M Ω → C defined above is a trivial Kan fibration.
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This proposition is the other special case of [Gro10, Proposition 5.3], sim-
ilar result is also discussed in [Lur12, Section 1.1.2]. Since the functor evT now
is argued to be a trivial Kan fibration it admits a section. Let sΩ : C → M Ω

denote a section of evT ,

M Ω C .
evT

sΩ

Then the loop functor on C is defined the following way.

Definition 4.2.2.2. Let C be a pointed quasi-category which admits fibers. The
loop functor on C is defined to be the composition

C M Ω C
sΩ evI

where evI : M Ω → C again is the evaluation functor at the initial object I of
∆1 ×∆1. Hence, the loop functor is defined to be Ω = evI ◦sΩ : C → C .

The same well-defined issue should be formulated for the loop functor, as
for the suspension functor. The loop functor is well-defined up to a contractable
space of choices for the section of the trivial Kan fibration evT .

Finally, it should be remarked that the construction of the loop functor
of quasi-categories can visually be seen to be analogous to the determination of
the loop functor for classical homotopy theory. This picture, which now has been
made precise for quasi-categories, should be kept in mind when the loop functor
on an (∞, 1)-category is studied.

4.2.3 Suspension functor and loop functor on stable (∞, 1)-
categories

The aim for this section is to discuss some immediate properties for suspension
functor and loop functor on stable (∞, 1)-categories. As usual the discussion here
is based on the formalisations obtained from properties of quasi-categories.

But, first assume that C is a pointed quasi-category which admits cofibers
and fibers, such that both the suspension functor Σ and the loop functor Ω
are defined, but C is not necessarily stable. Although an appropriate notion of
adjoint pairs has not been defined for quasi-categories, or even not any ideas for
(∞, 1)-categorical notion of adjunctions have been discussed after all, it can be
shown that the suspension functor and the loop functor

(Σ,Ω) : C → C (4.2.3.i)
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is an adjoint pair with the determinations discussed previously. This result is
indicated in [Gro10, Proposition 5.6] and [Lur12, Remark 1.1.2.8]. Moreover,
this result is similar to the classical result for suspension and loop functor on
topological spaces. The establishment of this adjunction for based topological
categories is discussed in [Ark11, Section 2.3].

Assume now that C is a stable (∞, 1)-category. Then the suspension
functor and loop functor on C are mutually inverse equivalences in the sense
of (∞, 1)-categories. The objective now is to explore this assertion formally for
quasi-categories. Let C be a stable quasi-category, then the subcategories M Σ

and M Ω obtained in the previous sections are equivalent,

M Σ 'M Ω. (4.2.3.ii)

The latter follows since a triangle in a stable quasi-category is a fiber sequence
if and only if it is a cofiber sequence, hence M Σ and M Ω spans the same full
subcategories under Fun(∆1×∆1,C ). With this fact established, the result that
(Σ,Ω) : C → C are mutually inverse equivalences can visually be shown to follow
from the next diagram, which is also stated in [Gro10, Proposition 5.8],

X C M Σ C ΣΩY

ΩΣX C M Ω C Y

sΣ evT

sΩevI

Σ :

: Ω

where the left assignment X 7→ ΩΣX is obtained by following the upper-lower
path in the diagram, while the right assignment Y 7→ ΣΩY is obtained from the
lower-upper path in the diagram. The left and right double edges indicate the
equivalences

ΩΣ = (evI sΩ)(evT sΣ) ' IC and (4.2.3.iii)

ΣΩ = (evT sΣ)(evI sΩ) ' IC , (4.2.3.iv)

where IC is the identity functor on C , which are determined from the upper-lower
and lower-upper paths respectively, while the middle double arrow is determined
from the equivalence in Equation 4.2.3.ii discussed above. The equivalences de-
termined in Equation 4.2.3.iii and Equation 4.2.3.iv follow directly, since sΩ is a
section of evT and sΣ is a section of evI from construction. This deduce that the
suspension and loop (Σ,Ω) : C → C are a pair of inverse equivalences ([Gro10,
Proposition 5.8]).

Now some notation will be defined, mainly taken from from [Lur12]. If it
happens to not be clear from the context which (∞, 1)-category the suspension
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functor and loop functor are taken over, then the notations ΣC : C → C and
ΩC : C → C are used to indicate that they are taken over C . This is for
example used in order to distinguish between suspension on (∞, 1)-categories and
topological spaces. For an (∞, 1)-category C and n ≥ 0, the notation X 7→ X[n]
is used to denote the nth power of the suspension functor Σ : C → C , namely
Σn : C → C . So for example the assignment X 7→ X[1] means X 7→ ΣX. If n
is negative, n ≤ 0, then X 7→ X[n] is used to denote the (−n)th power of the
loop functor Ω : C → C , namely Ω−n : C → C . For example the assignment
X 7→ X[−1] means X 7→ ΩX. The same notation is used on the level of the
homotopy category hC .

Finally in this part the following should be commented. Often in the
following discussions it will be assumed that an (∞, 1)-category C is pointed and
admits cofibers where the suspension functor Σ : C → C is an equivalence of
(∞, 1)-categories. It is clear that if C is a stable (∞, 1)-category, then it satisfies
these requirements. The first two assertions, pointed and admits cofibers, follow
from definition of stability, the last follows since the suspension functor Σ : C →
C and loop functor Ω : C → C were shown to be mutually inverse equivalences
for quasi-categories, then in the conceivable case of suspension functor of (∞, 1)-
categories it can be regarded as an equivalence of (∞, 1)-categories. Then stable
(∞, 1)-categories is an example of pointed (∞, 1)-categories that admit cofibers,
where the suspension functor is an equivalence. So the property of being a stable
(∞, 1)-category implies the property of being a pointed (∞, 1)-category which
admits cofibers, where the suspension functor is an equivalence.

In fact, the implication the other way can also be argued to be true. As in-
dicated in [Lur12, Remark 1.1.2.15], which can be regarded as implied by [Lur12,
Corollary 1.4.2.27], a pointed (∞, 1)-category which admits cofibers where the
suspension functor is an equivalence can be shown to be a stable (∞, 1)-category.
The idea behind these results requires much more theory and details than will
be be discussed here. Although the statements seem to be equivalent, the notion
of stable (∞, 1)-categories gives probably a more intuitive approach, and this
statement can hence in many situations be preferred.

4.3 Properties of the homotopy category of sta-
ble (∞, 1)-categories

The main objective for the section is to discuss the necessary properties of the ho-
motopy category of a stable (∞, 1)-category in order to prove the main theorem.
First the required additive structure will be discussed before the triangulated
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structure will be proved.

4.3.1 Additive structure

Recall the notion of an additive category from Appendix A.2.1. First aim for
this section is to observe that the homotopy category of a stable (∞, 1)-category
can be regarded as an enriched category over abelian groups. This observation
builds on classical homotopy theory of spaces used on the mapping spaces. The
remaining requirement in order to deduce that the homotopy category of a stable
(∞, 1)-category is an additive category is to show existence of all finite coprod-
ucts, this will be observed in the final part of the section.

First let C be a pointed (∞, 1)-category. For each pair of objects X and Y
in C there is a natural choice of base point in the mapping space MapC (X,Y ),
namely a zero morphism X → 0→ Y .

Furthermore, if C as above in addition admits cofibers, then the suspension
functor ΣC : C → C can be characterised by the existence of the following natural
homotopy equivalences,

MapC (ΣCX,Y )
'−→ Ω MapC (X,Y ), (4.3.1.i)

where C conveniently can be regarded as a topological category and Ω denotes
the usual loop functor on pointed topological spaces from classical homotopy
theory, or loop functor on other appropriate categories when other models of
(∞, 1)-categories are considered.

The determination of this characterisation (Equation 4.3.1.i) will now
be discussed. Recall that the suspension functor on C can be thought of as
the (∞, 1)-functor constructed by sending each object X in C to the cofiber
cofib(X → 0). So, as mentioned the following picture of a pushout square can be
convenient to have in mind

X 0

0′ ΣCX

where 0 and 0′ are zero-objects in C . This picture was formalised by the con-
struction of suspension functor for quasi-categories discussed in Section 4.2.1. Let
this pushout diagram be denoted β.



82 Chapter 4. Stable (∞, 1)-categories

As discussed under the introductory word of Section 4.2, in classical ho-
motopy theory the loop space functor on pointed topological spaces can be ob-
tained from homotopy pullbacks. So the loop functor on the mapping space
Ω MapC (X,Y ) from Equation 4.3.1.i can be obtained from the following homo-
topy pullback over pointed spaces,

Ω MapC (X,Y ) ∗

∗ MapC (X,Y ).

Let this homotopy pullback be denoted γ.

Next observe that MapC (0, Y ) ' ∗ and MapC (0′, Y ) ' ∗ for any object
Y ∈ C from definition of initial objects, which 0 and 0′ are since they are zero
objects. Then the diagram above called γ can be rewritten as

Ω MapC (X,Y ) MapC (0, Y )

MapC (0′, Y ) MapC (X,Y ),

since a homotopy commutative square equivalent to a homotopy pullback square
is again a homotopy pullback square, as precisely stated in [Ark11, Proposition
6.3.2].

The homotopy pullback square γ over pointed spaces obtained above is
not at all arbitrary with respect to the discussion here. By applying MapC (−, Y )
to the pushout square β the following commutative square is obtained in pointed
spaces,

MapC (ΣCX,Y ) MapC (0, Y )

MapC (0′, Y ) MapC (X,Y ).

Let this diagram be denoted α. In fact, α is a homotopy pullback over pointed
spaces by the characterisation of limits and colimits for (∞, 1)-categories from
Section 3.2.4. Namely, let F : I → C be a functor, then the following expressions
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are homotopy equivalences,

MapC (X, lim←−(F ))→ holimi∈I MapC (X,F (i)) (4.3.1.ii)

MapC (lim−→(F ), X)→ holimi∈I op MapC (F (i), X). (4.3.1.iii)

The last expression (Equation 4.3.1.iii) proves that α is a homotopy pullback
square after all. The homotopy pullback squares α and β are equivalent to each
other, which proves the required homotopy equivalence in the characterisation
formulated in Equation 4.3.1.i.

Moreover, let now C be a pointed (∞, 1)-category which admits fibers. By
a similar argument it can be shown that

MapC (X,ΩCY ) ' Ω MapC (X,Y ) (4.3.1.iv)

which follows from applying MapC (X,−) to the pullback square

ΩCY 0

0′ Y,

which is visualising the loop functor ΩC : C → C applied on Y ∈ C . Again this
follows from the characterisation of (∞, 1)-limits stated in Equation 4.3.1.ii.

Now with the established equivalences characterising suspension and loop
formulated in Equation 4.3.1.i and Equation 4.3.1.iv, respectively, above in mind,
the next aim is, for a pointed (∞, 1)-category which admits cofibers, to determine
the following equivalence,

π0 MapC (ΣCX,Y ) ' π1 MapC (X,Y ). (4.3.1.v)

For now, let the category of pointed spaces, which the mapping spaces of C require
to belong to, be denoted Top∗. So, in this discussion it is perhaps convenient to
think about C as a topological category. First write out the definition of π0 for
a space,

π0 MapC (ΣCX,Y ) ' HomhTop∗(S
0,MapC (ΣCX,Y )), (4.3.1.vi)

where S0 denotes 0-sphere (which is homeomorphic to two points, the boundary
of the unit interval, in Top∗) and hTop∗ denotes the homotopy category of
pointed spaces. Then apply the equivalence in Equation 4.3.1.i to obtain the
following,

HomhTop∗(S
0,MapC (ΣCX,Y )) ' HomhTop∗(S

0,Ω MapC (X,Y )). (4.3.1.vii)



84 Chapter 4. Stable (∞, 1)-categories

Now apply the adjunction (Σ,Ω) : Top∗ → Top∗ from classical homotopy theory
(as discussed in [Ark11, pp. 47-48]) which gives

HomhTop∗(S
0,Ω MapC (X,Y )) ' HomhTop∗(ΣS

0,MapC (X,Y )). (4.3.1.viii)

Suspension in Top∗ of the sphere can often be thought of as increasing its di-
mension by a simple geometric argument. The homeomorphism Sn ∼= ΣSn−1 is
determined in [Ark11, Proposition 2.3.9], this gives

HomhTop∗(ΣS
0,MapC (X,Y )) ∼= HomhTop∗(S

1,MapC (X,Y )). (4.3.1.ix)

Furthermore, the nth homotopy group can be defined as πn = HomhTop∗(S
n,−),

which gives

HomhTop∗(S
1,MapC (X,Y )) ' π1 MapC (X,Y ). (4.3.1.x)

This proves the equivalence stated in Equation 4.3.1.v.

The importance of this result is that the set of path connected components
π0 MapC (ΣCX,Y ) is involved with the homotopically same group structure as the
fundamental group π1 MapC (X,Y ). Now, using the adjunction (Σ,Ω) : Top∗ →
Top∗ twice establishes the homotopy equivalence

π0 MapC (Σ2
CX,Y ) ' π2 MapC (X,Y ), (4.3.1.xi)

which equips the set of path connected components, π0 MapC (Σ2
CX,Y ), with

the structure of an abelian group, homotopically the same group structure as for
π2 MapC (X,Y ). This follows since πnX is an abelian group for all n ≥ 2, which
again is a result from classical homotopy theory, and is stated in [Ark11, p. 50]
this relies on [Ark11, Proposition 2.3.8].

Now, if in addition the suspension functor ΣC : C → C is an equivalence
of (∞, 1)-categories, then for every object Z in C it can be chosen an object X in
C such that Σ2

CX ' Z. This choice deduce that for every Z in C there exists an
abelian group structure on the Hom-sets HomhC (Z, Y ) = π0 MapC (Z, Y ) in the
homotopy category hC , which is, by use of the adjunction (Σ,Ω) : Top∗ → Top∗,
determined from

π0 MapC (Z, Y ) ∼= π0 MapC (Σ2
CX,Y ) ' π2 MapC (X,Y ). (4.3.1.xii)

The aim now is to sketch the final ideas in order to prove that the homotopy
category hC of a pointed (∞, 1)-category C which admits cofibers where the
suspension functor is an equivalence is enriched over abelian groups. The final
requirement in order to prove this assertion is that the composition should be
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bilinear over the integers, since the abelian group structure on the Hom-sets
already is established from the previous discussions. Let f, f ′ : X → Y and
g, g′ : Y → Z be arbitrary arrows in C , and regard C perhaps most conveniently
as a simplicial category, or topological category, or a quasi-category. By applying
the enriched version of the Yoneda embedding (as it is stated in [Lur09, p. 316])
gives a fully faithful functor Y ′ : C op → sSetC , which maps

X MapC (X,−)

Y MapC (Y,−)

f f∗

where f∗ is the natural transformation which components are given by the usual
precomposing. Hence evaluated on g : Y → Z gives the following commutative
diagram in sSet,

MapC (X,Y ) MapC (X,Z)

MapC (Y, Y ) MapC (Y,Z),

g∗

f∗f∗

g∗

where the left and right vertical arrows both named f∗ actually denotes the
components (f∗)Y and (f∗)Z respectively, which coincide with the percomposing
maps obtained from applying MapC (−, Y ) and MapC (−, Z), respectively, to f :
X → Y . While, the upper and lower horizontal arrows is the postcomposing
maps obtained from applying MapC (X,−) and MapC (Y,−), respectively, to g :
Y → Z. Since ΣC is an equivalence of (∞, 1)-categories there exists an object
X ′ ∈ C such that X ' ΣCX

′, hence use the top arrow from the diagram above
to obtain,

g∗ : MapC (ΣCX
′, Y )→ MapC (ΣCX

′, Z), (4.3.1.xiii)

which induces the following map of loop spaces

g∗ : Ω MapC (X ′, Y )→ Ω MapC (X ′, Z). (4.3.1.xiv)

The functorality of π0 gives that

π0g∗ = g∗ : HomhC (X ′, Y )→ HomhC (X ′, Z) (4.3.1.xv)

is a homomorphism of abelian groups, which again shows that the composition

g∗(f + f ′) = g(f + f ′) = gf + g′f, (4.3.1.xvi)
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as required.

The similar argument now applied to g with the enriched Yoneda embed-
ding Y : C → sSetC op

gives the mappings,

Y MapC (−, Y )

Z MapC (−, Z)

g g∗

applied to f gives the commutative diagram of simplicial sets,

MapC (Y, Y ) MapC (X,Y )

MapC (Y, Z) MapC (X,Z).

f∗

g∗g∗

f∗

This gives rise to group homomorphism,

f
∗

: HomhC (Y,Z)→ HomhC (X,Z), (4.3.1.xvii)

which takes g + g′ to fg + fg′. Then it can be concluded that that the additive
structure on hC is functorial in all objects X,Z ∈ hC , and hC is an enriched
category over abelian groups. The discussion here is inspired from [Lur12, p. 20].

Proposition 4.3.1.1. Let C be a pointed (∞, 1)-category which admits cofibers
where the suspensions functor ΣC : C → C is an equivalence. Then the homotopy
category hC is an enriched category over abelian groups in the canonical way as
described previously.

With the same setup as above, let C be a pointed (∞, 1)-category which
admits cofibers where the suspension functor ΣC : C → C is an equivalence,
the forthcoming aim is to give some thoughts about why the induced functor
Σ : hC → hC is in fact an additive functor. Since ΣC : C → C at least is a
functor of (∞, 1)-categories, then the induced map

ΣX,Y : MapC (X,Y )→ MapC (ΣCX,ΣCY ), (4.3.1.xviii)

for any pairs of object X and Y in C , is a map of homotopy types. So the
aim is to give some ideas why these ΣX,Y induce group homomorphisms when
passing to the homotopy category. In an appropriate model the induced maps on
the mapping spaces (ΣX,Y ) can be thought of for example as maps of simplicial
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sets or continuous maps of (sufficiently nice enough) topological spaces. Let the
inverse functor of ΣC be denoted Σ−1

C . Since ΣC : C → C is an equivalence of
(∞, 1)-categories it can always be chosen an object X ′ ' Σ−1

C X in C . Then the
map ΣX,Y of homotopy types above induces a maps of loop spaces

ΣX,Y : Ω MapC (Σ−1
C X,Y )→ Ω MapC (X,ΣCY ), (4.3.1.xix)

by using the characterisation of colimits in (∞, 1)-categories. Since this is a map
of loop spaces, applying π0 induces a group homomorphism on the Hom-sets
by functorality, from discussions previously. This proves that the induced map
Σ : hC → hC is an additive functor, in fact an additive equivalence from the
assumption that Σ is an equivalence of (∞, 1)-categories.

Until now it has been observed that if C is a pointed (∞, 1)-category
which admits cofibers where the suspension functor is an equivalence, then the
homotopy category hC is a category enriched over abelian groups and the induced
functor Σ : hC → hC is an additive equivalence. Next lemma, which is similar to
[Lur12, Lemma 1.1.2.9], states that, with the assumptions above, the homotopy
category hC is not just an enriched category over abelian groups, but also an
additive category. In the “proof” it is sketched some ideas of the proof of [Lur12,
Lemma 1.1.2.9].

Lemma 4.3.1.2. Let C be a pointed (∞, 1)-category which admits cofibers and
suppose the suspension functor is an equivalence. Then the homotopy category
hC is an additive category.

“Proof”: Since it is already shown that hC is enriched over abelian groups, then
it is left with proving that hC admits all finite coproducts. Moreover, it turns
out, even stronger, that C itself admits all finite coproducts. First it will be
proved that C itself admits all finite coproduct then a short argument proving
that hC admits finite coproducts after all.

Now since C contains initial objects, without loss of generality, it should
be sufficient to consider pairwise coproduct. So, for any two arbitrary objects X
and Y in C the objective now is to show that there exists a coproduct of them
in C . By adding up more objects to this construction, this will show that there
exists arbitrary coproducts in C , but this iterative procedure has to start at some
point, namely at some initial object, in order to prove the appropriate notion.
Any coproduct with an initial object should be isomorphic (in the appropriate
notion) to the object itself, an empty coproduct is isomorphic to an initial object.

So, let X,Y ∈ C and let cofib : Fun(∆1,C ) → C be the functor that to
any morphism assigns its cofiber, as usual. The aim now is to determine the
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following equivalences,

X ' cofib(X[−1]
u−→ 0) and (4.3.1.xx)

Y ' cofib(0
v−→ Y ), (4.3.1.xxi)

where X[−1] means the inverse functor of ΣC (which is assumed to be an equiv-
alence) denoted Σ−1

C , applied on X, namely Σ−1
C : X 7→ X[−1]. The first equiv-

alence can be obtained from definition of a cofiber sequence, namely a pushout
square,

X[−1] 0

0 cofib(u) ' X

u

so by definition ΣCX[−1] ' X. The second equivalence can be obtained from
the pushout

0 Y

0 cofib(v) ' Y.

v

Now by applying [Lur09, Proposition 5.1.2.2] to u and v it can be shown
that u and v admit a coproduct in Fun(∆1,C ) as indicated in [Lur12, Lemma

1.1.2.9]. This coproduct can be shown to be a zero map X[−1]
0−→ Y . Since the

functor cofib can be shown to preserve colimits, since it can be identified with the
left adjoint to the left Kan extension functor C ' Fun({1},C ) → Fun(∆1,C ),
with some additional theory for adjoints and Kan extensions for (∞, 1)-categories,
it can be concluded that there is a coproduct of X and Y in C constructed as a
cofiber of the map X[−1]→ Y , namely as the following pushout in C ,

X[−1] Y

0 coprod(X,Y ).

0

Finally some comments that it is in fact stronger to prove that C itself
admits finite coproducts than hC , or more precisely, if C admits finite coprod-
ucts, so do hC . But recall the characterisation of colimits in (∞, 1)-categories in
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Equation 4.3.1.iii, together with fact that π0 preserves products ([Lur09, Example
1.2.13.1]) it follows obviously that coprod(X,Y ) is a coproduct in hC .

The next objective is to discuss a characterisation of the additive structure
described previously. More precisely, first let C is a pointed (∞, 1)-category which
admits cofibers where the suspension functor is an equivalence, the next result
gives a characterisation of additive inverse for a morphism θ ∈ HomhC (X,Y ).
First observe that any diagram of the form

X 0

0′ Y

which belongs to M Σ determines a canonical isomorphism X[1] = ΣX → Y
in the homotopy category hC . In particular for quasi-categories this follows
directly form the construction of the suspension functor via a pushout. From the
uniqueness property of (∞, 1)-categorical pushouts, X[1] and Y are both in the
same path connected component of an appropriate space of choices, hence they
are isomorphic in hC .

Further, consider any square shaped diagram of the form

X 0

0′ Y

f

f ′

in C , where 0 and 0′ are zero objects. Let this diagram visualised above be de-
noted δ. This square diagram δ classifies a morphism θ ∈ HomhC (X[1], Y ). This
classification follows since X[1] is (in quasi-categories) obtained from a pushout
square of similar form as δ, so from properties of pushouts, for example regarded
as a initial object in an appropriate slice C p/ (Section 3.2.4), there exist mor-
phisms X[1] → Y homotopic to one another. This determines a well-defined
morphism θ ∈ HomhC (X[1], Y ) as desired.

The next result is similar to [Lur12, Lemma 1.1.2.10]. There will not
be give any ideas of a proof here, but a proof can be found at [Lur12, Lemma
1.1.2.10].

Lemma 4.3.1.3. Let C be a pointed quasi-category which admits cofibers where
the suspension functor is an equivalence, and let
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X 0

0′ Y

f

f ′

be a diagram in C classifying a morphism θ ∈ HomhC (X[1], Y ), here 0 and 0′ are
zero morphisms in C . Then the transposed diagram

X 0′

0 Y

f ′

f

classifies a morphism −θ ∈ HomhC (X[1], Y ), which is the additive inverse of θ
with respect to the group structure determined by the identification

HomhC (X[1], Y ) = π0 MapC (X[1], Y ) ∼= π1 MapC (X,Y ), (4.3.1.xxii)

as obtained previously.

With the formalities determined by the theory of topological categories, or
simplicial categories, and quasi-categories, the additive structure on the homo-
topy category of a stable (∞, 1)-category has now been established. In the next
section the triangulated structure will be discussed.

4.3.2 Triangulated structure

The aim for this part is to establish the triangulated structure on the homotopy
category of a stable (∞, 1)-category C . The discussion here is mainly inspired
from studies of [Cam13, Section 5.4.2], [Gro10, Section 5.1] and [Lur12, Section
1.1.2]. First the distinguished triangles in C will be described, before it will be
shown that C with these distinguished triangles satisfies Verdier’s axioms.

Let C be a pointed (∞, 1)-category which admits cofibers where the sus-
pension functor is an equivalence, then the distinguished triangles can be de-
scribed as particular cofiber sequences, often formed by concatenations of partic-
ular pushout squares representing cofiber sequences. Then the following two-out-
of-three property for quasi-categorical pushouts is useful, similar to an analogous
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two-out-of-three property for ordinary categorical pushouts.

Proposition 4.3.2.1. Let C be a quasi-category and let σ : ∆1 ×∆2 → C be a
simplicial map representing a diagram in C , which can be visualised by

X Y Z

X ′ Y ′ Z ′,

and suppose that the left square is a pushout. Then the right square is also a
pushout if and only if the outer square is a pushout.

This result is the same as [Lur09, Lemma 4.4.2.1], where also a proof
is presented. The next definition describes the distinguished triangles of the
triangulated structure on the homotopy category of a stable (∞, 1)-category.
Again the distinguished triangles are formally described for quasi-categories.

Definition 4.3.2.2. Let C be a pointed quasi-category which admits cofibers.
Given a diagram of the form

X
f−→ Y

g−→ Z
h−→ X[1] (4.3.2.i)

in the homotopy category hC . Let this diagram be denoted τ . The diagram τ is
said to be a distinguished triangle if there exists a diagram σ : ∆1 ×∆2 → C in
C which can be visualised by

X Y 0

0′ Z W

f̃

h̃

g̃

consisting of and satisfying the following data and conditions,

(i) the objects 0 and 0′ are zero objects in C ,

(ii) both of the visualised squares above are pushout squares in C ,

(iii) the following arrows in the diagram can be identified with the following
morphisms in τ when passing to hC ,

f̃ 7→ f and g̃ 7→ g, (4.3.2.ii)
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(iv) the map h : Z → X[1] in τ is determined from the composition of the corre-

sponding homotopy class containing h̃ in the diagram, with the equivalence
W ' X[1] which is obtained from the outer triangle of the diagram above

X 0

0′ X[1]

this diagram is known to be a pushout from Proposition 4.3.2.1.

As usual, with the formal details established for quasi-categories, this picture with
concatenations of pushouts is what having in mind when distinguished triangles
in an (∞, 1)-categorical setting is considered.

The next lemma gives an immediate consequence of Lemma 4.3.1.3 consid-
ering the definition of distinguished triangles. Similar result is stated in [Lur12,
Lemma 1.1.2.13].

Lemma 4.3.2.3. Let C be a stable quasi-category, given a diagram ω : ∆2 ×
∆1 → C visualised by

X 0′

Y Z

0 W

g
f

h

where both squares are pushouts and the objects 0 and 0′ are zero objects. Ob-
serve now that ω has the shape of the transposed diagram of the previous “double”
pushout σ in Definition 4.3.2.2. Then the diagram

X
f−→ Y

g−→ Z
−h′−−→W (4.3.2.iii)

is a distinguished triangle in hC determined from ω in the following way. The
maps f and g denote the obvious homotopy classes from ω. The map h′ denotes
the composition of h with the isomorphism W ∼= X[1] in hC which is determined
by the outer square
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X 0′

0 X[1]

and −h′ denotes the composition of this h′ with the map

− idX[1] ∈ HomC (X[1], X[1]) ' π1 MapC (X,X[1]), (4.3.2.iv)

which is determined by the transposed diagram directly above.

With the formal details for stable quasi-categories established in the Lemma
above, the transposed diagram of σ in Definition 4.3.2.2 gives rise to a distin-
guished triangle

X
f−→ Y

g−→ Z
−h′−−→W (4.3.2.v)

for stable (∞, 1)-categories. Now, let C be a stable (∞, 1)-category. From the
construction of distinguished triangles and the Lemma above a following sequence
can be obtained in the homotopy category hC ,

X Y 0

0 Z X[1] 0

0 Y [1] Z[1] 0

0 X[2]
. . .

f

g

h

−f [1]
−g[1]

−h[1]
f [2]

where all squares are determined by cofiber sequences in C .

When all necessary language and equipments defined and discussed, the
next aim is to state and prove the main theorem for this thesis.

Theorem 4.3.2.4. Consider the following data,

• let C be a stable (∞, 1)-category

• let T denote the collection of distinguished triangles defined above (in
Definition 4.3.2.2)
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• let the translation functor assigning X 7→ X[1] be the suspension functor
ΣC : C → C

Then these data endow the homotopy category hC of C with the structure of a
triangulated category.

Remark 4.3.2.5. Before the proof of the main theorem recall from the dis-
cussion finally of Section 4.2.3, that stable (∞, 1)-categories can in fact be re-
garded as equivalent to pointed (∞, 1)-categories which admit cofibers, where
the suspension functor is supposed to be an equivalence. The hypotheses of the
main theorem here uses stable (∞, 1)-category, since this assumptions is perhaps
slightly more intuitive that the other, but still equivalent. The similar results
stated in [Cam13, Section 5.4.2] and [Gro10, Theorem 5.10] assume also stable
(∞, 1)-categories, but the hypothesis in [Lur12, Theorem 1.1.2.14] uses pointed
(∞, 1)-categories which admit cofibers where the suspension functor is assumed
to be an equivalence.

Proof of Theorem 4.3.2.4: The aim now is to verify the axioms of a triangulated
category (Definition A.2.2.1) with the data in the hypothesis of the main theorem.

(TR1) Let E ⊆ Fun(∆1 ×∆2,C ) denote the full subcategory spanned by dia-
grams of the form

X Y 0

0′ Z W

f

which give rise to distinguished triangles, namely having the property that
both of the squares are pushouts. Let the diagram visualised above be
denoted α ∈ E . Now let e : E → Fun(∆1,C ) be the map that visually
sends a diagram in E to the diagram in Fun(∆1,C ) which corresponds to
its upper left horizontal arrow, so in the example of the diagram above
e : α 7→ f . Now by a repeated use of the argument in [Lur09, Proposition
4.3.2.15], which establishes a general criterion when simplicial maps are
trivial Kan fibrations (as remarked in Remark 4.1.2.3), it can be shown (as
stated in the proof of [Lur12, Theorem 1.1.2.14]) that e is a trivial fibration,
let its section be denoted s,

E Fun(∆1,C ).
e

s

Visually, this means that any diagram in Fun(∆1,C ), which corresponds to
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a map f in C , can be sent to a diagram corresponding to a distinguished
triangle by the map s. This proves (TR1) part (a), (b) and (c) by the
following consideration,

(a) let f be a morphism in hC , by applying s in the arguments above f
can be extended to a distinguished triangle

(b) the collection of distinguished triangles T is closed under isomor-
phism, since distinguished triangles are obtained from pushout squares
in C , hence any diagram of the appropriate form in Fun(∆1 × ∆2)
equivalent to a diagram in E is again in E

(c) for any objectX ∈ hC , choose f = idX in (a), then idX will be mapped
by s to a diagram corresponding to a distinguished triangle where the
third entry (corresponding to the entry Z above), namely equivalent
to the cofiber of the identity, can from construction be taken to be a
zero object of C .

(TR2) Suppose that

X
f−→ Y

g−→ Z
h−→ X[1] (4.3.2.vi)

is a distinguished triangle in hC which is obtained from the diagram

X Y 0

0′ Z W.

f

Let the diagram visualised above will be denoted σ ∈ E . Now extend σ to
a diagram

X Y 0

0′ Z W

0′′ V

u

where 0′′ is a zero object of C and the lower right square is a pushout in
C . Denote this diagram µ. Now, from this diagram µ consider the squares
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X 0

0′ W,

obtained by concatenation horizontally, and

Y 0

0′′ V,

obtained by concatenation vertically. From the large diagram µ it is obvious
that the two previous diagrams are connected by maps (in an appropriate
functor category), since in µ visually there are a map X → Y , clearly 0 = 0,

a map 0′ → X → 0′′ and a map W
u−→ V with the required commutativity

properties in order to induce the following commutative diagram in hC ,

W X[1]

V Y [1]

∼=

f [1]u
∼=

where the horizontal arrows are isomorphisms, which follows from the usual
classification since the large diagram µ is obtained by concatenation of
pushouts. With these observations and by apply Lemma 4.3.2.3 to the part

Y 0

Z W

0′′ V

of the large diagram µ above to conclude that

Y
g−→ Z

h−→ X[1]
−f [1]−−−→ Y [1] (4.3.2.vii)
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is a distinguished triangle in hC .

For the converse direction in this axiom suppose that

Y
g−→ Z

h−→ X[1]
−f [1]−−−→ Y [1] (4.3.2.viii)

is a distinguished triangle in hC . Since ΣC : C → C is an equivalence
conclude that

Y [−2]
g[−2]−−−→ Z[−2]

h[−2]−−−→ X[−1]
−f [−1]−−−−→ Y [−1] (4.3.2.ix)

is a distinguished triangle, since it is isomorphic to a distinguished triangle.
Now use the already obtained rotation from the first part of this axiom five
times to determine a distinguished triangle

X
f−→ Y

g−→ Z
h−→ X[1] (4.3.2.x)

as desired. This proves (TR2).

(TR3) Suppose that the following diagrams are distinguished triangles in hC ,

X
f−→ Y

g−→ Z
h−→ X[1] (4.3.2.xi)

X ′
f ′−→ Y ′

g′−→ Z ′
h′−→ X ′[1] (4.3.2.xii)

which are induced by the diagrams σ ∈ E and σ′ ∈ E respectively (up
to contractable choices, which turn into isomorphism classes in hC , so the
assumption with σ and σ′ is without loss of generality after all), where E
is defined as in (TR1). Any commutative diagram of the form

X Y

X ′ Y ′

f

f ′

in the homotopy category hC can be lifted (not necessary uniquely) to a
square, say α in C , or more precisely α ∈ Fun(∆1 ×∆1,C ). Moreover, α
can be identified with a morphism φ : e(σ)→ e(σ′) in Fun(∆1,C ), which is
best visualised by the diagram above, where e : E → Fun(∆1,C ) is defined
as in (TR1). Since e can be shown to be a trivial fibration of simplicial sets,
φ can be lifted to a morphism σ → σ′ in E by applying s : Fun(∆1,C )→ E
to φ, where s denotes the section of e as defined in (TR1). This determines
a morphism (natural transformation) of distinguished triangles
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X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

in the homotopy category hC , as desired.

(TR4) In order to show the octahedron axiom let f : X → Y and g : Y → Z
be morphisms in C . Since e : E → Fun(∆1,C ) can be shown to be a
trivial fibration, any distinguished triangle in hC beginning with any f , g
or g ◦ f is uniquely determined up to non-unique isomorphisms. This can
be seen by applying the section s : Fun(∆1,C ) → E of e in order to place
any morphism (object in Fun(∆1,C )) on the beginning of a diagram which
determines a distinguished triangle. From construction a distinguished tri-
angle is determined by a concatenation of pushouts, which are uniquely
determined up to contractable space of choices. Then distinguished trian-
gles are uniquely determined up to non-unique isomorphism by the first
arrow.

Since every distinguished triangle is determined by its first morphism, it is
sufficiently to prove that there exists some triple of distinguished triangles
starting with f , g and g◦f which satisfy the required conclusion of (TR4),
namely existence of a fourth distinguished triangle fitting in with the com-
mutativity property of the braid diagram. In order to prove this, construct
a diagram such as the following visualised in C ,

X Y Z 0

0 Y/X Z/X X ′ 0

0 Z/Y Y ′ (Y/X)′

f g

where 0 denotes a zero object of C and each square is a pushout. Or perhaps
more precisely the previous diagram can be obtained by a repeatedly use of
[Lur09, Proposition 4.3.2.15] in order to construct a diagram visualised in
C from a map from the nerve of an appropriate (free category on a) quiver
into C . Moreover, since C admits cofibers together with the two-out-of-
three property for pushouts formulated in Remark 4.3.2.1, even the squares



4.3. The homotopy category of stable (∞, 1)-categories 99

in the diagram above that are not in “contact” with some zero object are
also pushout squares and then, such diagram exists in C for sure. Let this
diagram be denoted ξ.

Now by restricting the attention to the appropriate rectangles in the dia-
gram ξ above the isomorphisms

X ′ ∼= X[1], Y ′ ∼= Y [1], (Y/X)′ ∼= (Y/X)[1] (4.3.2.xiii)

can be obtained in hC , where the first isomorphism follows from horizontal
concatenation of upper row, the second from the large middle square, and
the last from concatenation horizontally of the lower row. The diagram ξ
and the isomorphisms together with appropriate compositions determine
the following four distinguished triangles

X
f−→ Y −→ Y/X −→ X[1] (4.3.2.xiv)

Y
g−→ Z −→ Z/Y −→ Y [1] (4.3.2.xv)

X
g◦f−−→ Z −→ Z/X −→ X[1] (4.3.2.xvi)

Y/X −→ Z/X −→ Z/Y −→ (Y/X)[1]. (4.3.2.xvii)

in hC . Just by rotation and shrink the zero maps in the large diagram ξ
above, the these distinguished triangles can be now putted together into
the required braid diagram

X Z Z/Y (Y/X)[1]

Y Z/X Y [1]

Y/X X[1]

g ◦ f θ

which for sure commutes in hC , since even stronger the large diagram ξ
above is commutative (homotopy coherently) in C .

The verification of Verdier’s axioms proves the main theorem.
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4.3.3 Enclosing comments

The main theorem (Theorem 4.3.2.4) above proves that the homotopy category of
a stable (∞, 1)-category is triangulated. Recall the from the introduction in the
first chapter (Section 1.1) that the perhaps most interesting examples of trian-
gulated categories can be regarded as examples of homotopy categories of stable
(∞, 1)-categories. But, the definition of a stable (∞, 1)-category can be regarded
as easier, and especially the definition of stable (∞, 1)-categories can be regarded
as a definition by properties, perhaps somewhat unlike definitions considering
additional data. So, stable (∞, 1)-categories are particularly interesting to study.

Moreover, in the proof of the main theorem it can be observed that the ax-
ioms where satisfied almost directly by properties of (∞, 1)-categories. For exam-
ple the octahedron axiom (TR4) followed almost directly from quasi-categorical
principles. By the easy and well motivated principles of stable (∞, 1)-categories,
or in particular with the formal theory developed for stable quasi-categories, they
may in some appropriate situations be preferred before triangulated categories
themselves.







Appendix A

Notions in the ordinary
categorical language

The objective for this appendix is to discuss some of the notions in the ordinary
categorical language that will be used in the thesis.

A.1 Monoidal and enriched categories

The aim for this section is to establish the notions of monoidal categories and
enriched categories used in this thesis.

A.1.1 Definition of monoidal categories

Monoidal categories can be thought of as categories with an “intern product
functor”, like a generalisation or formalisation of the tensor product ⊗Z of abelian
groups or vector spaces. But before the definition, recall that any object, say e
in any category say A can be regarded as a functor e : [0] → A , where [0] is
the category with one object and identity morphism and a bifunctor is a functor
from a product category A ×B → C .

Definition A.1.1.1. A strict monoidal category is a triple 〈A ,⊗, e〉 consisting
of the following data

• a category A

103
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• a bifunctor ⊗ : A ×A → A

• an object e in A .

These data should satisfy the following properties,

• the bifunctor ⊗ is (strictly) associative, which can be view as the commu-
tativity of the following diagram

A ×A ×A A ×A

A ×A A

IA ×⊗

⊗

⊗× IA ⊗

in Cat, where IA is the identity functor.

• the object e is a left and right unit of the tensor product, which can be
viewed as commutativity of the following diagram

[0]×A A ×A A ×[0]

A A A .

e× IA IA × e

∼= ⊗ ∼=

A strict monoidal category is in fact an example of the more general notion
of a monoidal category.

Definition A.1.1.2. A monoidal category is a category A equipped with a
(coherent) associative bifunctor, called tensor product ⊗ : A ×A → A together
with a unit object e and natural isomorphisms α, λ and ρ. The data of the
monoidal category 〈A ,⊗, e, α, λ, ρ〉 is given by and should satisfy the following,

• the natural isomorphism α : ⊗(IA × ⊗) → ⊗(⊗ × IA ) has components
αa,b,c : a⊗ (b⊗ c) ∼= (a⊗ b)⊗ c which is natural in a, b and c such that the
pentagon diagram

a⊗ (b⊗ (c⊗ d)) (a⊗ b)⊗ (c⊗ d) ((a⊗ b)⊗ c)⊗ d

a⊗ ((b⊗ c)⊗ d) (a⊗ (b⊗ c))⊗ d

α α

α

IA ⊗ α α⊗ IA

is commutative for all objects a, b, c and d in A .



A.1. Monoidal and enriched categories 105

• the natural isomorphism λ : e⊗− → − has components λa : e⊗ a ∼= a and
the natural isomorphism ρ : −⊗e→ − has components ρa : a⊗e ∼= a, with
the property that the following diagram commutes for all objects a and c
in A ,

a⊗ (e⊗ c) (a⊗ e)⊗ c

a⊗ c a⊗ c,

α

IA ⊗ λc ρa ⊗ IA

moreover it requires that λe = ρe : e ⊕ e ∼= e, which can immediately be
observed from the diagram.

The natural isomorphisms α, λ and ρ are often called associator, left unitor and
right unitor respectively for the established monoidal structure on A .

Observe now that a monoidal category A is a strict monoidal category
if the given natural isomorphisms α, λ and ρ (which belong to the monoidal
structure on A ) are identities. Moreover, the commutativity of the diagrams
above should imply that all diagrams involving only the natural isomorphisms
α, λ and ρ are commutative as indicated in [Lur09] and [Mac98]. In [Lur09] this
is called MacLane’s coherence theorem, and can further be shown to imply that
any monoidal category is (monoidally) equivalent to a strict monoidal category.

Any category with finite products A admits the structure of a monoidal
category by taking the operation ⊗ to be the category theoretical product, the
unit object to be the terminal object in A and the required natural transforma-
tions to be the natural transformations that have their components constructed
from the universal properties of the category theoretical product. Hence, this
construction now described gives rise to monoidal structure on A , by then A is
frequently called a cartesian monoidal category.

Examples of monoidal categories occurs quite frequently, since any cat-
egory that admits finite products can be equipped with a cartesian monoidal
structure. As mentioned examples of non-cartesian monoidal categories are the
category of abelian groups and the category of vector spaces with the usual tensor
product.

A.1.2 Enriched categories

The conceptual idea behind “enriched” categories is that this category like con-
struction instead of having the Hom-objects in the category Set as for ordinary



106 Appendix A. Notions in the ordinary categorical language

categories, Hom-objects are now taken to be objects in a monoidal category and
the composition is given by the tensor product. Before stating the definition of
enriched categories, it should be mentioned that additive categories are examples
of categories enriched over abelian groups, just by the idea that the Hom-sets are
abelian groups and the composition is bilinear over Z, which is captured by the
tensor product ⊗Z.

Definition A.1.2.1. Let B be a monoidal category. A B-enriched category A
or a category enriched over B consists of and satisfies the following data

• there is a collection of objects in A

• for each ordered pair of objects (x, y) in A a mapping object denoted
MapA (x, y), which is an object of B

• for each ordered triple of objects (x, y, z) in A an operation of composition

MapA (y, z)⊗MapA (x, y)→ MapA (x, z) (A.1.2.i)

given by the tensor product ⊗ on B.

• for every object x in A a unit map ux : e → MapA (x, x), where e is the
tensor unit of B, the unit map is associated with the identity morphism on
x.

These data are required to satisfy the following properties,

• the composition is associative, that is for every ordered quadruple of objects
(w, x, y, z) in A the following diagram commutes

A (y, z)⊗A (x, y)⊗A (w, x) A (y, z)⊗A (w, y)

A (x, z)⊗A (w, x) A (w, z)

where the notation A (w, x) is short for MapA (w, x)

• the composition respects the unit law, which means that for each object
x in A the unit map ux : e → MapA (x, x) satisfies commutativity of the
following diagrams with the identity functor on B in the horizontal arrows

e⊗A (y, x) A (x, x)⊗A (y, x)

A (y, x) A (y, x)

ux ⊗ IB
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and

A (x, y)⊗ e A (x, y)⊗A (x, x)

A (x, y) A (x, y),

IB ⊗ ux

where the vertical arrows are natural isomorphisms from the monoidal structure
on B.

The models topological categories and simplicial categories for (∞, 1)-
categories, which are discussed in Section 2.1, are defined to be enriched cat-
egories over topological spaces and simplicial sets, respectively. When mapping
objects are in such categories they are often referred to as mapping spaces. A triv-
ial example of an enriched category is ordinary categories, which can be regarded
as enriched over Set with the cartesian monoidal structure.

When some “new” constructions now have been defined, it is naturally to
obtain the appropriate notion of maps between them.

Definition A.1.2.2. Let C and D both be B-enriched categories, a B-enriched
functor F : C → D consists of an object map assigning objects of C to objects
of D and a collection of morphism maps

Fx,y : MapC (x, y)→ MapD(Fx, Fy) (A.1.2.ii)

preserving the enriched structure, that is,

• for all objects x in C the map

e→ MapC (x, x)
Fx,y−−−→ MapD(Fx, Fx), (A.1.2.iii)

where e is the tensor unit of B, coincides with the unit map for Fx, similar
to functors preserving identities.

• for every ordered triple (x, y, z) of objects in C , the diagram

MapC (y, z)⊗MapC (x, y) MapC (x, z)

MapD(Fy, Fz)⊗MapD(Fx, Fy) MapD(Fx, Fz)

commutes, similar to functors preserving compositions.
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There is an enriched notion of the Yoneda embedding. Let C be a B-
enriched category, then there is a fully faithful functor y : C → BC op

, where
BC op

denote the category of functors C op → B. Similar as for ordinary category
theory, y : C → BC op

is obtained from assigning to each object x in C the
functor x 7→ MapC (−, x) : C op → B. The dual states that there is a fully
faithful functor y′ : C op → BC by assigning x 7→ MapC (x,−) : C → B. These
notions are discussed in [Lur09, Section 5.1.3].

Moreover, let C and D be ordinary categories which admit finite products,
so they can both be equipped with a cartesian monoidal structure. If a functor
F : C → D preserves products, then from a C -enriched category A the functor
F defines a D enriched category denoted B by taking the collection of objects
in B to be the same as A , the mapping spaces are given by MapB(x, y) =
F (MapA (x, y)) and the composition is induced from A , which works since F
preserve products. This construction is used in the definition of the homotopy
category of a topological category via π0, and in the “comparison” of topological
categories with simplicial categories via (||,Sing) : sSet → CG. Some more
details for this construction is remarked in [Lur09, Appendix A.1.4].

A.2 Additive and triangulated categories

In this section the definitions of additive and triangulated categories will be
presented.

A.2.1 Additive categories

The homotopy category of a stable (∞, 1)-category is an additive category (Sec-
tion 4.3.1). The aim for this section is to define additive categories. First the
standard definition.

Definition A.2.1.1. An (ordinary) category A is said to be additive if it satisfies
the following axioms,

(1) the Hom-sets in A are abelian groups

(2) the composition in A is bilinear over the integers

(3) the category A contains a zero object denoted 0

(4) the category A admits all finite coproducts
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The map f : X → Y that factors (uniquely) through 0, X → 0 → Y is
called the zero morphism. As indicated in [Mac98] if A is an additive category
it is easy to show that any finite coproduct is isomorphic to a finite product, this
coinciding of universal constructions is frequently called biproducts. Moreover,
any map of finite biproducts φ :

⊕
i∈I Xi →

⊕
j∈J Yj can be written a matrix,

where the entries are maps φij : Xi → Yj . Composition of maps of biproducts
can be proved to be the usual matrix multiplication.

An other interpretation of additive categories is given in [Lur12, Defini-
tion 1.1.2.1]. The first two axioms in this interpretation states that an additive
category admits finite products and coproducts together with a zero object. The
third axiom states that for each pair of objects X and Y the map X

∐
Y → X×Y

described by the matrix(
idX 0
0 idY

)
: X

∐
Y → X × Y (A.2.1.i)

is an isomorphism, the inverse is denoted ψX,Y . An additive operation on mor-
phisms can be formulated by

X → X ×X → Y × Y → Y
∐

Y → Y (A.2.1.ii)

which equips Hom(X,Y ) with the structure of a commutative monoid, the iden-
tity for this operation is the zero morphism. Moreover, the fourth axiom asserts
that for every arrow f : X → Y there exists an other arrow (−f) : X → Y . This
gives an abelian group structure to the commutative monoid Hom(X,Y ).

With the observations above, the two formulations of additive categories
can be regarded as reformulations of one another. For example the bilinearity
of the composition over the integers of the formulation in second interpretation
follows from abelian groups being regarded as modules over Z (with na = a+a+
· · ·+ a). Moreover, the additive operation can be verified in the first description
by,

X

idX
idX


−−−−−→ X ⊕X

f 0
0 g


−−−−−−→ Y ⊕ Y

(
idY idY

)
−−−−−−−−−→ Y, (A.2.1.iii)

namely (
idY idY

)(f 0
0 g

)(
idX
idX

)
= f + g. (A.2.1.iv)

Remark A.2.1.2. Observe now that an additive category can be regarded as
an enriched category over abelian groups, with in addition having all finite co-
products. Here the category of abelian groups is equipped with the usual tensor
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product over Z. The bilinearity of the composition can clearly be described by
property of the tensor product and by definition of enriched categories. This final
observation is used when the property of being additive categories is verified in
the thesis.

A.2.2 Definition of triangulated categories

The main objective for this thesis is to give a proof of the fact that the homotopy
category of a stable (∞, 1)-category is a triangulated category. So, the final aim
in this appendix is to give a definition of triangulated categories. The axioms
given here are reformulations of the axioms originally stated by Verdier, which
are reprinted in [Ver96].

Definition A.2.2.1. A triangulated category consists of the following data,

• an additive category D ,

• a translation functor D → D which is an additive equivalence of additive
categories, this functor will be identified with the notation X 7→ X[1],

• a collection T of diagrams consisting of a sequence of objects and mor-
phisms of the from

X
f−→ Y

g−→ Z
h−→ X[1] (A.2.2.i)

denoted (f, g, h), the members of this collection are called distinguished
triangles.

These data are required to satisfy the following axioms,

(TR1)(a) every morphism f : X → Y in D can be completed by a distinguished
triangle in T of the form (f, g, h),

X
f−→ Y

g−→ Z
h−→ X[1], (A.2.2.ii)

(TR1)(b) any sequence of objects and arrows (f, g, h) which is isomorphic to a
distinguished triangle is again a distinguished triangle, hence the collection
T of distinguished triangles can be said to be closed under isomorphism,

(TR1)(c) for any object X ∈ D there is a distinguished triangle of the form

X
idX−−→ X −→ 0 −→ X[1]. (A.2.2.iii)
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(TR2) A diagram

X
f−→ Y

g−→ Z
h−→ X[1] (A.2.2.iv)

is a distinguished triangle if and only if the rotated diagram

Y
g−→ Z

h−→ X[1]
−f [1]−−−→ Y [1] (A.2.2.v)

is a distinguished triangle.

(TR3) Given a commutative diagram

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1],

f g h

f ′ g′ h′

where the horizontal rows are distinguished triangles, then there exists a
(not necessarily) unique morphism Z → Z ′ making the following completed
diagram commutative

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1].

f g h

f ′ g′ h′

(TR4) Given three distinguished triangles

X
f−→ Y

u−→ Y/X
d−→ X[1] (A.2.2.vi)

Y
g−→ Z

v−→ Z/Y
d′−→ Y [1] (A.2.2.vii)

X
g◦f−−→ Z

w−→ Z/X
d′′−→ X[1], (A.2.2.viii)

where Y/X is just some unnatural notation, then there is a fourth distin-
guished triangle

Y/X
φ−→ Z/X

ψ−→ Z/Y
θ−→ (Y/X)[1] (A.2.2.ix)

making the following diagram commute
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X Z Z/Y (Y/X)[1]

Y Z/X Y [1]

Y/X X[1]

g ◦ f v θ

f

u

d

f [
1]

u[
1]g d ′

w

d ′′φ

ψ

The previous diagram will be referred to as the braid diagram, and this last
axiom is often called the octahedron axiom.
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Simplicial sets

Simplicial sets can be interpreted as a model for higher categories, by considering
simplicial shaped cells, as indicated in [Cam13]. However, quasi-categories, which
is the model of (∞, 1)-categories that mainly will be used here in this thesis, can
be defined as a particular class of simplicial sets satisfying the ‘inner horn filler
property’. The main objective for this appendix is to define and establish some of
the required equipments behind the notions discussed in this thesis, such as the
‘inner horn filler property’. This material is mainly studied from [GJ09], [Joy08],
[Lur09] and [Mac98].

B.1 Definition of simplicial sets

The aim for this section is to give some background information and define the
notion of simplicial sets.

B.1.1 The delta-category

Let X be a directed graph. A free category on X is a category F (X), where
the objects of F (X) are the nodes in X, the morphisms of F (X) are the arrows
of X, the composition in F (X) is obtained from concatenation of arrows in X
and identities are obtained from adjoining a “lazy” arrow to each note in X.
Moreover, a linear graph or a linear quiver is a directed graph of the form

0→ 1→ . . .→ n = [n] (B.1.1.i)

115



116 Appendix B. Simplicial sets

for an arbitrary n ≥ 0. The convention [−1] = ∅ will be used.

Definition B.1.1.1. The category ∆, called the delta-category, is defined to
be the full subcategory of Cat spanned by the free categories on linear quivers.
That is,

• the objects of ∆ are the collection of free categories on [n] for various
n ≥ 0, these objects will also be denoted [n] (not F ([n])) and called standard
simplices, while

• for objects [n] and [m] in ∆ the set of morphisms are all functors [n]→ [m],

Hom∆([n], [m]) = HomCat([n], [m]). (B.1.1.ii)

Equivalently, the category ∆ can be described by the following. The col-
lection of objects are totally orders numbers {0 ≤ 1 ≤ · · · ≤ n}, while the
morphisms are order preserving maps f : [n] → [m]. These descriptions can be
regarded as equivalent by the following, arrows → can be translated as relations
≤, while functors are ordering preserving, since they commutes with composi-
tions. With this interpretation of arrows as relations, a partially ordered set can
be regarded as a free category on a acyclic quiver. It should also be remarked
that ∆ is equivalent to the (possible larger) category of all free categories over
finite linear quivers

c0 → c1 → · · · → cn (B.1.1.iii)

and functors, just by choosing equivalences wisely. Often it is actually this (pos-
sibly larger) subcategory of Cat that is referred to in the literature when ∆ is
mentioned ([Lur09]).

The next aim is to establish the cosimplicial identities, but first are the
canonical inclusions an canonical projections of simplices defined.

Definition B.1.1.2. The coface map is the canonical inclusion di : [n− 1]→ [n]
that do not hit a fixed object i ∈ [n], namely this coface map is determined by

di(j) =

{
j j < i,

j + 1 j ≥ i
(B.1.1.iv)

on objects, while the arrows are sent to their only possible images in [n] deter-
mined the induced function on objects.

Definition B.1.1.3. The codegeneracy map si : [n + 1] → [n] is defined to be
the canonical projection that sends exactly two elements onto i for 0 ≤ i ≤ n,
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namely the codegeneracy map is determined by the object function

si(j) =

{
j j ≤ i,
j − 1 j > i,

(B.1.1.v)

while the arrows (or relations) are sent to their obvious images in [n], determined
by where the objects are sent to.

Remark B.1.1.4. The coface and codegeneracy map are related by the following
identities

if i < j then djdi = didj−1 (B.1.1.vi)

if i < j then sjdi = disj−1 (B.1.1.vii)

if i > j + 1 then sjdi = di−1sj (B.1.1.viii)

if i ≤ j then sjsi = sisj+1 (B.1.1.ix)

while sjdj = id = sjdj+1. (B.1.1.x)

by an appropriate change of domains and codomains differing from the definition.
These identities can easily be verified just by writing up their definitions in the
right meanings.

Definition B.1.1.5. The identities (Equations B.1.1.vi–B.1.1.x) in Remark
B.1.1.4 are called the cosimplicial identities.

Remark B.1.1.6. Every map in ∆ admits a monic-epic factorisation. That is,
let u : [n]→ [n′] be a map in ∆, then u can be written as u = ds where

d = di1di2 · · · dik and s = sj1sj2 · · · sjh (B.1.1.xi)

satisfying

n− h+ k = n′, with 0 ≤ j1 < · · · < jh < n

and 0 ≤ ik < ik−1 < · · · < i1 < n′.

This can be observed from first, the elements ik < ik−1 < · · · < i1 can be viewed
as objects in [n′] which are not in the image of u, and second that the elements
j1 < j2 < · · · < jk can be viewed as objects in [n] where u is non-increasing.
Then u can be viewed as the composition,

[n] � [n− h] ∼= [n′ − k] � [n′] (B.1.1.xii)

where � can be interpreted as objects which are sent onto the same object and
� extending the image in [n − h] to the appropriate image in [n′]. By using
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the cosimplicial identities, it can be observed that such a factorisation is unique.
More details are discussed in [Mac98, Section VII.5].

Remark B.1.1.7. From the uniqueness of factorisation it follows that ∆ can be
obtained from the category with objects free categories on linear quivers freely
generated by the arrows di and si with respect to the cosimplicial identities (as
formulated in [Mac98, Proposition 2, Section VII.5]).

B.1.2 Definition of simplicial sets

First aim is to define presheaf categories.

Definition B.1.2.1. Let A and B be categories, in this thesis a presheaf on A
with values in B or a B-valued presheaf on A is defined to be a contravariant
functor from A to B. As usual all B-valued presheaves can be organised into
a category, namely the functor category BA op

where the objects are B-valued
presheaves on A and morphisms are natural transformations. In particular for
any category A , Set-valued presheaves will simply often referred to as presheaves
and the category SetA op

will be referred to as the presheaf category on A .

At this point the following should be remarked.

Remark B.1.2.2. Let A and B be categories. If B admits all (small) limits

or all (small) colimits then so do the category of presheaves BA op

. An idea

behind this observation is to form the required construction in BA op

by using the
appropriate construction on the B-values. In particular, any Set-valued presheaf
category admits all (small) limits and colimits, then Set-valued presheaves are
said to be both cartesian and cocartesian. More precise discussion can be found
in [KS06, pp. 405-407].

For any (small) category A the first class of examples of Set-valued
presheaves on A should be those that arise from the contravariant Hom-functor.

Definition B.1.2.3. Let A be a (small) category. Any Set-valued presheaf on
A isomorphic to HomC (−, X) : A op → Set is called a representable presheaf on
A .

For presheaves on ∆ the following terminology is used.

Definition B.1.2.4. Let C be a category, a C -valued presheaf on ∆, namely
a functor X : ∆op → C is called a simplicial object in C . Moreover, any C -
valued presheaf X on ∆ evaluated at any simplex [n] ∈ ∆ gives an object in
C denoted Xn = X([n]). The image of the coface maps in ∆ are called face
maps denoted di = X(di) : Xn → Xn−1, while si = X(si) : Xn → Xn+1 are
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called degeneracy maps. Moreover, the simplicial identities are obtained from
the cosimplicial identities (Definition in B.1.1.5), by reversing compositions.

In particular, for Set-valued presheaves on ∆ the following terminology is
used.

Definition B.1.2.5. A Set-valued presheaf on ∆ is called a simplicial set, that
is, a simplicial set is a functor ∆op → Set. The functor category of simplicial
sets is denoted sSet. Representable simplicial sets are will often be denoted
∆n = Hom∆(−, [n]) : ∆op → Set for any [n] ∈∆.

At this point it should be observed that for a simplicial set X (even for
arbitrary functor categories of simplicial objects) the face maps and degeneracy
maps form chains in Set (or in an arbitrary value)

X0 X1 X2 · · ·

which is characteristic of sSet (or for images of arbitrary simplicial objects).

Now some notation for simplicial sets.

Definition B.1.2.6. Let X be a simplicial set. Elements in Xn are referred to
as n-simplices. In particular 0-simplices, or elements in X0, are referred to as
objects or vertices of X, while 1-simplices, or elements in X1, are referred to as
arrows or edges, or even in some situations morphisms of X. Let f ∈ X1 be an
arrow of X, then d1(f) is called the source of f , while d0(f) is called the target
of f .

A 1-simplex f in a simplicial set S can be visualised by X
f−→ Y , where

d1(f) = X and d0(f) = Y . Moreover a 2-simplex α ∈ S2 can be visualised by a
solid triangle

Y

X Z,

f g

h

where d0(α) = g, d1(α) = h and d2(α) = f . So, this “face rule” can be generalised
to arbitrary n-simplex ω by saying that di(ω) is the (n− 1)-simplex opposite of
vertex i.

Now with this terminology for simplicial sets established, the aim now is
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to take up the discussion of representable presheaves on ∆.

Remark B.1.2.7. Firstly, let X be a simplicial set. The n-simplices in X can be
classified by the following set of natural transformations in sSet by the Yoneda
lemma ([Mac98, Section III.2]),

Nat(∆n, X) = HomsSet(∆
n, X) ∼= Xn. (B.1.2.i)

The notation in this thesis do not distinguish if a n-simplex β is regarded as an
element β ∈ Xn or a natural transformation β : ∆n → X, in the discussed case
this should be clear from the situation.

Remark B.1.2.8. Secondly, representable presheaves are in particular interest
since any Set-valued presheaf arises as a colimit of representable presheaves. This
is very intuitive in view of the Yoneda lemma, the colimit of representable “glue”
together all values of any Set-valued presheaf. A more rigid proof of these ideas
can be found in [Mac98, Theorem 1, Section III.7], the result is also encoded in
[KS06, Section 17.1].

Remark B.1.2.9. Thirdly, let y : ∆ → sSet denote the fully faithful Yoneda
embedding sending standard simplices to their representing presheaf, for objects
[n] 7→ ∆n = Hom∆(−, [n]) and any morphism u : [m] → [n] in ∆ is sent to a
natural transformation u 7→ ∆(u) = Hom∆(−, u) : ∆m → ∆n whose compo-
nents coincides with the contravariant Hom-functor and will often be denoted
Hom∆(−, [n]) = u∗. In particular, any coface map di : [n − 1] → [n] give rise to
a natural transformation di 7→ ∆(di) : ∆n−1 → ∆n.

The natural transformations of the form ∆(di) will in particular be used in
to the constructions of simplicial spheres and simplicial horns in the next section
(Section B.2). But first the notion of a opposite of a simplicial set will be defined.

Definition B.1.2.10. The opposite of a simplicial set S is determined from
Sop
n = Sop([n]) = S([n]op), where [n]op is the linear quiver [n] with reversed

arrows. Or more precisely let τ : ∆ → ∆ be the auto functor that reverses all
quivers, then Sop = Sτ : ∆→ Set.

The face and degeneration maps in the opposite simplicial set of S can
easily be observed to be,

(di : Sop
n → Sop

n−1) = (dn−i : Sn → Sn−1) (B.1.2.ii)

(si : Sop
n → Sop

n+1) = (dn−i : Sn → Sn+1), (B.1.2.iii)

just by reversing the arguments.
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B.2 Horn and spheres

The aim for this section is to establish the constructions of simplicial spheres
and simplicial horns. These simplicial sets are important in many constructions
important in this thesis.

B.2.1 Construction of simplicial spheres

Let S be a simplicial set. The idea of a simplicial n-sphere in S, is a union or
“gluing” of (n− 1)-simplices in order to obtain the “boundary” of an n-simplex
X : ∆n → S in S. The aim for this section is to give a formal discussion of these
ideas. But now to the notion of a simplicial subset will be defined.

Definition B.2.1.1. Let S be a simplicial set, a subfunctor T ⊆ S is said to be
a simplicial subset of S.

The simplicial set ∂i∆
n : ∆op → Set is defined to be the simplicial subset

of ∆n obtained from image of ∆(di) : ∆n−1 → ∆n, namely determined by sending
[k] to the image of the component ∆(di)[k],

[k] 7→ im ∆(di)[k] ⊆ ∆n
k (B.2.1.i)

and each map u : [k]→ [l] are sent to the restricted map

u∗|im(∆di)[l] = Hom∆([l], di)|im(∆di)[l] : im(∆di)[l] → im(∆di)[l], (B.2.1.ii)

as indicated by the sketch

[k] im ∆(di)[k] ⊆ ∆n
k

[l] im ∆(di)[l] ⊆ ∆n
l .

u u∗|im ∆(di)[l]

This is well-defined since ∆(di) is a natural transformation.

Definition B.2.1.2. The simplicial sphere is the simplicial set ∂∆n ⊆ ∆n

obtained from the union of ∂i∆
n over i ∈ [n]. Or more concretely, the simplicial

sphere ∂∆n : ∆op → Set is the simplicial set constructed from sending

[k] 7→
⋃
i∈[n]

im ∆(di)[k], (B.2.1.iii)
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and arrows are now sent to the their contravariant Hom-functors now restricted
to the union, then u : [k]→ [l] will be sent to

u 7→ u∗|⋃
i∈[n] im ∆(di)[k]

, (B.2.1.iv)

which gives rise to a functor, hence ∂∆n a simplicial set in its own right.

Definition B.2.1.3. Let S be a simplicial set. A simplicial map γ : ∂∆n → S
is said to be an n-sphere in S, and γ is said to admit a filler if there exists a
n-simplex δ : ∆n → S such that the following diagram commute

∂∆n S

∆n

γ

δ

in sSet, δ is said to be a filler of the sphere γ.

Moreover, let S be a simplicial set, a simplicial sphere ε : ∂∆n → S is
determined by a sequence of its faces ε = (x0, x1, . . . , xn) = (εd0, εd1, . . . , εdn) :
∂∆n → S. The boundary of any n-simplex ζ : ∆n → S is an n-sphere ∂ζ : ∂∆n →
S obtained from ∂ζ = (∂0ζ, ∂1ζ, . . . , ∂nζ) = (ζd0, ζd1, . . . , ζdn) : ∂∆n → S. For
example consider the 2-simplex η : ∆2 → S visualised from

Y

X Z,

f g

h

then the boundary of η is (g, h, f) : ∂∆2 → S.

B.2.2 Definition of simplicial horns

When simplicial n-spheres were thought of as removing the interior of an n-
simplex, the concept of the simplicial kth-n-horn go even further, and can be
thought of as removing the interior and the (n−1)-simplex opposite of the vertex
k.

Definition B.2.2.1. The k-th-n-horn where 0 ≤ h ≤ n denoted Λnk : ∆op → Set
is defined to be the simplicial set that sends simplices, say [l], to the same union
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of images as the sphere, except (∆dk)[l], namely

[l] 7→
⋃

0≤i≤n
i 6=k

im ∆(di)[l] = (Λnk )l, (B.2.2.i)

and a map u : [l]→ [m] will be sent to

u 7→ u∗|⋃
0≤i≤n
i 6=k

im ∆(di)[k]
: (Λnk )m → (Λnk )l, (B.2.2.ii)

hence the kth-n-horn gives rise to a functor and Λnk is a simplicial set in its own
right.

By following the same ideas as the previous section, the aim now is to
define the notion of a horn in simplicial sets.

Definition B.2.2.2. Let S be a simplicial set, a kth-n-horn is a map κ : Λnk → S
where 0 ≤ k ≤ n. A horn in S is said to be a inner horn if 0 < k < n, while a
horn in S is said to be a outer horn if k = 0 ∨ k = n. A horn κ : Λnk → S is said
to admit a filler if there exits an n-simplex σ : ∆n → S such that the following
diagram commute

Λnk S,

∆n

κ

σ

in sSet, σ is said to be a filler for κ.

Similar for simplicial spheres a horn in a simplicial set S is determined by
a sequence of faces τ = (x0, . . . , xk−1, •, xk+1, . . . , xn) : Λnk → S, while a filler
visually can be thought of as being a n-simplex with boundary “filling” the kth
entry •. Consider now the example of a inner horn υ : Λ2

1 → S which can be
visualised as

Y

X Z,

f g

then υ = (g, •, f) : Λ2
1 → S. The next definition classifies some simplicial sets,

which have filler for certain horns.

Definition B.2.2.3. A Kan complex is a simplicial set X, where all horns admit
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fillers, that is for all horns Λnk with n > 0 and 0 ≤ k ≤ n admit a filler,

Λnk S.

∆n

∀

∃

In fact simplicial sets that arises as “nerves” (which will be defined in the
next Section B.3) of ordinary categories, will admit unique inner horn fillers.
While “quasi-categories” or “weak Kan complexes” are simplicial sets that admit
inner fillers, this notions are defined in Chapter 2

B.3 Nerves

The aim for this section is to defined the nerve functor and state a result classi-
fying the simplicial sets that arises as nerves of categories.

B.3.1 The nerve functor

The idea of the nerve functor is to determine a simplicial set from an ordinary
category, where its n-simplices are given as functors [n]→ C . This is formulated
in the next definition.

Definition B.3.1.1. The nerve functor is the fully faithful functor N : Cat →
sSet that to each ordinary category C assign a simplicial set

N(C ) = HomCat(−,C ) : ∆op → Set, (B.3.1.i)

while any functor F : C → D will be sent to the natural transformation
HomCat(−, F ), which components are covariant Hom-functors.

Now this definition will be studied. The n-simplices N(C )n, or set of maps
HomsSet(∆

n, N(C )), are given by the set HomCat([n],C ), while maps u : [n]→
[m] in ∆ are sent to the contravariant Hom-functor

HomCat(u,C ) = u∗ : HomCat([m],C )→ HomCat([n],C ). (B.3.1.ii)

Visually, the nerve functor can be thought of as the images of each [n] in C ,
namely chain of composable arrows in C ,

C0
f1−→ C1

f2−→ · · · fi−→ Ci
fi+1−−−→ Ci+1

fi+2−−−→ · · · fn−→ Cn. (B.3.1.iii)
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Moreover, the i-th degeneracy map si : [n] → [n + 1] can be viewed as a map
that carries the previous chain to a chain of the form

C0
f1−→ C1

f2−→ · · · fi−→ Ci
idCi−−−→ Ci

fi+1−−−→ Ci+1
fi+2−−−→ · · · fn−→ Cn. (B.3.1.iv)

Similarly, the face map di : [n]→ [n− 1] carries the first chain to a chain of the
form

C0
f1−→ C1

f2−→ · · · fi−→ Ci−1
fi+1fi−−−−→ Ci+1

fi+2−−−→ · · · fn−→ Cn. (B.3.1.v)

B.3.2 Relations between categories and nerves

The aim for this section is to observe some relations between the category itself
and its nerve.

Remark B.3.2.1. Any category C can be described by its nerve N(C ),

• the objects of C can be described by N(C )0 = HomCat([0],C ), namely all
canonical functors sending the simplex [0], which is the category with only
one object, to objects in C .

• the arrows of C can be described by the images of N(C )1 which is functors
from the simplex [1] to C . The image of such a functor, say x = f :
C0 → C1, will represent an arrow f in C with its domain and codomain
represented by face maps dom(f) = d1(x) = C0 and cod(f) = d0(x) = C1

• the identity of an object C can be described by the degeneracy map from
[0] to [1], visually mapping C to idC : C → C

• composition of two arrows φ : C0 → C1 and ψ : C1 → C2 can be viewed
as a image y of a functor from [2] to C with d0(y) = ψ : C1 → C2,
d2(y) = φ : C0 → C1 and d1(y) = ψφ : C0 → C2

Remark B.3.2.2. Conversely, a simplicial set X is isomorphic to the nerve for
an ordinary category C if every inner horn in X can uniquely be filled,

Λnk X.

∆n

∀

∃!

The idea behind this result is that there are a unique way of composing edges, a
proof can be found after [Lur09, Proposition 1.1.2.2]. This result is also discussed
in [Cam13, Proposition 3.2].
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From these two remarks the following proposition can be stated (similar
to [Lur09, Proposition 1.1.2.2]).

Proposition B.3.2.3. A simplicial set S is isomorphic to the nerve of a (small)
ordinary category C , S ∼= N(C ) if and only if all inner horns in S admit unique
fillers.

B.4 Model structure on simplicial set

Although model categories and homotopical algebra lies under many of the ideas
and notions in this thesis, there will not be deduced a particular interpretation
of these. However, some of the terminology will be used, which some of will be
presented here.

B.4.1 The Kan model structure

The idea of a model category is a ordinary category which is equipped with three
distinguished classes of morphisms

• cofibrations

• fibrations

• weak equivalences

satisfying certain axioms (see for example [Lur09, Definition A.2.8.1]). The aim
here is to describe these three classes for simplicial sets, but a verification of the
axioms can for example be found in [GJ09].

Definition B.4.1.1. The Kan model structure on simplicial sets is given by the
following distinguished classes of simplicial maps,

• a map f : X → Y of simplicial sets is a cofibration if it is a monomorphims,
which means that the induced map Xn → Yn is injective for all n ≥ 0

• a map f : X → Y of simplicial sets is a fibration if it is a Kan fibration,
which means that for any diagram of the form

Λnk X

∆n Y

f
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where the outer square commute, there exists a dashed arrow as displayed
in the diagram such that the diagram commute.

• a map f : X → Y of simplicial sets is said to be a weak equivalence if the
geometric realised map |f | : |X| → |Y | is a weak homotopy equivalence of
topological spaces.

Moreover trivial fibrations are both fibrations and weak equivalences.

However sSet can also be equipped with an other model structure, called
the Joyal model structure, where fibrations and weak equivalences are chosen
differently. These notions are carried out in [Lur09, Chapter 2].
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in: Astérisque, 239 (1996), pp. xii+253.

[Wei94] Charles A. Weibel, An introduction to homological algebra, vol. 38,
Cambridge Studies in Advanced Mathematics, Cambridge: Cambridge
University Press, 1994, pp. xiv+450.

129

http://www.math.harvard.edu/~oantolin/papers/infinity-survey.pdf
http://www.math.harvard.edu/~oantolin/papers/infinity-survey.pdf
http://www.math.ru.nl/~mgroth/preprints/groth_scinfinity.pdf
http://www.math.ru.nl/~mgroth/preprints/groth_scinfinity.pdf
http://www.math.harvard.edu/~lurie/papers/HigherAlgebra.pdf
http://www.math.harvard.edu/~lurie/papers/HigherAlgebra.pdf



	Abstract
	Sammendrag
	Preface
	Problem description
	Overview
	Acknowledgements

	Higher categories
	Introduction and plan
	Ideas of higher categories
	Ideas of higher morphisms
	Inductive interpretation of higher categories
	Higher invertible morphisms and (n,k)-categories
	Higher categories as ``weakly'' enriched categories


	Models for (,1)-categories
	Simplicial and topological categories
	Definition of topological categories
	The homotopy category of a topological category
	Simplicial categories

	Quasi-categories
	Definition of quasi-categories
	The homotopy category of a quasi-category

	Model for (,1)-categories
	Mapping spaces and higher morphisms
	Functors and homotopy coherent diagrams
	Contractable spaces of choices
	Comparison of quasi-categories with simplicial categories


	Notions in the language of (,1)-categories
	Functors and subcategories
	Functors of (,1)-categories
	Subcategories of quasi-categories

	Constructions
	Join constructions
	Overcategories and undercategories
	Initial objects and terminal objects
	Limits and colimits


	Stable (,1)-categories
	The notion of (,1)-categorical stability
	Pointed (,1)-categories
	Fibers and cofibers
	Definition of stability

	Constructions of suspension functor and loop functor
	Suspension functor
	Loop functor
	Suspension and loop functor on stable (,1)-categories

	The homotopy category of stable (,1)-categories
	Additive structure
	Triangulated structure
	Enclosing comments


	Notions in the ordinary categorical language
	Monoidal and enriched categories
	Definition of monoidal categories
	Enriched categories

	Additive and triangulated categories
	Additive categories
	Definition of triangulated categories


	Simplicial sets
	Definition of simplicial sets
	The delta-category
	Definition of simplicial sets

	Horn and spheres
	Construction of simplicial spheres
	Definition of simplicial horns

	Nerves
	The nerve functor
	Relations between categories and nerves

	Model structure on simplicial set
	The Kan model structure


	Bibliography

