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Problem Description

The purpose of this thesis is to study the fleet size and mix problem for the instal-
lation phase of an offshore wind farm. The strategic problem of finding the optimal
vessel fleet is addressed and two deterministic models are formulated. Different so-
lution methods are investigated in order to solve realistic sized test instances and
thereby be able to use the model as a decision tool in order to support the decision
maker with valuable insight.
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Abstract

Today, offshore wind is not a profitable source of energy compared to other energy
sources. To increase the profitability of the offshore wind industry the life time costs
of an offshore wind farm need to be reduced. Among others, this can be achieved by
increasing the efficiency of the installation phase. Currently the vessel fleet is one of
the largest cost contributors for the installation phase, and a small reduction in the
vessel fleet cost can greatly improve the profitability of the offshore wind industry.

Two mathematical formulations of the fleet size and mix problem for the instal-
lation phase of an offshore wind farm are proposed: one original model and one
reformulated pattern based model. The models are designed as strategic decision
tools which is run years in advance of the actual installation in order to support
the decision maker with valuable insight. The two models consider a given weather
data and suggest which vessels to charter, the charter period for each vessel, and
their respective installation schedules. The objective is to find the cost optimal fleet
for the installation phase of an offshore wind farm. The models are solved with
exact solution methods. To solve the pattern based model we propose three pattern
generation methods. One exact method where all feasible patterns are generated,
and two heuristic methods where only subsets of the most promising patterns are
generated.

The proposed mathematical models are tested on several test instances. Due to the
complexity of the problem the original model is not sufficient to solve test instances
of realistic size. The pattern based model performs much better, and testing show
that the model is able to solve test instances with five to ten vessels and 30-110
turbines, which is considered realistic. To further improve the solutions, different
improvement measures are implemented. The computational tests show that the
performance of the pattern based model is improved by restricting the start times,
adding symmetry breaking inequalities, guiding the Branch and Bound search, and
heuristically generate patterns. Heuristic pattern generation combined with restrict-
ing start times yields near optimal solutions with a great improvement in CPU time.



Sammendrag

Offshore vindindustrien er i vekst, men er per i dag ikke en konkurransedyktig
og lønnsom energikilde sammenliknet med andre energikilder. Et kostnadskutt er
p̊akrevd, og én m̊ate å oppn̊a dette p̊a er ved å effektivisere installasjonsfasen av
en vindpark. Per i dag er kostnadene knyttet til installasjonsfl̊aten ev av de største
kostnadsleddene i installasjonsfasen, og et kutt i denne kostnaden vil kunne bedre
lønnsomheten betraktelig.

To matematiske modeller er foresl̊att for å løse fl̊atestørrelse- og
fl̊atesammensetningsproblemet (fleet size and mix problem) for installasjonsfasen av
en offshore vindpark; en original modell og en reformulert modell basert p̊a rundturer
mellom havnen og vindparken (pattern basert modell). Modellene er utviklet som
et beslutningsstøtteverktøy for strategiske beslutninger som skal tas m̊aneder og år i
forkant av et installasjonsprosjekt. De to modellene vurderer været i en gitt periode
for å bestemme hvilke skip som skal benyttes, n̊ar skipene skal leies inn og for å lage
timeplaner for hvert av de aktuelle skipene. Målet er å minimere leiekostnadene
knyttet til fl̊aten og dermed bidra til å redusere installasjonskostnadene. For å
løse den pattern baserte modellen er det foresl̊att tre ulike metoder for å generere
rundturer a priori, en eksakt metode som genererer alle mulige rundturer, og to
heuristiske metoder som kun genererer et subsett av rundturer.

Flere tester er gjennomført p̊a modellene, men p̊a grunn av kompleksiteten i prob-
lemet klarer ikke den originale modellen å løse realistiske testinstanser. Den pattern
baserte modellen gir mye bedre resultater og klarer å løse instanser med fem til ti
skip og 30-110 turbiner. For å ytterligere forbedre den pattern baserte modellen er
det implementert flere mulige tiltak. Testing viser at ved å legge til restriksjoner
p̊a mulige starttidspunkt, symmetribrytende ulikheter, guide søket i ”Branch and
Bound”-treet og å benytte heuristiske rundturgenereringsmetoder, oppn̊ar vi nært
optimale løsninger for alle instanser med store forbedringer i kjøretid.
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Chapter 1

Introduction

Today, there are more than 7 billion humans living on earth, and we are using
electricity like never before (Our World in Data, n.d.). Roughly 80% of all households
globally have access to electricity and the global average electricity consumption
per household was approximately 3 500 kWh in 2010. Adding an increasing global
population, which will reach approximately 9.2 billions in 2040, and the fact that
more and more households gain access to the electricity grid due to urbanization,
global electricity demand and consumption will increase rapidly in the years to come
(The World Bank, n.d.). Global electricity consumption is expected to increase by
48% from 2012 to 2040. Currently, fossil fuel constitutes the largest share of the
global electricity production, however environmental trends and governmental goals
of increased use of renewable energy are helping to create a changeover in this
distribution (World Energy Council, 2016).

The European Union (EU) has set goals of smart, sustainable, and inclusive growth
by 2020 with three key targets; a 20% improvement in energy efficiency, a 20%
cut in greenhouse gas emission compared to the 1990 levels, and that 20% of EU
energy consumption shall be from renewable energy sources. These EU 20-20-20
goals aim to increase the focus on green energy and wind energy is becoming one
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1. Introduction

of the main focus areas. A distinction is made between onshore wind production
and offshore wind production, where the former is currently the most profitable.
However, energy from offshore wind benefit from stronger and more stable wind
and production per turbine is thus greater compared to the onshore counterpart
(Mikkelsen & Kirkeby, 2016). To take advantage of this, the offshore wind industry
focuses on reducing cost to improve profitability. As of today, the offshore wind
industry receives governmental subsidies as a measure to promote further investment
in the industry, but these subsidies will expire within the near future (Reuters, 2017).
This creates an additional motivation for the industry to find more cost efficient
solutions.

The total global installed capacity of offshore wind turbines is 14 384 MW and in
2017 Europe has scheduled installation of new offshore wind farms which alone will
increase the global capacity by more than 3 000 MW (Global Wind Energy Council,
n.d.). However, the high costs related to installation and operation and maintenance
(O&M) of an offshore wind farm make the offshore wind industry less profitable and
less competitive compared to industries based on other non-fossil energy sources.
To improve the profitability of the offshore wind industry the life time costs need
to be reduced, and one way to achieve this is by reducing the costs related to the
installation phase of offshore wind farms.

The high installation costs are due to several factors including, but not limited to,
challenging sea and weather conditions, high vessel charter rates, and high costs of
subsea cables, turbines and foundations. The costs related to cables, turbines, and
foundations, which account for approximately 60% of total installation costs, are
hard to reduce due to the technical requirements imposed on these components in
order to withstand the harsh weather conditions offshore. The costs related to the
installation vessels are the second largest cost contributor and accounts for approx-
imately 20% of total installation costs. According to the International Renewable
Energy Agency (IRENA), a key opportunity to reduce construction and installa-
tion costs lies in reducing the amount of time required to install each megawatt of
offshore wind energy, due to the high daily charter rates for offshore installation
vessels (IRENA, 2016). Installation vessels have associated fixed costs in the range
from £2.5 to £5.2 million, and an installation vessel fleet normally consists of 5-10
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1. Introduction

different vessels (Irawan et al., 2015). By a more efficient utilization of each vessel,
this cost can be reduced and only a small improvement in utilization can have a
great impact on the overall installation costs.

A more efficient use of vessel resources is essential and one way to achieve this
is by improving the planning and scheduling of the installation phase. However,
planning and scheduling of the installation phase is hard due to the strict weather
requirements on vessel operation and the high amount of uncertainty related to
the weather. Since the planning often takes place several years in advance of the
installation, the weather forecasts are highly uncertain. The weather conditions at
a specific site, wave height and wind speed in particular, will have a great impact
on the choice of vessels. Due to the challenges related to a better utilization of
the vessel resources, optimization of offshore wind farm logistics and installation
concepts are of increasing interest for companies involved in the installation phase
of offshore wind farms.

An offshore wind farm consists of multiple offshore wind turbines which again is
composed of several components. These components need to be transported to the
offshore site and installed by special designed vessels with the right capabilities.
A vessel has a given capacity which limits the number of components transported
per trip and weather requirements for performing activities offshore. The vessel
capacity and the weather requirements above influence the installation schedules
and will hence affect the total cost related to the installation and the vessel fleet.
The purpose of the vessel fleet is to install the offshore wind farm as cost effective
as possible and at the same time minimize the total installation time. To achieve
this, we need to determine which vessel to charter, when to charter each vessel, and
what activities each vessel is to perform.

This thesis is based on the work by Hansen & Siljan (2016) who model the fleet size
and mix problem for the installation phase. However, Hansen and Siljan conclude
that the proposed model can only be solved to optimality for small test instances
and thus lack relevance for the offshore wind industry. Two time discrete and deter-
ministic mathematical models for the fleet size and mix problem for the installation
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1. Introduction

phase of an offshore wind farm (FSMPIOW) are formulated and presented in this
thesis; one original model and one reformulated pattern based model which gen-
erates patterns a priori before finding the best pattern configuration. There are
proposed three methods to generate patterns a priori; one exact method and two
heuristic methods. The objective of the two models is to minimize the total vessel
charter cost and find the optimal vessel fleet to install an offshore wind farm. To
the authors knowledge there exist no other articles addressing the fleet size and mix
problem of the installation phase of an offshore wind farm solving an optimization
model with exact methods.

The proposed pattern based model can be applied as a decision support tool for
wind farm owners during strategic decisions regarding the vessel fleet. Another
possible application of the model is to use it for tactical decisions taken closer to
the execution of the installation. For decisions taken closer to the actual installation
when the vessel fleet is known, the model can be used to generate more accurate
installation schedules.

This thesis is organized as follow: Chapter 2 presents relevant background informa-
tion of the offshore wind industry and the installation phase, and Chapter 3 presents
relevant literature within the optimization of the installation phase of an offshore
wind farm and maritime fleet size and mix problems. In Chapter 4 a thorough
description of the problem studied in this thesis is presented. Two mathematical
models for the problem are formulated, one original model presented in Chapter 5
and one reformulated, pattern based model presented in Chapter 6. The solution
method for the patterns based model is described in Chapter 7. Input data used for
testing the models is presented in Chapter 8, and the computational study is found
in Chapter 9. Concluding remarks and future research are presented in Chapter 10
and Chapter 11, respectively.
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Chapter 2

Background

This chapter presents relevant background information on the offshore wind industry
and installation of offshore wind farms. First a brief overview of the geographic
location of existing wind farms is presented. Then the components of a turbine are
described together with different assembly strategies. Next, the elements linked to
the logistics of the installation phase are presented, i.e. the vessels and installation
activities. Lastly, the weather impacts related to the maritime logistics and the
installation phase of an offshore wind farm are described in Section 2.6.

2.1 Geographic Location of Offshore Wind
Farms

Within the last two decades there has been a growth in the offshore wind industry
motivated by political goals and improved profitability. Currently, there are several
offshore wind farms located in European waters, in addition to multiple projects
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2. Background

under construction or in the process of applying for approval. Asia and the United
States has recently entered the offshore wind industry, and the first offshore wind
farm in China was constructed in 2010. In the United States and at the coast outside
China, Japan and South Korea several wind farms are in an early planning stage
(4C Offshore ltd., 2017). Figure 2.1 gives an overview of European offshore wind
farms, and the dark blue circles represent both fully commissioned offshore wind
farms and projects under construction.

Figure 2.1: An overview of offshore wind farms in Europe

As can be seen in Figure 2.1 the majority of European wind farms are located in the
North Sea outside the coast of UK, Germany, the Netherlands and Denmark. New
projects are also planned at the coast of Scotland outside Dundee and Aberdeen
(4C Offshore ltd., 2017).
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2. Background

2.2 Components of an Offshore Wind
Turbine

The installation process of a wind turbine consists of assembling three main com-
ponents; the sub structure, the top structure, and the cables. These components
have to be mounted in a given order either onshore, at the offshore site or by a com-
bination of offshore and onshore assembly. The assembly strategy and the turbine
design are influenced by site specific characteristics, such as distance to shore and
the water depth.

Sub Structure
The sub structure consists of one foundation and one transition piece. The foun-
dation is the first component to be installed and is normally mounted to the sea
bed (Livaniou et al., 2015). After the foundation is secured, the transition piece is
mounted on top of it. This process is normally executed directly after the completion
of the foundation (Kaiser & Snyder, 2013). One foundation type is the monopile,
a cylindrical steel pile, which is hammered into the sea bed. Monopiles have been,
and still is, the most popular foundation design for offshore wind turbines and ac-
counted for 80% of installed foundations at the end of 2015 (European Wind Energy
Association, 2016). Other types of foundations are tripods, jacket foundations, and
gravity based foundations, see Figure 2.2.
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Currently, commercial sub structures are limited to water depths of 40 m to 50
m, but with a growing trend of locating wind farms further from shore, the water
depths increase. Deep-water environment starts at water depth greater than 50 m
where bottom-fixed foundations are no longer an option, and it has therefor been
a development within floating wind turbines (Arapogianni et al., 2013). The first
pilot project of floating wind turbines, Hywind, is constructed outside the coast of
Scotland and is lead by Statoil ASA (Statoil ASA, 2014). An alternative floating
foundation concept is WindFloat, a concept developed by Principal Power (Principle
Power, 2015). Both Hywind and WindFloat enable the turbines to be fully assembled
onshore and then transported out to the offshore site, usually by a tugboat. These
new technologies for deep-water turbines are still in an early stage and today’s
challenges related to the installation phase of an offshore wind farm are mostly
related to bottom-fixed foundations such as monopiles (Principle Power, 2015). Due
to this, bottom-fixed foundations will be the focus of this thesis.

Figure 2.2: Different foundation concepts (Research Gate, n.d.)

8



2. Background

Top Structure
The top structure of a turbine is installed after the sub structure and consists of
four parts; tower, nacelle, hub and blades. The nacelle includes all the power gen-
erating systems of the turbine and is very often assembled together with the hub
(Uraz, 2011). The hub together with the blades form the rotor, which is where the
wind energy is converted to mechanical energy when the blades are rotating (BWE
German Wind Energy Association, n.d.). A fully mounted wind turbine can be seen
in Figure 2.3.

Since the beginning of the 1990s there has been a significant growth in the turbine
size. The dimensions of the tower depend on the size of the turbine (MW) and the
weight of the hub and nacelle. For today’s projects, the turbine sizes are in the
range from 6 MW up to 8 MW, and are still increasing. The height measured from
sea level and up to the hub is also increasing and is normally between 100-110 m
(Appendix F). The total height, from sea level to the tip of the blades, has increased
in line with the increased turbine size, from around 50 m to right above 200 m for
some of the most recent projects. The dimension of the blades is proportional to
the generating capacity of the turbine and for recent projects the rotor diameter is
about 160 m (Dong Energy et al., 2015).

Installation of these components is the most challenging part of the installation
phase due to many lifts. The weather restrictions for performing lifts are strict
because the wind can easily get hold of the component when it is lifted high above
sea level and cause instability. As a consequence, the installation of top structures
is more susceptible to delays than the other components.

9



2. Background

Figure 2.3: A complete offshore wind turbine
(VJ Tech, 2014)
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Cables
The cables play an important part in the installation process of an offshore wind
farm. Cabling at an offshore wind farm includes both the inter-array cable between
the turbines and an export cable in order to transmit the generated power to shore
and connect to the power grid. In order to transform the voltage of the generated
energy before connecting to the power grid, one or several substations are usually
connected to each wind farm, see Figure 2.4. These substations are installed in
the same way as the wind turbines and make use of the same vessels (Livaniou et
al., 2015). Challenges concerning installation of cables are related to geotechnical
conditions of the sea bed and weather conditions, and thus this process is also
vulnerable to delays (Kaiser & Snyder, 2013). Delays in cabling might affect the
installation of top structure, leading to a prolonged installation time for the whole
project.

Figure 2.4: Network of cables for an offshore wind farm
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The installation of cables are done by purpose built vessels, so called cable instal-
lation vessels (CIV) (Kaiser & Snyder, 2013). For some projects it is required that
cables between each turbine are trenched, due to regulatory issues concerning safety,
which requires additional vessel concepts. Today, the cable laying process is nor-
mally done partially in parallel with the installation of foundations. When installing
cables and foundations in parallel, the CIV starts operating when approximately 2/3

of all foundations are installed (Appendix F).

2.3 Assembly Strategies

There are different strategies for installing the components of an offshore wind tur-
bine, especially for the installation of the top structure. It can either be fully done
by on-site assembly or by different degrees of pre-assembly onshore. The chosen
assembly strategy will influence both the suitable vessels and the requirements on
weather conditions for performing the installation offshore.

Mounting components together onshore before transportation and installation re-
duces the total number of lifts offshore. There are, however, disagreements in the
industry regarding the effect of pre-assembly. Some argue that the weather require-
ments are downgraded because of fewer lifts offshore, while others argue that the
requirements will become stricter due to heavier and more complex lifts. A larger
degree of pre-assembly requires larger vessels with higher lifting capacity because
of the increased weight of each component. As of today, there exist no standard-
ized installation strategy and the amount of pre-assembly is thus heavily dependent
on project specific characteristics and previous experience (Appendix F). For in-
stallation of the hub and blades, the most commonly used assembly strategy is to
install all components separately. This means that first the nacelle and the hub are
installed, and then the blades are installed one at a time as pictured in Figure 2.5
(Appendix E), (Appendix D).
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2. Background

Figure 2.5: Installation of blades (offshoreWIND, 2014), (GAB, 2012), (Siemens
UK, 2015)

The information in this section is based on several papers by Uraz (2011), Lange et
al. (2012), Kaiser & Snyder (2013), Walther et al. (2013) and Barlow et al. (2015).
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2.4 Installation Vessels

Several types of installation vessels exist and operate in the offshore wind industry
and they all have their own specifications and limitations. The most commonly used
vessel concepts for installation of offshore wind turbines today are presented below.

Cable Installation Vessel (CIV)
There are generally two vessel concepts used for installation of inter-array and export
cables. A cable installation vessel is used for installing the inter-array cables and the
export cable, whereas a crew transfer vessel is used to transport personnel between
the turbines to complete the installation and connect the cables to the switch gear.
The CIV concept is illustrated in Figure 2.6. For projects requiring cable trenching,
a purpose built CIV is required (Appendix F).

Figure 2.6: Illustration of the cable installation vessel concept (4C Offshore ltd.,
n.d.)
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Heavy-lift Vessel (HLV)
The heavy-lift vessel concept includes vessels with high lifting capacity and are
generally used to lift and install large and heavy components. Because of its high
lifting capacity a HLV is mostly used for installation of the heavier components
such as foundations and substations. The HLV concept does not employ a hull-
elevating system, which means that jack-up is not possible and thus water depth
restrictions do not apply. This type of vessel is normally self-propelled and can be
either dynamically positioned or conventionally moored. There are several possible
crane types that can be installed on a HLV depending on the operations it is designed
for. HLVs have a lifting capacity ranging from 1 600 to 14 200 tonne and a speed
range between 4 and 8 knots (Livaniou et al., 2015). Lifting capacities above 5 000
- 6 000 tonne are usually associated with purpose built vessels to fulfill the offshore
wind industry’s requirements. The heavy-lift vessel concept is shown in Figure 2.7.

Figure 2.7: Heavy-lift vessel (Maritime Connector, n.d.)
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Jack-up Barge (JUB)
A jack-up barge is used for lifting and installation of turbines. As the name indicates
this type of vessel has the possibility to jack-up the hull to create a stable platform
for lifting and other installation operations. A jack-up barge can not maneuver itself
and needs to be towed by a tugboat from the loading port to the offshore site. A
towing tug is also needed for positioning and transportation between the various
turbines at the wind farm. Due to the lack of propellers the transportation speed of
a jack-up barge depends on the tugboat, but is normally between 4 and 8 knots. The
size of a jack-up barge varies. A small jack-up barge has a free deck space of about
748 m2, crane lift capacity of 272 tonne, and a deck load capacity of 10 tonne/m2.
The small jack-up barge is able to carry up to two turbines. A large jack-up barge
has a free deck space of 2 500 m2, lift capacity of 800 tonne, and a deck load capacity
of 20 tonne/m2. These large jack-up barges have the ability to carry six to eight
turbines per tour (Livaniou et al., 2015). Even though it is possible to use a jack-up
barge for installation of a wind turbine, this vessel concept is more commonly used
in the O&M phase of an offshore wind farm. A jack-up barge can be seen in Figure
2.8.

Figure 2.8: Jack-up barge
(OffshoreWind.biz, 2013)
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Self-propelled Installation Vessel (SPIV)
The self-propelled installation vessel, also called a turbine installation vessel (TIV),
is a large self-elevating vessel with four to six jack-up legs. The vessel is self-propelled
which distinguishes it from a jack-up barge. Due to varying size, the payload ca-
pacity varies between 1 500 and 8 000 tonne and the transit speed is between 7
and 13 knots (Livaniou et al., 2015). Due to lack of lifting capacity, lack of free
deck space, and increased component size, there are several SPIV which are too
small and thus not capable of performing the required installation activities. The
larger SPIVs, however, can be used for both installation of the sub structure and the
top structure, including tower, nacelle and blades. An example of a self-propelled
installation vessel is shown in Figure 2.9.

Figure 2.9: Self-propelled installation vessel (Offshore Wind Industry, 2013)

In addition to the vessel concepts mentioned above several other vessel concepts
are used both directly and indirectly during the installation phase of an offshore
wind farm. This includes platform supply vessels, towing tugs, barges, crew transfer
vessels, and floatels. The mentioned vessel concepts can either work separately or
cooperate with other vessel concepts during the installation. The required vessel
concepts varies for each project.
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Trends and Future Vessel Concepts
As presented above several different vessel concepts exist, but few of them are pur-
pose built for the installation of an offshore wind turbine. According to Walther
et al. (2013), the trend of building highly specialized vessels for transportation and
installation of foundations and turbines is increasing and so is the size of each vessel
to handle the increasing component sizes.

Up until now, smaller jack-up vessels, barges, and pontoons have been the most
popular vessel concepts in the European offshore wind industry. However, shipyards
have noticed an increasing interest in specialized installation vessels. Until recently,
investments in purpose built installation vessels have been limited due to poor and
uncertain profitability. As the project management has gained more experience, the
installation costs have been reduced and installations have become more profitable,
leading to an increasing interest in investment in purpose built vessels (Appendix
F). These purposed built installation vessels have features optimized for installation
of offshore wind turbines, which means more free deck space, higher transit speed,
and higher lifting capacities (Bard & Thaleman, 2011).

As offshore wind farms are being built further away from shore and at deeper water,
new vessel concepts are necessary to provide the needed performance capacity. Es-
pecially increased deck space capacity is important in order to reduce the number of
trips back and forth between the port and the offshore site. A similar development is
not expected for the cable installation vessels, because the research on cables evolves
around the transmission technology, which is not expected to affect the cable size
significantly (Appendix F).

2.5 Ports

The increasing size of the turbines puts requirements not only on the installation
vessels but also on the ports. There are several activities taking place at the port;
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unloading of components from vehicles, storage of components, assembly of compo-
nents, and loading of components on vessels before transportation to the offshore
site (Irawan et al., 2016). For the installation phase, the most important port cri-
teria is the physical characteristics, and includes the distance to the offshore site,
the port’s quay load bearing capacity, the port’s water depths, and the seabed suit-
ability, meaning the ability of the port’s seabed to accommodate jack up vessels
(Akbari et al., 2016). The port size will also set limitations for the possible degree
of pre-assembly because components need to be mounted and stored at the port.

2.6 Weather Impacts

Weather conditions need to be considered when creating schedules for the installa-
tion vessels. Without evaluating the weather impacts, the chances of delays, and
cancellations will increase, which in turn will cause higher costs. The weather con-
ditions at sea can often be harsh with high wind speed and wave height, and the
forces acting on the vessels are enormous and affect the safety of the crew and the
performance of activities. Unwanted consequences can be minimized by awareness of
the weather impacts on the installation process. By categorizing weather conditions
and weather restrictions for each installation vessel, one can more easily evaluate
available weather windows, i.e. time periods where the weather is good and allows
a vessel to operate.

In this thesis the weather is categorized according to wind speed and significant
wave height. The weather conditions are divided into five categories; very good,
good, medium, bad and very bad, as shown in Table 2.1. The threshold for each
weather category is based on the Beaufort wind scale which groups weather con-
ditions according to both wind speed and wave height. The categorization is a
simplification to real life situation where roll angle and other multi-parameter anal-
ysis of weather is present. Findings in the article by Sperstad et al. (2014) show that
when comparing multi-parameter analysis to single-parameter analysis, which only
includes significant wave height, the two approaches give relatively similar outcomes
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for strategic decision support models (Sperstad et al., 2014). This is thus considered
a good enough approach to the real life situation.

Table 2.1: Weather categorization

Weather condition Category
Wind
speed
[m/s]

Wave
height
[m]

Very bad 5 > 22 > 6.1
Bad 4 ≤ 21 ≤ 6.0
Medium 3 ≤ 17 ≤ 4.0
Good 2 ≤ 11 ≤ 2.9
Very good 1 ≤ 6.0 ≤ 0.9

Bad weather might lead to waiting-on-weather (WOW) situations where no activ-
ity can be performed (Halvorsen-Weare & Fagerholt, 2011). If the uncertainty in
weather conditions is ignored when a project is planned, the costs may increase
rapidly above expected costs because of sudden and unforeseen delays. One way to
take into consideration unforeseen implications due to the weather is by including
slack in the schedule. In this report slack is defined as a scheduled break between
activities. By including extra time between activities there will be more flexibility in
the schedule which, to a certain degree, will make it possible to handle bad weather
without increasing the costs.

A normal strategy to reduce the chances of unforeseen delays is to take use of the
summer months for the installation phase when there are more days of good weather
than during winter months. The downside of this strategy is that the charter rates
increase and the number of available vessels decreases in the summer time because
of a market governed by supply and demand. An alternative strategy is to make
use of the winter months either in addition to or instead of the summer months.
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Chapter 3

Literature Review

The installation phase of offshore wind farms is a relatively new topic within opera-
tions research and existing research is thus limited. This chapter discusses relevant
literature on the installation phase of an offshore wind farm and to supplement the
literature and support the choices made in this thesis, the literature review also
includes literature on maritime fleet size and mix problems.

3.1 Offshore Wind Farm Installation

The installation of an offshore wind farm is a complex problem to formulate and
previous proposed models are often complicated and hard to solve to optimality
for realistic problem instances. Several papers have therefore explored simulation
as a method to solve real sized problems. The main focus in this section is on
optimization papers, but some papers on simulation are also included.
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Scholz-Reiter et al. (2010) present a mixed integer linear program (MILP) finding
the optimal schedule for the installation phase of an offshore wind farm with the
objective of minimizing total vessel operation time. Fora short planning horizon
the model is able to compute the optimal schedule for exactly one vessel which can
install both sub structures and top structures. The authors argue that the largest
bottleneck in the value chain of an offshore wind farm installation is the global vessel
fleet, and they believe that the greatest improvements regarding cost reductions lie in
a more efficient use of available vessels. Due to its short planning horizon the model
is rerun every time the vessel returns to port, and a new optimal schedule based
on recent weather forecasts is calculated. The short planning horizon is subject for
criticism and makes the model less realistic.

The MILP model by Scholz-Reiter et al. (2010) has been further developed and im-
proved to make it able to solve larger problem instances. Scholz-Reiter et al. (2011)
expand the model with a heuristic method to overcome the limitations of the previ-
ous model. The heuristic method returns an optimal schedule for a longer planning
horizon and a larger fleet. The output is not optimal but rather an approximation
which gives a good enough solution to support the decision maker. The results show
that by applying a heuristic method the model is able to solve test instances with
longer time horizon, multiple vessels, and a broader variety of weather conditions.

Irawan et al. (2015) propose a bi-objective optimization model for the installation
scheduling problem of an offshore wind farm. The model minimizes both cost and
time, as the author claims these objectives are conflicting. The formulated model
is an integer linear program (ILP) with restrictions on both weather and available
vessels. To reduce the complexity of the model, data on weather forecast and ves-
sel availability is processed to pre-generate a set of all feasible slots where a vessel
can perform a given installation activity. The problem is then to solve a com-
binatorial optimization problem to find the optimal configuration of feasible time
slots in order to minimize total installation cost or total completion time. Even
with the pre-generation of all feasible time slots the model is relatively large and
hard to solve with exact methods. In order to solve larger problems two heuristic
solution methods, neighborhood search (VNS) and simulated annealing (SA), are
introduced. Computational studies show that these methods outperform the exact

22



3. Literature Review

method. Walther et al. (2013) present an evaluation tool to support the decision
maker when finding the vessel fleet. The solution method is based on simulation
with the advantages of being easier and faster to solve than an optimization model.
The tool returns an schedule for when a given installation vessel should operate and
the total installation cost and time. The idea is to run the model multiple times
with the same project characteristics and weather data and only change the vessel
input data. Different output is then compared to determine the most economical
installation vessel concept. Ait-Alla et al. (2013) present another MILP model for
the aggregated installation planning problem of an offshore wind farm on a tactical
level. The aim is to minimize total installation cost taking both vessel availabil-
ity and weather restrictions into consideration for a medium long planning horizon
(2-12 months). The model returns an optimal schedule in order to complete all
installation activities.

The articles presented so far study the scheduling problem for the vessel fleet applied
during the installation phase. However, to make the investigated problem more
realistic and minimize the cost even further, a larger part of the value chain can
be included. Lütjen & Karimi (2012) include optimization of the port inventory
problem in order to coordinate stock levels at port and vessel schedules. The authors
present a simulation model which determines the optimal configuration of a single-
echelon inventory system including optimization of the stock level at the port. In
addition, a reactive scheduling heuristic is presented. The aim of this scheduling
heuristic is to coordinate the installation vessels with respect to the weather. By
optimizing both schedules and inventory levels the output will be a helpful decision
tool for the decision maker when planning the offshore logistics and the overall
supply chain management. The scheduling heuristic is further extended with an
evaluation function to also determine the optimal loading set.
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3.2 Maritime Fleet Size and Mix
Problems

The offshore wind industry is characterized by high costs related to the installation
of the wind turbines, and currently the vessel fleet accounts for a large portion of
the total installation cost. However, the most resent work within optimization of
the installation phase is mostly focused on optimizing the schedules for each vessel
rather than finding the optimal vessel fleet configuration. This thesis focuses on the
optimal vessel fleet configuration and literature on the fleet size and mix problem
within other industries is thus studied. The oil industry is an more explored industry
than offshore wind, and there are many similarities in the two industries concerning
the problem of finding the optimal fleet composition. Both problems usually include
a depot onshore that the vessels need to visit to be loaded, and are faced with the
uncertainty in weather conditions which will greatly influence the schedules.

Pantuso et al. (2013) have written a survey on the existing literature on the maritime
fleet size and mix problems (MFSMP) published before 2013. In short, a MFSMP
is the problem of deciding the optimal composition of vessels in a fleet in order to
meet a certain demand. The objective is normally to minimize the costs of operat-
ing the fleet and often includes decision support on vessel routing and scheduling.
The literature on MFSMP includes single-period problems, which is the problem of
finding a fleet with long lasting characteristics, and multi-period problems, which
focus on a more flexible fleet with the possibility of adding or removing vessels in
order to meet changes in demand. One subgroup of papers covered in this survey
address the strategic problems of which vessels to buy or charter, while the schedules
and routes are uncertain because the actual demand is unknown. Another subgroup
studies tactical problems dealing with the deployment of available vessels and the
possibility of charter in, charter out, or lay up vessels in order to meet the realization
of demand.
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Fagerholt (1999) formulates a model for liner shipping application which finds the
optimal fleet size. The model assumes a known demand, and seeks to find weekly
routes for each vessel in the fleet assuming. A route is defined as a trip between
offshore installations which originates and terminates in the depot and cannot visit
the depot in between. The solution approach consists of three phases; phase one finds
all single routes which are feasible for the ship with the largest capacity, phase two
combines single routes to longer routes, which is a problem restricted by an upper
limit on duration per route, and phase three solves a set partitioning problem.

Fagerholt & Lindstad (2000) develope an optimization model for a short-term MF-
SMP studying the supply service to offshore installations. The problem is to find
the optimal fleet size and mix by choosing from a pool of vessels and then find
optimal routes and schedules on a weekly basis. The problem contains one onshore
depot and several offshore installations that need to be supplied with a weekly de-
mand. The solution approach can be divided in two steps; first a set of all feasible
schedules for every vessel in the pool is generated and then an IP is solved to decide
which vessels to use and find their weekly schedules. The model does not consider
uncertainty in weather and the robustness of a solution is thus evaluated by a post
analysis.

Halvorsen-Weare & Fagerholt (2011) further extend the MFSMP by including un-
certainty for the supply vessel planning of offshore installations. The model is solved
in three steps; First all voyages for each vessel are generated a priori based on a set of
conditions, e.g minimum and maximum duration and number of visits, secondly all
voyages are simulated and robustness measures are assigned by considering weather
data, and third combine voyages into vessel schedules in an integer program (IP).
The same problem is studied and extended by Halvorsen-Weare et al. (2012). They
extend the model by including a spread of departures and a maximum and minimum
duration of each voyage. The model is solved using a voyage based solution method
where all voyages are generated in the first step and then a voyage-based model
is solved to find the optimal fleet and vessel schedules. The results show that the
method is able to solve instances of realistic sizes.
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3.3 Our Contribution

The literature review reveals that the number of papers on the installation phase
of an offshore wind farm is limited. Among the existing research the scheduling
problem is the most studied, and to the authors knowledge there exist no paper
addressing the fleet size and mix problem of the installation phase of an offshore
wind farm applying exact solution methods. This thesis presents two deterministic,
time discrete mathematical models for solving the fleet size and mix problem for
the installation phase of an offshore wind farm; one original model and one pattern
based model. To solve the pattern based model we propose three pattern gener-
ation methods; one exact method which generates all feasible patterns, and two
heuristic methods where only the most promising patterns are generated. The two
heuristic pattern generation methods differ from existing heuristic solution methods
as they are implemented in the a priori generation of patterns, rather than in the
mathematical model.

In contrast to scheduling problems, where the vessel fleet is considered known, a
fleet size and mix problem focuses on the vessel charter strategy, i.e. determining
which vessels to charter at a given time by choosing from a vessel pool. In the
reviewed articles on the installation phase schedules are constructed based on input
data on available vessels, which imply that the decision on which vessels to charter
is already taken. Scheduling decisions are usually taken closer to the start time of
the installation project than decisions regarding the fleet composition.

The models presented in our thesis generate schedules in order to find the optimal
fleet for the installation phase of an offshore wind farm. The solution methods
for solving the pattern based model are based on a priori generation of feasible
patterns, a solution method with similarities to the approach in Irawan et al. (2015).
In contrast to the time slots generated per activity in the article by Irawan et al.
(2015), a pattern is defined as a sequence of activities constructed by considering
both vessel characteristics and weather conditions. In addition, more details are
included in our model, i.e jacking activities and a more detailed assembly strategy,
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and we propose two strategies to make the solutions more robust. The pattern
generation procedure also has similarities to the voyage generation in Fagerholt
(1999), Fagerholt & Lindstad (2000), Halvorsen-Weare & Fagerholt (2011), and
Halvorsen-Weare et al. (2012), which includes vessel characteristics when all feasible
voyages are generated. A voyage is defined as the sequence of operations from depot
until the vessel is back at depot, just as a pattern used in our model. In contrast to
our problem, the voyage generation is solved as a travelling salesman problem to find
an optimal route between the offshore installations, while routing between turbines
is omitted in our model. Also, one of the advantages of our pattern generation is
that the weather conditions are considered when generating feasible patterns.

Due to the increased complexity in a deterministic model some aspects of the instal-
lation problem included in simulation models, e.g. inventory levels, optimal ports,
optimal assembly strategies, distance to port, and cabling, are outside the scope
of this model. In comparison to a simulation model, the output returned by our
optimization model is not influenced by the input given by the decision maker and
hence finds optimal values of the decision variables.
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Problem Description

The process of installing wind turbines offshore is a challenging and complex op-
eration and requires specialized, high performance installation vessels. In today’s
market, the number of such vessels is limited and the charter costs are hence high.
Creating a cost efficient vessel charter strategy is thus an important factor in order
to reduce the total cost of the installation phase, and make the industry more prof-
itable and competitive to other non-fossil energy sources. The objective is to find
the optimal installation vessel fleet which minimizes the total cost of the installa-
tion phase with respect to the vessel charter rates. The installation phase is in this
thesis considered as the set of activities from loading of components in port, until
all turbines are completely installed.

An offshore wind farm consists of a number of identical wind turbines located at an
offshore site with a given distance to shore and a given water depth. The main com-
ponents of a turbine are foundation, transition piece, tower, nacelle, hub, and blades,
which have to be installed in a predefined sequence. This means that on a given
turbine the foundation and transition piece have to be installed before the tower
can be mounted. A vessel can either install several foundations before installation
of towers, or it can install foundation and tower for one turbine before continuing
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to the next turbine. The process of installing the components include loading in
port, transportation to and from the offshore site, and mounting the turbines, and
is repeated until every turbine in the wind farm is completely installed. Another ele-
ment of the installation process is to connect the farm to the electricity grid, which is
achieved through inter-array and export cables. There is not one single vessel which
is able to perform all of these installation activities, and a heterogeneous vessel fleet
is thus required.

Special designed vessels perform the installation activities at an offshore wind farm.
The global fleet of installation vessels consists of a number of different vessels con-
cepts with individual characteristics designed to perform certain installation activi-
ties. These characteristics include free deck space, lifting capacity, weather restric-
tions, speed, charter costs, and processing times of different activities, e.g. the time
to install a tower component. At the offshore site, before the installation can be-
gin, each vessel has to position itself in order to increase stability. Some vessels
are equipped with jack up legs that are placed at the sea bed and used to lift the
vessel hull above sea level to further increase stability, an activity called jacking.
These jack-up vessels have to jack up and jack down before and after performing
installation activities on a turbine.

There are especially two factors influencing at what time an installation activity can
be performed; the vessel characteristics and the weather conditions. The weather
offshore can be unstable and at times very bad, which will set restrictions on when
an activity can be scheduled. When scheduling activities it is normal to consider
both wind speed and wave height. The total cost related to each vessel consist of
two parts; a fixed cost term and a variable cost term. The variable cost includes
daily charter rates and operating costs, and the fixed costs include ship expenses,
insurance, depreciation and overhead costs. Of the two variable cost terms, charter
rates is the dominating one and is thus the most important to consider. When
the whole wind farm, or parts of it, is installed and connected to the electricity
grid, the wind farm starts generating income through production of electricity. If
the installation phase is prolonged unnecessary, the excess installation time can be
regarded as an increased installation cost and cause loss of income due to loss of
electricity production time.
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In order to create a cost efficient vessel charter strategy, one can find the optimal
fleet size and mix that minimizes the costs related to the installation by determining
three factors: which vessel to use, the total charter period of each vessel, and what
activity to perform at a given time. Activities are arranged into schedules for each
vessel in order to determine the total length of the charter period for a given vessel.

31





Chapter 5

Mathematical Model

The problem studied in this thesis is a fleet size and mix problem of the installation
phase of an offshore wind farm. A deterministic and time discrete model is formu-
lated to find the optimal fleet which minimizes the charter costs and time span for
the whole installation phase. One way to accomplish this is by designing schedules
to identify when each vessel is intended to operate and by this determine the charter
period for each vessel. The model presented in this chapter is a continuation and
expansion of the mathematical model presented in our project thesis (Hansen &
Siljan, 2016).

5.1 Assumptions

This section summarizes the underlying assumptions relevant for the mathematical
model presented in Section 5.2.
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Start and End Effects
A consequence of applying a time discrete model is the problem of start and end
effects, and hence it is necessary to be extra cautious when using constraints with
summation of time, t. For every constraint related to activities, the processing
time for the activity is often added or subtracted from t in the summation. These
summations will for the first and last time periods, either go below 1 or above the
length of the time horizon |T | causing start effect and end effect problems. Figure 5.1
illustrate the start and end effects. It is desirable to remove the summations which
contains variables indexed by time periods outside the interval of t ∈ T . However,
restrictions for start and end effects are not included in the formulation of the model
with the intention of making the model easier to read. This is taken care of in the
implementation of the model.

(a) Start effect (b) End effect

Figure 5.1: Illustration of the start effect and end effect when applying a time
discrete optimization model

Activities
Activities are defined as all operations a given vessel can perform, and includes
transportation and loading, jacking, and installation of components. As described in
Chapter 2, a wind turbine consists of a set of components which have to be installed
in a given order. Each activity is assumed to have a pre-determined execution
time given as a multiple of the defined time interval. Further, it is assumed that
positioning before each installation activity is a part of the installation time of each
component. Activities are given as input data in a set indexed from 1 to |A| , where
the size of the set A depends on the chosen assembly strategy for a given installation
project.

An example of the activity set is: A = {R, U, D, 4, 5, 6, 7, 8, ... , |A|}
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The first three activities in the set are independent of the chosen assembly strategy
and are not directly linked to the installation of a component. These activities are
loading and transportation to and from port (R), jack-up (U) and jack-down (D).
The remaining activities in set A are related to the installation of the components,
called installation activities. The installation activities can either be installation of
only one component or it can include installation of several consecutive components
on the same turbine, e.g. installation of tower and top-structure. For activities
including installation of more than on component an offset time, T Start

vca and TEnd
vca , is

used to determine the start and finish time for each individual installation in order to
control the number of completed components and components under construction.
This is done to maintain the coordination of components on different turbines.

The components of a wind turbine has to be mounted in a pre-determined order
which requires coordination between the installation vessels in the fleet. This is
handled in the model by introducing a precedence matrix, Pc1c2 , which indicates the
precedence relation between components. If Pc1c2 = 1 it means that the installation
of component c1 has to be completed before the installation of component c2 can
begin.

It is assumed that the default location of all vessels is at the offshore site, implying
that before every loading the vessel has to sail to the port. Since a vessel always have
to sail to port to be loaded and then sail back to the offshore site, it is convenient
to include transportation in the loading activity. Also, we assume that vessel v can
only be chartered once during the planning horizon.

Loading Sets
Before an installation vessel can perform the installation activities described above,
it is necessary to pick up components at the onshore port. A loading set is a
collection of components and can contain either one single type of components or
a combination of multiple components. The loading sets are of varying sizes where
the maximum number of a given component is determined by the capacity of the
largest vessel. To determine which loading set a vessel can be loaded with, a matrix
is used to specify which loading sets each vessel v is allowed to carry. When a vessel
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picks up a loading set it is assumed that every component in that set needs to be
installed before the vessel can return to port for a new loading. By this, the loading
set will determine which installation activities the vessel have to perform between
every loading.

Weather Conditions
The weather conditions in a given time period determines whether it is possible to
execute an activity or not. Vessels have different weather limitations and as a con-
sequence the choice of vessels in the optimal fleet will be influenced by the weather
data. In this deterministic model, the weather in each time period is assumed known
and based on historical data. The weather in one time period is given as a number
between 1 and 5, where 1 is very good and 5 is very bad. The weather category in
a given time period is based on a combination of wind speed and wave height as
described in Table 2.1. In the same way, each vessel has an upper limit on when it
can operate given as a number based the same weather categorization. These two
numbers are then compared in each time period to determine whether an activity
can be scheduled or not.

5.2 Mathematical Model

The mathematical formulation of the fleet size and mix problem for the installation
phase of an offshore wind farm is presented in detail in this section. A plain version
of the model can be found in Appendix A.

This section first presents the definitions of sets, parameters and variables applied
in the mathematical formulation followed by the model formulation with description
of every constraint. Lower case letters represent decision variables and indices and
capital letters represent parameters and sets.
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Sets

V Set of vessels
V J Subset of jack-up vessels
C Set of components
Av Set of all activities vessel v can perform
AI

v Subset of all installation activities vessel v can perform
T Set of time periods
L Set of all possible loading sets

Parameters

CF ix
v Fixed cost of vessel v

CV
v Variable cost of vessel v

P Penalty cost of prolonging the total installation time
N Total number of turbines in the offshore wind farm
Aav Activity matrix; 1 if vessel v can perform activity a, 0 otherwise
Tav Processing time for vessel v performing activity a
WR

av Weather restrictions for vessel v performing activity a
Wt Weather realization in time period t

LMax
c Maximum number of component c that can be loaded on any vessel

Bcl Number of components c in loading set l
Mtc Big M used in the loading constraints
NComp

ac Number of components c in installation activity a
T Start

vca Shift in start time for vessel v performing installation of
component c in activity a

TEnd
vca Shift of completion time for vessel v performing installation of

component c in activity a
Pc1c2 Precedence matrix; 1 if there is a precedence between component c1

and c2 , 0 otherwise
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Decision variables

xvt 1 if vessel v is chartered in time period t, 0 otherwise
zvat 1 if vessel v starts performing activity a in time period t

δvlt 1 if vessel v is loaded with loading set l in time period t, 0 otherwise
αv 1 if vessel v is included in the optimal fleet, 0 otherwise
svt 1 if vessel v starts operating in time period t, 0 otherwise
evt 1 if vessel v finish operating in time period t, 0 otherwise
vct Number of components c in progress at time period t

wct Number of completed components c at the end of time period t

uvt Number of completed jack-up activities performed by vessel v in time t
dvt Number of completed jack-down activities performed by vessel v in time t
sT ot Project start time, the first time period any vessel is chartered
eT ot Project end time, the last time period any vessel is chartered

Objective Function

min
Z

∑
v∈V

CF ix
v αv︸ ︷︷ ︸
a

+
∑
v∈V

∑
t∈T

CV
v (t evt − t svt)︸ ︷︷ ︸

b

+ P (eT ot − sT ot)︸ ︷︷ ︸
c

(5.1)

The objective function of the model, (5.1), minimizes the total charter cost of the
installation phase of an offshore wind farm. The first expression, a, represents the
fixed cost of the vessel fleet and part b gives the total variable cost of the chartered
vessels. Part c is a penalty cost implemented in order to motivate a minimization
of the total project duration.
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Constraints

Charter constraints

∑
a∈Av

t∑
t′=t−Tav+1

zvat′ ≤
t∑

t′=1
svt′ v ∈ V, t ∈ T (5.2)

∑
a∈Av

zva(t−Tav) ≤
|T |+1∑
t′=t

evt′ v ∈ V, t ∈ {1, ... , |T |+ 1} (5.3)
∑
t∈T

(t evt − t svt) ≥ 0 v ∈ V (5.4)
∑
t∈T

svt = αv v ∈ V (5.5)

|T |+1∑
t=1

evt ≤ 1 v ∈ V (5.6)∑
t∈T

t svt + |T |(1− αv) ≥ sT ot v ∈ V (5.7)

|T |+1∑
t=1

t evt ≤ eT ot v ∈ V (5.8)

eT ot ≥ sT ot (5.9)
t∑

t′=1
svt′ −

t∑
t′=1

evt′ = xvt v ∈ V, t ∈ T (5.10)

Constraint (5.2)-(5.10) represent the charter constraints for vessel v. Constraint
(5.2) and (5.3) make sure that no activity is performed by vessel v outside its charter
period, and Constraint (5.4) requires a charter period to be non-negative. Constraint
(5.5) and (5.6) make sure vessel v can only be chartered once during the planning
horizon. The total duration of the installation project is defined by the time elapsing
between the time period when the first vessel is charted and the time period when
the last charter period for any vessel ends. Constraint (5.7) and (5.8) set the project
start time and end time, and Constraint (5.9) requires the project duration to be
non-negative. Constraint (5.10) sets the value of the auxiliary variable xvt to 1 in
every time period a vessel is chartered.
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Installation constraints

∑
v∈V

∑
a∈AI

v

t−T Start
vca∑

t′=1
zvat′NComp

ac − vct = 0 c ∈ C, t ∈ T (5.11)

∑
v∈V

∑
a∈AI

v

t+T End
vca −Tav∑
t′=1

zvat′NComp
ac − wct = 0 c ∈ C, t ∈ T (5.12)

Pc1c2(vc1t − wc2t) ≤ 0 c1, c2 ∈ C, t ∈ T (5.13)
wc|T | ≥ N c ∈ C (5.14)

To guarantee that components are installed in the correct order the model needs
to control the number of components in progress and the number of completed
components at a given time. This is done by Constraint (5.11) and Constraint
(5.12), respectively. To adjust for installation of components in activities where
more than one component is installed, the summation over t has two offsets, T Start

vca

and TEnd
vca . This is to make sure the number of components in progress and the

number of completed components are updated at the correct point in time. The
offset shifts time t based on the installation time of component c for vessel v.

If two components are dependent on each other, it means that for every point in time
the number of ongoing installations of the dependent component cannot exceed the
number of completed installations of the component of which it depends on. This is
handled by Constraint (5.13). Constraint (5.14) states that the number of completed
installations of each component is at least as large as the total number of turbines
in the wind farm at the end of the planning horizon.
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Weather constraints

t∑
t′=t−Tav+1

zvat′ ≤ max{0,WR
av −Wt + 1} v ∈ V, a ∈ Av, t ∈ T (5.15)

Constraint (5.15) makes sure that an activity is not performed unless the weather
realization in the consecutive time periods needed to complete the installation of
the component is within the specified weather limits of vessel v.

Loading constraints

∑
a∈AI

v

t−Tav+1∑
t′=1

zvat′NComp
ac −

∑
l∈L

t−TRv+1∑
t′=1

Bclδvlt′ ≤ 0 c ∈ C, v ∈ V, t ∈ T

(5.16)∑
l∈L

t−1∑
t′=1

Bclδvlt′ −
∑

a∈AI
v

t−Tav+1∑
t′=1

zvat′NComp
ac ≤Mtc(1−

∑
l∈L

δvlt) c ∈ C, v ∈ V, t ∈ T

(5.17)
zvRt =

∑
l∈L

δvlt v ∈ V, t ∈ T

(5.18)∑
l∈L

δvlt − xvt ≤ 0 v ∈ V, t ∈ T

(5.19)

Constraint (5.16) makes sure vessel v cannot install more of a given component than
contained in the loading set it is loaded with. When all components in a loading set
are installed, the vessel has to return to port in order reload with a new loading set.
Constraint (5.17) makes sure vessel v is not loaded with a new loading set in time t
unless all components in the currently loaded loading set l are installed.
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Constraint (5.18) ensures that a vessel performs the return and loading activity (R)
whenever a new loading set is picked up and Constraint (5.19) requires vessel v to
be chartered if it is loaded in a given time period t.

Mtc = min
{
N, (t− 1)LMax

c

}
t ∈ T, c ∈ C

In order to make Constraint (5.17) as strict as possible, the value of big M is cal-
culated for every time period t and component c. The value of the parameter is
the minimum of the total number of turbines in the wind farm, and the maximum
number of a given component in a loading set times the time elapsed up to the
previous time period.
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Jack-up constraints
For jack-up vessels an extra set of constraints is required to make sure that jack-up
and jack-down operations are performed in the correct order. This is handled in
constraint (5.20)-(5.28).

uvt − dvt ≤ 1 v ∈ V J , t ∈ T (5.20)
uvt − dvt ≥ 0 v ∈ V J , t ∈ T (5.21)
uv|T | − dv|T | = 0 v ∈ V J (5.22)
t−TUv+1∑

t′=1
zvUt′ − uvt = 0 v ∈ V J , t ∈ T (5.23)

t−TDv+1∑
t′=1

zvDt′ − dvt = 0 v ∈ V J , t ∈ T (5.24)
∑

a∈AI
v

zvat ≤ uvt − dvt v ∈ V J , t ∈ T (5.25)

∑
a∈AI

v

t∑
t′=1

zvat′ ≤ uvt v ∈ V J , t ∈ T (5.26)

∑
a∈AI

v

t−Tav+1∑
t′=1

zvat′ ≥ dvt v ∈ V J , t ∈ T (5.27)

zvRt ≤ 1− uvt + dvt v ∈ V J , t ∈ T (5.28)

Constraint (5.20) and (5.21) make sure the difference between the number of times
a vessel has jacked up and jacked down is either 0 or 1 at any point in time. This
is to guarantee that a jack-down operation is not performed unless the vessel has
previously jacked up, and vice versa. In the last time period, |T |, the difference
between the number of jack-up activities and jack-down activities has to be zero,
which is ensured by Constraint (5.22).

Constraint (5.23) and (5.24) count the number of times vessel v is jacked up or
jacked down during the planning horizon. Constraint (5.25) makes sure that an
installation activity a cannot be performed by a jack-up vessel unless it is jacked up.
Further more, Constraint (5.26) and Constraint (5.27) state that jack-up must be
performed before an installation activity can start and that jack-down cannot start
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until at least one installation activity is completed by vessel v. The last constraint,
Constraint (5.28), makes sure that a jack-up vessel does not return to port unless it
is jacked down.

Binary constraints

xvt ∈ {0, 1} v ∈ V, t ∈ T (5.29)
zvat ∈ {0, 1} v ∈ V, a ∈ Av, t ∈ T (5.30)
δvlt ∈ {0, 1} v ∈ V, l ∈ L, t ∈ T (5.31)
αv ∈ {0, 1} v ∈ V (5.32)
svt ∈ {0, 1} v ∈ V, t ∈ T (5.33)
evt ∈ {0, 1} v ∈ V, t = {1, 2, 3, ... , |T |+ 1} (5.34)

Non-negativity constraints

vct ≥ 0 , integer c ∈ C, t ∈ T (5.35)
wct ≥ 0 , integer c ∈ C, t ∈ T (5.36)
uvt ≥ 0 , integer v ∈ V, t ∈ T (5.37)
dvt ≥ 0 , integer v ∈ V, t ∈ T (5.38)
sT ot ≥ 0 , integer (5.39)
eT ot ≥ 0 , integer (5.40)

Constraint (5.29)-(5.34) handle the binary constraints for all binary variables and
constraint (5.35)-(5.40) control the non-negativity and integer requirements in the
model.
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Chapter 6

Pattern Based Mathematical
Model

The model presented in this chapter is a reformulated version of the original model
presented in Chapter 5. Reformulating the model is in the literature referred to
as a method for solving hard IP problems and is therefore proposed as a method
to solve the FSMPIOW studied in this thesis. Throughout the rest of this thesis
the model presented in Chapter 5 will be referred to as the original model, while
the reformulated model presented in this chapter will be referred to as the pattern
based model. The pattern based model is based on the idea of pre-processing parts
of the constraints and by this add more information to each variable. The problem
is divided into two parts; one part which generates all feasible patterns for each
vessel a priori, i.e. before the optimization model is run, and one part which finds
the optimal configuration of patterns in order to minimize the total fleet cost. A
pattern is defined as the activities a vessel performs from loading of components
in port until all loaded components are installed and the vessel is ready to return
to port for loading of new components. Each pattern contains information about
which vessel is used, the start time of the pattern, all activities performed and their
start time, and the end time of the pattern.

45
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The constraints constructing the schedules for each vessel, including the vessel ca-
pabilities and weather requirements, in the original model are moved to the pattern
generation. Constraint (5.2)-(5.10) and (5.12)-(5.14) which set the charter periods
and link components together are kept in the pattern based model.

Sets

V Set of vessels
AI

v Set of all installation activities vessel v can perform
T Set of time periods
Pv Set of all feasible patterns for vessel v

Parameters

CF ix
v Fixed cost of vessel v

CV
v Variable cost of vessel v

P Penalty cost of prolonging the total installation time
N Total number of turbines in the offshore wind farm
Bvtp 1 if vessel v is busy in time period t performing pattern p, 0 otherwise
Aavtp Number of completed installation activities of type a performed by

vessel v at time t in pattern p
T Start

p Start time for pattern p

TEnd
p End time for pattern p
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Decision variables

λp 1 if pattern p is performed, 0 otherwise
αv 1 if vessel v is included in the optimal fleet, 0 otherwise
svt 1 if vessel v starts operating in time t, 0 otherwise
evt 1 if vessel v finish operating in time t, 0 otherwise
sT ot Project start time, the first time period any vessel is chartered
eT ot Project end time, the last time period any vessel is chartered

Objective Function

min
Z

∑
v∈V

∑
t∈T

CF ix
v αv︸ ︷︷ ︸

a

+
∑
v∈V

∑
t∈T

CV
v (t evt − t svt)︸ ︷︷ ︸

b

+ P (eT ot − sT ot)︸ ︷︷ ︸
c

(6.1)

The objective function, (6.1), is the same as in the original model and aims to
minimize the total cost of the installation vessel fleet for an offshore wind farm. It
includes fixed cost, variable costs and penalty cost as explained in Section 5.2.
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Constraints
∑

p∈Pv

Bvtp λp ≤
t∑

t′=1
svt′ v ∈ V, t ∈ T (6.2)

∑
p∈Pv

Bvtp λp ≤
|T |∑

t′=t+1
evt′ v ∈ V, t ∈ T (6.3)

∑
t∈T

(t evt − t svt) ≥
∑

p∈Pv

(TEnd
p − T Start

p )λp v ∈ V (6.4)
∑

p∈Pv

Bvtp λp ≤ αv v ∈ V, t ∈ T (6.5)
∑
t∈T

svt = αv v ∈ V (6.6)
∑
t∈T

evt ≤ 1 v ∈ V (6.7)
∑
t∈T

t svt + |T | (1− αv) ≥ sT ot v ∈ V (6.8)
∑
t∈T

t evt ≤ eT ot v ∈ V (6.9)

eT ot − sT ot ≥ 0 (6.10)∑
v∈V

∑
p∈Pv

A(a+1)vtp λp −
∑
v∈V

∑
p∈Pv

Aav(t−1)p λp ≤ 0 a ∈ AI
v, t ∈ T (6.11)

∑
v∈V

∑
p∈Pv

Aav|T |p λp ≥ N a ∈ AI
v (6.12)

Binary constraints

λp ∈ {0, 1} p ∈ Pv (6.13)
αv ∈ {0, 1} v ∈ V (6.14)
svt ∈ {0, 1} v ∈ V, t ∈ T (6.15)
evt ∈ {0, 1} v ∈ V, t ∈ T (6.16)
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Non-negativity constraints

sT ot ≥ 0, integer (6.17)
eT ot ≥ 0, integer (6.18)

Constraint (6.2) and (6.3) set the charter period for each installation vessel in the
fleet. Constraint (6.2) makes sure no pattern p is performed before the charter period
of vessel v starts and Constraint (6.3) makes sure no that pattern p is performed
after the charter period of vessel v ends. Constraint (6.4) requires that the length
of a vessel v’s charter period is greater than the difference in start and end time of
all patterns performed by vessel v. In addition, each vessel can only perform one
pattern at a time, which is ensured by Constraint (6.5).

The total project duration is restricted by Constraints (6.6)-(6.10) and are equal
to the project duration constraints in the original model. The parameter Aavtp in
Constraint (6.11) and (6.12) is used to control the number of completed installations
of type a during the performance of pattern p. The dependency between different
components is handled by Constraint (6.11) which ensures that the predefined in-
stallation sequence of components is met at every point in time. The constraint
requires that the number of completed installations of one component is greater
than the number of completed installation of another component if there is a prece-
dence between the two components. Constraint (6.12) states that the number of
completed installations of each installation activity a must equal the total num-
ber of turbines in the wind farm at the end of the planning horizon. Constraints
(6.13)-(6.16) handle the binary requirements for all binary variables and constraints
(6.17)-(6.18) control the non-negativity and integer requirements in the model.
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6.1 Symmetry Breaking Inequalities

If the set of vessels, V , contains several vessels with identical characteristics, an extra
amount of symmetry will be added to the problem. Symmetry will cause difficulties
when solving the model, but the amount of symmetry can be reduced by introducing
a set of symmetry breaking inequalities to the initial model formulation. The set
V M contains the different vessel types and the set Vm is a subset of all vessels, V ,
and consists of the number of vessels of type m. For each vessel in Vm and for every
vessel type, the inequality presented in Constraint 6.19 is added to the pattern based
model. Since all vessels in the subset Vm are identical, we utilize the inequality to
require that a vessel with a lower lexicographic order, i.e. a lower ID number, has a
charter period which is greater than or equal to the charter period for a vessel with
a higher ID number. This will make the solutions a bit different from each other.

V M Set of vessel types
Vm Set of vessels of type m, Vm ⊆ V

∑
t∈T

(tevt − tsvt) ≥
∑
t∈T

(tev+1,t − tsv+1,t) v, v + 1 ∈ Vm (6.19)

50



Chapter 7

Pattern Generation

The reformulated pattern based model is based on the previous work of Hansen &
Siljan (2016) and the original model presented in Chapter 5. Hansen & Siljan (2016)
conclude in their project report that the proposed model only solves small test in-
stances to optimality and hence the reformulated pattern based model is proposed
in Chapter 6. The applied solution method in this thesis is to generate feasible
patterns a priori, and then solve the pattern based model to find the optimal con-
figuration of patterns. Three methods for generating feasible patterns are presented
in this chapter, one exact method and two heuristic methods, presented in Section
7.1 and Section 7.2 respectively.

7.1 Exact Pattern Generation Method

In this thesis a pattern is defined as a series of activities a vessel performs from the
loading of components in port until installation of all loaded components is com-
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pleted. The exact method generates patterns for all possible combinations of vessels,
loading sets and start times. The sequence in which each of the components loaded
on the vessel is installed will affect the patterns’ total duration, and is illustrated in
Figure 7.1. In the example, all generated patterns start with loading in time t = 1.
After placing the loading activity, all permutations of the loading set containing one
sub structure, one tower, and one top structure are generated and placed as close
to the loading as possible. As can be seen, only Pattern 1 and Pattern 2 are able
to utilize the time periods from t = 4 up to t = 10 due to bad weather where only
the sub structure activity can be safely performed and completed.

Figure 7.1: An illustration of the permutation of a loading set containing one sub
structure, one tower, and one top structure.
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An example of the output from the pattern based model is shown in Figure 7.2. The
time from the first pattern starts to the last pattern ends defines the total project
duration, and the time from the first to the last pattern performed by each vessel
defines the charter period of the given vessel.

Figure 7.2: An illustration of how the patterns are combined into schedules for each
vessel

When constructing patterns both vessel specific characteristics and weather condi-
tions are considered. Christiansen et al. (2007) state that a priori generation of
patterns is a preferred approach when the total number of patterns is limited. The
number of patterns is highly dependent on the vessels’ free deck space capacity, and
today’s available vessel concepts have a relatively limited free deck space capacity
which limits the number of components loaded on each vessel per trip. This will
limit the number of permutations of components in each loading set and hence re-
duce the total number of patterns. The relatively small number of feasible patterns
makes a priori generation a well suited solution method for the pattern based model
for the FSMPIOW.
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Based on the definition of a pattern, a pattern generation program is proposed
to generate all feasible patterns. The main idea of the program is shown in the
flowchart in Figure 7.3. The variables v and l represent the vessel and loading set
currently being evaluated and t is the start time for the pattern being generated.
For a loading set l, all permutations of the components are generated and stored in
the set Xl. Each permutation in Xl is represented by x.
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Figure 7.3: Flowchart for the pattern generation program
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In order to keep the solution space as close to the original model as possible, every
possible pattern is generated. By applying the idea of permutation, all possible
installation sequences of the components in a loading set are created. This means
that all possible permutations of the components in a loading set is generated and all
possible start times for each permutation is found. The core of the program, where
the patterns with start times are generated, is marked with a dashed line. This part
of the program finds a valid start time for the installation of every component in a
loading set based on each component’s required weather condition and installation
time, and is described in Algorithm 1.

Algorithm 1 Pattern Generation Program
Input: Vessel v, start time t, permutation x

TStart
p = t

t = t + Loading time for vessel v
forall Activities a in loading set l with the sequence given in permutation x do

for t ≤ length of planning horizon do
if weather in t ≥ weather requirement for activity a and vessel v then

Continue
end
Counter = 0
for t ≤ t + Processing time of activity a by vessel v do

if weather t ≥ weather requirement for activity a and vessel v then
Break

end
Counter = Counter + 1

if Counter = Processing time of activity a by vessel v then
Start time for activity a is set to t
Activity a with start time t is added to pattern
t = t + Processing time of activity a by vessel v

end

end

end

end
TEnd

p = t
Result: Pattern for permutation x with start times for all activities
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Algorithm 1 is a more thorough explanation of the logic within the dashed lines in
Figure 7.3. At this point a vessel v, a loading set l, and a permutation x of the
respective loading set is selected, and the start time t for loading is determined.
For each activity the program loops through the time periods from the last finished
activity until it finds a time period t with an acceptable weather realization. Once
a time period allows operation, the idea is to check the following time periods to
see if the activity can be completed without interruption of bad weather. Given
that enough time periods with acceptable weather exist to complete the activity, a
possible activity start time is found and added to the pattern. When all activities
in permutation x is placed with a start time, a pattern is created. If the vessel is a
jack-up vessel, the start time for all jacking operations are also included in the pat-
tern. When generating patterns for a jack-up vessel it is assumed that components
installed in the correct order, e.g. installation of the top structure is performed
after installation of the tower without interruption of other activities in between,
are performed on the same turbine and only one jack up and jack down operation
is required.

7.2 Heuristic Pattern Generation Method

As pointed out by Christiansen et al. (2007) a priori generation of all patterns is a
solution method which is only favourable as long as the number of patterns, which
is determined by the number of permutations of components in a loading set, is
sufficiently small. The number of generated patterns will increase linearly with
an increasing number of time periods and vessels, but once the vessels’ capacity
increases the number of generated patterns will increase considerably. An increase
in the number of patterns will cause an increase in the number of variables in the
pattern based model, and hence an increased problem size. The same is true if the
assembly strategy is changed and the number of components per turbine increases.
This is a drawback of the proposed solution method. By using knowledge of how
the installation phase is normally performed, it is possible to state some rules in
order to remove patterns which are considered less realistic. This is the idea of the
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heuristic pattern generation program.

Two heuristic methods for generating patterns are proposed to reduce the number of
feasible patterns. The first heuristic requires that if a vessel is loaded with different
component types, all components for one turbine have to be mounted before the
vessel can continue to the next turbine, henceforth referred to as the Complete
Turbine Heuristic (CTH). CTH will eliminate all patterns where components are
installed in a non-chronological sequence. The second heuristic makes sure that
within a pattern the precedence between components are met, henceforth called the
Precedence Heuristic (PH). The two heuristics are illustrated in Figure 7.4 with a
loading set containing two towers and two top structures. The figure illustrates how
the two different heuristics affect the number of patterns generated. As can be seen
from Figure 7.4a, six patterns are generated with the exact method. When running
the pattern generation program with CTH the number of patterns is reduced to
one due to the strict requirement, Figure 7.4b. With PH the pattern generation
program generates two patterns as can be seen in Figure 7.4c. As can be seen from
Figure 7.4 the patterns generated with CTH are a sub set of the patterns generated
with PH. Applying a heuristic pattern generation procedure is one possible solution
to the mentioned drawback of the exact pattern generation program, and our two
suggestions will be further analyzed in Chapter 9.

If the problem size gets too large, an alternative solution method is to apply the
Branch and Price method and use a pattern generation algorithm in each node to
find patterns with a negative reduced cost in order to improve the objective value
in the pattern based model.
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(a) All patterns generated with the exact method

(b) Complete Turbine Heuristic (CTH)

(c) Precedence Heuristic (PH)

Figure 7.4: Effect of including heuristic pattern generation

7.3 Robust Solutions

When patterns are combined into schedules and the project start time and end
time are determined, the optimal solution will find the shortest possible project
duration in order to minimize the objective value. This can cause an optimal solution
to become infeasible with respect to the predetermined schedules, if the weather
conditions change. Even a small delay when installing wind turbines, e.g. one
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day, will cause a significant financial loss for the wind farm operator (Irawan et al.,
2015). According to actors in the offshore wind industry, one of their goals is to
reduce the risk of delay in a project schedule (Appendix F). In order to implement
more robustness in the solution, and hence increase the probability of a solution to
be feasible in several weather scenarios, it is interesting to look at different strategies
to modify the patterns and create slack which can be used in case of delay.

Slack is defined as a number of consecutive time units with a given weather re-
striction where a vessel is not operating. We propose two different strategies for
implementing slack and improve the robustness. The first strategy is to increase the
processing time of each installation activity such that the amount of added slack in
a schedule varies according to the number of turbines. The second strategy is to
implement slack at the end of each pattern. The strategy will add most value to
the solution if the weather requirement of the slack is equal to the strictest weather
restriction for any activity and any vessel. This will make it possible for all of the ac-
tivities to utilize the added slack in case of delay. The two robustness strategies are
illustrated in Figure 7.5 labeled Strategy 1 and Strategy 2 together with the original
pattern that is intended to be made more robust. The table gives information on
the different processing times for each activity where the first number indicates the
original processing time and the second number is the added slack used in Strategy 1.
The weather requirement for the activities are found in the third column. Strategy 1
increases the processing times for installation activities by one time period and are
illustrated by a darker color in the pattern. When increasing the processing times,
the installation of top structure is moved to a later point in time than before due to
bad weather. Strategy 2 gives a more compact pattern, with the original processing
times and adds three time periods of slack at the end of the pattern. The slack
added requires weather category good, as this is the strictest weather requirement
of any of the other activities.
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Figure 7.5: An illustration of the two proposed strategies for increasing the robust-
ness of a solution. Strategy 1 adds one time period to each processing time for the
installation activities. Strategy 2 adds three time periods of slack at the end of the
pattern. The original solution, without the robustness measures, is labeled Original.
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Chapter 8

Input Data

This section describes the input data used to generate test instances applied in the
computational study found in Chapter 9. In order to generate realistic instances,
information from the offshore wind industry is applied. However, available data
is limited and reasonable estimates are used when no other data is retrievable.
Various sources are used as inspiration to set the parameters; Kaiser & Snyder
(2013), Maples et al. (2013), Dinwoodie et al. (2015), and information from Statoil
ASA and Fred.Olsen Windcarrier AS (Appendix D - F).

Vessels
The global fleet of installation vessels consists of several different vessel concepts
as presented in Chapter 2. Each vessel has individual characteristics, such as deck
space capacity, lifting capacity, weather restrictions on operation, and processing
times. The vessel pool used for testing the models consists of two vessel concepts,
HLV and SPIV, while the number of each vessel in the pool is varied. Relevant
vessel data can be found in Table 8.1 and Table 8.2.
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Table 8.1: Vessel characteristics

Vessel concept
Transit speed Free deck space capacity

Jack-up?
Knots km/h Sub structure Tower Top Tower + top

SPIV 12 22 6 6 6 6 Yes

HLV 11 20 6 - - - No

Table 8.2: Vessel weather requirements

Vessel concept
Weather requirements

Loading Jack-up/down Sub Tower Top Tower + Top

SPIV 4 3 3 3 2 2

HLV 4 - 3 - - -

According to an annual report from the European Wind Energy Association (EWEA)
the average distance from the offshore wind farms to shore was 44 km in 2016 (Eu-
ropean Wind Energy Association, 2017). A SPIV sails at an average speed of 12
knots, which corresponds to approximately 22 km/h, and the average transit time
from port to site can thus be set to 2 hours. Similar calculations are done for the
HLV and can be found in Table 8.3. As described in Chapter 5, transit is included
in the activity called loading. Jacking is a complex and time consuming activity
involving several operations. First the elevating legs are placed on the seabed fol-
lowed by positioning and stabilization of the vessel, before the hull is elevated above
sea level. The total time needed to complete the jacking activity is set to 12 hours.
For simplicity it is assumed that jack-up and jack-down requires the same amount
of time. The processing times for the other installation activities are inspired by
Kaiser & Snyder (2013).
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Table 8.3: Vessel processing times in hours

Vessel concept
Processing time [hours]

Loading Jack-up/down Sub Tower Top Tower + Top

SPIV 48 12 24 12 12 24

HLV 36 - 24 - - -

Weather
The weather input is based on historical data gathered from FINO 1, a research
platform located in the North Sea. Data on wave height and wind speed is sam-
pled on an hourly basis from 2004 to 2012 (BMU and PTJ, n.d.). Initial analysis
on the available weather data, from 2004 to November 2012, show minor annual
variations and it is decided to use the most resent full year, 2011, as input. Unless
otherwise stated, the tests are run on weather data from either June and July 2011
or May-August 2011. In order to represent the weather in the format specified in
the mathematical model, the data is first divided into intervals of the applied time
discretization. Both wind speed and wave height in each time interval is then cate-
gorized according to the specifications given in Table 2.1 and the worst realization
of wind speed and wave height during the interval is then chosen to represent each
of them. Next, the worst value of wind speed and wave height is used to represent
the weather condition in each time period.

Activities
The assembly strategy used to test the optimization model in this thesis is to install
the sub structure, tower and top structure as three individual components offshore.
The activities which need to be performed in order to install the wind farm can thus
be divided into loading, jack-up, jack-down and installation activities. The different
installation activities are divided into installation of sub structure, installation of
tower, installation of top structure and installation of tower and top structure.

Each vessel’s processing times for the different activities are difficult to retrieve and
are, in addition, closely linked to the uncertainty in weather, since the weather
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condition can greatly influence the ability to operate and thus the time needed
to complete an operation. However, this uncertainty will not affect the technical
analysis.

As described in Chapter 2, cabling is also an important part of the installation
phase. However, special designed cable installation vessels (CIV) are required when
installing cables, and these CIVs are not designed to perform any other installation
activities. Generally the optimal installation vessel fleet will include CIVs, but these
vessels are excluded from the computational study in this thesis because cabling can
be regarded as an isolated activity. Should it, however, be interesting to include
cabling in the problem, the set of installation activities can be expanded with a
cabling activity.

Loading Sets
According to information from the offshore wind industry the largest installation
vessels have a free deck space capacity to carry up to eight turbines, i.e. eight
towers and eight top structures, in one trip. The loading sets are constructed based
on this maximum deck space capacity. A loading set contains between one and
eight components of a given type and combinations are also possible. If a loading
set contains a combination of two components there is an equal number of each
component. Based on available information from the industry, it is assumed that
loading sets combining substructure and top structure, or sub structure and tower
is not possible.

Charter Costs
Charter rates are based on supply and demand and this market is characterized by
high competition. Due to this, charter rates are concealed from the public. However,
the literature gives an indication of the costs related to the chartering of vessels and
also an idea of the cost ratio between different vessel concepts. The cost parameters
applied in the computational study are presented in Table 8.4.
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Table 8.4: Cost parameters

Vessel Fixed
[£k]

Charter
[£k/day]

HLV 5 200 160
SPIV 4 300 140

Penalty Cost
In order to minimize the total installation cost and the total project duration, a
penalty cost term is added to the objective function. If the optimal fleet includes
more than one vessel, it is desirable to gather all vessel charter periods in order
to avoid an unnecessary long project duration. If the installation is prolonged and
thus completed at a later point in time, this will cause loss of electricity production
and potential revenue. The value of the penalty cost is thus represented by the lost
revenues of not generating electricity.

Generated energy can be found by multiplying the capacity factor of each turbine
by the total number of turbines in the wind farm and the turbine rating. The
capacity factor represents, on average, how much energy is actually produced by a
wind turbine and is given as a percentage of the turbine rating. Looking at values
from offshore wind farms in both Denmark and the UK, a capacity factor of 40%
and a turbine rating of 6 MW is applied in this thesis (EnergyNumbers, 2017b),
(EnergyNumbers, 2017a). The penalty cost is calculated by Equation 8.1, as the
the product of generated energy, the energy price, and the number of hours per time
period. The lost revenue which is represented as the last cost term in the objective
value in the mathematical model is found by multiplying the penalty cost by the
number of time periods in which the wind farm is under construction.

P = Priceel × Capacity ×Rating ×#Turbines︸ ︷︷ ︸
Generated electricity

×Interval (8.1)

Initial testing shows that a penalty cost equal to lost revenues, P , gives good results
in terms of minimizing the total project duration without increasing the total costs
unnecessary.
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Computational Study

Different tests are carried out to assess the performance of the original model pre-
sented in Chapter 5 and the pattern based model presented in Chapter 6. The
results and findings are presented in this chapter. Section 9.1 presents the test in-
stances, and the results from testing the original model and the pattern based model
are presented in Section 9.2 and 9.3, respectively. Section 9.4 covers a study of the
robustness of the solutions provided by the pattern based model and in Section 9.5
a seasonality study is conducted to investigate how variations in weather conditions
during the year affect the solution and how this can be used to evaluate different
vessel charter strategies. For more details of the results given in this chapter see
Appendix C.

Both the original model and the pattern based model is implemented in the com-
mercial optimization software FICO®Xpress 7.9, referred to as Xpress. The pattern
generation program is implemented in Java Standard Edition 8 version 121 (Java
SE 8.121). All tests are conducted on a computer with an Intel(R) Core(TM) i7-
6700, CPU 3.40GHz processor, 32.0GB RAM, and a 64-bit operating system. The
maximum run time for Xpress is set to 10 800 seconds.
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9.1 Test Instances

The test instances are inspired by real cases and based on information from the
industry and research articles, and designed with the intention of testing the model
in the best possible way. We have used a 12 hour interval to discretize time. Unless
otherwise stated, all times are given as a multiple of 12.

To test the mathematical models’ performance and ability to solve real life problems,
several tests have been conducted. The input data for every test is presented in Table
9.1. The name of the instance (Instance) gives information about the restriction of
possible start times, the vessel pool size, and the number of turbines to install. For
SxFyTw, S represents the possible start times, F represents the number of vessels
in the pool and T represents the number of turbines. For example, S7F3T20 means
that possible start times are restricted to every 7th day, the vessel pool contains
three vessels, and there are 20 turbines to install. Column number two (Number of
turbines) specify the number of turbines to install. Information regarding the vessel
pool is given in column number three (Vessel pool). The vessel pool contains two
type of vessels, HLV and SPIV, and the total number of vessels in the pool is either
two, three, five, or ten. The planning horizon (Planning horizon), unless otherwise
stated, is the summer months of 2011. For the planning horizon of 122 time periods
June and July are applied, whereas for the planning horizon of 246 time periods the
months May, June, July and August are used. The last column (Start time) specify
whether or not there are restrictions on the possible start times for a vessel’s charter
period. If the column is blank no such restrictions are made.
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Table 9.1: Complete list of test instances. Note: The table spans over two pages.

Instance Number of turbines Vessel pool Planning horizon Start Time

T3 3 HLV, SPIV 122
T4 4 HLV, SPIV 122
T5 5 HLV, SPIV 122
T6 6 HLV, SPIV 122
T7 7 HLV, SPIV 122
T18 18 HLV, SPIV 122
T19 19 HLV, SPIV 122
T20 20 HLV, SPIV 246
T30 30 HLV, SPIV 246
T39 39 HLV, SPIV 246
T40 40 HLV, SPIV 246

F3T20 20 HLV, 2 SPIV 246
F3T30 30 HLV, 2 SPIV 246
F3T40 40 HLV, 2 SPIV 246
F3T50 50 HLV, 2 SPIV 246
F3T60 60 HLV, 2 SPIV 246
F3T70 70 HLV, 2 SPIV 246
F3T80 80 HLV, 2 SPIV 246

F5T20 20 2 HLV, 3 SPIV 246
F5T30 30 2 HLV, 3 SPIV 246
F5T60 60 2 HLV, 3 SPIV 246
F5T70 70 2 HLV, 3 SPIV 246
F5T80 80 2 HLV, 3 SPIV 246
F5T90 90 2 HLV, 3 SPIV 246
F5T100 100 2 HLV, 3 SPIV 246
F5T110 110 2 HLV, 3 SPIV 246
F5T150 150 2 HLV, 3 SPIV 246

F10T30 30 4 HLV, 6 SPIV 246

S1T3 3 HLV, SPIV 122 Every day
S2T3 3 HLV, SPIV 122 Every 2nd day
S3T3 3 HLV, SPIV 122 Every 3rd day
S7T3 3 HLV, SPIV 122 Every 7th day
S14T3 3 HLV, SPIV 122 Every 14th day

71



9. Computational Study

Instance Number of turbines Vessel pool Planning horizon Start Time

S7T4 4 HLV, SPIV 122 Every 7th day
S7T5 5 HLV, SPIV 122 Every 7th day
S7T6 6 HLV, SPIV 122 Every 7th day
S7T7 7 HLV, SPIV 122 Every 7th day

S7F3T20 20 HLV, 2 SPIV 246 Every 7th day
S7F3T30 30 HLV, 2 SPIV 246 Every 7th day
S7F3T40 40 HLV, 2 SPIV 246 Every 7th day
S7F3T50 50 HLV, 2 SPIV 246 Every 7th day
S7F3T60 60 HLV, 2 SPIV 246 Every 7th day
S7F3T70 70 HLV, 2 SPIV 246 Every 7th day
S7F3T80 80 HLV, 2 SPIV 246 Every 7th day

S7F5T20 20 2 HLV, 3 SPIV 246 Every 7th day
S7F5T30 30 2 HLV, 3 SPIV 246 Every 7th day
S7F5T60 60 2 HLV, 3 SPIV 246 Every 7th day
S7F5T70 70 2 HLV, 3 SPIV 246 Every 7th day
S7F5T80 80 2 HLV, 3 SPIV 246 Every 7th day
S7F5T90 90 2 HLV, 3 SPIV 246 Every 7th day
S7F5T100 100 2 HLV, 3 SPIV 246 Every 7th day
S7F5T110 110 2 HLV, 3 SPIV 246 Every 7th day
S7F5T150 150 2 HLV, 3 SPIV 246 Every 7th day

S7F10T30 30 4 HLV, 6 SPIV 246 Every 7th day
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9.2 Original Model

Technical analysis are carried out on the original model in order to evaluate which
test instance sizes the model can handle within the given CPU time. When results
are presented throughout this chapter, a (-) indicates that the instances is infeasible
and a duality gap of 100% means that no integer feasible solution is found within
10 800 seconds.

The results from running the original model are found in Table 9.2 presented by
the name on the test instances (Instance), their solution time (CPU time [sec]),
the duality gap (Gap [%]), the primal bound (Primal bound), and the dual bound
(Dual bound). As can be seen from Table 9.2 the original model only solve T3 and
T4 to optimality. The duality gap for the larger test instances can be explained by
examining the primal bound and dual bound. The weak bound can, as indicated by
Hansen & Siljan (2016), be caused by the amount of symmetry in the problem. For
example, for a given vessel v the charter period, svt and evt, can in theory be set to
all possible time periods t as long as the weather condition permits operation and
the total charter period is equivalent to the charter period which minimizes cost. For
example, si,10 and ei,20 is equivalent to si,30 and ei,40 with respect to total charter cost
of vessel i. Symmetry causes several sub trees in the Branch and Bound (B&B) tree
to be isomorphic, meaning branches in the B&B tree have identical structures which
forces a wasteful duplication of effort in the search (Margot, 2010). Symmetry will
not affect the LP relaxation in the root node, but rather the potential improvements
of the bounds deeper in the tree.
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Table 9.2: Results of the original model for the smallest test instances with an
increasing number of turbines.

Instance CPU time [sec] Gap [%] Primal bound Dual bound

T3 610 0 6 899 6 899
T4 1 905 0 7 699 7 699
T5 10 800 5 58 913 8 470
T6 10 800 27.98 13 289 9 571
T7 10 800 100
T18 10 800 100
T19 10 800 100

The test instances T7 to T19 have a duality gap of 100% indicating that no integer
feasible solution is found. By comparing the number of visited nodes in T7 to T4 it
is observed that roughly four times as many nodes are processed in T7, see Appendix
C. This indicates that the processing time of each node is not the issue but rather
the amount of fractional variables in each node, which leads to a huge B&B tree to
search through.

When examining the results for T5 we observe that it is a great difference between
the LP relaxation and the best integer solution found. The solution space to search
through is thus huge and will require a great amount of time. If the LP relaxation
in the root node is weak and the B&B tree is huge, it will be harder to find feasible
integer solutions, which contributes to explain the large duality gap in Table 9.2.

9.2.1 Fixing the Project Start Time

According to Klotz & Newman (2013) the upper bound can be improved by providing
an obvious solution based on knowledge of the problem. One way to provide an
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initial solution is by fixing some of the variables (Hewitt et al., 2013). The project
start date is often determined by other factors than the charter strategy and the
fleet composition, and can in most cases be considered known. When starting the
planning of a new project it is natural to assume that the first time period in
the planning horizon is also the project start date. This argument is used to fix
the variable sT ot to 1. When fixing the project start time rather than finding the
optimal start time, a potential drawback is that it will most likely increase the total
project duration and thereby increase the total cost.

The model is tested on the same test instances as those presented in Table 9.2 and
the results are found in Table 9.3. As in Table 9.2 the three first columns contains
information on the name of the test instance (Instance), the solution time (CPU
time [sec]), and duality gap (Gap [%]). The primal bound (Primal bound [%]) and
dual bound (Dual bound [%]) are compared to the equivalent test instances in Table
9.2 and are calculated by Equation 9.1. Equation 9.1 calculates the bounds as the
percentage of the reference bound.

Bound [%] = Current bound
Reference bound × 100 (9.1)

Table 9.3: Results of the original model when fixing the project start to the first
time period in the planning horizon. The change in the primal and dual bound are
given as the percentage of the bounds from the test instances in Table 9.2.

Instance CPU time [sec] Gap [%] Primal bound [%] Dual bound [%]

T3 416 0 100.17 100.17
T4 3 113 0 105 105
T5 10 800 37.75 160.06 104.85
T6 10 800 42.09 128.55 103.37
T7 10 800 100
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The desired effect of fixing sT ot is to improve the primal bound, however this is absent
for every test instances. For test instance T5 and T6, the increase in the primal
bound is much higher than the increase in the dual bound. This observation explains
the increased duality gap compared to Table 9.2 and shows that the measure acts
against its purpose. Instead of improving the upper bound, as was the intention, it
is aggravated. Potential reasons for the aggravation are (1) that potentially good
solutions are removed when fixing the project start to t = 1, (2) even if one variable is
fixed there is still a huge amount of variable taking fractional values when branching
through the B&B tree, (3) because the penalty cost only accounts for a small part
of the objective value there are still a lot of possible solutions to investigate, and
(4) by fixing one variable the search strategy performed by Xpress in the B&B tree
might have changed.

9.2.2 Restricting Start Time for Charter Period

Another attempt to improve the solutions of the original model is by reducing the
size of the problem, i.e. reducing the number of variables and constraints, since the
B&B algorithm implicitly explores all possible solutions (Lundgren et al., 2012). By
removing some of the svt variables and hence restrict possible start times for each
vessel’s charter period, the number of variables and the problem size is reduced.
The goal is to reduce the number of feasible solutions and the computational time
required to solve test instances to optimality. Applying this method will, however,
in several cases also cause a worse solution in terms of the objective value. By
eliminating variables, optimal solutions can be removed, causing an increase in the
objective value compared to the results from running the model without this re-
striction. The value of this solution method depends on the trade-off between the
increase in the objective value and the improvement in the model’s performance.

The results are presented in Table 9.4 and Table 9.5. All columns in the tables
are equivalent to those presented for Table 9.3. The two bounds are given as the
percentage of the primal bound and dual bound of the equivalent test instances in
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Table 9.2, and are calculated by equation 9.1.

Testing is performed on T3 to determine how many variables to remove in order to
improve the solution time of the original model, see Table 9.4. Analysis show that
by reducing the possible start times the number of variables is reduced between
1.8% and 3.5% depending on how strict the start time restriction is set, and the
primal bound is at worst increased by 5.9%. By restricting possible start times to
once a week, S7T3, the number of variables is reduced by roughly 3.4% compared to
the plain version of the original model. This gives a good reduction in the problem
size and improves the CPU time by 42% with only a small increase in the objective
value, i.e. it gives a good trade-off between the increased objective value and the
improved CPU time. Based on the results in Table 9.4 and the analysis of the
problem size, it is determined to continue with a restricting start time of once a
week, i.e. every 7th day. It can easily be argued that it is reasonable to restrict the
charter start times to every 7th day, as the decision on the optimal fleet is taken
years before the installation takes place and without knowing the actual weather
realization. Specifying that a vessel charter period starts once a week is thus more
realistic than proposing to start Wednesday 12 am.

Table 9.4: Results of the original model when varying the restriction of possible
start times for a vessel’s charter periods on T3. The last two columns show the
primal and dual bound as a percentage of the bounds for T3 found in in Table 9.2.

Instance CPU time [sec] Gap [%] Primal bound [%] Dual bound [%]

S1T3 353 0 100 100
S2T3 293 0 101.17 101.18
S3T3 330 0 101.19 101.18
S7T3 281 0 103.54 103.54
S14T3 176 0 105.89 105.89

Table 9.5 presents the results when increasing the number of turbines and limiting
the possible start times for a vessel charter period to once a week. By comparing
the results in Table 9.5 to the results in Table 9.2 it is found that the good results
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of initial testing on T3 is only obtained for T3 and T7. All other results are worse,
either by an increased CPU time or an aggravation of the duality gap. Analysis of
S7T5 show that the worse performance is mainly due to a worsening in the primal
bound, implying that the model is not able to find good integer feasible solutions.
The dual bound only increases by a small percentage, and the increased duality gap
is believed to be caused by the aggravated primal bound. By removing possible start
times, solutions which previously were feasible might have been removed, making it
harder to find feasible integer solutions during the B&B search.

Table 9.5: Results of the original model when restricting the charter start times to
every 7th day for test instances with an increasing number of turbines. The primal
bound and dual bound are given as a percentage of the results in Table 9.2. A (*)
indicates that no comparison is possible due to an integer infeasible solution in the
previous run.

Instance CPU time [sec] Gap [%] Primal bound [%] Dual bound [%]

S7T3 264 0 103.54 103.54
S7T4 4 230 0 102.21 102.21
S7T5 10 800 31.98 147.02 105.24
S7T6 10 800 29.08 105.47 103.86
S7T7 10 800 39.47 * *

9.2.3 Brief Summary

Testing of the original model reviles that the model is too hard to solve to optimality
for test instances of realistic size. The problem is caused by weak bounds, both
primal and dual, due to symmetry and a weak LP-relaxation. Two suggestions
are proposed to improve the bounds, fixing variables and removing variables, but
without great improvements in the model’s performance. The focus in the rest of
this chapter will be on the pattern based model which is believed to solve more
realistic sized test instances.
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9.3 Pattern Based Model

As described in Chapter 6, a pattern based model is formulated to solve bigger
and more realistic test instances. The exact solution method is based on a priori
generation of all feasible patterns which are combined in the pattern based model
with the goal of minimizing cost. The number of feasible patterns and the CPU
time required to generate them are dependent on both the length of the planning
horizon and the number vessels in the vessel pool. The pattern generation results
are summarized in Table 9.6 which gives the number of time periods in the planning
horizon (Horizon), the vessels in the pool (Vessel pool), the time used to generate the
patterns in Java (CPU time [sec]) and the number of generated patterns (Patterns).
As motivated in Section 7.1, Table 9.6 shows that there is only a small amount of
generated patterns, with a maximum of 52 572 patterns for the largest instances.
The number of patterns increases linearly with the number of time periods and the
number of vessels in the pool. When increasing the time horizon from 122 periods
to 246 there is approximately a 50% increase in the number of generated patterns.
Increasing the vessel pool from one HLV and one SPIV to one HLV and two SPIVs,
gives a bit less than a 50% increase in patterns.

Table 9.6: The number of patterns generated by the exact pattern generation pro-
gram.

Horizon Vessel Pool CPU time [sec] Patterns

122 HLV, SPIV 5 4 107
246 HLV, SPIV 9 9 093
246 HLV, 2 SPIV 17 17 193
246 2 HLV, 3 SPIV 29 26 286
246 4 HLV, 6 SPIV 66 52 572

The CPU times reported in the tables presenting results from running the pattern
based model are the total CPU time of running both the pattern generation program
in Java and the pattern based model in Xpress.
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9.3.1 Basic Testing

A technical analysis is also conducted for the pattern based model in order to eval-
uate the model’s performance and compare it to the original model. The model
is tested in two dimensions: the turbine dimension and the vessel dimension. The
turbine dimension tests the number of turbines the model can handle, and the vessel
dimension studies how the number of vessels in the vessel pool affects the model’s
performance.

Turbine Dimension
In the same way as with the original model, the pattern based model is first tested
on test instances with an increased number of turbines and the results are found
in Table 9.7. The first three columns in Table 9.7 are equal to those in Table 9.2
while the last column shows the objective value of the LP relaxation given as the
percentage of the LP relaxation of the results from the original model.

Table 9.7: Results of the pattern based model for test instances with an increasing
number of turbines. The first block of results applies a planning horizon of 122 time
periods and the last block applies a planning horizon of 246 time periods. The LP
relaxation is compared to the equivalent results in Table C1.

Test instance CPU time [sec] Gap [%] LP [%]

T3 22 0 351.87
T4 25 0 350.68
T5 17 0 350.22
T6 38 0 349.70
T7 37 0 349.33
T18 31 0 287.67
T19 - -

T20 2 071 0 538.90
T30 414 0 328.65
T39 144 0 225.31
T40 - -
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When comparing the results in Table 9.7 to the results in Table 9.2 it is interesting
to note that the CPU time is reduced for all test instances, e.g. for T3 the CPU time
is reduced by approximately 96%. The LP relaxation of the pattern based model is
also stronger compared to the original model. As shown Table 9.7 the LP relaxation
of T3 is more than three times as good as in the original model. The problem size
is reduced both in terms of the number of variables and the number of constraints,
which results in a tighter LP-bound and a reduced B&B tree (St̊alhane et al., n.d.).
The number of variables in the pattern based model is reduced by approximately
31% for 122 time periods and 35% for 246 time period. The number of constraints
is reduced by 86% for both time horizons, see Table C1 and Table C4 in Appendix
C. In the pattern based model the variable zvat is removed, which contributes to a
reduction in symmetry. However, the variable svt and evt, as mentioned as variables
causing symmetry problems in section 9.2, are still in the model and symmetry is
thus not eliminated.

The results show that a planning horizon of 122 time periods is not enough time to
install more than 19 turbines. In order to determine whether the number of turbines
is a restricting dimension for the model, test instances with a planning horizon of
246 time periods are designed and tested. The results show that for every test
instance where there exists a feasible solution, the pattern based model always finds
the optimal solution.

Vessel Dimension
For solving instances with a greater number of turbines within 246 time periods,
and to investigate how the model handles an increased vessel pool, a vessel pool
of three, five, and ten vessels are tested. Real installation problems often include
a vessel pool of 5-10 vessels and a wind farm of 50-100 turbines (Irawan et al.,
2015). The pool is increased with identical vessels, which implies that the model
is tested with respect to the fleet size rather than the fleet mix. The results, given
by instance name (Instance), solution time (CPU time [sec]), and duality gap (Gap
[%]), are presented in Table 9.8. Despite the duality gap in almost every test instance
presented in the table, the performance of the pattern based model is much better
than for the original model. The original model did not find one integer solution
within the given CPU time for an instance of two vessels and seven turbines, while
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the pattern based model solves instances up to 110 turbines and ten vessels.

From Table 9.6 we can observe that by adding an additional vessel the number of
feasible patterns increases, which in turn will increase the number of variables. In
addition, the increased amount of symmetry when adding identical vessels to the
pool causes difficulties when solving the model as discussed in Section 9.2. The
duality gap in Table 9.8 is believed to be due to both the increased number of
variables and the extra amount of symmetry introduced in the problem. The duality
gap varies with an increasing number of turbines. For instance, for F3T30 the gap
is 4.33% , for F3T40 it increases to 10.82%, and then decreases for F3T50. A more
thorough discussion of this observation is found in Section 9.3.2 where a similar
tendency is observed.

Table 9.8: Results of the pattern based model for test instances with an increasing
vessel pool size.

Instance CPU time [sec] Gap [%]

F3T20 7 921 0
F3T30 11 085 4.33
F3T40 11 067 10.82
F3T50 11 080 6.41
F3T60 11 067 4.38
F3T70 11 068 0.22
F3T80 - -

F5T20 11 556 6.06
F5T30 11 458 13.38
F5T60 11 525 14.31
F5T80 11 484 10.96
F5T90 11 444 19.66
F5T100 11 477 3.04
F5T110 11 445 1.81
F5T150 - -

F10T30 13 370 28.95
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As discussed in Section 9.2 the problem of solving the original model to optimality
is due to both poor improvement of bounds and a poor LP relaxation. The re-
sults of the pattern based model show that the LP relaxation is improved and that
the problem size is reduced. Hence the pattern based model solves several of the
problems detected in the original model.

9.3.2 Restricting Start Time for Charter Period

To reduce the problem size further and reduce the duality gap of the more realistic
problem instances, the same method of restricting the start time as described in
Section 9.2.2 is applied. As in the original model, the possible start times are
restricted to once a week. The results are found in Table 9.9 and reported by
instance name (Instance), total CPU time (CPU time [sec]), duality gap (Gap [%]),
primal bound (Primal bound [%]), and dual bound (Dual bound [%]). The primal
bound and dual bound are calculated as the percentage of the results in Table 9.8,
using Equation 9.1.
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Table 9.9: Results of the pattern based model with start time every 7th day, a
varying fleet size, and an increasing number of turbines.

Test instance CPU time [sec] Gap [%] Primal bound [%] Dual bound [%]

S7F3T20 7 921 0 102.01 102.01
S7F3T30 11 083 0 100.94 106.00
S7F3T40 11 092 0.59 102.65 114.42
S7F3T50 3 116 0 100.93 107.85
S7F3T60 1 050 0 100.38 104.98
S7F3T70 379 0 100.53 100.76
S7F3T80 - -

S7F5T20 2 709 0 102.01 108.59
S7F5T30 3 887 0 98.63 113.86
S7F5T60 11 453 0.45 98.48 114.42
S7F5T80 11 451 0.21 99.64 111.68
S7F5T90 2 232 0 100.32 105.06
S7F5T100 551 0 100.83 103.99
S7F5T110 9 199 0 101.62 103.49
S7F5T150 - -

S7F10T30 13 276 20.30 97.33 109.17

By reducing possible start times to once a week the duality gap has decreased for
every test instance and for all practical purposes, the model is solved to optimality
for every test instances of three and five vessels. Comparing the primal bounds
from the instances in Table 9.9 to those in Table 9.8, it can be seen that they are
approximately equal. The large duality gap improvements and the relatively small
changes in primal bounds, indicates a good trade-off between improvements in the
model’s performance and increase in the objective value. The improvement is related
to the increased dual bounds and the relative stable primal bound which causes a
reduced solution space to search through, as discussed in Section 9.2.2.
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Figure 9.1: Illustration of how the number of vessels in the fleet varies with the
number of turbines in both the LP relaxation and the IP solution.

As pointed out in Section 9.3.1 the duality gap varies with an increased number
of turbines. For instance, S7F4T30 is solved to optimality, S7F3T40 has a duality
gap, and S7F3T50 is solved to optimality. Analyzing the LP relaxation and the
IP solution of the test instances with an increasing number of turbines, gives an
idea of the potential reason for this variation in the duality gap. As illustrated
in Figure 9.1 an increasing number of turbines results in a step wise function of
the number of vessels in the optimal fleet in the IP solution. The LP relaxation
yields a continuous increase in the number of vessels. Looking at the IP function in
Figure 9.1 a threshold is observed every time there is a jump in the function where
an increase in the number of turbines requires an additional vessel in the optimal
fleet. Comparing the two graphs shows that the distance between the IP and LP
solution decreases up to the threshold where the jump in the IP function causes a
new increase in the distance before it decreases again until the next threshold.

The conclusion of the analysis of the LP relaxation is that there exist a threshold
where an increase in the number of turbines will require one extra vessel in the
optimal fleet in order to complete the installation and minimize cost. For some
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amount of turbines there exist solutions where all turbines can be installed with a
vessel fleet of x vessels, but the optimal solution in order to minimize charter cost
is a vessel fleet of x+ 1 vessels. For such cases the LP solution in the root node will
be weak, and it is thus harder to solve these test instances. Once the number of
turbines increases further, the fractional value in the LP solution will increase and
the distance between the LP solution and the IP solution will decrease.

9.3.3 Symmetry Breaking Inequalities

As has been described in Section 9.3.1 and Section 9.3.2 adding several identical
vessels to the vessel pool increases the amount of symmetry in the problem and
the model struggles to solve these test instances to optimality. A set of symmetry
breaking inequalities is formulated in Section 6.1 to reduce this symmetry. The
inequalities are implemented and tested on test instances with 30 turbines and a
vessel pool of varying size. The results are presented in Table 9.10 and show that
the symmetry breaking inequalities improve the performance of the model when
solving test instances with a vessel pool of five and ten vessels. Analysis of the
bounds of F5T30 and F10T30 show that both the primal and dual bound improves
compared to the initial test results in Table 9.8, which results in a better duality gap.
For F3T30, there is no improvement in the duality gap due to a small deterioration
in the dual bound and almost no change in the primal bound. A more thorough
analysis of the test results of F3T30 shows that the number of processed nodes
when including the symmetry breaking inequalities is roughly halved compared to
the original F3T30 test instance. It is believed that the increased processing time of
each node is the reason of the (small) deterioration in the dual bound. The results
in Table 9.10 suggests that the symmetry breaking inequalities proposed are more
powerful when the amount of symmetry in the problem increases.
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Table 9.10: Results of the pattern based model when adding symmetry breaking
inequalities. The primal bound and dual bound is compared to the equivalent test
results without symmetry breaking inequalities presented in Table C5.

Instance CPU time [sec] Gap [%] Primal bound [%] Dual bound [%]

F3T30 11 066 5.91 100.27 99.07
F5T30 11 438 2.90 97.70 109.52
F10T30 13 288 12.90 99.93 122.46

9.3.4 Guided Search

Another method for improving the solutions of the pattern based model is to im-
plement a guided search strategy. It is determined to test the effect of the search
strategy on a small portion of the previous test instances. Instances with an in-
creasing number of turbines previously solved to optimality and instances with an
increasing number of vessels not solved to optimality are used to observe the different
effects of a guided search.

A guided search strategy exploits the user’s knowledge about the problem in order
to determine the most important variables and then uses this information to branch
on these variables first. By giving a higher priority to decision variables affecting the
objective value the most, the upper bound is updated in a more efficient way, which
makes it easier to prune a branch in the B&B tree at an earlier stage. The three most
important variables in this problem are λv, svt and evt. In Xpress the guided search
is implemented by the function: setmipdir(x:mpvar,t:integer,r:real).
The last parameter in the function is used to indicate the priority of the variable.
The priority is set to 1 for all λv, 2 for all svt and 3 for all evt. When determining
the value of these three variables several other variables are implicitly determined,
e.g. if λv = 0 all variables for vessel v is set to zero since vessel v is not chartered.
The same is true for the start and end time of each vessel’s charter period. As
soon as the charter period of vessel v is determined all patterns starting earlier than
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specified by svt and ending later than specified by evt are set to zero since these are
not feasible. Decisions on the charter period will also cause the model to search for
patterns with a start time as close to the value of svt as possible. Determining these
variables early in the B&B search will hence reduce the problem size and make the
model run faster.

Implementation of the guided search strategy yields the results shown in Table 9.11.
The table contains information about the CPU time required to solve the problem
(CPU time [sec]), the change in the CPU time compared to previous results of the
respective test instances (Chang in CPU time [sec]), the duality gap (Gap [%]), the
change in duality gap (Change gap [%]), the primal bound (Primal bound [%]), and
the dual bound (Dual bound [%]). The change in CPU time is given as a reduction
(-) or increase (+) in seconds compared to previous tests. The change in the duality
gap is given as a percentage increase (+) or decrease (-) compared to previous tests.
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For all test instances the solutions are improved, either by a faster CPU time or
an improved duality gap, when applying a guided search strategy. For the three
first results the improvement in CPU time is the most interesting, since these are
already solved to optimality. The CPU time is either decreased or roughly equal to
the previous results presented in Table 9.7.

For the test instances with an increasing vessel pool size there has been a reduction
in the duality gap when implementing the guided search strategy. Analysis of the
bounds show that the primal bound is improved for all three test instances, indicat-
ing that a better solution is found compared to test results without guiding. The
dual bound is slightly improved for F3T30, and greatly improved for F10T3 and
both duality gaps are highly improved when implementing the guided search. We
can conclude that implementing a guided search contributes to finding good integer
feasible solutions earlier in the B&B search because of the reduced CPU times for
the test instances solved to optimality and the improvements in the duality gap for
the other test instances.

By comparing the three last test instances in Table 9.11 to the results in Table
9.10 we can conclude that for the test instances with a larger vessel pool, symmetry
breaking inequalities have a greater positive effect on the solution than a guided
search strategy. Symmetry breaking inequalities are specifically designed to reduce
the amount of symmetry in a problem, while the improvements caused by imple-
menting a guided search strategy in the B&B tree will only suggest smart choices
when traversing the tree.

9.3.5 Heuristic Pattern Generation

The heuristic rules introduced in Section 7.2 are implemented in the pattern genera-
tion program and the results from running the heuristic pattern generation program
are presented in Table 9.12. Table 9.12 contains the same information as presented
in Table 9.6, and in addition the percentage amount of patterns generated with
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the heuristic pattern generation program compared to the exact pattern generation
program (Patterns [%]). The percentage amount of patterns is calculated by Equa-
tion 9.2. As can be seen from the last column, the number of patterns is noticeably
reduced to roughly 1/3 and 1/2 of the original numbers for CTH and PH, respectively.

Pattern [%] = Current # of patterns
Reference # of patterns (9.2)

Table 9.12: Heuristic pattern generation

Horizon Vessel Pool CPU time [sec] Number of patterns Patterns [%]

CTH 246 HLV, 2 SPIV 1 6 165 35.86
246 2 HLV, 3 SPIV 1 9 744 37.07

PH 246 HLV, 2 SPIV 21 8 345 48.54
246 2 HLV, 3 SPIV 32 13 014 49.51

The results from running the pattern based model with the heuristic generated
patterns are shown in Table 9.13, Table 9.14, Table 9.15, and Table 9.16. The tables
present the test instance (Instance), the CPU time (CPU time [sec]), including the
heuristic pattern generation program’s CPU time, the duality gap (Gap [%]), and the
primal bound (Primal bound [%]) and dual bound (Dual bound [%]) as a percentage
of the reference results presented in Table C5. These percentages are calculated by
Equation 9.1.
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Table 9.13: Results of applying CTH and PH on test instances with a vessel pool of
three vessels, a planning horizon of 246 time periods, and an increasing number of
turbines.

Instance CPU time [sec] Gap [%] Primal bound [%] Dual bound [%]

C
T

H

F3T20 1 125.38 0 100.24 98.26
F3T30 1 263.52 0 100.88 105.93
F3T40 6 407.65 0 101.75 114.15
F3T50 10 889.80 2.65 69.86 105.77
F3T60 10 890.04 1.5 103.31 106.42
F3T70 799.38 0 102.64 102.87
F3T80 92.37 -

PH

F3T20 4 587.79 0 100 100
F3T30 7 309.54 0 100.27 105.29
F3T40 10 938.26 0.95 99.47 110.48
F3T50 10 939.7 4.12 100.65 103.11
F3T60 1 857.71 0 99.43 103.98
F3T70 1 813.27 0 102.46 102.69
F3T80 125.97 -

The results of implementing a heuristic pattern generation program and running
the model on test instance with a vessel pool of three vessels and an increasing
number of turbines are shown in Table 9.13. For all test instances both CTH and
PH improves the solution, and most test instances are solved to optimality. Those
not solved to optimality have a great improvement in the duality gap compared to
the equivalent previous test instances. The same can be observed in Table 9.14 for
test instances of five vessels. For F5T100 with PH the duality gap increases with
approximately 1% compared to the results of F5T100 in Table 9.8. The slightly
increased duality gap is most likely caused by a change in the B&B search, causing
good solutions to be found at a later point in the search.
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The intention with the implemented heuristics is to reduce the number of patterns
and thus the number of variables in the pattern based model. As mentioned, the
number of patterns are more than halved compared to the number of patterns gen-
erated by the exact pattern generation program and by comparing the number of
variables for the test instances in Table 9.13 and Table 9.14 to the previous solu-
tions we can conclude that the heuristics work as intended. The number of variables
for F3Tw and F5Tw for CTH and PH are 40.9%, 42.5%, 52.6% and 53.8% of the
original number of variables, respectively. In the same way as when restricting pos-
sible start times, a heuristic solution might cause a higher objective value than the
optimal solution found with exact pattern generation due to feasible solutions being
removed.

Table 9.14: Results of applying CTH and PH on test instances with a vessel pool
of five vessels, a planning horizon of 246 time periods, and an increasing number of
turbines.

Instance CPU time [sec] Gap [%] Primal bound [%] Dual bound [%]

C
T

H

F5T20 9 724 0 100.24 106.70
F5T30 11 039 0.95 98.56 112.71
F5T60 11 030 13.10 102.19 103.63
F5T80 11 040 2.27 100.69 110.52
F5T90 11 030 2.11 104.56 107.19
F5T100 11 038 2.16 103.94 104.88
F5T110 2 337 0 102.07 103.94
F5T150 235 -

PH

F5T20 11 134 2.63 100 103.65
F5T30 11 154 6.49 97.97 105.77
F5T60 11 143 12.72 99.32 101.16
F5T80 11 157 7.95 99.88 103.26
F5T90 11 136 4.85 102.66 102.30
F5T100 11 158 4.72 103.95 102.15
F5T110 2 960 0 101.52 103.39
F5T150 355 -
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Previous tests show good effect of restricting the start time to once a week, and the
heuristic pattern generation is thus combined with a restricting start time to see
if the solutions can be further improved. The results are shown in Table 9.15 and
Table 9.16 in the same way as the results above. As discussed previously, restricting
the start time to once a week improves the model’s performance by reducing the
dual bound, and by comparing Table 9.15 to Table 9.13 it can be seen that all
results either improve or are approximately equivalent compared to previous results
in terms of duality gap or CPU time. When restricting the start time to once a week
for the test instances with five vessels, all results are improved compared to previous
test results in Table 9.14 and all feasible test instances are solved to optimality.

Table 9.15: Results of applying CTH and PH on test instances with a vessel pool
of three vessels, a planning horizon of 246 time periods, an increasing number of
turbines, and restricting the start time to every 7th day.

Instance CPU time [sec] Gap [%] Primal bound [%] Dual bound [%]

C
T

H

S7F3T20 226 0 102.60 102.59
S7F3T30 261 0 101.54 106.63
S7F3T40 437 0 104.90 117.62
S7F3T50 230 0 102.59 109.62
S7F3T60 147 0 104.44 109.22
S7F3T70 115 0 104.40 104.64
S7F3T80 - -

PH

S7F3T20 4 634 0 100 100
S7F3T30 7 370 0 100.27 105.29
S7F3T40 10 945 0.83 99.47 110.61
S7F3T50 10 944 4.20 100.65 103.02
S7F3T60 1 863 0 99.43 103.98
S7F3T70 1 775 0 102.46 102.69
S7F3T80 - -
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Table 9.16: Results of applying CTH and PH on test instances with a vessel pool
of five vessels, a planning horizon of 246 time periods, an increasing number of
turbines, and restricting the start time to every 7th day.

Instance CPU time [sec] Gap [%] Primal bound [%] Dual bound [%]

C
T

H

S7F5T20 929 0 102.60 109.22
S7F5T30 921 0 99.21 114.54
S7F5T60 5 556 0 100.12 116.84
S7F5T80 2 833 0 102.33 114.93
S7F5T90 844 0 104.76 109.71
S7F5T100 703 0 104.53 107.80
S7F5T110 - -
S7F5T150 - -

PH

S7F5T20 1 879 0 102.01 108.59
S7F5T30 3 274 0 98.62 113.86
S7F5T60 1 636 0 98.48 114.93
S7F5T80 823 0 100 112.30
S7F5T90 824 0 102.81 107.67
S7F5T100 759 0 103.62 106.87
S7F5T110 - -
S7F5T150 - -

9.3.6 Brief Summary

The results from testing the pattern based model show great improvements in per-
formance compared to the original model. By reformulating the model and solving
it with a priori pattern generation we were able to solve test instances with up to
ten vessels and between 30 and 110 turbines.
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The four proposed improvement measures all contribute to make further improve-
ments to the solutions. Restricting possible start times for the charter periods to
once a week is argued to be a more realistic and reasonable choice than allowing
start every time period, and gives satisfactory results in terms of improved duality
gap for all test instances. The symmetry breaking inequalities contribute to solve
some of the issues related to adding identical vessels to the pool and both primal
bound and dual bound are strengthen for the largest vessel pools. Another way
of finding better solutions without increasing the problem size is done by guiding
the search in the B&B algorithm, which proved to find better solutions at an earlier
stage in the search and thereby reduce the duality gap or CPU time. The last tested
strategy is to generate patterns by using heuristic methods to reduce the number
of feasible patterns. Both PH and CTH give a significant reduction in the number
of patterns and the number of variables in the problem which resulted in good so-
lutions. Combining the heuristic pattern generation and a charter start of once a
week improve the solutions even further and we are able to solve all test instances
of five vessels and up to 100 turbines to optimality.

9.4 Robustness Testing

As pointed out in the brief summary of Section 9.3 all proposed improvement mea-
sures improve the solutions from the pattern based model. Based on the previous
results it is determined to perform robustness testing with all four measures; re-
stricting start time, symmetry breaking inequalities, guided search, and heuristic
pattern generation. A restriction on the start time to once a week is applied as this
is considered more realistic for a strategic decision tool which is run several years
in advance of the actual installation. The PH is applied since it gives a significant
reduction in the number of variables without removing too many good solutions.

In order to evaluate the chance of delay in the optimal schedules, a robustness study
is carried out. When performing the robustness testing we look at the out of sample
stability. This is a method usually applied in stochastic programming to evaluate
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the quality of the scenario trees. However, it can also be applied to test the stability
of a solution. In the problem presented in this thesis each scenario is a realization
of the weather conditions. Using the terminology of stochastic programming and
uncertainty, each scenario tree in our model has only one realization of the random
variable; the weather for a given year. According to Kaut & Wallace (2003) the
purpose of performing an out of sample stability test is that ”if we generate several
scenario trees for a given random vector, and solve the stochastic programming
problem with each tree, we should get (approximately) the same value of the true
objective function”. Transferred to our problem this means that by fixating the
charter start time found in the optimal solution in one scenario and solving the
model for other scenarios, we should get approximately the same objective value.

In order to evaluate the robustness of an optimal solution the model is first run
on weather from May-August 2011, which is used as reference. The test instance
used for all tests presented in this section consists of a vessel pool of five vessels and
60 turbines (S7F5T60). In contrast to the technical tests previously presented, the
robustness testing applies a 6 hour time interval to create greater flexibility when
implementing different robustness measures. The optimal solution from the 2011
planning horizon is evaluated by running the S7F5T60 test instance on weather data
from 2004 - 2012. From the optimal solution of 2011 we get the value of svt and αv,
which are fixed when the model is run on the other years. The initial results where
no robustness measures are implemented are found in Table 9.17. The table presents
the objective value (Objective value) of the year 2004-2012 as a percentage of the
results of the reference year 2011, and the project duration both as the number of
time periods (Project duration) and the number of days (Project duration in days).
The results in Table 9.18, Table 9.19, Table 9.20, and Table 9.21 are presented in
the same way. Infeasible solutions are market in italic.
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Table 9.17: The robustness results when without any improvement measures. The
tests are run on the the test instance S7F5T60, and a time interval of 6 hours is
applied. The result from 2011 is marked in bold and the scenarios where the optimal
solution is infeasible are marked in italic.

Instance Objective Value Project duration [time periods] Project duration in days

2011 87 136 233 58.25

2004 85 284 230 57.5
2005 85 789 229 57.25
2006 84 466 223 55.75
2007 -
2008 92 609 258 64.5
2009 84 439 230 57.5
2010 81 155 211 52.75
2012 86 546 229 57.25

The results in Table 9.17 show that when no actions to improve the robustness is
taken, the optimal solution of 2011 is feasible for 75% of the other scenarios. By
fixing the charter start time for each vessel to the optimal solution from 2011, the
project duration increases or the solution becomes infeasible in two of the scenarios
(2007 and 2008). This suggests that the robustness of the optimal solution from
the pattern based model is insufficient. As described in Section 7.3, two different
strategies are proposed to improve the robustness of the solution; increasing the
processing times and adding slack at the end of each pattern. These measures are
implemented in the 2011 scenario to find new values for svt and αv which are then
fixed and the original S7F5T60 is run for the other years. Firstly, the strategy
of increasing the processing time for every installation activity of every vessel is
implemented and tested.
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Table 9.18: The robustness results when increasing the processing time by 12 hours.
The tests are run on the the test instance S7F5T60, and a time interval of 6 hours
is applied. The result from 2011 is marked in bold.

Instance Objective Value Project duration[time periods] Project duration in days

2011 116 178 344 86

2004 87 789 241 60.25
2005 87 383 245 61.25
2006 85 735 235 58.75
2007 92 694 269 67.25
2008 95 028 273 68.25
2009 87 554 241 60.25
2010 82 201 216 54
2012 92 063 264 66

Table 9.18 shows the results of increasing the processing times by two time periods,
i.e. 12 hours. The amount of added slack in the schedules increases the objective
value of the optimal solution by 33.33% compared to the solution found in Table
9.17. The new solution is feasible in 100% of the scenarios. In order to say something
about the trade-off between the increase in the objective value and the robustness
of the solution, increasing the processing times by one time period, i.e. 6 hours is
also tested. Results can be found in Table 9.19.
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Table 9.19: The robustness results when increasing the processing time by 6 hours.
The tests are run on the the test instance S7F5T60, and a time interval of 6 hours
is applied. The result from 2011 is marked in bold.

Instance Objective Value Project duration[time periods] Project duration in days

2011 101 436 330 82.5

2004 89 067 292 73
2005 88 821 298 74.5
2006 84 822 268 67
2007 94 065 304 76
2008 94 565 304 76
2009 84 984 267 66.75
2010 81 529 254 63.5
2012 91 166 289 72.25

Increasing the processing times of the installation activities with one time period
results in a 16.41% increase in the objective value and the solution is still valid in
100% of the scenarios. Testing of the robustness strategy of adding slack through
increased processing times shows that this strategy improves the robustness of the
solution but the cost is relatively high. One reason for the significant increase in
the objective value when increasing processing times for each turbine is that the
number of time periods of slack increases with the number of turbines in the wind
farm. The result is considered to be too conservative and the second proposed
strategy is implemented in order to investigate whether it can give a better trade-off
between the cost of adding slack and the added robustness in the solutions. The
second strategy adds an amount of slack at the end of every pattern and the total
amount of slack in each solution will therefor depend on the number of patterns
in optimal solution. Two tests are conducted with this strategy, one adding three
time periods of slack in each pattern and one adding two time periods of slack. The
results are presented in Table 9.20 and Table 9.21, respectively. The added slack
requires weather of category good.

100



9. Computational Study

Table 9.20: The robustness results when adding a slack of 18 hours at the end of each
pattern. The tests are run on the the test instance S7F5T60, and a time interval of
6 hours is applied. The result from 2011 is marked in bold and the scenarios where
the optimal solution is infeasible are marked in italic.

Instance Objective Value Project duration[time periods] Project duration in days

2011 96 216 270 67.5

2004 87 789 241 60.25
2005 87 383 245 61.25
2006 85 735 235 58.75
2007 92 694 269 67.25
2008 95 028 273 68.25
2009 87 554 241 60.25
2010 82 201 216 54
2012 92 063 264 66

Table 9.21: The robustness results when adding a slack of 12 hours at the end of each
pattern. The tests are run on the the test instance S7F5T60, and a time interval of
6 hours is applied. The result from 2011 is marked in bold and the scenarios where
the optimal solution is infeasible are marked in italic.

Instance Objective Value Project duration[time periods] Project duration in days

2011 94 313 264 66

2004 87 789 241 60.25
2005 87 383 245 61.25
2006 85 735 235 58.75
2007 92 694 269 67.25
2008 95 028 273 68.25
2009 87 554 241 60.25
2010 82 201 216 54
2012 92 063 264 66
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Adding three time periods, i.e. 18 hours of slack in each pattern gives a 10.42%
increase in the optimal objective value and the solution is valid in 88% of the sce-
narios. When adding two time periods of slack the cost increase by 8.24% and the
optimal solution from 2011 holds in 75% of the scenarios. Compared to the first
strategy, adding slack in each pattern results in a less costly solution but at the
same time decreases the robustness of the solution. However, it can be argued that
adding a slack of three time units to each pattern gives a good enough trade-off since
the solution holds in all but one scenario and the objective value is only increased
by roughly 10%. Since only nine years of weather data are available, the data might
not be of statistical significance. The added robustness in the solution causes an
increase in the objective value, but this is considered acceptable since the total cost
of delay easily can become much higher than the cost of the added robustness. If
a project is delayed it might be necessary to charter additional vessels in order to
complete the installation. The spot charter rates will most likely be higher and will
contribute to increasing the total costs of the vessel fleet considerable.

9.5 Seasonal Variations

As pointed out in Chapter 8 the summer months from May to August are used
during the techinical analysis of the two proposed models. It is, however, interesting
to investigate how the seasonal variations during a year influence the solution. This
is a more economical analysis and can be used to consider alternative chartering
strategies. Today most installation activities of an offshore wind farm take place in
the summer months because of generally better weather. However, as the charter
rates for vessels depend heavily on supply and demand, the total cost for the optimal
fleet will be higher during summer when demand is higher (Dalgic et al., 2013). By
running the model on weather data from other seasons, we can investigate whether
it will be of interest to charter vessels and perform the installation in seasons with
lower demand. Also, we can perform calculations to find the break even charter rates
in order to make it profitable to perform installation outside the summer months.
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As pictured in Figure 9.2 there is a great amount of seasonal variations during a
year. The diagram shows the distribution of the different weather categories for
four different case. Four combinations of months are made for testing the seasonal
variations, and can be seen in Figure 9.2. The goal is to look at all four seasons
of the year; spring, summer, autumn and winter. March-June represent spring,
May-August represent summer, August-November represent autumn and November-
February represent winter. Not surprisingly, May, June, July and August have the
best weather with the greatest number of weather categories very good-medium.
The winter months November, December, January, and February, have a higher
percentage of weather category bad and very bad, which makes it harder to find
enough usable time periods to complete the installation.

Figure 9.2: Distribution of weather categories in different seasons.
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Table 9.22: Results of the seasonality study. The interval of months written in bold
is the reference. For the other seasons, the increase in cost is given as the percentage
increase compared to the reference

Instance Season Objective value Project duration [day] Increased cost

F2T35

May-August 59 801 212
March-June 64 223 234 7.40 %
August-November 65 750 240 9.95 %
November-February - - -

S7F3T50

May-August 74 574 152
March-June 82 333 174 10.40 %
August-November 83 154 177 11.51 %
November-February - - -

S7F5T70

May-August 102 223 136
March-June 111 688 153 9.26 %
August-November 116 486 181 13.95 %
November-February - - -

The seasonality study is performed on three different test instances which are all
run on the four different combinations of weather data. The results are presented in
Table 9.22. The first column indicates which test instance is used (Instance), then
the respective season is shown in column two (Season), before the absolute value
of the objective function (Objective value), the project duration in days (project
duration [day]), and the increased cost (Increased cost [%]) is presented in column
three, four, and five, respectively. The increased cost is calculated as the percentage
increase of the current test instance with respect to the reference test of May-August
for the respective test instance, see Equation 9.3.

Increased cost [%] = Reference obj.val - Current obj.val
Reference obj.val (9.3)
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For every test instance the results of spring (March-June) is consequently better
than the results of autumn (August-November). None of the tests are feasible when
run on winter months. Compared to the reference case, May-August, the increase
in cost is calculated and shows an average increase of about 9% for March-June and
roughly 12% for August-November. These results can be used to calculate the break
even charter rate for these months, i.e. the required charter rate in order to make
it desirable and profitable to schedule installation outside the summer months. For
example, the results in Table 9.22 suggest an 9% decrease of charter rates during
spring, based on an average of the three cases. If charter rates are reduced to
this level a wind farm owner can accept more delay in the schedules and thus a
longer total project duration without increasing the total charter costs. Another
possible charter strategy, which was mentioned in Chapter 2, is to schedule only
parts of the installation to spring or autumn. One applied strategy is to install
sub structures during the winter months, i.e. October-March, and tower and top
structure during the summer. This strategy can reduce the required length of a
charter period during summer when charter rates are at the highest and could thus
result in a more profitable solution. This can be studied with a similar approach as
just presented by solving separate problems for installation of sub structure and the
tower and top structure.
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Chapter 10

Concluding Remarks

The problem studied in this thesis is a fleet size and mix problem for the installa-
tion phase of an offshore wind farm. Specialized vessels with high charter rates are
required to perform the installation of offshore wind turbines which makes the costs
related to the vessel fleet the second largest part of the total installation cost. Opti-
mizing the vessel fleet will contribute to a reduction in installation costs, a problem
which consists of creating schedules for each vessel in order to decide on the type
and number of vessels needed to complete the installation of every turbine in the
wind farm. Normally these decisions are taken several months or years in advance
of the installation process and can be regarded as strategic decisions.

Two time discrete deterministic mathematical models are formulated to solve the
problem, one original model and one reformulated pattern based model which gen-
erates patterns a priori and then finds the best combination of patterns. Three
methods are developed to generate patterns, one exact method to find all feasible
patterns and two heuristic methods where only a subset of the most promising pat-
terns are generated. The models minimize the charter costs, find the optimal vessel
fleet, and return a schedule for each vessel. Schedules include information on when
and which activities the vessels have to perform.
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The computational study reveals that the original model performs poorly and only
solves small test instances with four turbines to optimality. The pattern based
model performs much better and is able to solve test instances of realistic size,
e.g. wind farms of up to 110 turbines and a vessel pool of up to ten vessels. To
solve the largest test instances a strategy which restricts the possible start times for
the charter periods to once a week is implemented. Only allowing charter periods
to start every 7th day is considered more realistic for a strategic decision tool and
improves the solutions in terms of both duality gap and CPU time with less than
3% increase in the objective value. Implementing a guided search strategy also
improves the solution with up to 1 400 seconds reduction in CPU time and up to a
10% reduction in the duality gap. Symmetry breaking inequalities are added to the
model formulation in order to reduce the additional amount of symmetry introduced
to the problem when increasing the vessel pool with identical vessels. The results
show that the effect of adding these inequalities increase with the number of identical
vessels, e.g. for a vessel pool with five vessels the duality gap improves by more than
50%.

The heuristic pattern generation methods reduce the number of generated patterns
by roughly 1/3 for the Complete Turbine Heuristic (CTH) and 1/2 for the Precedence
Heuristic (PH). The results with PH and CTH show a good trade-off between the
improved duality gap and the increased objective value. By combining the heuristic
pattern generation with restrictions on the charter start time to once a week, the
solutions are further improved and returns the optimal solution for more than 90%
of the test instances. All proposed improvement strategies are combined in the
robustness study. The robustness test concludes that measures need to be taken
in order to create robust schedules with reduced chance of delay. Two different
robustness strategies are proposed, one which increases the processing time of all
installation activities and one which adds slack to the end of each pattern. Both
strategies improve the robustness of the solutions, however, based on the results
presented in this thesis the strategy of adding slack to each pattern seems to be the
preferred option. The added slack improves the robustness in the schedules by 17%
with only a 10% increase in the objective value.
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Chapter 11

Future Research

Research within the installation phase of offshore wind farms is relatively limited
and the fleet size and mix problem of the optimal installation fleet is no exception.
This thesis explores some of the issues and challenges related to the installation
phase and the installation fleet, but it also arises some questions which need to be
further researched. These questions can be grouped in two groups; those related to
how realistic the problem is modeled and those related to the optimization aspects
and how to improve the model in this thesis.

To formulate a mathematical model several assumptions have been made in order
to make the problem more manageable and some details in the real life problem are
therefor omitted. However, to make the model even more realistic and to create a
more detailed picture of the problem, some of these simplifications can be reconsid-
ered. The treatment of weather is one such simplification of the real world problem.
In the formulated models the weather is handled as a deterministic parameter, but
is in reality an uncertain parameter. A stochastic expansion of the model could thus
be studied. Another simplification is done in the representation of weather data.
In real life, different activities have different requirements for wind speed and wave
height, and some activities are more sensitive to wind speed while other are more
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sensitive to wave height. A more realistic version of the model can incorporate more
detailed weather data. Other details about the problem which can be studied in the
future includes varying loading times which more realistically reflects the number
of components that are loaded, include a larger part of the value chain, for example
the choice of onshore port(s), and fluctuating charter rates throughout the planning
horizon. Finally it would be interesting to implement the possibility of using ships
that cooperate, i.e. one vessel is stationed at the offshore site while another vessel
travels back and forth between the offshore site and the onshore port to pick up
components and feed the stationed vessel.

As pointed out in Chapter 7, the number of patterns will increase rapidly if the
vessel deck space capacity increases. This will increase the problem size and create
difficulties when solving the pattern based model. In addition, it will cause an expo-
nential increase in the CPU time for the pattern generation program. To overcome
this limitation different solution methods should be evaluated, and could include
both heuristic solution methods and solution methods based on dynamic column
generation.
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Appendix A

Mathematical Model

Sets:

V Set of vessels
V J Subset of jack-up vessels
C Set of components
Av Set of all activities vessel v can perform
AI

v Subset of all installation activities vessel v can perform
T Set of time periods
L Set of all possible loading sets
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A. Mathematical Model

Parameters:

CF ix
v Fixed cost of vessel v

CV
v Variable cost of vessel v

P Penalty cost of prolonging the total installation time
N Total number of turbines in the offshore wind farm
Aav Activity matrix; 1 if vessel v can perform activity a, 0 otherwise
Tav Processing time for vessel v performing activity a
WR

av Weather restrictions for vessel v performing activity a
Wt Weather realization in time period t

LMax
c Maximum number of component c that can be loaded on any vessel

Bcl Number of components c in loading set l
Mtc Big M used in the loading constraints
NComp

ac Number of components c in installation activity a
T Start

vca Shift in start time for vessel v performing installation of
component c in activity a

TEnd
vca Shift of completion time for vessel v performing installation of

component c in activity a
Pc1c2 Precedence matrix; 1 if there is a precedence between component c1

and c2 , 0 otherwise

Decision variables:

xvt 1 if vessel v is chartered in time period t, 0 otherwise
zvat 1 if vessel v starts performing activity a in time period t

δvlt 1 if vessel v is loaded with loading set l in time period t, 0 otherwise
αv 1 if vessel v is included in the optimal fleet, 0 otherwise
svt 1 if vessel v starts operating in time period t, 0 otherwise
evt 1 if vessel v finish operating in time period t, 0 otherwise
vct Number of components c in progress at time period t

wct Number of completed components c at the end of time period t

uvt Number of completed jack-up activities performed by vessel v in time t
dvt Number of completed jack-down activities performed by vessel v in time t
sT ot Project start time, the first time period any vessel is chartered
eT ot Project end time, the last time period any vessel is chartered
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min
Z

∑
v∈V

CF ix
v αv︸ ︷︷ ︸
a

+
∑
v∈V

∑
t∈T

CV
v (t evt − t svt)︸ ︷︷ ︸

b

+ P (eT ot − sT ot)︸ ︷︷ ︸
c

(A.1)

∑
a∈Av

t∑
t′=t−Tav+1

zvat′ ≤
t∑

t′=1
svt′ v ∈ V, t ∈ T (A.2)

∑
a∈Av

zva(t−Tav) ≤
|T |+1∑
t′=t

evt′ v ∈ V, t ∈ {1, ... , |T |+ 1} (A.3)

∑
t∈T

(t evt − t svt) ≥ 0 v ∈ V (A.4)∑
t∈T

svt = αv v ∈ V (A.5)

|T |+1∑
t=1

evt ≤ 1 v ∈ V (A.6)∑
t∈T

t svt + |T |(1− αv) ≥ sT ot v ∈ V (A.7)

|T |+1∑
t=1

t evt ≤ eT ot v ∈ V (A.8)

eT ot ≥ sT ot (A.9)
t∑

t′=1
svt′ −

t∑
t′=1

evt′ = xvt v ∈ V, t ∈ T (A.10)

∑
v∈V

∑
a∈AI

v

t−T Start
vca∑

t′=1
zvat′NComp

ac − vct = 0 c ∈ C, t ∈ T (A.11)

∑
v∈V

∑
a∈AI

v

t+T End
vca −Tav∑
t′=1

zvat′NComp
ac − wct = 0 c ∈ C, t ∈ T (A.12)

Pc1c2(vc1t − wc2t) ≤ 0 c1, c2 ∈ C, t ∈ T (A.13)
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wc|T | ≥ N c ∈ C (A.14)
t∑

t′=t−Tav+1
zvat′ ≤ max{0,WR

av −Wt + 1} v ∈ V, a ∈ Av, t ∈ T (A.15)

∑
a∈AI

v

t−Tav+1∑
t′=1

zvat′NComp
ac −

∑
l∈L

t−TRv+1∑
t′=1

Bclδvlt′ ≤ 0 c ∈ C, v ∈ V, t ∈ T (A.16)

∑
l∈L

t−1∑
t′=1

Bclδvlt′ −
∑

a∈AI
v

t−Tav+1∑
t′=1

zvat′NComp
ac ≤Mtc(1−

∑
l∈L

δvlt) c ∈ C, v ∈ V, t ∈ T (A.17)

zvRt =
∑
l∈L

δvlt v ∈ V, t ∈ T (A.18)∑
l∈L

δvlt − xvt ≤ 0 v ∈ V, t ∈ T (A.19)

uvt − dvt ≤ 1 v ∈ V J , t ∈ T (A.20)
uvt − dvt ≥ 0 v ∈ V J , t ∈ T (A.21)
uv|T | − dv|T | = 0 v ∈ V J (A.22)
t−TUv+1∑

t′=1
zvUt′ − uvt = 0 v ∈ V J , t ∈ T (A.23)

t−TDv+1∑
t′=1

zvDt′ − dvt = 0 v ∈ V J , t ∈ T (A.24)∑
a∈AI

v

zvat ≤ uvt − dvt v ∈ V J , t ∈ T (A.25)

∑
a∈AI

v

t∑
t′=1

zvat′ ≤ uvt v ∈ V J , t ∈ T (A.26)

∑
a∈AI

v

t−Tav+1∑
t′=1

zvat′ ≥ dvt v ∈ V J , t ∈ T (A.27)

zvRt ≤ 1− uvt + dvt v ∈ V J , t ∈ T (A.28)
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xvt ∈ {0, 1} v ∈ V, t ∈ T (A.29)
zvat ∈ {0, 1} v ∈ V, a ∈ Av, t ∈ T (A.30)
δvlt ∈ {0, 1} v ∈ V, l ∈ L, t ∈ T (A.31)
αv ∈ {0, 1} v ∈ V (A.32)
svt ∈ {0, 1} v ∈ V, t ∈ T (A.33)
evt ∈ {0, 1} v ∈ V, t = {1, 2, 3, ... , |T |+ 1} (A.34)
vct ≥ 0 , integer c ∈ C, t ∈ T (A.35)
wct ≥ 0 , integer c ∈ C, t ∈ T (A.36)
uvt ≥ 0 , integer v ∈ V, t ∈ T (A.37)
dvt ≥ 0 , integer v ∈ V, t ∈ T (A.38)
sT ot ≥ 0 , integer (A.39)
eT ot ≥ 0 , integer (A.40)
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Appendix B

Decomposed Mathematical Model

Sets:

V Set of vessels
AI

v Set of all installation activities vessel v can perform
T Set of time periods
Pv Set of all feasible patterns for vessel v

vii



B. Decomposed Mathematical Model

Parameters:

CF ix
v Fixed cost of vessel v

CV
v Variable cost of vessel v

P Penalty cost of prolonging the total installation time
N Total number of turbines in the offshore wind farm
Bvtp 1 if vessel v is busy in time period t performing pattern p, 0 otherwise
Aavtp Number of completed installation activities of type a performed by

vessel v at time t in pattern p
T Start

p Start time for pattern p

TEnd
p End time for pattern p

Decision variables:

λp 1 if pattern p is performed, 0 otherwise
αv 1 if vessel v is included in the optimal fleet, 0 otherwise
svt 1 if vessel v starts operating in time t, 0 otherwise
evt 1 if vessel v finish operating in time t, 0 otherwise
sT ot Project start time, the first time period any vessel is chartered
eT ot Project end time, the last time period any vessel is chartered
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B. Decomposed Mathematical Model

min
Z

∑
v∈V

∑
t∈T

CF ix
v αv︸ ︷︷ ︸

a

+
∑
v∈V

∑
t∈T

CV
v (t evt − t svt)︸ ︷︷ ︸

b

+ P (eT ot − sT ot)︸ ︷︷ ︸
c

(B.1)

∑
p∈Pv

Bvtp λp ≤
t∑

t′=1
svt′ v ∈ V, t ∈ T (B.2)

∑
p∈Pv

Bvtp λp ≤
|T |∑

t′=t+1
evt′ v ∈ V, t ∈ T (B.3)

∑
t∈T

(t evt − t svt) ≥
∑

p∈Pv

(TEnd
p − TStart

p )λp v ∈ V (B.4)

∑
p∈Pv

Bvtp λp ≤ αv v ∈ V, t ∈ T (B.5)

∑
t∈T

svt = αv v ∈ V (B.6)∑
t∈T

evt ≤ 1 v ∈ V (B.7)∑
t∈T

t svt + |T | (1− αv) ≥ sT ot v ∈ V (B.8)∑
t∈T

t evt ≤ eT ot v ∈ V (B.9)

eT ot − sT ot ≥ 0 (B.10)∑
v∈V

∑
p∈Pv

A(a+1)vtp λp −
∑
v∈V

∑
p∈Pv

Aav(t−1)p λp ≤ 0 a ∈ AI
v, t ∈ T (B.11)

∑
v∈V

∑
p∈Pv

Aav|T |p λp ≥ N a ∈ AI
v (B.12)

λp ∈ {0, 1} p ∈ Pv (B.13)
αv ∈ {0, 1} v ∈ V (B.14)
svt ∈ {0, 1} v ∈ V, t ∈ T (B.15)
evt ∈ {0, 1} v ∈ V, t ∈ T (B.16)
sT ot ≥ 0 , integer (B.17)
eT ot ≥ 0 , integer (B.18)
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Appendix C

Test Results

Table C1: Original Model - Increasing number of turbines. The test instances T20-
T40 are only solved with the LP relaxation of the model in order to compare the
pattern based model to these results

Instance LP relaxation Original variables Original constraints Nodes

T3 829 6 716 7 701 99 184
T4 1 109 6 716 7 701 182 777
T5 1 388 6 716 7 701 434 712
T6 1 668 6 716 7 701 427 402
T7 1 948 6 716 7 701 419 182
T18 9 855 6 716 7 701 394 399
T19 11 193 6 716 7 701 376 195

T20 2 807 13 536 15 513
T30 11 122 13 536 15 513
T39 29 013 13 536 15 513
T40 31 481 13 536 15 513

xi



C. Test Results

Table C2: Original model - Varying start times

Instance Primal bound Dual bound LP relaxation Original columns

S1T3 6 899 6 899 837 6 594
S2T3 6 980 6 981 852 6 532
S3T3 6 981 6 981 869 6 512
S7T3 7 143 7 143 941 6 488
S14T3 7 306 7 306 1 108 6 480

Table C3: Original model - Start times every 7th day

Instance Primal bound Dual bound LP relaxation Original variables

S7T3 7 143 7 143 941 6 488
S7T4 7 869 7 869 1 254 6 488
S7T5 13 104 8 913 1 571 6 488
S7T6 14 016 9 940 1 887 6 488
S7T7 18 170 10 936 2 207 6 488

Table C4: Patter based model - Increasing number of turbines

Instance Primal bound Primal bound LP relaxation Original variables Original constraints

T3 6 899 6 899 2 917 4 599 1 112
T4 7 699 7 699 3 889 4 599 1 112
T5 85 559 8 559 4 861 4 599 1 112
T6 10 033 10 033 5 833 4 599 1 112
T7 11 323 11 323 6 805 4 599 1 112
T18 28 351 28 351 24 544 4 599 1 112
T19 - - - 4 599 1 112

T20 30 511 30 511 15 124 10 081 2 228
T30 47 361 47 361 36 552 10 081 2 228
T39 68 744 68 744 65 368 10 081 2 228
T40 - - 77 557 10 081 2 228

xii



C. Test Results

Table C5: Pattern based model - Increasing vessel pool size

Instance Primal bound Dual bound LP relaxation Original variables

F3T20 29 653 29 653 14 949 18 674
F3T30 41 874 39 878 22 424 18 674
F3T40 56 471 50 361 30 248 18 674
F3T50 73 887 69 148 49 371 18 674
F3T60 91 645 87 635 73 108 18 674
F3T70 114 281 114 024 101 789 18 674
F3T80 - - 18 674

F5T20 29 653 27 855 14 949 28 753
F5T30 42 858 37 123 22 424 28 753
F5T60 88 779 76 075 45 372 28 753
F5T80 120 723 107 488 85 160 28 753
F5T90 136 484 130 322 109 656 28 753
F5T100 160 946 156 058 137 231 28 753
F5T110 184 168 180 838 170 203 28 753
F5T150 - - 28 753

F10T30 43 958 31 235 22 424 57 504

xiii



C. Test Results

Table C6: Pattern based model - Start times every 7th day

Instance Primal bound Dual bound LP relaxation Original variables

S7F3T20 30 248 30 248 15 222 17 987
S7F3T30 42 269 42 269 22 833 17 987
S7F3T40 57 970 57 625 42 425 17 987
S7F3T50 74 574 74 574 56 776 17 987
S7F3T60 91 995 91 995 77 502 17 987
S7F3T70 114 887 114 887 109 062 17 987
S7F3T80 - - 17 987

S7F5T20 30 248 30 248 15 222 27 608
S7F5T30 42 269 42 267 22 833 27 608
S7F5T60 87 433 87 043 48 599 27 608
S7F5T80 120 294 120 042 90 491 27 608
S7F5T90 136 914 136 914 116 254 27 608
S7F5T100 162 284 162 284 146 159 27 608
S7F5T110 187 156 187 156 181 804 27 608
S7F5T150 - - - 27 608

S7F10T30 42 783 34 098 22 833 55 214

Table C7: Pattern based bodel - Symmetry breaking inequalities

Instance Primal bound Dual bound LP relaxation Nodes

F3T30 41 989 39 508 22 424 49 428
F5T30 41 874 40 658 22 424 44 564
F10T30 43 928 38 250 22 424 12 890

xiv



C. Test Results

Table C8: Pattern based model - Guided search

Instance Primal bound Dual bound LP relaxation Nodes

T20 30 511 30 511 15 124 16 353
T30 47 361 47 361 36 552 1 013
T39 68 744 68 744 65 368 7

F3T30 41 474 40 507 22 424 82 546
F5T30 42 067 36 883 22 424 59 589
F10T30 43 190 35 229 22 424 24 781

Table C9: Heuristic pattern generation - F3Tw

Primal bound Dual bound LP relaxation Original variables

C
T

H

F3T20 29 723 29 723 15 080 7 646
F3T30 42 241 42 241 22 620 7 646
F3T40 57 461 57 455 31 778 7 646
F3T50 75 130 73 141 51 615 7 646
F3T60 94 683 93 260 76 200 7 646
F3T70 117 300 117 292 107 035 7 646
F3T80 - - 7 646

PH

F3T20 29 653 29 653 14 978 9 826
F3T30 41 989 41 989 22 467 9 826
F3T40 56 172 55 637 31 450 9 826
F3T50 74 364 71 300 51 190 9 826
F3T60 91 126 91 126 75 649 9 826
F3T70 117 098 117 091 106 497 9 826
F3T80 - - 9 826

xv



C. Test Results

Table C10: Heuristic pattern generation - F5Tw

Instance Primal bound Dual bound LP relaxation Original variables

C
T

H

F5T20 29 723 29 721 15 080 12 211
F5T30 42 241 41 441 22 620 12 211
F5T60 90 720 78 838 47 665 12 211
F5T80 121 562 118 797 88 910 12 211
F5T90 142 701 139 692 114 280 12 211
F5T100 167 284 167 674 143 014 12 211
F5T110 187 981 187 965 178 615 12 211
F5T150 - - 12 211

PH

F5T20 29 653 28 873 14 978 15 481
F5T30 41 989 39 265 22 467 15 481
F5T60 88 174 76 955 47 175 15 481
F5T80 120 573 110 991 88 221 15 481
F5T90 140 113 133 317 113 463 15 481
F5T100 167 307 159 412 142 275 15 481
F5T110 186 960 186 960 177 752 15 481
F5T150 - - 15 481

xvi



C. Test Results

Table C11: Heuristic pattern generation - S7F3Tw

Primal bound Dual bound LP relaxation Original variables

C
T

H

S7F3T20 30 423 30 421 15 395 6 959
S7F3T30 42 521 42 521 23 097 6 959
S7F3T40 59 240 59 235 34 256 6 959
S7F3T50 75 803 75 803 55 286 6 959
S7F3T60 95 712 95 712 81 302 6 959
S7F3T70 119 310 119 310 115 855 6 959
S7F3T80 - - 6 959

PH

S7F3T20 29 653 29 653 14 978 9 826
S7F3T30 41 989 41 989 22 467 9 826
S7F3T40 56 172 55 705 31 450 9 826
S7F3T50 74 364 71 239 51 190 9 826
S7F3T60 91 126 91 126 75 648 9 826
S7F3T70 117 098 117 091 106 497 9 826
S7F3T80 - - - 9 826

xvii



Table C12: Heuristic pattern generation - S7F5Tw

Instance Primal bound Dual bound LP relaxation Original variables

C
T

H

S7F5T20 30 423 30 423 15 398 11 066
S7F5T30 42 521 42 521 23 097 11 066
S7F5T60 88 884 88 884 51 384 11 066
S7F5T80 123 541 123 539 95 106 11 066
S7F5T90 142 981 142 970 121 954 11 066
S7F5T100 168 233 168 233 155 140 11 066
S7F5T110 - - 11 066
S7F5T150 - - 11 066

PH

S7F5T20 30 248 30 248 15 284 14 336
S7F5T30 42 269 42 269 22 926 14 336
S7F5T60 87 433 87 433 50 778 14 336
S7F5T80 120 714 120 712 94 273 14 336
S7F5T90 140 323 140 317 121 000 14 336
S7F5T100 166 775 166 775 154 313 14 336
S7F5T110 - - 14 336
S7F5T150 - - 14 336
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D. Minutes Fred.Olsen Renewables and Windcarrier

Minutes Fred. Olsen Windcarrier - September 20th 2016  
 
What are your biggest challenges? 
One of the biggest challenges in the industry is the cost related to installation and operation of 
offshore wind farms. There are also some political challenges, i.e allocation of subsidies. A land 
based wind farm ( 800MW ) have succeeded in driving down costs to approximately one billion 
for 25-30 turbines. This means that the cost level is approaching a level which is able to 
compete with regular electricity prices (30-40 øre).  
 
As an economical support and political initiative, green certificate are given to “green-energy” 
projects. However, this arrangement is considered being ended by 2020.  
 
Offshore operation: 
The installation costs of offshore wind farms are generally very high, approximately three times 
higher than a land based wind farm. This makes higher demands on the revenue of generating 
electricity in order to cover the expenses. However, offshore wind has some advantages. 
Because of more stable winds, the capacity factors increase with up to 50%.  
 
Situations called Waiting-on-weather(WoW), when the weather conditions are so bad that no 
operations can be performed, increases the cost considerably. As a way of reducing the risk of 
unexpected days with WoW situations, Fred.Olsen is including a certain number of days  in their 
schedules that can be used in case of delays.  
 
The installation time for an offshore wind farm is much longer than for a land based wind farm 
due to harder operating conditions offshore. A normal assembly strategy is to assemble as 
many of the components in port before transportation out to the offshore site. Such a strategy 
will reduce the required number of lifts and trips back and forth the port, which might save 
money.  
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E. Minutes Statoil ASA I

Skype meeting with Statoil AS - September 19th 2016 
Foundation: 

The most commonly used foundation concept today consist of a monopile and a transition piece. 
Monopiles have a diameter of 7-8 m and a weight of approximately 800 kg. The large dimensions require 
large vessels for transporting the piles from port to the offshore site. Statoil uses vessels that can transport 
between 3 and 4 turbines per trip and mounts one foundation each day. Before the tower can be mounted, a 
transition piece is installed on top of the monopile. This phase of the installation takes about 4-5 months. At 
the end of the installation of foundations, when approximately 3/2 of the foundations are installed, the cable 
installation can begin. Special designed vessels are used for cabling both between each turbine and from the 
park to shore.  

For floating wind turbines, the whole turbines is mounted in a port and then special vessels transport 
the whole turbine out to the offshore site where it is anchored.  

In Statoil's projects, they usually finish the installation of foundations and cabling before they start 
installing towers and top-structures. Normally, these two phases are scheduled in different seasons of the 
year. Performing both phases in parallel might cause complexity because the activities become more 
dependent on each other and delays in one process might cause delays in other processes. Having vessels 
waiting in port without performing any installation activity will increase the cost rapidly due to high charter 
rates. 

Another installation strategy is having vessels working together, one transporting components from 
port to the offshore site where another vessel is anchored and installs the components. One challenge for 
this strategy is to have two vessels cooperating when the movement patterns are unbalanced.  
 
Challenges: 
In general, one wishes to to assemble as much of the turbine onshore as possible, because it is cheaper to 
assemble components in port. The installation processes offshore are restricted by strict wheather 
requirements, especially the lifts because strict wind speed requirements are imposed. Cabling is the 
installation activity with less weather requirements.  

The larger the vessels, the less weather restrictions are imposed. This leads to a trade off between 
time and cost because the large vessels are more expensive, but use less time on the installation.  

All in all, the complexity in the installation phase is the biggest challenge. Many activities are to be 
coordinated and are dependent on each other. The most difficult part to install is the turbine because of all 
the lifts.  
 
 
Time: 
Normally, one wishes to avoid installing during winter months because of harsh weather. However, there are 
some benefits. Charter rates are lower during winter due to a lower demand. With lower charter rates, the 
project can tolerate more days with bad weather and still be profitable. 

Decisions on the fleet size and mix are usually taken 1,5 - 1 year in advance of a project. If the market is 
bad, the decisions are taken even earlier (2-3 years in advance).  
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F. Minutes Statoil ASA II

 

Skype meeting Statoil ASA - February 2nd 2017 
Offshore Wind Farm Installations:  
Today, normal installation time is roughly 2 years. However, Dong Energy, which is a leader within offshore 
wind, have managed to install wind farms in one year by applying the just-in-time strategy. Assembly of the 
top structure is conducted by first mounting the hub and then install the blades one at a time. Installation of 
blades can, with today’s technology, be conducted in wind speeds up to 12 m/s. 
 
Trends:  
The offshore wind industry is in constant development. Turbine design is changing rapidly and the size of 
these are constantly increasing. To be able to transport larger components the vessels needs to increase 
too. The offshore wind industry has been uncertain and thus development of specialized designed vessels 
has been slow. However, the industry is becoming more stable which makes investments in specialized 
vessels safer. Sites close to shore are mostly developed and new sites are often further out with longer 
distance to shore. To cope with the increasing distance to shore, the deck space capacity is essential and 
larger vessels will be required. Increased size is required in order to reduce the number of trips back and 
forth between the offshore site and the onshore port. 
 
Vessels:  
The costs related to the installation of offshore wind farms consist of several cost terms, including vessel 
charter costs. Since the costs related to vessels are relatively high, efficient use and resource planning is 
important. The use of SPIVs is limited when it comes to foundation installation due to the foundation size 
and weight. Several of today’s SPIVs lack deck space and lifting capacity to install foundations. It is normal 
to use HLVs to install foundations, but the it is important to minimize the charter period for HLVs as much as 
possible due to the high charter rates. Specialized designed HLVs for the offshore wind industry with extra 
large deck capacities. Jacking vessel legs are in the range 60-80 m and the hull can stop at any height. It is 
not necessary to lift the hull all the way to the top of the jacking legs. However, there are limitations in how 
far above the sea level the hull can be jacked due to balancing and gravity. Jacking requires knowledge 
about the geotechnical conditions at the site and the water depth at the site. Cost of installation vessels and 
cable vessels are roughly the same. 
 
Vessel Charter Strategies:  
Charter strategies for vessels depends in characteristics of the wind farm being installed, i.e. distance to 
shore and water depth. If the farm is located far from shore, one commonly used strategy is to have one or 
several vessels stationed at the offshore site and use feeder vessels to transport components from the 
onshore port to the offshore site. If the farm is located close to shore it might be more profitable to apply 
smaller installation vessels with lower charter rates, which travels back and forth between the offshore site 
and onshore port by themselves to pick up components and install them.  
 
Challenges related to installation projects:  
A main challenges related to the installation phase is scheduling of activities and planning the amount of 
time needed for each activity. The industry focuses on float between activity a and activity b, meaning the 
time between the two activities. They aim for a just-in-time strategy in order to reduce storage costs in port, 
however the just-in-time strategy can rapidly become very expensive if one or several installation processes 
are delayed. In general: It is important to schedule enough float between all activities, but at the same time 
minimize the float as much as possible in order to limit unnecessary high costs.The overall goal for 
operators within the offshore wind installation industry is to reduce the risk of delay. 
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