
Autonomous UAV surveillance of a ship’s path with 

MPC for Maritime Situational Awareness 
 

Fabio A. A. Andrade
1,2,3

, Rune Storvold
1,2

, Tor Arne Johansen
1 

 
1
Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim, Norway 

2
Remote Sensing, Satellites and UAS, Norut Northern Research Institute, Tromsø, Norway 

3
Center of Technical and Scientific Education, Brazilian Naval Academic, Rio de Janeiro, Brazil 

fabio@ieee.org, rune.storvold@norut.no, tor.arne.johansen@ntnu.no 

 

 
Abstract—Maritime Situational Awareness is crucial in 

maritime operations to identify threats and to deal with them as 

soon as possible. These threats can be pirates in shipping 

operations, icebergs when sailing in the northern sea routes, or 

even unknown vessels or objects that might be on the ship’s path. 

A solution to identify these threats is the use of UAV’s to overfly 

the ship’s planned path. This solution is described in this paper, 

using an autonomous fixed wing UAV. Based on the provided 

ship’s planned path, the UAV should autonomously map the area 

close to the ship track. To do that, an optimization problem is 

solved using Model Predictive Control, where the turn rate for 

the next time period is optimized. Based on the turn rate, the 

future path of the UAV is calculated and the waypoints are sent 

to the autopilot. This application is thoroughly tested using a 

Software In Loop environment, where an aircraft model is used 

with the autopilot’s simulation. The results show that 

surveillance performance is improved if the UAV has 

information about the ship’s velocity in addition to position. 
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I.  INTRODUCTION 

The purpose of Maritime Situational Awareness [1] is to 
develop the ability to identify existing threats as early and as 
far as possible. This is done by integrating intelligence, 
surveillance, observation, and navigation systems, all 
interacting in the same operational framework. For this 
capability to be effective, it is necessary to build a structure 
covering data collection and monitoring using air and naval 
sensors, and accurate analyzes of the data, allowing rapid and 
accurate response. 

To build this capability, UAV’s are well suited tools that 
can be equipped with a wide variety of sensors, such as 
cameras or radars. The cameras can be infrared, RGB, or 
multispectral. One application of these sensors is the tracking 
of floating elements in the sea [2], like drifting objects, enemy 
vessels, icebergs and others. 

This information can be used in collision avoidance 
systems [3], where the vessel will find a new path based on the 
obstacles’ positions; military operations [4], where the threats 
or targets can be identified earlier; ice management [5], to map 
the features of ice or icebergs drifting into the path of the 

vessel; and search and rescue [6], where the vessel needs to 
find missing crew. 

 In seismic data collection, vessels tow arrays of streamers 
that might be up to one kilometer wide and 5 kilometer long. 
When towing these arrays the vessel must keep steady 
direction and speed, hence to prevent damage to the streamers 
the area upstream must be inspected for icebergs and growlers 
and in case of suspected damage to streamers the array and 
cables themselves need to be inspected while moving [7]. 

Usually, the vessel is the center of the maritime operation, 
which as exemplified before, can be a shipping mission, a 
search and rescue, or a military surveillance operation. To 
collect the needed data to support the chosen operation, the 
UAV must fly over a region according to the vessel’s planned 
path and speed, and in the case of scouting for growlers, 
combined with knowledge on i.e. potential drift velocities, in a 
cooperative way ensuring safety margins on the captured data 

Therefore, in the situation proposed in this paper, a fixed 
wing UAV must fly over the ship’s planned path at a certain 
distance ahead of the vessel to allow for time for the ship’s 
captain to timely react to findings. For instance, if it is needed 
some information four minutes in advance, the UAV has to 
overfly the predicted position of the ship after four minutes 
from now. For the UAV to decide its optimum path to cover 
that area, an optimization problem has to be solved to minimize 
the error between the predicted and the desired position that the 
UAV must be. To solve this problem, using a Model Predictive 
Control (MPC) is beneficial, because it can consider the 
predicted output, based in current measurements, to fit the 
control inputs in a better manner. In this problem, the intended 
velocity of the vessel can be used to predict its future positions 
in order to decide the UAV’s optimum path. 

There are some researches in the use of MPC techniques in 
the field of UAVs, as in [8], where a UAV was used to follow a 
linear path. However, it did not take into account time 
constraints, so the problem was treated as a path following 
problem. [9] also shows a solution to track moving objects, but 
it optimizes the path according to the waypoints sequence, 
which has much more computational cost than the solution 
presented in this paper, where only the turn rate is controlled. 
In [10], a MPC algorithm running in a ground station is used to 
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control the UAV turning radius and the camera’s gimbal to 
track objects in the sea. The solution in this paper brings a 
similar approach but to a different problem, also treating the 
sensors information, e.g., the angular velocities, in a more 
beneficial way to achieve more realistic results. 

The presented system, with the challenge of integrating 
those different software components and to make it possible to 
use it in an onboard real time optimization problem, introduces 
an effective solution for many types of autonomous tracking 
problems, bringing a beneficial result especially when the 
motion of the tracking object is provided. 

The UAV’s path is optimized with MPC computing its turn 
rate at a constant altitude. The optimization problem is 
implemented using ACADO for MATLAB, a user-friendly 
interface of the ACADO Toolkit, which is a software 
environment and algorithm collection for automatic control and 
dynamic optimization, implemented in C++ [11]. MATLAB is 
used to hold the main software, which does all the integration 
between the simulated ship’s data, the MPC and the autopilot. 

ArduPilot
1
 is an open source autopilot that supports many 

types of robotic vehicles, including the fixed wing UAV used 
in this application. It is possible to send commands to the 
ArduPilot or to read the UAV sensors via Micro Air Vehicle 
Communication Protocol (MAVLink

2
).  The ArduPilot has also 

a Software In The Loop simulator that uses a flight dynamics 
model to get the sensor data. The JSBSim

3
 was used for the 

flight dynamics model with the configuration of the X8, a fixed 
wing UAV for long range surveillance which can fly up to 3 
hours. 

To communicate with the autopilot, the messages travel 
between MATLAB and the ArduPilot though DUNE

4 
[12], 

which is an open source robot framework developed by the 
Underwater Systems and Technology Laboratory (LSTS) of 
the University of Porto. Inter-Module Communication Protocol 
(IMC

5
) is then used for the messages between MATLAB and 

DUNE using the IMC Java library. 

Details of the system architecture are described in the next 
section. 

 

Fig. 1. System’s block diagram, simulation setup. 

II. SYSTEM DESCRIPTION 

Figure 1 shows the block diagram with the connections 
between all software components used in this system. 

The main input is the simulated ship’s planned path, where 
the position and velocity in the NED coordinate frame along 
the time were saved into a MATLAB data file. MATLAB also 
receives information from DUNE about the UAV state and 
uses it, combined to the ship’s planned path, to solve the 
optimization problem and send the waypoints to DUNE. 
DUNE, in its turn, sends the waypoints to the ArduPilot and 
gets the information about the UAV sensors. The ArduPilot 
commands the UAV, which has its dynamics simulated by 
JSBSim. Besides, a MAVProxy ground station is also used to 
control the UAV in GUIDED mode if needed. 

A. MATLAB Core Code 

The data file is loaded by the core code and the starting 
position of the ship is taken as the origin of the NED frame. 
Therefore, the correspondent latitude and longitude is defined. 
In sequence, the update rate of the waypoints is defined and 
also the time in advance when the ship should receive 
information from the UAV about its path. This time is used to 
calculate where the ship might be according to its planned path 
and then use that information as the desired location where the 
UAV should overfly. 

Position, velocity and attitude of the UAV are also 
necessary to be used as inputs to solve the two-dimension 
optimization problem, which assumes that the UAV will fly at 
a constant altitude. Therefore, the following information about 
the UAV is gotten from DUNE: 

 Origin of its local NED frame (lat, lon, altitude); 

 Position offset (x, y, z) of its NED frame origin; 

 Body-Fixed frame 2D linear velocities (u, v); 

 Euler angles (Roll (ϕ), Pitch (θ), Yaw (ψ)); and 

 Angular velocities over body-fixed frame (p, q, r). 

As the starting position of the ship is used in this 
application as the NED frame origin, it is needed to convert the 
UAV position in its local NED frame to the application’s NED 
frame. To do that, first it is made a conversion to geodetic 
coordinates (latitude and longitude) using the origin of the 
UAV’s Local NED frame and then it is made a conversion to 
the application’s NED frame using the ship’s starting position 
as the origin. The origin of the UAV’s Local NED frame is 
updated every one kilometer of distance that it moves from the 
previous origin. Besides, for all conversions, the World 
Geodetic System of 1984 (WGS 84) was used as the reference 
ellipsoid. 

Regarding the yaw rate, as a two-dimensional model is used 
in this optimization problem and the body-fixed angular 
velocity r, which is received from DUNE, is not the rate 
referring to the UAV’s yaw angle, the yaw rate has to be 
calculated using the relationship between the Euler-angle rates 

vector [ ̇  ̇  ̇]
 
 and the body-fixed angular velocity vector 

[     ]  as (1) [13].  



 

This is also needed because the UAV used in this 
application does not have a rudder and it uses roll to turn. 
Therefore, in the two-dimensional model described in the next 

section, the yaw rate r used is actually the yaw rate  ̇ obtained 
from (1). 
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Finally, after solving the optimization problem, the target 
waypoint is sent to DUNE using the “DesiredPath” function. In 
that function it is also possible to send a second waypoint as a 
backup that can be used in case there is a temporary 
communication problem. 

The overall description of the Core Code is shown in Figure 
2. The program repeats every chosen update time step and it 
runs until the last planned position of the ship is reached by the 
UAV. 

 

Fig. 2. Overall Core Code description. 

B. IMC Java library 

To send or receive IMC messages, IMC Java library is 
required to provide the necessary functions to MATLAB. 
Besides, in that protocol, the communication is done between 
nodes. Therefore, the core code has to be started as a IMC node 
and then connect to the desired node, in this case, the X8 UAV 
node in DUNE.  

C. DUNE 

DUNE is compatible with many different autopilots. In this 
application, as the ArduPilot is used, when DUNE receives the 
“DesiredPath()” command, it calls the Task responsible for the 
communication with the ArduPilot. However, the standard 
Task available in DUNE’s repository operates the UAV in 
GUIDED Mode. In that mode, the UAV starts to loiter when it 
reaches a certain distance from the UAV and never pass 
through the waypoint. This behavior would make impossible 
the proposed application.  

 

Fig. 3. X8 UAV. (Source: NTNU) 

Therefore, a change was made in DUNE’s ArduPilot Task, 
where the UAV could be operated in AUTO Mode. In the new 
Task, a mission containing the waypoint is sent to the autopilot. 
After the acknowledgement from the autopilot, a command to 
start the mission is then sent. 

D. ArduPilot Software In The Loop 

The ArduPilot works together with JSBSim. JSBSim 
simulates the behavior of the UAV in a real flight. The X8 
UAV (Figure 3) model [14] was used, taking into consideration 
the mass balance, ground reactions, propulsion, aerodynamics, 
buoyant forces, external forces, atmospheric effects and/or 
gravity. 

III. MODEL PREDICTIVE CONTROL 

Model Predictive Control (MPC) is a class of techniques to 
solve numerical optimization problems, controlling the input 
variable to minimize the deviations between a desired output 
and the predicted output in a finite time-horizon [15].  

In this application, the first assumption to be made is that 
the fixed wing UAV is controlled by an Autopilot system, 
which needs to be fed with the waypoints of the optimal flight 
trajectory. The MPC module is responsible to calculate this 
trajectory, based on the UAV’s and Ship’s attitude, position 
and velocity. 

A. UAV Dynamics 

Considering that the fixed wing UAV will fly in a constant 

altitude, maintained by the Autopilot, its dynamics is treated 

as two-dimensional motion problem (Figure 4). Therefore, the 

position and heading of the UAV can be expressed in the NED 

frame as 

     [           ]
T, (2) 

where      and      are the horizontal positions and   is the 

yaw angle. The velocities in the BODY frame and the rate of 

change of the yaw angle forms the following vector.  

     [     ]
T. (3) 

Besides, the relation between (2) and (3) is given by 

 ̇      ( )    , (4) 



 

where   ( ) is the rotation matrix between the BODY and 

NED frame as shown in (5). 
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The constraint of the system is the maximum turning rate 
(r) of the UAV. 

 

Fig. 4. UAV model in two dimensions. 

B. Ship Dynamics 

To use the ship dynamics in the MPC, a linear motion 
model is implemented based on the position and velocity of the 
ship in its intended path, at the instant the UAV should fly over 
that location. 

     
         

       
   (6) 

where       [           ]
T
 is the position of the ship on the 

path,   is the time between measurements and the velocity 

      [     ]
T
. 

C. Cost Function 

The Least Squares (LS) function (7) is used as the function 
to be minimized by the MPC algorithm. 
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where    *                         +
T

is the state vector. 

In this application, the LS function  (  ) is the distance 
between the UAV and the future ship’s position in its planned 
path as shown in (8). 
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IV. SIMULATED DATA 

Two simulated datasets with the ship’s path were 
generated. Both have the duration of 15 minutes. 

The first dataset was generated with fixed heading of -2π/3 
in NED frame and fixed velocity of 18 knots. 

The second has the same starting heading and velocity of 
the first one but it changes the direction two times. After going 
straight for some time, it makes a slight turn to the right, then it 
goes straight again and finally it turns left and it goes straight 
for the rest of the time. It also changes its velocity from 18 
knots to 21 knots half way.  

 

Fig. 5. Two simulated ship’s path 

Both datasets were generated for a simulation of a ship 
navigating close to Longyearbyen, Svalbard (Figure 5). 

V. SYSTEM CONFIGURATION 

The following parameters were chosen when running the 
application: 

 2 minutes between the ship’s current position and the 
desired position in its planned path to be overflown; 

 4 seconds as the update period for the UAV waypoints; 

 20 seconds of MPC Horizon; 

 10 MPC input steps; 

 6 seconds between the current position and waypoint; 

 Maximum of 30 iterations in the MPC optimization; 

 Maximum turn rate of 0.3 rad/s; 

 18 m/s of UAV velocity; and 

 500m of altitude. 

The reason to choose 4 seconds between each update is that 
if the time step is too small, the autopilot may set the waypoint 
as reached before the next update. As the cruise speed of the 
X8, which is 18 m/s, was chosen as the target velocity, if the 
UAV is flying straight, 4 seconds between each update means 
that the UAV will fly 72 meters until the next update.  



 

  
Fig 6. UAV path and error for constant ship velocity and heading using the ship model in the MPC 

  
Fig 7. UAV path and error for constant ship velocity and heading without using the ship model in the MPC 

  
Fig. 8. UAV path and error for varying ship velocity and heading using the ship model in the MPC 

 



 

Besides, the target waypoint is 6 seconds from the UAV’s 
current position, what means that it is expected that the 
waypoint is updated about 36 meters before the UAV reaches 
the target one. That choice was made because if the system 
wanted to wait the UAV to reach the waypoint or if it allowed 
the UAV to get very close to the waypoint, the UAV would 
start to sorely turn trying to reach the waypoint or even it could 
start to loiter around the waypoint without ever reaching it. 
This kind of behavior is harmful for the optimization, which 
should control the UAV in a smoothly way. 

For the MPC parameters, the choice of the maximum of 30 
iterations, 10 input steps and 20 seconds of horizon were due to 
hardware limitations for a fast waypoints update. However, as 
an update period of 4 seconds was used due to the ArduPilot’s 
uncommon behavior when the UAV is too close to the 
waypoint, this longer period of 4 seconds makes it possible to 
have better parameters if a fine tuning is done. However, as 
good results were achieved and the solution proved viable, it 
was found that the choice of the parameters was convenient 
and a fine tuning would not represent a significant 
improvement. 

Although the maximum turn rate of the X8 with the 
standard tuning is around 0.4 rad/s, if a value close to 0.4 is 
chosen, the UAV has an uncommon behavior because the MPC 
asks for too strong maneuvers. That uncommon behavior is due 
to the delay of the mission acknowledgement by the ArduPilot 
and also due to the inertia, for instance when the UAV is 
turning to the right and the control suddenly wants it to turn to 
the left. Therefore, a turn rate of 0.3 rad/s was chosen, but it 
can be fine-tuned with the other parameters to extract the best 
performance of the UAV. 

VI. RESULTS 

Figure 6 shows the path and the distance error of a UAV 
following the simulated ship’s path with constant velocity and 
heading. The ship dynamics’ model was considered in this 
simulation, using a constant velocity ship trajectory prediction. 
In the graph on the left, the ship’s path is shown in a dotted line 
while the UAV’s path is shown in a solid line. The “x” marker 
represents the origin of the ship. The right graph shows the 
error according to its variation along the path (q from 0 to 1). 

It is possible to notice that the UAV tries to overfly the path 
but as its velocity is higher than the ship’s, the UAV has to 
maneuver, crossing the path many times doing turns. The mean 
error was 217 meters in this case. 

When not using the ship’s model in the MPC (Figure 7), 
the UAV does much more 360º turns because the optimization 
problem does not consider the motion of the ship, so it does not 
know that the ship is moving forward. The error in this case 
was 265 meters, compared to 217 of the previous case when 
the ship’s model was considered, i.e., an improvement of 18% 
was achieved when considering the ship’s model. 

Even if the ship’s path is not just a straight and if its 
velocity changes along the path, the UAV had a good 
performance and the error was kept low, as shown in Figure 8. 

VII. DISCUSSION 

As this application was developed to run in an onboard 

assembly, the Software In Loop simulation is an viable way to 

test the integration of the different systems. For instance, there 

is no need to worry about communication delays between the 

systems as it will be running onboard the UAV. In the other 

hand, hardware processing performance has to be taken into 

account and that would be possible with a Hardware In Loop 

simulation. However, as the application was running in 

MATLAB installed in a laptop with Ubuntu with its graphic 

interface and also many processes that are useless for the 

application, for sure it will run smoothly in a dedicated board 

running a compiled code in python or C++. In this manner, it 

would be possible to have more MPC steps and also more 

iterations to achieve better results. 

Besides, it was noticed that just sending waypoints to the 

autopilot is not the best way to guide it. It would probably be 

better if the guidance was done by changing the UAV’s 

attitude and velocity. Even if that solution would demand a 

more complex model to be used in the MPC, the improvement 

might worth it. 

About the mission itself, during the development of this 

solution, it was glimpsed that it would be more useful if the 

UAV flew over an area around the ship’s planned path instead 

of overflying only the planned path as a line. Thus, it would be 

possible to detect objects that could be moving into the ship 

track [3]. Therefore, this will be implemented in future works. 

VIII. CONCLUSION 

In a cooperative mission with a ship and a UAV, a common 
use for the UAV is to use it to overfly an area of interest. In 
this problem, that area is around the ship’s planned path. 
Therefore, it has been defined that the UAV should overfly the 
position that the ship may be in 2 minutes from the current 
time. The UAV should control its turning rate to keep the 
distance from that position as minimum as possible. Then, 
according to the optimized turn rate, waypoints are generated 
to feed the autopilot. 

The path planning system based on Model Predictive 
Control has been shown very effective for the proposed 
problem. The UAV could keep its position very close to the 
ship’s path most of the time, sometimes moving away from it 
with strategic turns to get back to an optimum position. For the 
second dataset, where the ship changes its velocity and heading 
over time, the system also achieved a good result showing that 
the MPC can adapt to any behavior of a ship’s path. 

The difference between the results with and without using 
the ship’s model in the MPC also proved that it is fundamental 
to use the ship’s model to get a better performance. 

Besides, more simulations can be done for fine tuning, as 
changing the number of steps per second as well as using 
hardware in loop simulation aiming a flight test. 
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