
Autonomous UAV surveillance of a ship’s path with

MPC for Maritime Situational Awareness

Fabio A. A. Andrade
1,2,3

, Rune Storvold
1,2

, Tor Arne Johansen
1

1
Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim, Norway

2
Remote Sensing, Satellites and UAS, Norut Northern Research Institute, Tromsø, Norway

3
Center of Technical and Scientific Education, Brazilian Naval Academic, Rio de Janeiro, Brazil

fabio@ieee.org, rune.storvold@norut.no, tor.arne.johansen@ntnu.no

Abstract—Maritime Situational Awareness is crucial in

maritime operations to identify threats and to deal with them as

soon as possible. These threats can be pirates in shipping

operations, icebergs when sailing in the northern sea routes, or

even unknown vessels or objects that might be on the ship’s path.

A solution to identify these threats is the use of UAV’s to overfly

the ship’s planned path. This solution is described in this paper,

using an autonomous fixed wing UAV. Based on the provided

ship’s planned path, the UAV should autonomously map the area

close to the ship track. To do that, an optimization problem is

solved using Model Predictive Control, where the turn rate for

the next time period is optimized. Based on the turn rate, the

future path of the UAV is calculated and the waypoints are sent

to the autopilot. This application is thoroughly tested using a

Software In Loop environment, where an aircraft model is used

with the autopilot’s simulation. The results show that

surveillance performance is improved if the UAV has

information about the ship’s velocity in addition to position.

Keywords—UAV; Path Planning; Model Predictive Control

I. INTRODUCTION

The purpose of Maritime Situational Awareness [1] is to
develop the ability to identify existing threats as early and as
far as possible. This is done by integrating intelligence,
surveillance, observation, and navigation systems, all
interacting in the same operational framework. For this
capability to be effective, it is necessary to build a structure
covering data collection and monitoring using air and naval
sensors, and accurate analyzes of the data, allowing rapid and
accurate response.

To build this capability, UAV’s are well suited tools that
can be equipped with a wide variety of sensors, such as
cameras or radars. The cameras can be infrared, RGB, or
multispectral. One application of these sensors is the tracking
of floating elements in the sea [2], like drifting objects, enemy
vessels, icebergs and others.

This information can be used in collision avoidance
systems [3], where the vessel will find a new path based on the
obstacles’ positions; military operations [4], where the threats
or targets can be identified earlier; ice management [5], to map
the features of ice or icebergs drifting into the path of the

vessel; and search and rescue [6], where the vessel needs to
find missing crew.

 In seismic data collection, vessels tow arrays of streamers
that might be up to one kilometer wide and 5 kilometer long.
When towing these arrays the vessel must keep steady
direction and speed, hence to prevent damage to the streamers
the area upstream must be inspected for icebergs and growlers
and in case of suspected damage to streamers the array and
cables themselves need to be inspected while moving [7].

Usually, the vessel is the center of the maritime operation,
which as exemplified before, can be a shipping mission, a
search and rescue, or a military surveillance operation. To
collect the needed data to support the chosen operation, the
UAV must fly over a region according to the vessel’s planned
path and speed, and in the case of scouting for growlers,
combined with knowledge on i.e. potential drift velocities, in a
cooperative way ensuring safety margins on the captured data

Therefore, in the situation proposed in this paper, a fixed
wing UAV must fly over the ship’s planned path at a certain
distance ahead of the vessel to allow for time for the ship’s
captain to timely react to findings. For instance, if it is needed
some information four minutes in advance, the UAV has to
overfly the predicted position of the ship after four minutes
from now. For the UAV to decide its optimum path to cover
that area, an optimization problem has to be solved to minimize
the error between the predicted and the desired position that the
UAV must be. To solve this problem, using a Model Predictive
Control (MPC) is beneficial, because it can consider the
predicted output, based in current measurements, to fit the
control inputs in a better manner. In this problem, the intended
velocity of the vessel can be used to predict its future positions
in order to decide the UAV’s optimum path.

There are some researches in the use of MPC techniques in
the field of UAVs, as in [8], where a UAV was used to follow a
linear path. However, it did not take into account time
constraints, so the problem was treated as a path following
problem. [9] also shows a solution to track moving objects, but
it optimizes the path according to the waypoints sequence,
which has much more computational cost than the solution
presented in this paper, where only the turn rate is controlled.
In [10], a MPC algorithm running in a ground station is used to

1
ardupilot.org

2
mavlink.org

3
jsbsim.org

4
 lsts.fe.up.pt/toolchain/dune

5
 lsts.fe.up.pt/toolchain/imc

control the UAV turning radius and the camera’s gimbal to
track objects in the sea. The solution in this paper brings a
similar approach but to a different problem, also treating the
sensors information, e.g., the angular velocities, in a more
beneficial way to achieve more realistic results.

The presented system, with the challenge of integrating
those different software components and to make it possible to
use it in an onboard real time optimization problem, introduces
an effective solution for many types of autonomous tracking
problems, bringing a beneficial result especially when the
motion of the tracking object is provided.

The UAV’s path is optimized with MPC computing its turn
rate at a constant altitude. The optimization problem is
implemented using ACADO for MATLAB, a user-friendly
interface of the ACADO Toolkit, which is a software
environment and algorithm collection for automatic control and
dynamic optimization, implemented in C++ [11]. MATLAB is
used to hold the main software, which does all the integration
between the simulated ship’s data, the MPC and the autopilot.

ArduPilot
1
 is an open source autopilot that supports many

types of robotic vehicles, including the fixed wing UAV used
in this application. It is possible to send commands to the
ArduPilot or to read the UAV sensors via Micro Air Vehicle
Communication Protocol (MAVLink

2
). The ArduPilot has also

a Software In The Loop simulator that uses a flight dynamics
model to get the sensor data. The JSBSim

3
 was used for the

flight dynamics model with the configuration of the X8, a fixed
wing UAV for long range surveillance which can fly up to 3
hours.

To communicate with the autopilot, the messages travel
between MATLAB and the ArduPilot though DUNE

4
[12],

which is an open source robot framework developed by the
Underwater Systems and Technology Laboratory (LSTS) of
the University of Porto. Inter-Module Communication Protocol
(IMC

5
) is then used for the messages between MATLAB and

DUNE using the IMC Java library.

Details of the system architecture are described in the next
section.

Fig. 1. System’s block diagram, simulation setup.

II. SYSTEM DESCRIPTION

Figure 1 shows the block diagram with the connections
between all software components used in this system.

The main input is the simulated ship’s planned path, where
the position and velocity in the NED coordinate frame along
the time were saved into a MATLAB data file. MATLAB also
receives information from DUNE about the UAV state and
uses it, combined to the ship’s planned path, to solve the
optimization problem and send the waypoints to DUNE.
DUNE, in its turn, sends the waypoints to the ArduPilot and
gets the information about the UAV sensors. The ArduPilot
commands the UAV, which has its dynamics simulated by
JSBSim. Besides, a MAVProxy ground station is also used to
control the UAV in GUIDED mode if needed.

A. MATLAB Core Code

The data file is loaded by the core code and the starting
position of the ship is taken as the origin of the NED frame.
Therefore, the correspondent latitude and longitude is defined.
In sequence, the update rate of the waypoints is defined and
also the time in advance when the ship should receive
information from the UAV about its path. This time is used to
calculate where the ship might be according to its planned path
and then use that information as the desired location where the
UAV should overfly.

Position, velocity and attitude of the UAV are also
necessary to be used as inputs to solve the two-dimension
optimization problem, which assumes that the UAV will fly at
a constant altitude. Therefore, the following information about
the UAV is gotten from DUNE:

 Origin of its local NED frame (lat, lon, altitude);

 Position offset (x, y, z) of its NED frame origin;

 Body-Fixed frame 2D linear velocities (u, v);

 Euler angles (Roll (ϕ), Pitch (θ), Yaw (ψ)); and

 Angular velocities over body-fixed frame (p, q, r).

As the starting position of the ship is used in this
application as the NED frame origin, it is needed to convert the
UAV position in its local NED frame to the application’s NED
frame. To do that, first it is made a conversion to geodetic
coordinates (latitude and longitude) using the origin of the
UAV’s Local NED frame and then it is made a conversion to
the application’s NED frame using the ship’s starting position
as the origin. The origin of the UAV’s Local NED frame is
updated every one kilometer of distance that it moves from the
previous origin. Besides, for all conversions, the World
Geodetic System of 1984 (WGS 84) was used as the reference
ellipsoid.

Regarding the yaw rate, as a two-dimensional model is used
in this optimization problem and the body-fixed angular
velocity r, which is received from DUNE, is not the rate
referring to the UAV’s yaw angle, the yaw rate has to be
calculated using the relationship between the Euler-angle rates

vector [̇ ̇ ̇]

 and the body-fixed angular velocity vector

[] as (1) [13].

This is also needed because the UAV used in this
application does not have a rudder and it uses roll to turn.
Therefore, in the two-dimensional model described in the next

section, the yaw rate r used is actually the yaw rate ̇ obtained
from (1).

[

 ̇

 ̇
 ̇

] [

] [

] (1)

Finally, after solving the optimization problem, the target
waypoint is sent to DUNE using the “DesiredPath” function. In
that function it is also possible to send a second waypoint as a
backup that can be used in case there is a temporary
communication problem.

The overall description of the Core Code is shown in Figure
2. The program repeats every chosen update time step and it
runs until the last planned position of the ship is reached by the
UAV.

Fig. 2. Overall Core Code description.

B. IMC Java library

To send or receive IMC messages, IMC Java library is
required to provide the necessary functions to MATLAB.
Besides, in that protocol, the communication is done between
nodes. Therefore, the core code has to be started as a IMC node
and then connect to the desired node, in this case, the X8 UAV
node in DUNE.

C. DUNE

DUNE is compatible with many different autopilots. In this
application, as the ArduPilot is used, when DUNE receives the
“DesiredPath()” command, it calls the Task responsible for the
communication with the ArduPilot. However, the standard
Task available in DUNE’s repository operates the UAV in
GUIDED Mode. In that mode, the UAV starts to loiter when it
reaches a certain distance from the UAV and never pass
through the waypoint. This behavior would make impossible
the proposed application.

Fig. 3. X8 UAV. (Source: NTNU)

Therefore, a change was made in DUNE’s ArduPilot Task,
where the UAV could be operated in AUTO Mode. In the new
Task, a mission containing the waypoint is sent to the autopilot.
After the acknowledgement from the autopilot, a command to
start the mission is then sent.

D. ArduPilot Software In The Loop

The ArduPilot works together with JSBSim. JSBSim
simulates the behavior of the UAV in a real flight. The X8
UAV (Figure 3) model [14] was used, taking into consideration
the mass balance, ground reactions, propulsion, aerodynamics,
buoyant forces, external forces, atmospheric effects and/or
gravity.

III. MODEL PREDICTIVE CONTROL

Model Predictive Control (MPC) is a class of techniques to
solve numerical optimization problems, controlling the input
variable to minimize the deviations between a desired output
and the predicted output in a finite time-horizon [15].

In this application, the first assumption to be made is that
the fixed wing UAV is controlled by an Autopilot system,
which needs to be fed with the waypoints of the optimal flight
trajectory. The MPC module is responsible to calculate this
trajectory, based on the UAV’s and Ship’s attitude, position
and velocity.

A. UAV Dynamics

Considering that the fixed wing UAV will fly in a constant

altitude, maintained by the Autopilot, its dynamics is treated

as two-dimensional motion problem (Figure 4). Therefore, the

position and heading of the UAV can be expressed in the NED

frame as

 []
T, (2)

where and are the horizontal positions and is the

yaw angle. The velocities in the BODY frame and the rate of

change of the yaw angle forms the following vector.

 []
T. (3)

Besides, the relation between (2) and (3) is given by

 ̇ () , (4)

where () is the rotation matrix between the BODY and

NED frame as shown in (5).

 [

] (5)

The constraint of the system is the maximum turning rate
(r) of the UAV.

Fig. 4. UAV model in two dimensions.

B. Ship Dynamics

To use the ship dynamics in the MPC, a linear motion
model is implemented based on the position and velocity of the
ship in its intended path, at the instant the UAV should fly over
that location.

 (6)

where []
T
 is the position of the ship on the

path, is the time between measurements and the velocity

 []
T
.

C. Cost Function

The Least Squares (LS) function (7) is used as the function
to be minimized by the MPC algorithm.

∑‖ ()‖

 (7)

where * +
T

is the state vector.

In this application, the LS function () is the distance
between the UAV and the future ship’s position in its planned
path as shown in (8).

 () √()

 ()

 (8)

IV. SIMULATED DATA

Two simulated datasets with the ship’s path were
generated. Both have the duration of 15 minutes.

The first dataset was generated with fixed heading of -2π/3
in NED frame and fixed velocity of 18 knots.

The second has the same starting heading and velocity of
the first one but it changes the direction two times. After going
straight for some time, it makes a slight turn to the right, then it
goes straight again and finally it turns left and it goes straight
for the rest of the time. It also changes its velocity from 18
knots to 21 knots half way.

Fig. 5. Two simulated ship’s path

Both datasets were generated for a simulation of a ship
navigating close to Longyearbyen, Svalbard (Figure 5).

V. SYSTEM CONFIGURATION

The following parameters were chosen when running the
application:

 2 minutes between the ship’s current position and the
desired position in its planned path to be overflown;

 4 seconds as the update period for the UAV waypoints;

 20 seconds of MPC Horizon;

 10 MPC input steps;

 6 seconds between the current position and waypoint;

 Maximum of 30 iterations in the MPC optimization;

 Maximum turn rate of 0.3 rad/s;

 18 m/s of UAV velocity; and

 500m of altitude.

The reason to choose 4 seconds between each update is that
if the time step is too small, the autopilot may set the waypoint
as reached before the next update. As the cruise speed of the
X8, which is 18 m/s, was chosen as the target velocity, if the
UAV is flying straight, 4 seconds between each update means
that the UAV will fly 72 meters until the next update.

Fig 6. UAV path and error for constant ship velocity and heading using the ship model in the MPC

Fig 7. UAV path and error for constant ship velocity and heading without using the ship model in the MPC

Fig. 8. UAV path and error for varying ship velocity and heading using the ship model in the MPC

Besides, the target waypoint is 6 seconds from the UAV’s
current position, what means that it is expected that the
waypoint is updated about 36 meters before the UAV reaches
the target one. That choice was made because if the system
wanted to wait the UAV to reach the waypoint or if it allowed
the UAV to get very close to the waypoint, the UAV would
start to sorely turn trying to reach the waypoint or even it could
start to loiter around the waypoint without ever reaching it.
This kind of behavior is harmful for the optimization, which
should control the UAV in a smoothly way.

For the MPC parameters, the choice of the maximum of 30
iterations, 10 input steps and 20 seconds of horizon were due to
hardware limitations for a fast waypoints update. However, as
an update period of 4 seconds was used due to the ArduPilot’s
uncommon behavior when the UAV is too close to the
waypoint, this longer period of 4 seconds makes it possible to
have better parameters if a fine tuning is done. However, as
good results were achieved and the solution proved viable, it
was found that the choice of the parameters was convenient
and a fine tuning would not represent a significant
improvement.

Although the maximum turn rate of the X8 with the
standard tuning is around 0.4 rad/s, if a value close to 0.4 is
chosen, the UAV has an uncommon behavior because the MPC
asks for too strong maneuvers. That uncommon behavior is due
to the delay of the mission acknowledgement by the ArduPilot
and also due to the inertia, for instance when the UAV is
turning to the right and the control suddenly wants it to turn to
the left. Therefore, a turn rate of 0.3 rad/s was chosen, but it
can be fine-tuned with the other parameters to extract the best
performance of the UAV.

VI. RESULTS

Figure 6 shows the path and the distance error of a UAV
following the simulated ship’s path with constant velocity and
heading. The ship dynamics’ model was considered in this
simulation, using a constant velocity ship trajectory prediction.
In the graph on the left, the ship’s path is shown in a dotted line
while the UAV’s path is shown in a solid line. The “x” marker
represents the origin of the ship. The right graph shows the
error according to its variation along the path (q from 0 to 1).

It is possible to notice that the UAV tries to overfly the path
but as its velocity is higher than the ship’s, the UAV has to
maneuver, crossing the path many times doing turns. The mean
error was 217 meters in this case.

When not using the ship’s model in the MPC (Figure 7),
the UAV does much more 360º turns because the optimization
problem does not consider the motion of the ship, so it does not
know that the ship is moving forward. The error in this case
was 265 meters, compared to 217 of the previous case when
the ship’s model was considered, i.e., an improvement of 18%
was achieved when considering the ship’s model.

Even if the ship’s path is not just a straight and if its
velocity changes along the path, the UAV had a good
performance and the error was kept low, as shown in Figure 8.

VII. DISCUSSION

As this application was developed to run in an onboard

assembly, the Software In Loop simulation is an viable way to

test the integration of the different systems. For instance, there

is no need to worry about communication delays between the

systems as it will be running onboard the UAV. In the other

hand, hardware processing performance has to be taken into

account and that would be possible with a Hardware In Loop

simulation. However, as the application was running in

MATLAB installed in a laptop with Ubuntu with its graphic

interface and also many processes that are useless for the

application, for sure it will run smoothly in a dedicated board

running a compiled code in python or C++. In this manner, it

would be possible to have more MPC steps and also more

iterations to achieve better results.

Besides, it was noticed that just sending waypoints to the

autopilot is not the best way to guide it. It would probably be

better if the guidance was done by changing the UAV’s

attitude and velocity. Even if that solution would demand a

more complex model to be used in the MPC, the improvement

might worth it.

About the mission itself, during the development of this

solution, it was glimpsed that it would be more useful if the

UAV flew over an area around the ship’s planned path instead

of overflying only the planned path as a line. Thus, it would be

possible to detect objects that could be moving into the ship

track [3]. Therefore, this will be implemented in future works.

VIII. CONCLUSION

In a cooperative mission with a ship and a UAV, a common
use for the UAV is to use it to overfly an area of interest. In
this problem, that area is around the ship’s planned path.
Therefore, it has been defined that the UAV should overfly the
position that the ship may be in 2 minutes from the current
time. The UAV should control its turning rate to keep the
distance from that position as minimum as possible. Then,
according to the optimized turn rate, waypoints are generated
to feed the autopilot.

The path planning system based on Model Predictive
Control has been shown very effective for the proposed
problem. The UAV could keep its position very close to the
ship’s path most of the time, sometimes moving away from it
with strategic turns to get back to an optimum position. For the
second dataset, where the ship changes its velocity and heading
over time, the system also achieved a good result showing that
the MPC can adapt to any behavior of a ship’s path.

The difference between the results with and without using
the ship’s model in the MPC also proved that it is fundamental
to use the ship’s model to get a better performance.

Besides, more simulations can be done for fine tuning, as
changing the number of steps per second as well as using
hardware in loop simulation aiming a flight test.

ACKNOWLEDGMENT

This work has been supported by the MarineUAS project,
funded by the European Comission under the H2020

Programme (MSCA-ITN-2014-642153). We also acknowledge
the Research Council of Norway, grant number 223254 -
Centre for Autonomous Marine Operations and Systems
(NTNU-AMOS).

REFERENCES

[1] M. Koscielski, R. Miler and M. Zieliński, “Maritime Situational
Awareness (MSA)”. Zeszyty Naukowe Akademia Marynarki Wokennej,
vol. 4, Gdynia, 2007.

[2] F. Leira, T. A. Johansen and T. I. Fossen, “Automatic detection,
classification and tracking of objects in the ocean surface from UAVs
using a thermal camera”, IEEE Aerospace Conference, Big Sky, 2015.

[3] T. A. Johansen, T. Perez, “Unmanned Aerial Surveillance System for
Hazard Collision Avoidance in Autonomous Shipping”, International
Conference on Unmanned Aircraft Systems, 2016.

[4] F. Andrade, “Planejamento de Trajetória de Veículos Aéros não
Tripulados para Consciência Situacional Marítima”, Revista de
Villegagnon, ISSN 1981-3589, 2015.

[5] J. Haugen, “Autonomous Aerial Ice Observation”, Ph.D. thesis, NTNU,
Trondheim, 2014.

[6] F. R. Ramirez, D. S. Benitez, E. B. Portas and J. A. L. Orozco,
“Coordinated sea rescue system based on unmanned air vehicles and
surface vessels “, IEEE OCEANS, 2011.

[7] A. Weintrit, “Marine Navigation and Safety of Sea Transportation:
Navigational Problems”, CRC Press/Balkema, 2013.

[8] Y. Kang and J. Hedrick, “Linear tracking for a fixed-wing uav using
nonlinear model predictive control,” IEEE Transactions on Control
Systems Technology, vol. 17, no. 5, pp. 1202–1210, 2009.

[9] J. Haugen and L. Imsland. Monitoring moving objects using aerial
mobile sensors. IEEE Transactions on Control Systems Technology,
24(2):475– 486, 2016

[10] E. Skjon, S. A. Nundal, F. S. Leira and T. A. Johansen, “Autonomous
search and tracking of objects using model predictive control of
unmanned aerial vehicle and gimbal: Hardware-in-the-loop simulation
of payload and avionics”, International Conference on Unmanned
Aircraft Systems, Denver, 2015.

[11] B. Houska, H. J. Ferreau, M. Diehl, “ACADO Toolkit - An Open Source
Framework for Automatic Control and Dynamic Optimization”, Optim.
Control Appl. a Methods, 2011.

[12] J. Pinto, P. S. Dias, R. Martins, J. Fortuna, E. Marques, J. Sousa, “The
LSTS toolchain for networked vehicle systems”, IEEE OCEANS, 2013

[13] R. Stengel, “Flight Dynamics”, Princeton University Press, 2004.

[14] K. Gryte, “High Angle of Attack Landing of an Unmanned Aerial
Vehicle”, Master thesis, NTNU, Trondheim, 2015.

[15] E. F. Camacho, “Model Predictive Control”, Springer-Verlag, 2004.

