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Mobility promotes and jeopardizes biodiversity in
rock–paper–scissors games
Tobias Reichenbach1, Mauro Mobilia1 & Erwin Frey1

Biodiversity is essential to the viability of ecological systems.
Species diversity in ecosystems is promoted by cyclic, non-
hierarchical interactions among competing populations. Central
features of such non-transitive relations are represented by the
‘rock–paper–scissors’ game, in which rock crushes scissors, scis-
sors cut paper, and paper wraps rock. In combination with spatial
dispersal of static populations, this type of competition results in
the stable coexistence of all species and the long-term maintenance
of biodiversity1–5. However, population mobility is a central fea-
ture of real ecosystems: animals migrate, bacteria run and tumble.
Here, we observe a critical influence of mobility on species diver-
sity. When mobility exceeds a certain value, biodiversity is jeopar-
dized and lost. In contrast, below this critical threshold all
subpopulations coexist and an entanglement of travelling spiral
waves forms in the course of time. We establish that this phenom-
enon is robust; it does not depend on the details of cyclic competi-
tion or spatial environment. These findings have important
implications for maintenance and temporal development of eco-
logical systems and are relevant for the formation and propagation
of patterns in microbial populations or excitable media.

The remarkable biodiversity present in ecosystems confounds a
naive interpretation of darwinian evolution in which interacting
species compete for limited resources until only the fitter species
survives. As a striking example, consider that a 30 g sample of soil
from a Norwegian forest is estimated to contain some 20,000 com-
mon bacterial species6. Evolutionary game theory7–9, in which the
success of one species relies on the behaviour of others, provides a
useful framework in which to investigate co-development of popula-
tions theoretically. In this context, the rock–paper–scissors game has
emerged as a paradigm to describe species diversity1–5,10–12. If three
subpopulations interact in this non-hierarchical way, we intuitively
expect that diversity may be preserved: Each species dominates
another only to be outperformed by the remaining one in an end-
lessly spinning wheel of species chasing species.

Communities of subpopulations exhibiting such dynamics have
been identified in numerous ecosystems, ranging from coral reef
invertebrates13 to lizards in the inner Coast Range of California14.
In particular, recent experimental studies using microbial laboratory
cultures have been devoted to the influence of spatial structure on
time development and coexistence of species3,15. Investigating three
strains of colicinogenic Escherichia coli in different environments, it
has been shown that cyclic dominance alone is not sufficient to
preserve biodiversity. Only when the interactions between indivi-
duals are local (for example, bacteria arranged on a Petri dish) can
spatially separated domains dominated by one subpopulation form
and lead to stable coexistence1,3.

Here we show that biodiversity is affected drastically by spatial
migration of individuals, a ubiquitous feature of real ecosystems.

Migration competes with local interactions such as reproduction
and selection, thereby mediating species preservation and biodiver-
sity. For low values of mobility, the temporal development is domi-
nated by interactions among neighbouring individuals, resulting in
the long-term maintenance of species diversity. In contrast, when
species mobility is high, spatial homogeneity results and biodiversity
is lost. Interestingly, a critical value of mobility sharply delineates
these two scenarios. We obtain concise predictions for the fate of
the ecological system as a function of species mobility, thereby gain-
ing a comprehensive understanding of its biodiversity.

The influence of mobility on species coexistence was previously
studied within the framework of coupled habitat patches (‘‘island
models’’)16–19. In particular, Levin considered an idealized two-patch
system and observed a critical mobility for stable coexistence16. Other
models comprising many spatially arranged patches were shown to
facilitate pattern formation17,18. Because often in nature spatial
degrees of freedom vary continuously (for example, bacteria can visit
the entire area of a Petri dish), we relax the simplifying assumption of
habitat patches and consider continuous spatial distribution of indi-
viduals. Moreover, as an inherent feature of real ecosystems and in
contrast to previous deterministic investigations16–19, we explicitly
take the stochastic character of the interactions among the popula-
tions into account. Such interacting particle systems, where indivi-
duals are discrete and space is treated explicitly, have already been
considered in ecological contexts1,2,4,5,20. The behaviour of these mod-
els often differs from what is inferred from deterministic reaction–
diffusion equations, or from interconnected patches20. In the case of
cyclic competition, such stochastic spatial systems have been shown
to allow for stable coexistence of all species1,2,4,5 when individuals are
static. Here we explore the novel features emerging from individuals’
mobility.

Consider mobile individuals of three subpopulations (referred to
as A, B and C), arranged on a spatial lattice, where they can only
interact with nearest neighbours. For the possible interactions, we
consider a version of the rock–paper–scissors game, namely a stoch-
astic spatial variant of the model introduced in 1975 by May and
Leonard10 (see Methods). Schematic illustrations of the model’s
dynamics are provided in Fig. 1. The basic reactions comprise selec-
tion and reproduction processes, which occur at rates s and m,
respectively. Individuals’ mobility stems from the possibility that
two neighbouring individuals will swap their position (at rate e)
and will move to an adjacent empty site: hence, individuals randomly
migrate on the lattice. We define the length of the square lattice
as the size unit, and denote by N the number of sites. Within this
setting, and applying the theory of random walks21, the typical
area explored by one mobile individual per unit time is proportional
to M 5 2eN21, which we refer to as the mobility. The interplay of
the latter with selection and reproduction processes sensitively
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determines whether species can coexist on the lattice or not, as dis-
cussed below.

We performed extensive computer simulations of the stochastic
system (see Methods) and typical snapshots of the steady states are
reported in Fig. 2. When the mobility of the individuals is low, we
find that all species coexist and self-arrange by forming patterns of
moving spirals. With increasing mobility M, these structures grow in
size, and disappear for large enough M. In the absence of spirals, the
system adopts a uniform state where only one species is present, while
the others have died out. Which species remains is subject to a ran-
dom process, all species having equal chances to survive in our
model.

We obtain concise predictions on the stability of three-species
coexistence by adapting the concept of extensivity from statistical
physics (see Supplementary Notes). We consider the typical waiting
time T until extinction occurs, and its dependence on the system size
N. If T(N) / N, the stability of coexistence is marginal12. Conversely,
longer (shorter) waiting times scaling with higher (lower) powers of
N indicate stable (unstable) coexistence. These three scenarios can be
distinguished by computing the probability Pext that two species have
gone extinct after a waiting time t / N. In Fig. 2, we report the
dependence of Pext on the mobility M. For illustration, we have
considered equal reaction rates for selection and reproduction,
and, without loss of generality, set the time-unit by fixing s 5

m 5 1. With increasing system size N, a sharpened transition emerges
at a critical value Mc 5 (4.5 6 0.5) 3 1024 for the fraction of the
entire lattice area explored by an individual in one time-unit.
Below Mc, the extinction probability Pext tends to zero as the system
size increases, and coexistence is stable (implying super-persistent

a Selection (rate σ)

Selection (rate σ)

Reproduction (rate µ)

A B

C

b Reproduction (rate µ)

Exchange (rate ε)

Figure 1 | The rules of the stochastic model. Individuals of three competing
species A (red), B (blue), and C (yellow) occupy the sites of a lattice. a, They
interact with their nearest neighbours through selection or reproduction,
both of which reactions occur as Poisson processes at rates s and m,
respectively. Selection reflects cyclic dominance: A can kill B, yielding an
empty site (black). In the same way, B invades C, and C in turn outcompetes
A. Reproduction of individuals is only allowed on empty neighbouring sites,
to mimic a finite carrying capacity of the system. We also endow individuals
with mobility: at exchange rate e, they are able to swap position with a
neighbouring individual or hop onto an empty neighbouring site (exchange).
b, An example of the three processes, taking place on a 3 3 3 square lattice.
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Figure 2 | The critical mobility Mc. Mobility below the value Mc induces
biodiversity; while it is lost above that threshold. a, We show snapshots
obtained from lattice simulations of typical states of the system after long
temporal development (that is, at time t / N) and for different values of M
(each colour represents one of the three species and black dots indicate
empty spots). With increasing M (from left to right), the spiral structures
grow, and outgrow the system size at the critical mobility Mc. Then
coexistence of all three species is lost and uniform populations remain

(right). b, Quantitatively, we have considered the extinction probability Pext

that, starting with randomly distributed individuals on a square lattice, the
system has reached an absorbing state after a waiting time t 5 N. We
compute Pext as a function of the mobility M (and s 5 m 5 1), and show
results for different system sizes: N 5 20 3 20 (green), N 5 30 3 30 (red),
N 5 40 3 40 (purple), N 5 100 3 100 (blue), and N 5 200 3 200 (black). As
the system size increases, the transition from stable coexistence (Pext 5 0) to
extinction (Pext 5 1) sharpens at a critical mobility Mc 5 (4.5 6 0.5) 3 1024.
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transients22; see Supplementary Notes). On the other hand, above the
critical mobility, the extinction probability approaches 1 for large
system size, and coexistence is unstable. One of our central results
is that we have identified a mobility threshold for biodiversity:

There exists a critical value Mc such that a low mobility M , Mc

guarantees coexistence of all three species, while M . Mc induces
extinction of two of them, leaving a uniform state with only one
species.

To give a biological illustration of this statement, let us consider
colicinogenic strains of E. coli growing on a Petri dish3. In this setting,
ten bacterial generations have been observed in 24 h, yielding selec-
tion and reproduction rates of about ten per day. The typical size of a
Petri dish is roughly 10 cm, so we have evaluated the critical mobility
to be about 5 3 102 mm2 s21. Comparing that estimate to the mobility
of E. coli, we find that it can, by swimming and tumbling in super-soft
agar, explore areas of more than 103 mm2 s21 (ref. 23). This value can
be considerably lowered by increasing the agar concentration.

When the mobility is low (M , Mc), the interacting subpopula-
tions exhibit fascinating patterns, as illustrated by the snapshots of
Fig. 2. The emerging reactive states are formed by an entanglement of
spiral waves, characterizing the competition among the species which
endlessly hunt each other, as illustrated in Supplementary Videos 1
and 2 (see also Supplementary Discussion). Formation of this type of
patterns has been observed in microbial populations, such as myxo-
bacteria aggregation24 or multicellular Dictyostelium mounds25, as
well as in cell signalling and control26. Remarkably, a mathematical
description and techniques borrowed from the theory of stochastic
processes27 allow us to obtain these complex structures by means
of stochastic partial differential equations (PDE), see Fig. 3 and
Methods. Furthermore, recasting the dynamics in the form of a com-
plex Ginzburg–Landau equation28,29 allows us to obtain analytical
expressions for the spirals’ wavelength l and frequency (see Supple-
mentary Notes). These results, up to a constant prefactor, agree with
those of numerical computations, and will be published elsewhere
(manuscript in preparation).

As shown in Fig. 2, the spirals’ wavelength l rises with the indivi-
duals’ mobility. Our analysis reveals that the wavelength is propor-
tional to

ffiffiffiffiffi

M
p

(see Supplementary Notes). This relation holds up to
the mobility Mc, where a critical wavelength lc is reached. For mobi-
lities above the threshold Mc, the spirals’ wavelength l exceeds the
critical value lc and the patterns outgrow the system size, causing the
loss of biodiversity (see Fig. 2). We have found lc to be universal, that
is, independent on the selection and reproduction rates. This is not
the case for Mc, whose value varies with these parameters (see
Supplementary Notes). Using lattice simulations, stochastic PDE
and the properties of the complex Ginzburg–Landau equation, we
have derived the dependence of the critical mobility Mc(m) on the

reproduction rate m (where the time-unit is set by keeping s 5 1).
This enables us to analytically predict, for all values of parameters,
whether biodiversity is maintained or lost. We have summarized
these results in a phase diagram, reported in Fig. 4. We identify a
uniform phase, in which two species go extinct (when M . Mc(m)),
and a biodiverse phase (when M , Mc(m)) with coexistence of all
species and propagation of spiral waves.

The generic ingredients required for the above scenario to hold are
the mobility of the individuals and a cyclic dynamics exhibiting an
unstable reactive fixed point. The underlying mathematical descrip-
tion of this class of dynamical systems is derived in terms of complex
Ginzburg–Landau equations. Their universality classes reveal the
robustness of the phenomena which we have reported above, that
is, the existence of a critical mobility and the emergence of spiral
waves; they are not restricted to specific details of the model.

Our study has direct implications for experimental research on
biodiversity and pattern formation. As an example, one can envisage

a Typical spiral
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Figure 3 | Spiralling patterns. a, Typical spiral (schematic). It rotates
around the origin (white dot) at a frequency v and possesses a wavelength l.
b, In our lattice simulations, when the mobility of individuals lies below the
critical value, all three species coexist, forming mosaics of entangled,
rotating spirals (each colour represents one of the species and black dots
indicate empty spots). c, We have found that the system’s development can
aptly be described by stochastic PDE. In the case of lattice simulations and
stochastic PDE, internal noise acts as a source of local inhomogeneities and
ensures the robustness of the dynamical behaviour: the spatio-temporal

patterns are independent of the initial conditions. d, Ignoring the effects of
noise, we are left with deterministic PDE that also give rise to spiralling
structures. The latter share the same wavelength and frequency with those of
the stochastic description but, in the absence of fluctuations, their overall
size and number depend on the initial conditions and can deviate
significantly from their stochastic counterparts. In b and c, the system is
initially in a homogeneous state, while d has been generated by considering
an initial local perturbation. Parameters are s 5 m 5 1 and M 5 1 3 1025.
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Figure 4 | Phase diagram. The critical mobility Mc as a function of the
reproduction rate m yields a phase diagram with a phase where biodiversity is
maintained as well as a uniform one where two species go extinct. The time
unit is set by s 5 1. On the one hand, we have computed Mc from lattice
simulations, using different system sizes. The results are shown as blue
crosses. On the other hand, we have calculated Mc using the approach of
stochastic PDE (black dots, black lines are a guide to the eye) as well as
analytically via the complex Ginzburg–Landau equation (red line). When we
vary the reproduction rate, two different regimes emerge. If m is much
smaller than the selection rate, that is, m=s, reproduction is the dominant
limiter of the temporal development. In this case, there is a linear relation
with the critical mobility, that is Mc / m, as follows from dimensional
analysis. In the opposite case, if reproduction occurs much faster than
selection (m?s), the latter limits the dynamics and Mc depends linearly on
s, so that Mc / s. Here, as s 5 1 is kept fixed (time-scale unit), this
behaviour is reflected in the fact that Mc approaches a constant value
for m?s.
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an experiment extending the study3 on colicinogenic E. coli. Allowing
the bacteria to migrate in soft agar on a Petri dish should, for low
mobilities, result in stable coexistence promoted by the formation of
spiral patterns. Increasing the mobility (for example, on super-soft
agar), the patterns should grow in size and finally outgrow the system
at some critical value, corresponding to the threshold Mc discussed
above. For even higher values of the mobility, biodiversity should be
lost after a short transient time and only one species should cover the
entire Petri dish. We think that the regimes of both mobilities, cor-
responding to the biodiverse and uniform phases, should be experi-
mentally accessible.

We have shown how concepts from game theory combined with
methods used to study pattern formation reveal the subtle influence
of mobility on the temporal development of coexisting species. Many
more questions and applications regarding the seminal interplay
between these different fields lie ahead. As an example, it has been
shown that cyclic dominance can occur in social dilemmas9,30, which
suggests implications of our results for the behavioural sciences.

METHODS SUMMARY
To model cyclic dominance, we use a stochastic lattice version (following work

by Durrett and Levin)2 of a model proposed by May and Leonard10 in 1975. As
main characteristics, in the absence of spatial structure, their equations possess a

deterministically unstable fixed point associated to coexistence of all three

species: in the course of time, the system spirals (in the phase space) away from

coexistence and moves in turn from a state with nearly only As to another one

with nearly only Bs, and then to a state with nearly only Cs.

In our stochastic lattice simulations, we have arranged the three subpopula-

tions on a two-dimensional square lattice with periodic boundary conditions.

Every lattice site is occupied by an individual of species A, species B or species C,

or left empty. At each simulation step, a random individual is chosen to interact

with one of its four nearest neighbours: which one is also randomly determined.

Whether selection, reproduction or mobility occurs, as well as the corresponding

waiting time, is computed according to the reaction rates using an efficient

algorithm due to Gillespie31. We set one generation (when every individual

has reacted on average once) as the unit of time. To compute the extinction

probability, we have used different system sizes, from 20 3 20 to 200 3 200

lattice sites, and sampled between 500 and 2,000 realizations. The snapshots

shown in Fig. 2 result from system sizes of up to 1,000 3 1,000 sites.

Our stochastic PDE consist of a mobility term, nonlinear terms describing the

deterministic temporal development of the nonspatial model (May–Leonard
equations), and (multiplicative) white noise; see Supplementary Notes.

We have solved the resulting equations with the help of open software from

the XMDS project (http://www.xmds.org), using the semi-implicit method in

the interaction picture (SIIP) as an algorithm, spatial meshes of 200 3 200 to

500 3 500 points, and 10,000 points in the time direction.
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